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tions implemented. More precisely, we studied numerical calculations
and simulations for each model’s reproduction number, final size and
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Abstract

This thesis aims to analyze how interventions affect an epidemic. To
do this, we will consider two stochastic general epidemic models, one
with a constant rate of infection (i.e., no interventions) and one with a
time-varying contact rate corresponding to the interventions implemented.
More precisely, we studied numerical calculations and simulations for each
model’s reproduction number, final size and looked into the concept of
flattening the curve. Then, we also studied the optimal timing for reducing
the contact rate in the SIR epidemic model with interventions to minimize
the outbreak and stretch the epidemic, which is known as the time of

intervention.
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1 Introduction

Infectious diseases are something we want to control and understand the behav-
ior of. By constructing mathematical models that describe how a disease can
be transmitted between individuals in a population, we gain insight into the
dynamics of the disease. Such mathematical models have been used to describe
a variety of infectious diseases. For example, Ross (1927) modeled the trans-
mission of malaria [1] and the most recent coronavirus (2019). In general, there
are two main types of epidemic models: stochastic and deterministic.

Early modeling contributions were often deterministic and addressed questions
about the magnitude of an outbreak, the possibility of a large outbreak and the
effect of vaccination prior to disease occurrence. In a stochastic epidemic model
some additional questions can be observed, such as the probability of a large
outbreak [1]. One advantage of a deterministic model is its simpler analysis
since there is no element of randomness [2] while a stochastic model has the
advantage of being a more realistic model since the element of randomness is
taken into account. But hence, the stochastic model may be more difficult to
analyze than the deterministic model.

In this thesis we will study the stochastic epidemic model, more specifically the
stochastic general epidemic model, in a closed homogeneous mixing community,
which is described in Section 2. For further information on the stochastic model
as well as more reading on the deterministic model, see, for example, Andersson,
H. and Britton, T. (2000) and Britton, T. (2009).

We will aim to analyze the impact of interventions on the epidemic. In order
to achive this, we examine two distinct stochastic general epidemic models: one
with a constant contact rate, i.e. without interventions, and one with a time-
varying contact rate corresponding to the interventions implemented.

For a model where no interventions are performed during the time period, we
will use numerical calculations and simulations to examine the basic reproduc-
tion number and the final size of the epidemic. For the model with interventions,
we will use similar methods to those used for the prior model to examine the ef-
fective reproduction number and the final size of the epidemic. We will also look
at the concept of flattening the curve, which means to slow down the outbreak
dynamics and instead stretch out the outbreak over time [4], and we will do
this for two different methods of introducing interventions which are described
in Section 2. One method is directly influenced by the one of Michael Hohle in
the article ”Flatten the COVID-19 curve” (2020), to compare his method with
the second one. We will also examine the optimal timing for reducing contact
rates in epidemic models with interventions, known as the time of intervention.

In Section 4, we examine the results obtained from the numerical calculations
and our simulations. We will also analyze the differences in the results between
the models with and without interventions.

A brief overview of this thesis is as follows: In Section 2 we will go through
some important model theory that is needed in this thesis. In Section 3 we will



analyze the results and present them. In Section 4 we discuss the results and
clarify /justify some important notes or ambiguities. And lastly, in Section 5 we
present the conclusions that can be drawn.

2 Model theory

2.1 Stochastic general epidemic model

The stochastic model consists of three sets: Susceptibles (S), Infectives (I), and
Recovered (R), and it is assumed that at any time an individual is in one of
these three sets [1]. The set of susceptibles is the set of individuals who have
not yet been infected and are therefore susceptible to the disease, while the set
of infectives is the set of individuals who are infectious and can therefore spread
the disease further. An infected person will eventually recover from the disease
and move to the last set of recovered individuals. These recovered individuals
cannot be re-infected and are therefore immune. Thus, there are only two pos-
sible paths that an individual can take: from S to I and from I to R. For this
reason, the model is said to be a SIR epidemic model [1].

