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Abstract

This thesis focuses on enhancing our comprehension of interest
rates in the United States while developing a forecasting model based
on the Vasicek approach. Simultaneously, it aims to delve into the
mathematical and statistical aspects of this model. Leveraging his-
torical data, we strive to estimate key parameters and evaluate the
model’s predictive accuracy.

The methodology begins by establishing a comprehensive under-
standing of interest rate theory and related mathematical and statisti-
cal concepts. Subsequently, we introduce the Vasicek model, a widely
recognized framework for interest rate forecasting. Utilizing Maximum
Likelihood Calibration, we estimate model parameters, harnessing in-
sights from historical data to ensure precise estimations.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: catrina.wuli@gmail.com. Supervisor: Taras Bodnar, Jan Olov Persson.



Sammanfattning

I detta examensarbete är vårt primära mål att fördjupa vår förståelse för räntor i USA och att
utveckla en prognosmodell med hjälp av det klassiska modell Vasicek-modellen. Samtidigt
syftar den till att utforska de matematiska och statistiska aspekterna av denna modell. Genom
att utnyttja historiska data strävar vi efter att uppskatta nyckelparametrar och utvärdera
modellens prediktiva noggrannhet.

Metodiken inleds med att etablera en grundläggande förståelse för ränteteorin och
relaterade matematiska och statistiska begrepp. Därefter introducerar vi Vasicek-modellen,
en välkänd ram för prognostisering av räntor. Genom att använda Maximum Likelihood
Calibration uppskattar vi modellparametrar och utnyttjar insikter från historiska data för att
säkerställa precisa uppskattningar.
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1 Introduction

1.1 Background

The pricing of fixed-income securities, such as zero-coupon bonds, is a fundamental aspect of financial
markets and is heavily influenced by prevailing interest rates. Consequently, accurate modeling of
interest rates has long been a priority in financial mathematics. One model that has been extensively
utilized for this purpose is named after its creator, Vasicek, who introduced it in 1977 [13]. The
Vasicek model depicts interest rate evolution as a stochastic process characterized by a single source
of randomness, hence its designation as a one-factor model. While this model offers simplicity and a
closed-form solution, its applicability to real-world financial markets is limited, as these markets are
influenced by multiple sources of randomness.

Despite its limitations in capturing the complexity of real financial markets, the Vasicek model
provides a valuable framework for understanding the dynamics of interest rates and serves as an
illustration of the application of mathematical and statistical theory in modeling real-world phenomena.
Moreover, advancements in financial mathematics have led to the proposition of alternative models,
such as the Cox-Ingersoll-Ross (CIR) model[11], which is an extension of the Vasicek model and is
specifically designed to address some of the limitations of the Vasicek model, particularly in capturing
the volatility of interest rates.

1.2 Objective

This thesis aims to provide a comprehensive exploration of interest rates, focusing on their mathemat-
ical and statistical descriptions. We will delve into the core concepts of interest rates and investigate
how mathematical and statistical tools can be used to characterize them. A key aspect of our study
will be the examination of the Vasicek model, a foundational framework introduced in 1977. We will
analyze why this model remains widely used today and examine the underlying mathematical and
statistical principles. Additionally, we will conduct a forecasting analysis to evaluate the model’s
predictive accuracy against real-world data. Through these efforts, this thesis seeks to deepen our
understanding of interest rate dynamics and contribute to the advancement of financial modeling
techniques.

1.3 Disposition

This thesis is structured as follows: Sections 2 and 3 delve into the theory of interest rates, along
with mathematical and statistical concepts pertinent to the subject matter. Section 4 provides a
detailed analysis of the standard Vasicek model, focusing on its parameter estimation using Maximum
Likelihood Estimation (MLE). Finally, sections 5 and 6 encompass the practical application of the
Vasicek model to historical interest rate data, including model fitting and interpretation of forecasting
results.
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2 Mathematical Background of Interest Rate Theory

In the field of finance, various types of interest rates coexist. One commonly discussed rate is the
federal funds rate, also known as the interbank rate in USA, controlled by the central bank. However,
this thesis will specifically delve into another category of interest rates—zero-coupon interest rates,
also known as yields. These rates essentially represent the return or yield obtained from investments
in government bonds. This choice stems from the recognition that most financial studies involve the
returns, rather than the prices, of assets, because return series are easier to handle than price series,
and the former possess more favorable statistical properties. The interest rate we are discussing here
is actually the return of a bond investment, which is why it is also referred to as yields.

