
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Predicting bank marketing success during a
period characterized by �nancial instability

Felix Seo



Matematiska institutionen

Kandidatuppsats 2023:5

Matematisk statistik

Januari 2023

www.math.su.se

Matematisk statistik

Matematiska institutionen

Stockholms universitet

106 91 Stockholm



Mathematical Statistics
Stockholm University
Bachelor Thesis 2023:5

http://www.math.su.se

Predicting bank marketing success during a

period characterized by financial instability

Felix Seo
∗

June 2023

Abstract

In this thesis we use two different models for predicting the success
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set is related to a Portuguese bank which were collected from 2008
to 2010, hence effects of the financial crisis are included. The data
set consists of 20 predictor variables and a response which represents
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undersampling of the data set was needed since it was imbalanced
with mostly failures as realizations. The models in question are the
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interpretability of the model is also an important property. Both
models acquire similar results of 72classification tree presents the best
overall results. The classification tree reveals several key variables in
selling long-term deposits (e.g. Euribor rate) while the group lasso can
not validate important features. While the group lasso has several
interesting and useful properties, further research on the method is
needed to decrease its limitations.
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Abstract

In this thesis we use two different models for predicting the success
of bank telemarketing campaigns to sell long-term deposits. The data
set is related to a Portuguese bank which were collected from 2008
to 2010, hence effects of the financial crisis are included. The data
set consists of 20 predictor variables and a response which represents
success or failure of selling a long-term deposit to the client. An under-
sampling of the data set was needed since it was imbalanced with
mostly failures as realizations. The models in question are the group
lasso for logistic regression and classification trees. We mainly use
the prediction error on a test data set (20 % of data) as a metric of
performance, but the interpretability of the model is also an important
property. Both models acquire similar results of 72% accuracy but the
classification tree presents the best overall results. The classification
tree reveals several key variables in selling long-term deposits (e.g.
Euribor rate) while the group lasso can not validate important features.
While the group lasso has several interesting and useful properties,
further research on the method is needed to decrease its limitations.
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1 Introduction

A common strategy to enhance business is to use marketing selling cam-
paigns. One widely used strategy is direct marketing where contact centers
are organized to directly target specific clients by i.e. outbound phone calls.
These call centers are used since it simplifies the operational aspect of the
marketing campaign. Since it is simpler than before to gather and store
data of clients a new task becomes increasingly more intriguing, namely fo-
cusing on to maximize the lifetime of a customer and finding new potential
customers with greater probability of success [1, Moro et al. 2014].

The data set is related to a marketing campaign of a Portuguese bank which
was conducted with phone calls to potential clients during 2008 to 2013. It
should be noted that a subset of the data set studied in [1, Moro et al. 2014]
including only 20 features and realizations during 2008 to 2010 is used in
this thesis. A subset is used since it is the only accessible data. In the
data set studied by [1, Moro et al. 2014], they use different data mining
approaches to predict the success of selling bank long-term deposits. The
data mining models used are logistic regression, classification trees, support
vector machines and neural networks. They also needed to do a feature
selection beforehand since their data consist of 150 features, ending up with
22 features used in the model fitting. One of the main problems is that the
number of features in the data set which is received after the feature selec-
tion phase is still quite large and contain a variety of different data types.

The data studied in this thesis also have quite many features and also con-
tain many different data types. Much focus should hence be put towards
choosing an appropriate model for the data at hand. In this thesis we inves-
tigate one new type of model which is a more general lasso model, namely
the group lasso for logistic regression, and also conduct a more rigorous con-
struction of the classification tree. The classification tree in [1, Moro et al.
2014] is constructed by using default parameter values in the R package that
fits the classification tree and no further discussion is presented. Focus is
to examine the predicative power of the two models, but also interpretability.

In the classical linear regression setting the coefficient estimates are ob-
tained by minimizing the squared loss which often gives nonzero estimates.
For large data sets this is a problem due to the fact that all features are then
included and the interpretability of the model is then impaired. The lasso
[2, Tibshirani 1996] is a popular method to remedy this problem by restrict-
ing the coefficient estimates and thus possesses a subset selection property.
Although in general the lasso works quite well it does not cover all types of
data, e.g. when the variables possess a group structure it can not adequately
handle this property.
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The group lasso [3, Yuan and Lin 2006] is an extension of the regular lasso
which takes group structure in consideration. Yuan and Lin (2006) mo-
tivated the group lasso by the multifactor analysis-of-variance (ANOVA)
problem and the additive model. In the ANOVA, each factor could be ex-
pressed by a group of dummy variables. Often it is desirable to find the main
effects and then deleting irrelevant factors which would amount to deleting
the group of corresponding dummy variables. In the additive model example
they use polynomial or nonparametric components to in both cases express
these components as a linear combination of basis functions of the origi-
nal variables. Removing an unimportant component in the additive model
would translate into removing groups of basis functions.

After the introduction of the group lasso there has been some further re-
search regarding the group lasso. The group lasso has been extended for
use in logistic regression models [4, Meier et al. 2008]. But both afore-
mentioned papers derive solutions for the group lasso under the assumption
of group-wise orthonormality. Although one can often transform the group
data beforehand to meet the orthonormality condition, this may not give
solution to the original problem [5, Friedman et al. 2010]. However, recent
work [6, Yang and Zou 2015] has proposed an algorithm that solves the
group lasso problem without the assumption of group-wise orthonormality.

Classification and regression trees [7, Brieman et al. 1984] is a popular
tree-based method. It partitions the feature space into rectangles and then
fits each region with a constant to serve as the estimated prediction. The
method is quite simple but powerful and has been applied in many areas
and seen extensions, like random forests and gradient boosting trees. Trees
have nice properties that make them often a natural first choice for regres-
sion or classification tasks. The way a tree is constructed makes it able to
handle data of mixed type (categorical, numerical) and trees are also robust
to correlated variables.