We also assume that the epidemic spreads in a closed homogeneous uniformly
mixing community. A closed community implies that there are no deaths, births,
immigration, or emigration during the period. By a homogeneous uniformly
mixing community, we mean that we do not take into consideration social groups
or structures, and therefore all contacts of individuals are randomly distributed
in the community [1].

Let S(t), I(t) and R(t) represent the number of susceptible, infectious and re-
covered respectively at time ¢. Initially we assume that the number of these is
given by S(0) = n, I(0) = m and R(0) = 0, where n + m corresponds to the
size of the population. The value of m must be at least one for a disease to be
able to spread in a society. If m = 0, there is no initial infective and thus no
one can become infected. In this thesis we assume m = 1.

The sequence of events in this model can be described as follows. An infectious
person has contact with other individuals randomly in time at a rate fn and
each such contact is with an individual chosen uniformly at random from the
population, all contacts of infectives are assumed to be mutually independent
[1]. Hence, the contact rate with a specific individual is our 3. If the contacted
individual is susceptible, he/she will be immediately infected and instantly able
to infect other individuals [2]. Otherwise, this contact has no effect. An infected
person will then remain in that state for a random period Tt ~ Exp(vy), with
mean 7 = 1/v. After T7, the infective eventually recovers and is immediately
immune. The infectious periods are assumed to be independent and identically
distributed and also independent from the contact processes [1]. The epidemic
starts at time ¢ = 0 and ends when there are no infectious people.

This is called the stochastic general epidemic model, which is our main focus
in this thesis. Since the infectious period 77 is exponentially distributed, which
shows a lack-of-memory property, the stochastic general epidemic model can be



described as a continuous-time Markov process with two possible jumps. The
rates for the two different transitions in such a process are described in Table 1

.

Event Transition Rate
Infection S—1 B-S(t)-I(t)
Recovery I—-R v - I(t)

Table 1: Transition rates for the two possible events, infection, and recovery,
in a stochastic general epidemic model, described as a continuous-time Markov
process

The transition rates can be derived immediately from the definition of the model
since for the transition S — I to occur, susceptible individuals must have contact
with infectives, and the transition I — R is the removal rate v multiplied by
the number of infected at time t.

2.2 Basic reproduction number

In this thesis, we will present and use two variations of reproduction num-
bers, the basic reproduction number, and the time-varying effective reproduc-
tion number. Both of these are measurements of how big an eruption can be,
found by calculating the average number of secondary infections by a typical
infective before recovering. The former is time constant and used when an infec-
tious individual is surrounded by an entirely susceptible population. The latter
is defined when interventions occur in some form and are the average number
of secondary cases generated at time t. The effective reproduction number is
presented in Section 2.6.

The basic reproduction number in a general stochastic epidemic model is given
by [3]

Ry = éS (0).
Y
The above expression of Ry can be explained as follows. An infectious individual
has an average infection period of 7 = 1/, and during this period, the infective
infects susceptibles at a rate 8- 5(0).

The critical value that separates a major outbreak from a minor outbreak is
Ry = 1[1]. For this reason, Ry is also considered as the epidemic threshold. And
since Ry is defined as the average number of secondary infections, it is evident
that if an infective, on average, spreads the disease to less than one person, then
the infection will die out before a major outbreak can occur. Thus, it can be
shown that there is a minor outbreak with probability 1, if and only if Ry < 1.
Otherwise, there is a positive probability of a major outbreak. A detailed proof
of this can be found later in Section 2.3. Note that even if Ry > 1, it is still
possible that the epidemic never takes off since we assume some uncertainty [1].



2.3 Epidemic threshold

As mentioned in section 2.2, the reproduction number is also considered the
epidemic threshold. In this section, we will look more into this, and to do so,
we need to look closer into an early epidemic approximation. The early stage
of an outbreak can be approximated by a continuous-time branching process as
follows.

We consider a population where the life span of different individuals are in-
dependent and identically distributed according to a random variable 77 and
where they independently give birth at time points according to a Poisson dis-
tribution with intensity Sn. This applies to all generations [2]. The number of
ancestors in the population is denoted by X, and their offsprings form the first
generation X;. Hence X,, denotes the size of the nth generation [5].