This thesis centers on the examination of zero coupon interest rates (or yields). Several compelling
reasons support this specific focus, each contributing to a thorough understanding of financial
dynamics:

-Risk-Free Rate: Zero coupon interest rates provide invaluable insights into the risk-free rate, a
foundational element for various financial analyses.

-Usage in Discounted Cash Flow Analysis: A thorough comprehension of zero coupon interest
rates is indispensable for the application of discounted cash flow analysis—a fundamental financial
technique employed for evaluating the present value of future cash flows.

-Pricing Fixed Income Securities: Zero coupon interest rates play a pivotal role in the pricing
of fixed income securities, exerting a substantial influence on their valuation within the market.

In this section, we introduce the main definitions and concepts related to interest rate that will be
utilized throughout the thesis.

2.1 Discount Factors

Discount factors play a pivotal role in financial analysis, serving as fundamental components utilized
across various domains such as pricing and risk assessment. Regardless of whether interest rates
are assumed to be constant or modeled as a continuous process, the underlying concept of discount
factors remains consistent. These factors are instrumental in determining the present value of assets at
different time points. In order to gain familiarity with this concept, it is necessary to introduce some
relevant definitions and notations.[2]

Definition: Bank account (Money-market account) We define B(t) to be the value of a bank
account at time t ≥ 0. We assume B(0) = 1 and that the bank account evolves according to the
following differential equation:

dB(t) = rtB(t)dt,

where rt is a positive function of time. As a consequence,

B(t) = exp(
∫ t

0
rsds).

2.1.1 Constant Interest Rate

Constant interest rate refers to a fixed rate that remains unchanged over a specified period of time.
It is commonly employed in financial calculations and models where the interest rate is assumed to
remain constant throughout the duration of the investment or analysis. We will derive the discount
factors under the assumption of a constant interest rate.
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The interest rate, denoted as i, is a constant. For example, if the interest rate remains i yearly
all the time, then B(0) = 1 unit of money invested at your bank account at time 0, which represents
today. After one year, the value of B(1) will be

B(1) = B(0)(1+ i)

and after t years
B(t) = B(0)(1+ i)t .

Here, we introduce a notation r and generalize the example above:

r = ln(1+ i),

exp(r) = (1+ i),

exp(rt) = (1+ i)t ,

B(t) = B(0)exp(rt).

Here, B(t) is the future bank account value at time t. If we want to derive its present value, namely
t = 0, we have

B(0) = exp(−rt)B(t),

where r is a constant.
Subsequently, we determine the discount factor in the case of a constant interest rate, denoted by

exp(−rt).

2.1.2 Continuous Interest Rate

Continuous interest rate refers to a theoretical concept where interest is compounded continuously.
We will explain more about later. The derivation of the discount factor in this case is analogous to the
constant interest case; the only difference is that, the interest rate i is a function of time s in continuous
time. This implies that

B(t) = B(0)
t

∏
s=0

(1+ i(s))

where
(1+ i(s)) = exp(rs).

Because s represents continuous time here, we can rewrite the equation as follows:

B(t) = B(0)exp(
∫ t

0
rsds),

and
B(0) = B(t)exp(−

∫ t

0
rsds).

Subsequently, we determine the discount factor in the case of a continuous interest rate, denoted
by exp(

∫ t
0 −rsds). This rs is identical to the rs in the definition of Bank account, and is often referred

to as the force of interest.
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2.2 Spot Rate

In this section, we delve into the core concept of interest rate theory: Spot rate. We will attempt to
model it, examine its mathematical properties, and analyze its trends to gain insight into future interest
rates in later sections. To develop a basic understanding of spot rate, it is necessary to introduce
several definitions and notations[8].

Definition: Zero coupon bond A zero coupon bond with maturity date T (also called a T-bond) is a
contract which pays one unit at time T . The price at time t ∈ [0,T ] is denoted by P(t,T ). Throughout,
we take P(t, t) = 1.
Assuming that the prices of zero-coupon bonds are deterministic at any time t, where 0 ≤ t ≤ T ′ ≤ T .
This implies that

P(t,T ) = exp(−
∫ T

t
rsds)P(T,T ),

P(t,T ) = exp(−
∫ T ′

t
rsds) · exp(−

∫ T

T ′
rsds),

P(t,T ) = P(t,T ′)P(T ′,T ).