The thesis is organized as follows: in Section 2 we present the theory of
the models used; in Section 3 we present the data set and conduct some pre-
liminary explanatory analysis; Section 4 describes and analyses the results
of the models; finally, Section 5 contains the conclusion of the results and
further improvements.
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2 Theory

2.1 Logistic regression

Assume that y1, y2, . . . , yn is a sample from Y1, Y2, . . . , Yn where all Yi are
independent and normally distributed random variables with mean µi and
mutual variance σ2. Also assume that Yi = µi + ϵi with ϵi ∼ N (0, σ2), then
the linear model assumes the form

yi = β0 +

p∑
j=1

βjxij + ϵi,

where β0, βj are some unknown parameters and xi1, xi2, . . . , xip are some
known values (predictors) for j = 1, . . . , p and i = 1, . . . , n. The model can
be expressed in vector notation for convenience with β ∈ Rp containing all βj
and Xi = (xi1, . . . , xip) a vector of the xij such that yi = β0+Xiβ+ϵi. Then
with the linear model we try to estimate the response yi by [8, Sundberg
2020, ch. 2.1]

E(Yi|X = Xi) = µi = β0 +Xiβ.

The linear regression model is just a special case of a much more general
model. Consider that we want to approximate g(E(Yi|X = Xi)) = g(µi),
where g : R → R is a strictly monotonic function, using the linear model

g(µi) = β0 +Xiβ.

Choosing g(µi) = µi assuming that the response is Gaussian gives us the
standard linear regression model. The function g is called the link function.
If we are interested in modeling a binary response Y ∈ {0, 1} then often
the linear logistic regression is used with µi = P (Y = 1|X = Xi) and
g(µi) = log (µi/(1− µi)) assuming Bernoulli distributed responses. That is
we model the log-ratio of the conditional probabilities

log
P (Y = 1|X = Xi)

P (Y = 0|X = Xi)
= β0 +Xiβ. (2.1)

Which becomes

P (Y = 1|X = Xi) =
eβ0+Xiβ

1 + eβ0+Xiβ
,

and the predicted probabilities will be in (0,1) [9, Hastie et al. 2016, ch.
3.1].
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2.2 Lasso

We know that for a sample y1, . . . , yn the linear regression model estimates
the response yi with µ̂i = β̂0 + Xiβ̂. The parameters β̂0, β̂ are derived by
minimizing the squared loss:

min
β0,β

(
1

2n

n∑
i=1

(yi − β0 −Xiβ)
2

)
.

It should be noted that under the normality assumption of yi, minimizing
the squared loss is equivalent to minimizing the negative log-likelihood in
the linear regression model. The estimated parameters often become non-
zero which in turn could make it quite difficult to interpret the model if we
have a lot of predictors [9, Hastie et al. 2016, ch. 1]. There often is a smaller
subset of the predictors that explain most of the response and by omitting
some predictors or shrinking their effects, one may get a higher prediction
accuracy in comparison with the full model [9, Hastie et al. 2016, ch. 2.1].
To solve this problem one can introduce the ℓ1 constraint to the squared
loss (called the lasso). So the optimization problem instead becomes

min
β0,β

(
1

2n

n∑
i=1

(yi − β0 −Xiβ)
2

)
, subject to

p∑
j=1

|βj | ≤ t. (2.2)

The constraint is more compactly written as ||β||1 ≤ t, and with y =
(y1, . . . , yn)

T we can write (2.2) in a more compact form as

min
β0,β

(
1

2n
||y− β01−Xβ||22

)
, subject to ||β||1 ≤ t, (2.3)

where || · ||2 is the Euclidean norm on vectors, X an n × p matrix and 1
is a vector of n ones. The predictor matrix X we often standardize before
fitting the lasso, that is with mean 1

n

∑
i xij = 0 and variance 1

n

∑
i x

2
ij = 1.

If we would not standardize the lasso solution would depend on the units
used to measure the predictors. Though if we would deal with the same unit
we would typically not standardize the predictors. The form (2.3) is often
rewritten in the so called Lagrangian form

min
β0,β

(
1

2n
||y− β01−Xβ||22 + λ||β||1

)
.

The λ > 0 can be seen as a shrinkage parameter. By Lagrangian duality
there exists a λ that corresponds to the value t chosen in (2.2) that gives
the same solution from the Lagrangian form [9, Hastie et al. 2016, ch. 2.2].

Given the logistic model we are interested in estimating the conditional
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probability P (Y = 1|X = Xi) = E(Y |X = Xi), where we turn to maxi-
mizing the log-likelihood for a Bernoulli random variable, but which is also
equivalent to minimizing the negative log-likelihood with ℓ1 constraint [9,
Hastie et al. 2016, ch. 3.2]

− 1

n

n∑
i=1

yi logP (Y = 1|X = Xi) + (1− yi) logP (Y = 0|X = Xi) + λ||β||1

= − 1

n

n∑
i=1

yi(β0 +Xiβ)− log (1 + eβ0+Xiβ) + λ||β||1.

2.3 Group lasso

In a situation where some of the predictors have a natural group structure
it would be natural to have that either all of the predictors within a group
affect the response, or none of them. For example take the case where we
have a nominal categorical variable with many levels. It is natural to rep-
resent this type of variable of K classes by introducing K − 1 new dummy
variables where each variable corresponds to one of the different classes [9,
Hastie et al. 2016, ch. 4.3]. We would then in the fitting process either want
all coefficients for predictors in each group be nonzero or zero. This is when
the group lasso would be an ideal candidate. The following is based on [3,
Yuan and Lin, 2006] if nothing else stated.

Let us consider a linear regression model with J groups of predictors and
denote the explanatory variables for group j = 1, . . . , J by Xj ∈ Rpj , pj
is here the size of the group. Then we estimate the response Y with the
regression coefficients β0 ∈ R and β1, . . . , βJ where βj ∈ Rpj by E(Y |X)
which the takes the form

E(Y |X1, . . . , XJ) = β0 +
J∑

j=1

XT
j βj .