We will assume that each individual will produce j offspring with probability
p; during his/her life span, i.e., in the epidemic, each infected person infects j
new individuals with probability p; during his/hers infectious period [5]. Let D
denote the number of immediate offspring from a single individual and therefore
let [5]

E(D) =" jp;.
=0

Suppose now that we only have one initially infected person, Xo = 1, we note
that

Xn-1
Xn= > D
i=1

letting D; represent the number of offsprings of the ith individual in the (n—1)st
generation, together with the fact that E(D;) = D, we obtain [5]

E[X,] = E[E[X,|X,1]] = E[X,1 E(D)] = E(D)E[X,1].

And since we only have one initially infected person, Xy = 1, we get the following
equations [5]

EMA:ﬂMEMWﬂ:EWW

We now let my denote the extinction probability of the epidemic branching
process, still assuming Xy = 1. Since we have on average XoE(D)" = E(D)"
individuals in the nth generation, it is evident that 7o = 1 if and only if E(D) <



1 [2]. If we instead turn to the case where E[D] > 1, we obtain that my < 1.
We can calculate 7y via [5]

o0
Ty = Z P{population dies out|X; = j}p;.
j=0

However, since the population dies out if and only if all of the independent
branches go extinct, mq satisfies my = Z;io wépj. It can also be shown that m
is the smallest solution to the equation [5].

We now examine the branching approximation process for our epidemic. We
consider a sequence of standard SIR epidemic processes, and we now want to
show that it agrees with the epidemic process. The proof below is inspired by
the article ”Stochastic epidemic models and their statistical analysis” by Hakan
Andersson and Tom Britton.

We first construct a branching process, as we did before, and suppose that the
probability space holds the individual life histories nx,—_1,nx,—2,.., where n;
is a list containing the i¢th individual’s lifespan and time points at which this
individual give birth [2]. Let ¢ < 0 and ¢ > 1 be the life histories of X and the
ith individual born, respectively.

Now we will use an independent sequence of i.i.d. distributed random variables
defined on the probability space, each uniformly distributed on (0, 1), to be able
to create all of the epidemics processes with S(0) > 1. We fix n and label the
initial susceptibles 1,2,..,5(0) [2]. Now, X, in the branching process can be
interpreted as the initial infectives in an epidemic, and births corresponds to
contacts. If the contacted individual is susceptible, he/she becomes immediately
infected. If not, he/she and all of his/her successors in the branching process
are ignored in the epidemic process, and the individual is called a ghost. The
death of an individual that “s not a ghost equals removal in the epidemic process,
which leads to a process that is the same as standard SIR epidemic processes [2].

However, it is important to note that the two processes, the branching process,
and the epidemic process, only agree until the time of the first ghost. Lastly,
E(D) = pnr and hence, it corresponds to the basic reproduction number Ry
in a stochastic SIR model. This result shows that Ry can determine if a large
outbreak occurs or not [2].

2.4 Flattening the epidemic curve

The concept of flattening the epidemic curve corresponds to slowing down the
outbreak dynamics. There are various reasons why this approach is essential.
But one main reason is that stretching out the outbreak over a longer period will
ensure that a larger amount of individuals who need medical attention receive
this [4]. More precisely, if the curve is flattened, fewer people will be infected at
the same time t, and an obvious peak in the epidemic curve could be avoided.
This is especially helpful in cases of limited health capacity. Other advantages



may be to save time to carry out more research and hence find better treatments
and/or vaccines [4].

In order to flatten the epidemic curve, we want to reduce the reproduction
numbers, i.e., the average number of secondary infections by a typical infective
before recovering, and we can do this in two possible ways. The first one is
to reduce the number of contacts individuals have with each other which, as
mentioned before, corresponds to reducing 8. And the second one is to reduce
the effective infectious period. The latter can be done by regular tests for the
virus and quarantine, as this will help minimize the period that an infectious
person is among the other individuals in the community.