Often, the contracts defined above are referred to as default-free zero coupon bonds. This emphasizes
the low likelihood of these bonds defaulting, meaning that the issuers are not likely to go bankrupt.
However, it is important to note that analogous bonds exist in the markets, and when we mention zero
coupon bonds in the thesis, we specifically refer to bonds issued by the U.S. government.

Definition: Continuously compounded spot rate The continuously compounded zero coupon yield
(or the continuously compounded spot rate) R(t,T ) is defined by

R(t,T ) =− logP(t,T )
T − t

.

It follows directly from this definition that the price of the zero coupon bond can be expressed in
terms of the continuously compounded spot rate as follows:

P(t,T ) = exp(−R(t,T )(T − t)),

so the equation above can be interpreted as a discount factor obtained by using the (constant) interest
rate R(t,T ) during the interval [t,T ].

Now consider 0 ≤ t ≤ T ′ ≤ T . We are interested in finding a deterministic rate at time t (today)
for a future investment made at time T ′ and terminating at time T . This quantity is precisely the
forward rate. We cannot use the yield R(T ′,T ) since it is defined in terms of P(T ′,T ), which, in
general, is not known at time t. Instead, one introduces the concept of forward rates.

Definition: Continuously compounded forward rate The continuously compounded forward rate
at time t for the period [T ′,T ] is defined by

f (t,T ′,T ) =− logP(t,T )− logP(t,T ′)

T −T ′ .
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Mathematically, it is the same as R(T ′,T ),

R(T ′,T ) =− logP(T ′,T )
T −T ′ .

R(T ′,T ) =− logP(t,T )/P(t,T ′)

T −T ′ =− logP(t,T )− logP(t,T ′)

T −T ′ .

In finance, they represent different concepts. The spot rate refers to the interest rate applicable today
or at a specific historical time, while the forward rate represents the interest rate applicable to a future
period of time, agreed upon today.
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3 Mathematical and Statistical Background

In this section, we outline the mathematical and statistical foundations crucial for understanding the
content presented in this thesis. The first part explores diffusion processes, among which the Vasicek
model assumes that the spot rate follows the Ornstein-Uhlenbeck process, which is an example of
a diffusion process. The second part delves into stochastic calculus, pivotal for solving stochastic
differential equations within the Vasicek model framework. We will examine various definitions and
theorems to deepen our comprehension of the Vasicek model.

3.1 Diffusion Process

"Diffusion processes are continuous-time, continuous-state processes whose sample paths are every-
where continuous but nowhere differentiable. In the fields where diffusion has been applied, it has
been used to model phenomena evolving randomly and continuously in time under certain conditions,
for example, bond price fluctuations in a perfect market, variations of population growth in ideal
conditions, and communication systems with noise"(Ibe, 2013, p. 295).

3.1.1 Mathematical and Statistical Preliminaries of Diffusion Processes

Consider a continuous-time, continuous-state Markov process Xt , t ≥ 0, t > s whose transition
probability distribution is given by

F(Xt | Xs) = P(Xt ≤ y | Xs = x) (1)

If the derivative
f (Xt | Xs) =

∂

∂y
F(Xt | Xs) (2)

exists, then it is called the transition density function of the diffusion process. Since Xt is a Markov
process, f (Xt | Xs) satisfies the Chapman-Kolmogorov equation:

f (Xt ,y | Xs,x) =
∫

∞

−∞

f (Xt ,y | Xu,z) f (Xu,z | Xs,x)dz (3)

We assume that the process X(t), t ≥ 0 satisfies the following conditions:

1. P(Xt+∆t −Xt | Xt = x)≥ ε = o(∆t), for ε > 0, which states that the sample path is continuous;
alternatively, we say that the process is continuous in probability.