Then given some sample y = (y1, . . . , yn)
T and a n × pj group matrix Xj

where each row is a realization and each column corresponds to a predic-
tor variable within the group, the optimization problem can be written in
Lagrangian form as

min
β0,βj

1

2

∣∣∣∣∣∣y− β01+
J∑

j=1

Xjβj

∣∣∣∣∣∣2
2
+ λ

J∑
j=1

||βj ||Kj

. (2.4)

We thus introduce a new constraint defined as

||η||K = (ηTKη)1/2,
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where K is a symmetric d× d matrix and η ∈ Rd . There are many choices
of the matrix Kj , but one proposed in [3, Yuan and Lin 2006] is Kj = pjIpj .
With this choice, we can rewrite the above Lagrangian form

min
β0,βj

1

2

∣∣∣∣∣∣y− β01+
J∑

j=1

Xjβj

∣∣∣∣∣∣2
2
+ λ

J∑
j=1

√
pj ||βj ||2

.

So we get a group penalization depending on the group size. Note that if
all groups are of size 1, that is p1 = · · · = pJ = 1, and setting K = 1
gives ||βj ||2 = ||βj ||1. The regular lasso is then obtained in (2.4). In the
setting Yuan and Lin (2006) propose the group lasso, the group matrices
Xj are orthonormal (i.e. XT

j Xj = Ipj ). Though for general matrices we can
orthonormalize them before conducting the group lasso, but this will not
generally solve the original problem formulation [5, Friedman, et al. 2010].
Fortunately [6, Yang and Zou 2015] proposed the groupwise-majorization-
descent (GMD) algorithm to solve general group lasso problems which de-
pends on that the loss function satisfies the quadratic majorization (QM)
condition. The logistic loss is one type of loss function that satisfies the QM
condition [6, Yang and Zou, 2015]. It should also be noted that with special
data structure the estimated group coefficients in the group lasso may not
all be zero or nonzero.

Let us introduce the group lasso for modeling binary responses when us-
ing logistic loss. We model the conditional probability P (Y = 1|X = Xi)
by (2.1) and the grouped lasso solution is given by minimizing

− 1

n

n∑
i=1

yi(β0 +

J∑
j=1

XT
ijβj)− log (1 + eβ0+

∑n
j=1 X

T
ijβj ) + λ

J∑
j=1

√
pj ||βj ||2.

The Xij ∈ Rpj is a vector of covariates for realization i and group j [4, Meier
et al. 2008]. The GMD algorithm uses −1/1 to code the class labels so the
loss function needs to be reconsidered and thus we introduce the margin
based loss. The negative log-likelihood then becomes

− 1

n

n∑
i=1

log (1 + e−yi(β0+
∑n

j=1 X
T
ijβj)) + λ

J∑
j=1

√
pj ||βj ||2.

The product yi(β0+
∑n

j=1X
T
ijβj) in the loss is called the margin. A positive

margin means a correct classification while a negative margin means an
incorrect classification.
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2.4 Classification and Regression Trees

Classification and regression trees (CART) is a method where we sequen-
tially use binary splits on the predictor variables X, so that the feature
space is partitioned into different regions to be able to predict the response
Y . For example suppose we have a regression problem with the two predic-
tor variables X1, X2 and want to predict the response Y , here the response is
estimated by the mean of Y in each region. Following the right subfigure in
Figure 1 we first split X1 at the value t1 which results in getting two regions
of the feature space. Values of X1 ≤ t1 is sent to the left while values of
X1 > t1 is sent to the right. The first variable and split-point is chosen with
respect to some measure of fit, this we will come back to shortly. The same
idea is applied in the next step where we split the two regions once more,
with splitting-points X2 = t2 and X1 = t3. This goes on as long as some
stopping criteria is not met. In our example the regions R1, . . . , R5 we end
up with is illustrated in the left subfigure in Figure 1. Then our prediction
of Y would become a constant cm in region Rm, that is

Y =
5∑

m=1

cmI((X1, X2) ∈ Rm),

where I is the indicator function. The tree model can obviously be used
with more than two predictor variables, but for illustrative purposes it is
quite difficult to draw the partition of the feature space for more than 2
variables. The following and former description of CART is based on [10,
Hastie et al. 2017, ch. 9.2] if nothing else is stated.

Figure 1: The left figure is an example of how a partitioned feature space using
binary splitting may look like. The right figure shows the tree corresponding to the
partitioned feature space in the left figure.
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Let us now turn our attention to how we build a tree. The approach for
constructing a classification tree or a regression tree does not differ much.
The only difference is the function used for measuring the splitting fit. So
first we introduce the regression tree algorithm and then for the classifica-
tion tree only change the splitting measure to be more fitting.

Starting with some preliminary definitions, a terminal node is the name
of a region we end up with. So in the previous example we would have 5
terminal nodes representing regions R1, . . . , R5. A node is a split-point, like
the first split X1 = t1 would be considered a node (more specifically the
root node). Now consider a sample xi = (xi1, . . . , xip) of size n and the cor-
responding response yi. Then we need to decide which variable to split, the
split points and also the shape or structure of the tree. For this end suppose
we have a partition of the feature space into M regions R1, . . . , RM , then
a predicted response becomes a constant cm depending on which region it
ends up in. That is we estimate yi by

ŷi =

M∑
m=1

cmI(xi ∈ Rm).

Then use the sum of squares as a minimization criteria

n∑
i=1

(yi − ŷi)
2,

and with this the best constant ĉm is the mean of all the yi in the region
Rm which is ĉm = ave(yi|xi ∈ Rm). The next step is now finding the binary
partition with respect to minimizing the sum of squares. This approach is
very computationally demanding and hence we need to proceed in a different
way. Using all the data we consider splitting variable j at point s so that
we get the two half-planes

R1(j, s) = {X|Xj ≤ s}, R2(j, s) = {X|Xj > s}.

For the variable j and the splitting point s we are then interested in mini-
mizing

min
j,s

min
c1

∑
xi∈R1(j,s)

(y1 − c1)
2 +min

c2

∑
xi∈R2(j,s)

(yi − c2)
2

 .