2.5 Epidemic model with interventions

For the SIR epidemic model with interventions, we instead have a time-varying
contact rate. This means that during the period, we are putting in preventive
measures, for example, social distancing, which will decrease the number of con-
tacts one person has and hence make our §(t) smaller. We will do this for two
different methods of introducing interventions in order to compare these in the
discussion in section 4.

The first method is directly influenced by the one given by Michael Hohle in the
article "Flatten the COVID-19 curve” (2018) and can be described as follows.
We will have three different §(t) values that only depend on time [4]:

507 lftgth
6(t): 517 lftl <t§t27
527 lftQ <t

where By is the initial 8 value of the disease, i.e. 1-10~%. During the time
interval [t1,t2], a large reduction of the contacts will take place, and after some
time, the preventive measures are slightly relaxed. We thus have 51 < 82 < .
We will use 81 = ¢15p and B2 = 28y where ¢1 < ¢o [4].

For the second method, we no longer will have a piecewise alteration. However,
the values still only depend on time and can be described as follows: As previ-
ously, we assume that we have a value Sy if t < ¢;, where By = 1-10~%. During
the time interval [t1, 5], minor control measurements are constantly made to
reduce the number of contacts. Thus contacts in this interval decrease linearly
and, hence, the value of §(¢). At the time ¢t = to, all constraints are put in place,
and after some time, the preventive measures are slightly relaxed again. And
this will happen constantly over some time. This means that during the period
[t3,t4], the value of B(t) increases linearly. And this is illustrated in Figure 1
below
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Figure 1: An illustration of how we will introduce the interventions in the

second approach. Within the time intervals [t1,¢2] and [t3,t4] interventions are
introduced and removed respectively.

This can also be mathematically defined as follows:

ﬁOa iftgtlv
Bla 1ft2<t§t3a
ﬂ(t) = 625 if ty < t7

rlﬂ(t—l), if ¢4 <t < o,
1‘26(1571), if ts <t <y,

where 81 and (5 are defined in the same way as in the first method. The vari-
ables r; and ro correspond some small constant that depends on the percentage
by which we want to decrease and increase ((t), respectively. For example, if
B(t) decreases by one percent for each step in the interval [tq,t2], 71 = 0.99. We
thus have r; < rs.

It is important to note that the timing of the interventions matters and that
they must be done properly in order to stretch the outbreak and reduce the
final size of the epidemic [4], so the presented times ¢ for the different methods
may vary. For example, the time ¢ = ¢; at which we initiate the first preventive
measures may be different for the different methods. This is further analyzed
in Sections 3 and 4.

In what follows, we will for clarity refer to these as piecewise intervention and
linear intervention respectively, due to the fact that we in the second method
use a linearly decreasing and increasing B(t) (even though it does not change
linearly all the time).

2.6 Effective reproduction number

When an epidemic eventually develops it is no longer appropriate to use the
basic reproduction number. This is since the number of susceptible individuals
is decreasing over time and interventions can take place in the community. As
mentioned before, such interventions may be restrictions or guidelines which can



contribute to changed values of 8 and -y, respectively, over time. For instance,
introducing restrictions that reduce the number of contacts individuals have
with each other corresponds to reducing (3, while imposing isolation on infected
individuals corresponds to reducing . The former example is what we are doing
in the epidemic model with interventions presented in Section 2.5. It is in these
cases we use the time-dependent effective reproduction number which is given
by [6]

Here we instead calculate the number of secondary infections by an infected
person before recovering at time t and can thus vary over the period. The
critical value is still 1. For a value R.(t) < 1, the number of new infections
will decrease. Otherwise, the number of new infections will increase [6]. The
motivation used for the basic reproduction number formula can also be used to
motivate the formula of the effective reproduction number.

3 Results

Throughout the simulations, we will, for simplicity, only consider models with
one initially infected person and a population with 5,000 susceptible individu-
als. We also only assume an infectious period of five days on average and hence
~ = 1/5. The only variable that will vary during the thesis and the simulations

is S.