2. E[Xt+∆t −Xt | Xt = x] = µ(t,x)∆t +o(∆t) so that

lim
∆t→0

1
∆t

E[Xt+∆t −Xt | Xt = x] = µ(t,x)

3. E[(Xt+∆t −Xt | Xt = x)2|Xt = x] = σ2(t,x)∆t +o(∆t) is finite so that

lim
∆t→0

1
∆t

E[(Xt+∆t −Xt | Xt = x)2|Xt = x] = σ
2(t,x)

A Markov process that satisfies these three conditions is called a diffusion process. The function
µ(t,x) is called the instantaneous (or infinitesimal) mean (or drift) of Xt , and the function σ2(t,x) is
called the instantaneous (or infinitesimal) variance of Xt . Let the small increment in Xt over any small
interval dt be denoted by dXt . Then it can be shown that if Wt is a standard Brownian motion we can
incorporate the above properties into the following stochastic differential equation:

dXt = µ(t,x)dt +σ(t,x)dWt (4)

where dWt is the increment of Wt over the small interval (t, t +∆t)(Ibe, 2013, p. 296-297).[6]
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Definition: A stochastic differential equation A stochastic differential equation (SDE) is a differen-
tial equation in which one or more of the terms is a stochastic process, resulting in a solution which
is also a stochastic process. [9]

3.2 Examples of Diffusion Processes

The following are two diffusion processes closely related to the Vasicek model. These processes differ
only in their values of the infinitesimal mean and infinitesimal variance.

3.2.1 Brownian Motion

A well-known example of a diffusion process is Brownian motion. In the Brownian view, diffusion is
a process that causes particle mixing because of random collisions among themselves or with other
particles. In Brownian motion, we model the movement of a single particle, whereas with diffusion,
we are dealing with a larger number of particles.

Definition: Standard Brownian motion Standard Brownian motion starting at level zero is a
process W (t),0 ≤ t satisfying the conditions(Brockwell,1991, p. 37-38)[3]
(a) W (0) = 0,
(b) W (t2)−W (t1),W (t3)−W (t2), ...,W (tn)−W (tn−1), are independent for every n ∈ 3,4, ... and
every t = (t1, ..., tn)′ such that 0 ≤ t1 < t2 < ... < tn,
(c) W (t)−W (s)∼ N(0, t − s) for s ≤ t.

Theorem: The Brownian motion exists on a probability space.
We check some properties of the Brownian motion. In general, a stochastic process Xt , t ≥ 0 is said to
be adapted if Xt is a function of the past history Fs,s ≤ t. An adapted process Xt is called a Markov
process if the conditional distribution of Xt given Fs depends only on Xs for s < t. An adapted process
Xt is called a martingale if E[Xt |Fs] = Xs for s < t.[10]

Theorem: The Brownian motion itself is a Markov process and martingale.

3.2.2 Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process is a diffusion process that was first introduced to help model the
velocity of a particle undergoing Brownian motion.
It is a stochastic process that satisfies the following stochastic differential equation:[7]

dXt = a(b−Xt)dt +σdWt , t ∈ [0,∞). (5)

where Wt is a standard Brownian motion on t ∈ [0,∞).
The constant parameters are:

• a > 0 is the rate of mean reversion;

• b is the long-term mean of the process;

• σ > 0 is the volatility or average magnitude, per square-root time, of the random fluctuations
that are modelled as Brownian motions.
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Mean-reverting property: If we ignore the random fluctuations in the process due to dWt , then
we see that Xt has an overall drift towards a mean value b. The process Xt reverts to this mean at rate
a, with a magnitude in direct proportion to the distance between the current value of Xt and b.

This can be seen by looking at the solution to the ordinary differential equation dxt = a(b− xt)dt
which is:

1
ab−axt

dxt = 1dt, (6)

and
xt = c1e−at +b. (7)

For this reason, the Ornstein-Uhlenbeck process is also referred to as a mean-reverting process when
a > 0. However, if a is negative, the process does not revert to the long-term mean; instead, it diverges
to infinity as t approaches infinity, following the properties of the exponential function. In such cases,
the mean-reverting property is not preserved. Therefore, in the Vasicek model, we exclude estimates
with negative values of a, which we will discuss further.

3.3 Stochastic Calculus

We now discuss the concept of a stochastic integral, ignoring the various technical conditions that are
required to make our definitions rigorous. In this section, we write Xt to emphasize that the quantities
in question are stochastic. Itô’s formulas, named after the Japanese mathematician Kiyoshi Itô, are
fundamental results in stochastic calculus. They provide a method for computing the differentials of
functions of stochastic processes, such as Brownian motion. These formulas are essential for solving
stochastic differential equations (SDEs). In this thesis, we will utilize Itô’s Isometry theorem.