As before the inner minimizations are solved by ĉ1 = ave(yi|xi ∈ R1(j, s))
and ĉ2 = ave(yi|xi ∈ R2(j, s)). It turns out that finding the splitting point
s for a splitting variable is quick and hence we can find the best pair (j, s)
by looking through all inputs.
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A natural question now is how many splits should we continue doing, i.e
how large of a tree should we build? Because we have now found the best
variable and corresponding split-point creating two regions. Then we can
repeat the process for each new region. Clearly it would not be wise to
build a large tree because then we could severely overfit the data, but on
the contrary, a most simple tree may not be able to explain the complex
structure of the data. A seemingly natural way of dealing with this may
be that we only split a node if the sum of squares error decreases by some
minimum value. This strategy is not suitable since one split that may seem
worthless can generate a good split farther down the tree.

The strategy most appropriate is to grow a large tree and stop splitting
when we reach some minimal node size. Then we prune the tree, that is
remove non-terminal nodes with respect to some cost criteria. Denote the
large tree grown by T0 and let T be some (proper) subtree of T0, that can
be obtained by pruning T0. Also let m denote terminal nodes, Rm be the
region defined by that terminal node and |T | the number of terminal nodes
in tree T . Define also Nm = Number of xi ∈ Rm. Now comes the part of
defining the so called node impurity measure Qm(T ), which as the name
implies, is a measure of how good the splitting node is. For regression it
would be natural to use the squared error loss, but this is not a good choice
for a classification task for say 1, . . . ,K outcomes. Let k = 1, . . . ,K and
define

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k),

which is the proportion of class k observations in the terminal node m.
To assign the predicted outcome to a corresponding class we will use the
majority vote, that is the class with largest proportion in a node becomes
the predicted outcome. This we can denote by k(m) = arg maxk p̂mk,
which corresponds to cm for regression trees. With this we introduce 3
different node impurity measures Qm(T ) that may be valid for classification
instead of the squared loss used in the regression trees. These measures are
misclassification rate, Gini index and cross-entropy defined by:

Misclassification rate:
1

Nm

∑
xi∈Rm

I(yi ̸= k(m)) = 1− p̂mk(m),

Gini index:

K∑
k=1

p̂mk(1− p̂mk),

Cross-entropy: −
K∑
k=1

p̂mk log p̂mk.
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Which one of these measures to chose we will come back to, but now we are
ready to define the so called cost complexity criteria Cα(T ) as

Cα(T ) =

|T |∑
m=1

NmQm(T ) + α|T |,

where α ≥ 0 is a parameter that one need to set and indicates how much
one should penalize larger trees. We can see that large α will penalize the
complexity and thus results in a smaller tree, the opposite for small α and
α = 0 will give T0. Now we choose some sequence of α and find each Tα ⊆ T0

that minimizes Cα(T ). One can show that for each α there exists a unique
Tα that minimizes Cα(T ). To find Tα we will collapse the internal node that
gives the smallest per-node increase in

∑
mNmQm(T ). This is conducted

until we reach the root tree, that is the tree with a single node. We now end
up with a sequence of trees that will contain Tα.

The sequence of α depend on the data set at hand which is why it can not be
defined in general. The best α we find by using n-fold cross-validation (of-
ten 10-fold), choosing α̂ that minimizes the cross-validated loss (any Qm(T )
defined for classification in our case) gives the final tree Tα̂.

So far we have not specified the type of node impurity measure one should
use. The Gini index and cross-entropy are both differentiable and hence
more valid in numerical optimization. Also these two measures are more
sensitive to changes in node probabilities than the misclassification rate.
This makes the Gini index or the cross-entropy more suitable when growing
a tree, but when pruning the tree either three of the node impurity measures
can be used. Often the misclassification rate is used when pruning.

3 Data and model preparation

Before we construct the models we need to do some explanatory analysis of
the data set. The difference in our case with respect to [1, Moro et al. 2014]
is as mentioned in the introduction that we only can acquire data over 20 of
the variables and over the period 2008 to 2010. Note also that the 20 features
we have access to are not all the same as the final 22 features that [1, Moro
et al. 2014] ended up with using in their construction of the models. For ex-
ample they have data over variables that contain information on client-bank
relationship, such as if a client has a salary account already in the bank.
Also information regarding the agent (the one making contact with clients)
like his or her experience or how long the agent has worked. These variables
presumably contains quite interesting information that would be useful in
building our model. Thus our results are not directly comparable with the
results attained by [1, Moro et al. 2014].
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Still, we have an interesting data set and another approach to the prob-
lem. But before getting into the details of these methods let us discuss the
data set summarized in Table 1.

variables

categorical levels numeric

job 11 age
marital 3 campaign

education 7 pdays
default 2 previous
housing 2 duration
loan 2 emp.var.rate

contact 2 cons.price.idx
month 10 cons.conf.idx

day of week 5 euribor3m
poutcome 2 nr.employed

y 2

Table 1: Table showing the explanatory variables, the response (y) and their
types. For categorical types also the levels are seen. The levels are calculated by
not including missing data as a group class which is included in the unprocessed
data set.

Many of the features are self explanatory but some of them will be given a
more detailed description below.

• marital: Marital status (divorced/married/single).

• default: Has credit in default? (yes/no).

• housing: Has housing loan? (yes/no).

• loan: Has personal loan? (yes/no).

• contact: Contact communication type of last contact (cellular/telephone).

• month: Month in in which the call was made, January and February
month missing. It is not mentioned why that is.

• day of week: Last contact day of the week (weekdays).

• duration: Last contact duration, in seconds.

• campaign: Number of contacts performed during this campaign and
for this client.
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• pdays: Number of days that passed by after the client was last con-
tacted from a previous campaign.

• previous: Number of contacts performed before this campaign and for
this client.

• poutcome: Outcome of the previous marketing campaign (failure/success).

• emp.var.rate: Employment variation rate, with a quarterly frequency
compared over same period previous year.

• cons.price.idx: Consumer price index - monthly indicator.

• cons.conf.idx: Consumer confidence index - monthly indicator.

• euribor3m: Euribor 3 month rate - daily indicator.

• nr.employed: Number of employees - quarterly average.

• y: Has the client subscribed a term deposit? (binary: ’yes’,’no’).

The numeric features ”emp.var.rate” all the way to ”nr.employed” are so-
cial and economic context features. For example the ”cons.price.idx” cor-
responds to the consumer price index which is a monthly measure of the
average price trend regarding the entire private domestic consumption. The
”duration” is the duration of the last call with the client which discussed
later, is a problematic feature to use in our models.