For the SIR epidemic model without interventions we have a constant value of
B = 1-10"%. This indicates, together with the values given above, that we
have a basic reproduction number R as high as 2.5 which implies that a major
epidemic may occur. All simulations and code in this paper were calculated
using the computer program R.

3.1 SIR without interventions

We will first look at the results of the general stochastic SIR model without
interventions. We start by simulating and presenting the plot of the number of
infected individuals during the course, i.e., I(t).
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Figure 2: One simulation of the general stochastic model in a population with
5,000 susceptible individual, one initially infected and Ry = 2.5.

In Figure 2, we can see that the outbreak extends over 80 days and has, at most,
roughly 1,250 individuals infected at the same time, and this occurs approxi-
mately at time ¢ = 35. We can write this as 1(35) = 1,250.

We now find the final size Z, defined as the total number of infected individuals
by the end of the epidemic. We find Z by subtracting the number of susceptible
individuals at the end of the epidemic from the total population. We know that
S(0) = 5,000, 1(0) =1, and we get the number of susceptible at the end of the
epidemic from the simulation we just ran. We thus get 5,001 — 575 = 4,426
individuals. To see the final size for several simulations of this specific model, we
now simulate 10, 000 epidemics and present the final size for these in a so-called
final size distribution plot.

Now we can from Figure 3 see that we will either get a minor or a major
outbreak. This is due to the fact that the histogram unmistakably demonstrates
that, in the 10,000 simulations, the final magnitude of the pandemic in 40% of
the cases is close to 0. In the other cases, the final size is between 4,000 and
5,000, which indicates a major outbreak. This is not surprising given our high
Ry value and, if an outbreak takes off, it is likely that it will not end until the
majority of the population has been affected.

10
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Figure 3: Empirical distribution of final size from 10, 000 simulations of the gen-
eral stochastic model, without interventions, with 5,000 susceptible individual,
one initially infected and Ry = 2.5.

3.2 SIR with interventions

We will now look at the results of the general stochastic SIR models with in-
terventions. For clarity, we divide the two methods into two sections and, as
mentioned in Section 2.5, call these Piecewise interventions and Linear inter-
ventions. Note that we for these two methods are interested in the effective
reproduction number R.(t) and not the basic reproduction number Ry.

3.2.1 Piecewise interventions

For the general stochastic SIR model with piecewise interventions, we start by
carrying out several simulations for different values of ¢y, co, and different times
of interventions to find the best-fit values.

We find that the most effective time points to introduce and relax the restric-
tions are at ¢ = 10 and t = 60, respectively, for values ¢; = 0.6 and ¢y = 0.8.
This means that we introduce restrictions that give a reduction of the contacts
by 40%, keep the restrictions in place for 50 days and then ease them slightly
so that we only have a reduction of 20%. Hence, 81 = 0.68, and B2 = 0.88.

If we instead loosen the restrictions at an earlier time or loosen them too much,
we see that the curve does not significantly decrease and therefore does not
avoid an obvious peak in the outbreak dynamic. It is instead only delayed.
This result was also discovered by Michael Hohle and addressed in his article,
which is not entirely surprising since this method is directly influenced by his.

We will now simulate and present the plot of the number of infected individuals

during the course, i.e., I(t). In this plot, we will also draw the two vertical lines
representing the time of interventions.

11
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Figure 4: One simulation of the general stochastic SIR model in a population
with 5,000 initial susceptible and one initially infected with a time-varying B(t)
for interventions introduced piecewise.

In Figure 4 we can see that the outbreak extends close to 140 days and at most
500 individuals infected at the same time. Which is a clear improvement over
what we observed previously in the model without interventions.

We will now look at the effective reproduction numbers. As mentioned pre-
viously, we have three different 5(t) values. And since the initial value S5y is
the same as we use in the calculation of the basic reproduction number Ry and
the fact that all non-infected individuals are susceptible in the community at
time t = 0, it applies that R.(0) = Rg = 2.5. For the other R.(t) values, we
must use the formula of the effective reproduction number given in Section 2.6.
Therefore, we need to use the values of §(t), as we presented at the beginning of
this section, and S(¢) during the period. The latter we can obtain from our sim-
ulations. Note that v(¢) = v since we assume that v does not change over time.
We compute all the effective reproduction numbers and present these in a graph.