Definition: Elementary Function We say a process, ht(ω), is elementary if it is piece-wise constant
so that there exists a sequence of stopping times 0 = t0 < t1 < · · · < tn = T and a set of flirtations
Fti -measurable functions, ei(ω), such that

ht(ω) = ∑
i

ei(ω)I[ti,ti+1)(t)

where I[ti,ti+1)(t) = 1 if t ∈ [ti, ti+1) and 0 otherwise.

Definition: The Itô Integral The stochastic integral of an elementary function, ht(ω), with respect
to a Brownian motion, Wt , is defined as

∫ T

0
ht(ω)dWt(ω) :=

n−1

∑
i=0

ei(ω)
(
Wti+1(ω)−Wti(ω)

)
Definition: The Itô Isometry Let W : [0,T ]×Ω → R denote the canonical real-valued Brownian
motion defined up to time T > 0, and let X : [0,T ]×Ω →R be a stochastic process that is adapted to
the natural filtration FW

ti of the Brownian motion. Then

E

[(∫ T

0
Xt dWt

)2
]
= E

[∫ T

0
X2

t dt
]
,

where E denotes expectation with respect to Brownian motion. [10]
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4 One-factor Spot Rate Model: Vasicek Model

We are interested in forecasting the yield (or the continuously compounded spot rate) for 1-year
maturity Treasury Securities. With data available in daily frequency, the Vasicek model, commonly
utilized for short-rate modeling, can be adapted to capture the daily changes in yields at this specific
maturity.

4.1 Assumptions

First, the spot rate r(t), namely the instantaneously continuously compounded spot rate, is presumed
to conform to a continuous-time stochastic process and is regarded as possessing the Markov property.
Second, the market price of risk is considered constant. Third, the price P(t,s) of a discount bond
is determined by assessing the segment {r(τ), t ≥ τ ≥ s} of the spot rate process over the term of
the bond. Additionally, the market is assumed to be efficient, implying the absence of transaction
costs, universal availability of information to all investors simultaneously, and rational behavior by all
investors, ensuring that no riskless arbitrage opportunities exist.

In the Vasicek model, interest rates are directly modeled rather than being derived from observed
bond prices. In contrast, in the real world, market participants often observe bond prices and use them
to infer implied interest rates.

Moreover, the rate r(t) can have a negative value with positive probability, which constitutes a
major drawback of the Vasicek model. However, its analytical tractability is a notable feature. The
Vasicek model, as proposed in financial literature, is time-homogeneous, implying that the assumed
short-rate dynamic depends solely on constant coefficients.[13]

4.2 Standard Vasicek Model

Vasicek(1977) model specifies that the instantaneous spot rate under the real-world measure evolves
as an Ornstein-Uhlenbeck process with constant coefficients. The stochastic differential equation for
the process is given by

dr(t) = a(b− r(t))dt +σdWt ,

where Wt is a standard Brownian motion under the risk-neutral framework, which represents the
continuous inflow of randomness into the system[2]. The typical parameters b, a, and σ , together with
the initial condition r0, where r(0) = r0, completely characterize the dynamics, and can be quickly
characterized as follows, assuming a to be non-negative:

• b: "long term mean level". All future trajectories of r will evolve around a mean level b in the
long run.

• a: "speed of reversion". a characterizes the velocity at which such trajectories will regroup
around b in time.

• σ : "instantaneous volatility", measures instant by instant the amplitude of randomness entering
the system. Higher σ implies more randomness.

By integration, we obtain, between two any instants s and t where t is greater than s,

r(t) = r(s)e−a(t−s)+b(1− e−a(t−s))+σ

∫ t

s
e−a(t−u)dWu.
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Given the available information F at time s, r(t) | Fs is normally distributed. This result stems
from the property of a standard Brownian motion, where the increment in a standard Brownian
motion follows a normal distribution with an expected value of zero and a variance equal to the time
difference between increments, so r(t) | Fs is normally distributed with mean and variance given,
respectively, by

E[r(t) | Fs] = r(s)e−a(t−s)+b(1− e−a(t−s))

Var[r(t) | Fs] =
σ2

2a

(
1− e−2a(t−s)

)
.