For the categorical variables we can see that we are dealing with quite a
lot of them and they have many levels (number of possible classes). Note
that the ”y” is the outcome of the campaign which is the variable of interest
to predict. One problem that arises is that we need to decide what type of
variables these are (nominal, ordinal) and how to encode them for use in
our models.

Before we construct any of the models we need to do some explanatory
analysis of the data. We can first of mention that the data set is quite big
with 41188 instances, though very imbalanced with respect to the response
y. There are some different approaches to solve this problem, but we will
make use of random under-sampling. Random under-sampling aims to bal-
ance out the data set by randomly removing data from the majority class.
One obvious problem with this method is that we may remove data that are
very important. Furthermore we can not say that the under-sampled data
reflects a random sample from the true distribution, since we have removed
data from the majority class in the full data set [11, Kotsiantis et al. 2006].
Another approach would be to use over-sampling based methods where we
fabricate synthetic samples to the minority class to balance the data set.
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Though for convenience we will use under-sampling since it is simple to im-
plement.

Let us take a more detailed look at the features. Firstly, we note that
the duration variable is not desired for use in a predictive model, why we
will remove it. The duration of the call impacts the response heavily and
is not known before the call is made. Secondly the default attribute is also
removed since it only has 3 realizations of people with credit in default. This
huge difference in group size will not contribute to the predicative power of
the model. We will not do any further feature selection since the models
that are used will serve that purpose.

The way of dealing with missing inputs needs to be discussed. We will
remove rows with missing values. Even though classification trees can work
with missing values the grouped lasso can not. When the rows with missing
inputs are removed (roughly 3000 instance) we end up with approximately
38000 realizations out of the full data set. Hence, in the end we are not
penalized much when removing the realizations with missing inputs.

Categorical variables are encoded differently for the classification tree and
the group lasso. Though binary variables are transformed to 0 and 1 out-
comes for both models. The same for the education variable since it is
classified as an ordinal type variable why we will use simple ordinal encod-
ing (values 0 to 6). Variables like marital, pdays, day of the week and month
are classified as nominal variables and we will introduce K− 1 dummy vari-
ables where K is the number of classes in the variable. For example, day of
week will be represented by 4 dummy variables where if all equal 0 this rep-
resent that it was a Friday. This is where the difference occurs. The group
lasso will have the latter encoding for nominal variables, while a different
approach is used for the classification tree.

Regarding the classification tree, if we have a nominal categorical predic-
tor with K classes the number of possible splits are 2K−1 − 1. So for large
K the computations can become demanding. For our case when we are
dealing with a binary response of 0, 1 outcomes we can instead order the
classes as the proportions of falling in the outcome 1. For example, for our
job variable we have the class housemaid. Say now that for demonstrative
purposes it has 100 observations corresponding to the output 1 and the total
number of type 1 outcomes is 500. Then the encoding value of housemaid
would become 100/500 = 0.2. This is done for all the nominal predictors
and it can be shown that this gives the optimal split with respect to Gini
index [10, Hastie et al. 2017, ch. 9.2.4].

For the group lasso we will make use of the R package called gglasso [6,
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Yang and Zou 2015]. The default group penalization is set to the square
root of the group size, i.e

√
pj . Standardization of the data is done before-

hand. First we will conduct a cross validation with 10 folds to decide the
value of λ which minimizes the negative log-likelihood. The sequence of λ
values that will be tried are decided automatically by the package gglasso
but will have an upper bound for λ for which all the coefficient estimates
become zero. The smallest λ is decided manually but different values are
tried until we get a satisfactory sequence. This will be clear when looking
at the cross validated results.

The best model which we will choose is decided by using the one-standard
error rule which we for convenience denote 1-SE rule. We pick the simplest
model such that the cross validated error is within one standard error above
the error of the model which attains the minimal loss. The reason behind
the one-standard error rule is to take a conservative approach in the model
selection [9, Hastie et al. 2016, ch. 2.3].

The classification tree as mentioned also uses cross validation to estimate
the complexity parameter α. The node impurity measure we will use is the
Gini index, both for growing the tree and to guide the cost complexity crite-
ria. We will follow the theory discussed in section 2.4 so that we first grow
a large tree and then prune it. The one-standard error rule is also applied
here to choose a more simple model. Note that for the tree we will make use
of the rpart [12, Therneau and Atkinson 2022] package in R. For trees it
should be noted that no standardization of the input data is needed. This
is due to the fact of the binary splits. The tree algorithm tries to find the
best way to split realizations, so only the placement of the realizations with
respect to each other is interesting. So any monotonic transformation of the
data does not change the ordering of the realizations, thus standardization
will not be meaningful. The data set is also split into a training set (80 %
of data) and a test set (20 % of data).

4 Results

4.1 Group lasso model

Starting with the group lasso, we need to find the best λ so that we minimize
the negative log-likelihood. In Figure 2 we can see a 10-fold cross validation
for a sequence of λ. The leftmost dotted line indicates the λ which attains
the smallest mean error, while the rightmost dotted line is the λ correspond-
ing to 1-SE rule .

It should also be mentioned that the bars indicate the standard error of
the mean for each λ and we can see that a smaller λ results in higher vari-
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Figure 2: Cross validation error curve for the group lasso. The value of the
penalization λ on log-scale is given on the x-axis and the corresponding loss on the
y-axis. The λ which gives the minimal loss and the 1-SE rule is the leftmost dotted
line and the rightmost dotted line respectively.

ance, while a larger λ results in a smaller variance but greater loss. This is
due to the fact that we in general get a more complex model if λ is small.
By complex it is meant that the model includes many explanatory variables.
So the model overfits the training data and is then quite unstable when it
comes to estimating the validation data in the cross validation. For a large λ
a simple model will be trained so that often the same and very few variables
are included in the model, resulting in low variability in the models trained
during cross validation hence a small variance. But often poor predicative
power seen clearly in Figure 2. The above argumentation is brought up in
favor of the 1-SE rule. We would not like a too complicated model but on
the other hand not a too simple model as well. The perfect model is the
one in between them in some sense and as a consequence the 1-SE rule is
applied here.