12
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Figure 5: The values of the effective reproduction number as a function of time
t for a model with piecewise interventions and initial value R.(0) = Ry = 2.5.

In Figure 5, we can now see the graph over the effective reproduction numbers
as a function of time. If we look at Figure 4 and 5, we can see that the number
of new infections decreases for R.(f) < 1 and increases for R.(t) > 1. A clear
example of when we can see this is when we relax the restrictions at ¢ = 60.
For this time, we can see in Figure 4 that R (t) goes from below 1 to be above
1. And at the same time, in Figure 2, we can see that also the number of new
infections slightly increases immediately after ¢ = 60 even though it decreased
just before.

Lastly, we will find the final size Z using the previous approach. We thus get
Z = 5,001 — 1258 = 3,743 and can immediately state that a smaller number
of individuals in society were infected, i.e., carried out the jump S — I, in this
model than in the model without intervention. This also confirms our result
that we, for this model, can see a clear improvement in comparison to the first
model. We now look at the final size distribution plot for 10, 000 simulations of
this model.

We can now see from Figure 6 that we will get either a minor or a major outbreak
since in 40% of the simulations, we have a final size close to 0, and in all the
other simulations, we have a final size between 3,000 and 4,000 individuals.
The size of the large outbreaks also appears to be almost normally distributed
between 3,000 and 4, 000.

13
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Figure 6: Empirical distribution of final size from 10,000 simulations of the gen-
eral stochastic model for 5,000 susceptible individual and one initially infected,
with piecewise interventions.

3.2.2 Linear interventions

For the general stochastic SIR model with linear interventions, we will also start
with carrying out several simulations for different values of ¢y, co, 71, 2 and
different time and length of interventions, i.e., [t1, t2] [ts,t4]. Note that a change
in r; and ro corresponds to a change in t5 and t4, respectively, the reverse also
applies since 1 and ro are the slope of the straight lines 5(t) = r15(t — 1) and
B(t) = raB(t — 1) and a greater incline/decline means that we reach the end
point faster.

We find that the most effective time intervals to impose and relax the restric-
tions on are [10, 30] and [60, 70], for values ¢; = 0.6, ¢ = 0.8 and 1, = r9 = 0.2.
This means that we introduce restrictions linearly for 20 days with a reduction
of the contacts by 2% for each day until we have a total reduction of 40%.
We then keep the restrictions in place for 30 days. After this, we ease the
restrictions linearly for 10 days with a reduction of 2% each day until we only
have a reduction of 20%. Hence, 51 = 0.65, B2 = 0.88p and B(t) = 0.985(t—1).

If instead we introduce the interventions at a slower rate r; and over a longer
period, we will reach a slightly higher peak of people infected at one point in
time, meaning a higher I(¢) at some point ¢, in the outbreak. Or, if we instead
loosen the restrictions at an earlier time or too much, we will end up with a
bigger final size Z of the epidemic. Although it is not a huge change.

Now, we simulate and present the plot of infectives during the period, i.e., I(¢).

We also draw four vertical lines in the plot to represent the time of intervention
interval

14
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Figure 7: One simulation of the general stochastic SIR model in a population
with 5,000 initial susceptible and one initially infected with a time-varying B(t)
for interventions introduced linearly.

In Figure 7, we can see that the outbreak lasts for just over 130 days, with at
most 500 infected individuals at the same time. This is a clear improvement
compared to the first model without interventions but similar to the method of
piecewise interventions.

We now look at the effective reproduction numbers. During the period in which
we have linearly decreasing and increasing interventions, we obtain a new ((t)
for each time step t and therefore, we have several different 3(¢) values. In
addition, we also have three values that are held constant over a period of time.
For the same reason as the method with piecewise interventions, mentioned in
Section 3.2.1, the initial effective reproduction number is R.(0) = Ry = 2.5.
For every other R.(t) value, we must use the formula given in Section 2.6. We
compute these and present them in a graph.