The value of λ also directly affects the interpretability of the model. As
just choosing the model that minimizes the loss (call this Model 1) will give
coefficient estimates that are not interpretable since the model adapts to
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noise [9, Hastie et al. 2016, ch. 2.3]. To strengthen this belief we will take
a look at the coefficient paths for the sequence of λ seen in Figure 3. The λ
which minimizes the loss is the leftmost dotted line while the rightmost is
the λ for the 1-SE rule in Figure 3. For the minimal loss all of the coefficients
are nonzero. This is a result of not penalizing the coefficients enough and
we should hence be careful to interpret any of the coefficients for this λ.

Figure 3: The path of the coefficients of the group lasso model. The value of a
coefficient is given on the y-axis as a function of the penalization factor λ given on
the log-scale. The λ which gives the minimal loss and the 1-SE rule is the leftmost
dotted line and the rightmost dotted line respectively. Note the text on the y-axis
corresponding to the coefficients which is the c.p.i denoting consumer price index
(cons.price.idx) and e.v.r denoting employment variation rate (emp.var.rate).

Also it could be the case that highly correlated variables are included in the
model. This may be present because we can see that some variables have
very large estimates (in the sense of absolute value) in Figure 3. Although we
can not say for sure if there are correlated variables present this should still
serve as a probable cause to use the 1-SE rule, attaining sparser estimates.
So we will use the 1-SE rule to choose a more sparse model but not increase
to much in training error (call this the Model 2). Both Model 1 and Model
2 will be compared to show that we do not increase that much in error. To
be able to compare the models we first need to set the threshold π0 for the
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Figure 4: The ROC curves for Model 1 and Model 2 regarding the group lasso.
As mentioned before Model 1 corresponds to the model that minimizes the loss,
while Model 2 is the 1-SE model. The marked points represents the value of the
threshold π0.

classification rule. A quite natural threshold would be to choose π0 = 0.5 so
that predictions that are greater than 0.5 are classified as type 1 response,
and less than 0.5 is type 0 response. This is although naive since then the
misclassification rate depend on what value of π0 that is set and we surely
can not know the best threshold for our model beforehand. To overcome this
problem we will introduce a receiver operating characteristic (ROC) curve
which plots the sensitivity as a function of 1− specificity for the possible π0.
But first we need to clarify the terms:

• Sensitivity: probability of predicting 1 given that the true value is 1.

• Specificity: probability of predicting 0 given that the true value is 0.

This would mean if we set π0 very small say equal to 0, then we would
classify all predictions as type 1 response leading to a sensitivity of 1 but a
specificity of 0. Obviously, then if we set π0 = 1 then we would with similar
argument get a sensitivity of 0 but a specificity of 1. The ROC curves for
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Model 1 and Model 2 are presented in Figure 4. The diagonal black line
corresponds to the ROC curve for a random classifier, essentially meaning
random guessing. From Figure 4 we can see that both models have very
similar ROC curves which implies that they perform equally well. Since
the simpler model (Model 2) has less nonzero coefficients we choose this as
our main model, but also because it is the model attained after the 1-SE rule.

In Table 2 we can see all the nonzero coefficient estimates for Model 2.
We can see that we end up with many variables still after using the 1-SE
rule. One should be careful when interpreting the coefficients because we
can at this point see a problem with the group lasso. To my knowledge there
are no papers that derive the standard error estimates for the coefficients
in the group lasso. Without the standard error we can not really tell which
variable is the most important or what type of effect it has on the response.
For example, the nr.employed variable seems to have the biggest impact on
the response and it has a negative impact. Note that the nr.employed is the
total number of employed citizens in the country. But it may be that the
standard error is quite large so that the nr.employed is not really an impor-
tant variable. It could rather be that a seemingly unimportant variable like
campaign might be very important if the standard error is relatively small.

intercept 0.09971582 contact 0.1008462
campaign −0.04974841 pdays −0.2086955

emp.var.rate −0.1301319 cons.conf.idx 0.01193242
nr.employed −0.8130947 housemaid −0.0003779426
services −0.0009727713 admin. 0.0003028825

technician −0.00007787145 blue.collar −0.001309253
retired 0.001821364 management −0.0001560224

unemployed 0.0007623251 self.employed 0.0003387860
entrepreneur 0.00004376793 married −0.003796618

single 0.006662071 May −0.2232285
Jun 0.05824236 Jul 0.09732272
Aug 0.03170347 Oct 0.08908880
Nov −0.04007849 Mar 0.1018037
Apr 0.01272875 Sep 0.01294252

failure −0.1208475 success 0.1053626
education 0.02923792

Table 2: The nonzero coefficients for Model 2.

In regular circumstances we may expect that the higher number of employed
citizens, the more prone people are to subscribe a bank term deposit. If we
trust our model it displays the contrary. Note that our data set is over
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the financial crisis period and this could be an explanation to this strange
behavior, as new research implies which will be discussed later in more
detail. It is not only the effect of the number of employed that we find
odd. The employment variation rate (emp.var.rate) also seems to have a
negative impact on the response. This is also quite peculiar since a positive
variation rate displays that the total employment has risen compared to the
same quarter previous year. Which we would expect have a positive effect
on the response, i.e. it is more likely to subscribe a bank deposit. This
could also be argued to be a consequence of the financial crisis or problem
with correlation. In conclusion we should be careful when interpreting the
results of the group lasso.

4.2 Classification tree model

For the classification tree we as mentioned grow a large tree and then prune
it according to the cost complexity criteria discussed in section 2.4. For
some sequence of α each corresponding optimal tree is derived and thus its
training error. We can plot the cross validated error of a tree as a function
of the complexity parameter (cp which is a transformation of α), the tree
size (number of terminal nodes) is also shown in Figure 5.