15
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Figure 8: The values of the effective reproduction number as a function of time
t for a model with linear interventions and initial value R.(0) = Ry = 2.5.

We can now see all the effective reproduction numbers over the outbreak in
Figure 8. If wee look at Figure 7, we see that the number of new infections
increases until ¢ = 40 and then immediately decreases and do so until the end of
the epidemic. This is consistent with the fact that we in Figure 8, can see that
up until the same time ¢ = 40, R.(¢t) > 1, and after this we reach the critical
limit R.(¢t) = 1 and stay below this limit for for the rest of the epidemic. This
agrees with what the epidemic threshold tells us.

Lastly, we look at the final size of the epidemic, which is given by 5,001 —1676 =
3,325 and is the lowest outbreak we have got so far in our simulations. We
also look at the final size distribution plot for 10,000 simulations and can see in
Figure 9 that in just over 40% of our simulations we have a minor outbreak close
to 0. In all the other simulations, we have a major outbreak where the final size
appears to be normally distributed between 3,000 and 4, 000 individuals.
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Figure 9: Empirical distribution of final size from 10,000 simulations of the
general stochastic model with 5,000 susceptible individual and one initially
infected, for linear interventions.

3.3 Epidemic curve

Now that we have presented the results for each model individually, let us look
at the results in terms of the concept of flattening the epidemic curve. By in-
terpreting the given results, we can see that both methods in the model with
intervention slow down the outbreak dynamics and stretch out the outbreak
over time.

We begin by presenting a graph of the epidemic curves for the model without
interventions and the one with piecewise interventions. In this plot seen in
Figure 10, we can see that when we introduce the preventive measures at ¢t =
10 in the piecewise approach, there is a noticeable difference between the two
models. While the model without interventions increases continuously rapidly,
the one with (piecewise) interventions continues relatively steadily forward with
only a slight incline. Consequently, the model without interventions has a much
higher transmission in society, and thus, more jumps S — I are performed in
the branching process. A consequence of this is that not as many susceptibles
individuals are infected at the same time ¢ during the course of the outbreak in
the model with (piecewise) interventions. Hence we avoid a clear peak and thus
increase the probability that all people who needs healthcare receive it. The
curve is thus flattened.
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Figure 10: Two epidemic curves, one general stochastic SIR mode without in-
terventions (blue) and one with piecewise interventions (green).

Figure 11 illustrates the similar pattern between the model with linear inter-
ventions and the model without interventions. For instance, the epidemic curve
for the model with (linear) interentions also does not increase as much or at the
same rate as the model without interventions at time ¢ = 10.

1250 =

1000 =

numbers of infectives

time (days)

With linear interventions —— Without interventions

Figure 11: Two epidemic curves, one general stochastic SIR mode without in-
terventions (blue) and one with linear interventions (purple).

We now present all three epidemic curves in the same plot. One of the first
things we see in this plot, present in Figure 12, is that the piecewise and linear
intervention models share many similarities. One of them being that both have
at most I(t) = 500 at some time ¢ and also that they stretched out the outbreak
to about the same length. But if we look more closely at Figure 12, we see one
potential difference. This is because the interval in which the epidemic curve
assumes its largest values appears to be shorter in the case of linear interventions
compared to the case with piecewise interventions. However, it is difficult to see
with the naked eye if this is true, and it is impossible to draw any conclusions
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as to whether one of the two methods is more effective than the other, but we
can state that they both flatten the curve.

1250~

1000 -

numbers of infectives

time (days)

With linear interventions With piecewise interventions == Without interventions

Figure 12: Three epidemic curves, one general stochastic SIR model without
interventions (blue), one with piecewise interventions (green) and one with linear
interventions (purple).

We now take the final size Z and the final size distribution into account for
all models. We call the final size of each model Z;, Z5, and Z3 where Z; is
the model without interventions, Z5 is the model with piecewise interventions,
and Z3 is the model with linear interventions. As mentioned in Section 3.2,
we obtained values of Z; = 4,426, Zy = 3,743, and Z3 = 3,325. From this,
we can see that Zy > Z3, but from Figure 6 and 9, we also see that out of
10,000 simulations, we have more major outbreaks in the model with linear
interventions, the difference in both of these results is also very little. Thus, we
cannot draw any conclusion about the most effective method by looking at these
results either. But we can conclude that both methods minimize the outbreak
and stretch the epidemic.

4 Discussion

It is important to note that this is a strong simplification of reality. A more
realistic model is one where the population is not assumed to be homogeneous
mixing since one can assume with certainty that social groups or structures do
exist. With this said, the values we assume are the best adapted in Section
3 are not always the ones that give the best results in our simulations. For
example, if one in both methods instead introduces interventions directly at the
start of the epidemic at time ¢ = 0, this generate a better result since we lower
the value of B(t) right from the beginning. By better results, we mean a smaller
final size Z, fewer people infected at the same time, etc. In such a simulation,
the epidemic rarely takes off. But it is not likely that we know in advance that
an epidemic will come, and therefore, we always choose values that are more
similar to reality. Hence, we always choose the values that are closest to reality
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when we examine which values are best adapted.

Another important note is that, regarding the best-fitted values, we get similar
results for the different methods of introducing interventions. This may be be-
cause we assume the same epidemic, i.e., the same initial values S(0), 1(0), 5(0)
and v, and that the two methods are relatively similar. Despite having many
elements in common, one significant difference is that the method with piece-
wise interventions has more effects when we alter the period at which we remove
the constraints or if we loosen them even further toward the end. Therefore,
it appears that the gradual introduction and easing of restrictions is a more
stable approach that can result in a community that can prevent significant
spreads of infection in society once more even if we do not maintain the same
level of protective measures or do not maintain them for the same period of time.

Another benefit of the method with linear interventions is that its effective
reproduction number, R.(t), both reaches the critical limit 1 faster and does not
appear to be significantly affected when we eventually relax the interventions as
compared to the method with piecewise interventions. This is seen in Figure 8,
for the linear interventions, where it applies that R.(40) = 1, and it then stays
below this value even when the interventions are relaxed at t = 60. At the same
time, we can see in Figure 5, for the piecewise interventions, that R.(40) > 1 and
it isn "t below 1 until approximately ¢ = 50 and even after this, it immediately
increases again when the interventions are relaxed at ¢ = 60. However, in some
cases, we can see an advantage with the piecewise interventions. For example,
from the 10,000 simulations we generated for both methods the piecewise had
a lower number of major outbreaks than the linear interventions which is seen
in Figure 6 and 9. Because of this, it is impossible to determine which approach
is more effective because both have advantages and disadvantages. It would be
advantageous to examine these for a variety of epidemic models in the future if
one wants to depict more differences and find the most effective one.

5 Conclusion

In this thesis, we have aimed to analyze how interventions affect an epidemic.
We did this by considering two stochastic general epidemic models, one with
a constant rate of infection (i.e., no interventions) and one with time-varying
rate of infection. We also computed two different methods on how to implement
these infections and called these Piecewise interventions and Linear interven-
tions.

One main thing we can conclude from this essay is that both methods we used
in the model with interventions produced similar results. Both flattened the
curve, stretched the outbreak, and got a smaller final size Z of the outbreak.
Both also had approximately at most I(¢) = 500 at some time ¢. From this, it
was not conceivable to draw any conclusions about the most effective method,
but we can establish that both methods improved the outbreak dynamics.

If we instead looked at the two methods separately, we could draw the follow-
ing conclusions. For the method with piecewise intervention, if we loosen the
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restriction too early or loosen them too much we would only delay the peak of
the outbreak and not significantly decrease it. And for the method with linear
interventions, if we introduced the interventions at a slower rate r; and over a
longer period of time, we would reach a higher value of I(t) at some point t.
And if we loosened the restrictions too early or too much, we would get a larger
final size Z than what we got with our values.
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