Figure 5: Cross validation (10-fold) error as a function of complexity parameter
cp with standard error bars. The dotted horizontal line represents the 1-SE rule.
The size of the tree refer to the number of terminal nodes in the pruned tree, that
is |Tcp|, where cp is a transformation of α.
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It should be noted that we do not measure the cross validation error in mis-
classification rate, rather in cross validated relative error. This measure of
error does not influence our model selection in any other way than it would
if we would have used the misclassification error. This scale is what is used
in the rpart package to produce the plot. The cross validated relative error
is scaled so that the error for the root tree, cp ∈ [1,∞), is 1. The cost
complexity parameter cp is not the same as α, but is just a transformation.
The transformation is used because it has a nice interpretation for regression
trees.

Note that the trees in Figure 5 make use of the majority vote to assign
a class label to the predicted probabilities. Though we can easily plot the
ROC curve for the tree we choose which we will do later. The tree we will
choose here is according to the 1-SE rule which is displayed by the dotted
line. We can in Figure 5 clearly see that a more complex tree (greater size)
does in general not generalize well since it overfits the training data. An-
other thing to mention is that the cp values are actually ranges for which
the same minimizing tree Tα is obtained which is why the leftmost cp is
equal to infinity. Meaning the interval (αm−1,∞] where m is the number of
intervals, see [12, Therneau and Atkinson 2022].

Now we are ready to show the structure of our tree. We choose accord-
ing to the 1-SE rule the tree which we get if we prune it by setting the cp
parameter to 0.003247712. The structure of the tree can be seen in Figure
6 which gives that our tree is of size 9. We can see some similarities with
the group lasso regarding what variables the tree chooses. Variable impor-
tance can be explained in a more robust way for trees, but we can from the
structure gain a lot of interesting information. But first we should explain
Figure 6. The first number in each node is the class label that results from
the majority vote. Under it is the proportion of type 1 labels in the node
and under that is the percent of the total data considered in that node. For
example we can see in the root node that the majority vote classifies all data
as a type 1 response. The proportion of type 1 response is 0.5 and 100% of
the data set is considered here.

We can see that the first split is made on the number of employed vari-
able which implies that this variable best explains the response, which seem
to coincide with the group lasso. Also note that the campaign and month is
also in the tree. But aside from that the tree uses different variables. The
tree uses 3 of the social and economic attributes consumer price index, con-
sumer confidence index and euribor3m. It is interesting that the tree uses a
lot of these types of attributes in contrast to the group lasso. To summarize
we could conclude that the group lasso and tree are quite different. Though
just because some of the variables are not included in the final tree does not
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Figure 6: The pruned tree for the optimal cp. First number in each node is the
majority vote outcome, second number is the proportion of class 1 responses in the
node and the third value is the percent of data in the node at this point.

necessarily mean that they are unimportant. It could be that for example
the employment variation rate competes in many of the splits as one of the
most important variables but does not give the best improvement and hence
is not chosen as a splitting variable. This is when we can look at the variable
importance for a tree.

nr.employed 23 euribor3m 22
cons.conf.idx 18 emp.var.rate 13
cons.price.idx 12 pdays 8

month 2 contact 1
day of week 1

Table 3: Variable importance for the classification tree scaled to add up to 100.

The variable importance is the sum of goodness of split measures in each
split where it is considered. In our case this amounts to the improvement of
Gini index for a variable considered in a split. The value of the improvement
is not that important but rather the relative improvement compared to the
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other variables is more meaningful [12, Therneau and Atkinson 2022]. The
variable importance can be seen in Table 3 rounded and scaled so it adds
up to 100. Variables with a proportion of less than 1% are omitted. We can
see that the nr.employed has the biggest importance but closely followed
by euribor3m. The variable importance show that variables that are not
included in the final tree still play an important role. The emp.var.rate is not
included in the final tree but has a high variable importance. So both the tree
and group lasso seems to agree more than previously thought. The pdays is
included in the group lasso but not in the tree but it has a relatively large
variable importance. Both of these variables have relatively large estimates
in the group lasso which may indicate that the models somewhat agree on
important variables.

4.3 Model assessment

In previous chapters we have discussed the results of the two different mod-
els. Now we would be interested in their predicative power and which of
the models we should choose. The first step is to find the optimal thresh-
old value π0 for our problem. What value gives the best trade off between
sensitivity, specificity and prediction accuracy? The prediction accuracy is
the proportion of correct classifications on the test data set. Taking into
account that the data is over the financial crisis period the bank would be
interested in creating successful sales of long-term deposits even if it means
spending more time contacting non-buyers. Hence we would put more focus
on obtaining a high sensitivity rather than specificity.

Figure 7 displays the ROC curves for the classification tree and the group
lasso model on the training data. The threshold π0 = 0.5 is displayed but
note that it is rounded to the closest point that makes the same class la-
bel assignments. From this we can immediately notice a drawback for our
classification tree. The problem with having a simple tree is that we do not
have an abundance of thresholds that are valid to set. This is due to the
fact that we predict the label with the majority vote in the terminal node
the observation end up in. So we can at most have 9 possible threshold val-
ues that give different results, the same amount as the number of terminal
nodes in our tree (Figure 6). That is why the ROC curve for the tree has
the piece-wise linear behavior. The group lasso however does not have the
same problem.

The different choices of threshold for the tree model are not that many. To
get any higher sensitivity than setting π0 = 0.5 the next choice is π0 = 0.33,
which is quite a big step. In Table 4 we can see the confusion matrix for
the tree and the group lasso for the two different thresholds on the test
data set. With the confusion matrix we can calculate the specificity, sen-
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Figure 7: The ROC curves for the classification tree and the group lasso model
on the training data. Marked points on the lines correspond to the threshold value
π0.

sitivity and prediction accuracy. Starting with the tree with π0 = 0.5,
the sensitivity is equal to approximately 520/833 ≈ 0.62, the specificity
712/870 ≈ 0.82 and prediction accuracy 0.72. The tree with π0 = 0.33 has
sensitivity 752/833 ≈ 0.9, specificity 278/870 ≈ 0.32 and accuracy 0.6. We
lose a lot of predicative power (12 % units) with π0 = 0.33 compared to
setting π0 = 0.5.

Now looking at the group lasso for π0 = 0.5 we can see that sensitivity
is 552/833 ≈ 0.66, specificity 680/870 ≈ 0.78 and a prediction accuracy
of 0.72. When π0 = 0.33 we get sensitivity 683/833 ≈ 0.82, specificity
449/870 ≈ 0.52 and a prediction accuracy of 0.66. We notice that the group
lasso for π0 = 0.5 has higher sensitivity but lower specificity than the cor-
responding tree. They have the same accuracy which may make the group
lasso be the better choice for our purpose when π0 = 0.5. For the other
threshold we have the other way around where the sensitivity is higher for
the tree than the group lasso. We lose quite a lot specificity for the tree
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True
yes no Total

Predicted
yes 520 158 678
no 313 712 1025
Total 833 870 1703

(a) π0 = 0.5 for tree

True
yes no Total

yes 752 592 1344
no 81 278 359
Total 833 870 1703

(b) π0 = 0.33 for tree

yes no Total

Predicted
yes 552 190 742
no 281 680 961
Total 833 870 1703

(c) π0 = 0.5 for group lasso

yes no Total
yes 683 421 1104
no 150 449 599
Total 833 870 1703

(d) π0 = 0.33 for group lasso

Table 4: Confusion matrices for some different thresholds for the group lasso and
classification tree on the test data. Predicted class is the rows for each sub table
and the corresponding true class is the columns.

compared to the group lasso and the group lasso does have a bit higher
prediction accuracy. The tree however is a much simpler model than the
group lasso and has the benefit that we can interpret the model.

5 Conclusion

The group lasso and the classification tree performs similar in terms of the
prediction accuracy reaching 72% for π0 = 0.5, however the group lasso
performs better with respect to other measures. It has a better sensitivity
and specificity for our type of problem where sensitive models are desired.
Choosing the smaller threshold is not favorable because although we gain a
higher sensitivity, the prediction accuracy is heavily affected with the biggest
impact on the tree where we lose 12 % of the accuracy (measured in units
of %). So for both models the less sensitive model is more beneficial. The
prediction accuracy is quite close to the best model (neural network) chosen
by [1, Moro et al. 2014] which achieves 75% prediction accuracy on their
data set.

We noted that we should be careful when interpreting the group lasso, but
the tree could be interpreted which shows that the number of employed cit-
izens is the most important variable and also has a negative impact on the
response. It is closely followed by the variable euribor3m as the variable with
the second largest variable importance. This variable is not even included
in the group lasso. It can also be noted that other variables, e.g. consumer
price index (cons.price.idx), are not included in the group lasso but is part
of the classification tree. Although the two methods achieve similar results,
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they differ quite a lot.

From the tree we can find that all of the variables that are related to eco-
nomic and social attributes for the country have the largest variable impor-
tance. It is hence quite clear that these type of variables can describe the
response well. This may also be expected since these measures are devel-
oped to explain the economic and social climate in the country and could
be quite directly related to the success of selling long-term bank deposits.
This is supported by [1, Moro et al., 2014] because 3 of the top 5 variables
with highest relative importance (different from our variable importance)
are not specific values for individual clients, like Euribor rate (euribor3m)
which had the second highest variable importance in this thesis and highest
relative importance in [1, Moro et al. 2014]. They use sensitivity analysis
on the neural network to measure global influence of an input variable to
obtain the relative importance. The other top 2 variables in the sensitivity
analysis are not included in our data set. These variables are the call di-
rection (inbound/outbound) and how long the agent has worked in the call
center.

The Euribor rate has as mentioned a large variable importance and one
would think that a higher rate would increase the savings rate since many
European banks align deposit interest rates with the Euribor rate. The
classification tree displays the contrary. The splits made in the tree (Figure
6) shows that higher rate is connected to a lower probability of a success.
This is although in line with [1, Moro et al. 2014] and can be explained.
Research indicates that prior to 2008 there was a positive relation between
offered rate for deposits and savings rate. After 2008 when the financial
crisis hit this relation reversed so that more bank term deposits where made
but the Euribor rate fell. This may be due to that clients feel that saving
for the future under a financial crisis is prioritized over spending money
in the present crisis. This research could also explain the negative relation
between the number of employed citizens and the response since the employ-
ment decreases over the time period but the savings rate increases. Prior to
2008 one would probably expect that the number of employed citizens and
savings rate have a positive relation just as the relation between offered rate
and savings rate.

In conclusion both the tree and group lasso are both valid models for pre-
dicting bank marketing success, although the group lasso may be preferred
for our problem since more sensitive models are desired. But the gain in
sensitivity is not incredible for the group lasso compared to the tree, also
we can more easily interpret the tree model while we need to be careful
with the group lasso. In a real world environment, a client’s reasons for
subscribing the bank deposit may alter through time so it would probably
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be more desirable to make use of the tree model to be able to detect and
validate these changes. For example the economic environment may change
over time. Still with an accuracy of 72% the bank can benefit from imple-
menting the tree model to increase efficiency in the call centers by making
less unnecessary calls. The group lasso have problems that may have been
noticed throughout the thesis.

For the group lasso some problems are present that limits its usefulness
as a model used in practice. First of all the group penalty choice is arbi-
trary for general group matrices (Xj in section 2.3). There is some research
on the group lasso mentioned throughout this report and more research not
mentioned here, but to my knowledge none of the reports mention the choice
of the group penalty factor for general problems. The original authors [3,
Yuan and Lin 2006] to the group lasso recommend to penalize the groups
according to the square root of their size,

√
pj , but under the assumption

of the group-wise orthonormal condition. In general this is clearly not the
case. An interesting topic, but outside the scope of this thesis, would be
to derive theoretical results that would serve as a guide on the value of the
group penalization for general data. For our data when we use the recom-
mended penalization, this may give misleading results. The groups may not
be penalized as strongly as they should so the interpretation of the group
lasso may not be valid. This could also cause some odd interplay between
variables that are important and big groups which are not important but
seem important since they are not penalized correctly.

Furthermore, there is to my knowledge no papers that propose a method on
estimating the standard error for the coefficients in the group lasso. Hence
it is difficult to derive the effect that the different coefficients have on the
response. That is why more research has to be conducted in this direction.
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