To validate these two equalities, we compute

E[r(t) | Fs] = E[r(s)e−a(t−s)]+E[b(1− e−a(t−s))]+E[σ
∫ t

s
e−a(t−u)dWu]

= E[r(s)e−a(t−s)]+E[b(1− e−a(t−s))]+0 (by the Itô integral)

= r(s)e−a(t−s)+b(1− e−a(t−s))

and

Var(r(t) | Fs) = Var
(

σ

∫ t

s
e−a(t−u)dWu

)
= σ

2e−2atE

[(∫ t

s
eaudWu

)2
]

= σ
2e−2at

∫ t

s
e2audu (by the Itô Isometry)

=
σ2

2a

(
1− e−2a(t−s)

)
.

For illustrative purposes, we conduct two simulations in the Vasicek model. The only difference
between the simulations lies in the value of the parameter a: one simulation has a = 0.3, while the
other has a = 0.01. This parameter a represents the velocity at which trajectories will regroup around
the long-term mean b over time. With a higher value of a, trajectories regroup much faster around the
long-term mean, which is 3 in our case. Conversely, with a lower value of a, the paths will drift more
before regrouping. Figure 1 illustrates simulations depicting the effect of mean reversion.

Figure 1: Three paths of the Vasicek model together with its long-term mean. The parameters
chosen for simulations are, a = 0.3/0.01, b = 3, r0 = 5, σ = 0.3.
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4.3 Maximum Likelihood Calibration

In order to forecast the spot rate by using the Vasicek model, this thesis employs Maximum Likelihood
Estimation to estimate the parameters a, b and σ which are positive constants. Let Rti represent spot
rates during the time period between i and i− 1, replacing the notation r(t) and also providing
additional information regarding the position i, where i takes non-negative integer values. Meanwhile,
Rti is the increment in a standard Brownian motion, in other words, it is normally distributed.[4]
A random process R0:n = {Rt0 ,Rt1 , . . . ,Rtn} , which consists of n+1 different points with uniform
time intervals dt = ti − ti−1 at given time points t0, t1, . . . , tn, follows a continuous Markov process by
the assumption in Vasicek model. As result we have the joint density function as below:

f (R;a,b,σ) = f (Rtn ,Rtn−1 , . . . ,Rt0)

= f (Rtn | Rtn−1 ,Rtn−2 , . . . ,Rt0) · f (Rtn−1 ,Rtn−2 , . . . ,Rt0)

= f (Rtn | Rtn−1) · f (Rtn−1 | Rtn−2), . . . , · f (Rt0)).

The probability density function of Rti | Rti−1 is normally distributed and takes the form of

f (Rti | Rti−1) =
1√

π
σ2

a (1− e−2adt)
e
−
(Rti −Rti−1e−adt −b+be−adt)2

σ2

a (1− e−2adt) .

with the expected value and variance given by:

E[Rti | Rti−1 ] = Rti−1e−adt +b(1− e−adt)

and

Var(Rti | Rti−1) =
σ2

2a
(1− e−2adt).

So, the log-likelihood function for the process is:

L = ln f (Rt0)+
n

∑
t=1

ln f (Rti | Rti−1)

or

L =−n · ln(σ2

a
(1− e−2adt))− ∑

n
t=1(Rti −Rti−1e−adt −b(1− e−adt))2

σ2

a (1− e−2adt)
.

Maximum likelihood estimators are

â =− 1
dt

ln(
n∑

n
t=1 RtiRti−1 −∑

n
t=1 Rti ∑

n
t=1 Rti−1

n
n

∑
t=1

R2
ti−1

− (
n

∑
t=1

Rti−1)
2

),

b̂ =
1

n(1− e−âdt)
(

n

∑
t=1

Rti − e−âdt
n

∑
t=1

Rti−1),

and

σ̂2 =
2â

n(1− e−2âdt)

n

∑
t=1

(Rti −Rti−1e−âdt − b̂(1− e−âdt))2.

To derive the maximum likelihood estimators for a, b, σ , we can apply an important property of
the maximum likelihood estimate:
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Invariance of the MLE [5]
Letθ̂ML be the maximum likelihood estimator (MLE) of θ , and let φ = h(θ) be a one-to-one transfor-
mation of θ . The MLE of φ can be obtained by inserting θ̂ML into h(θ): φ̂ML = h(θ̂ML).
Utilizing this property within likelihood theory enables us to simplify the calculations significantly
when compared to the derivations presented in Malmström et al. [4].

We express the log-likelihood as

L =−n · lnC− ∑
n
t=1(Rti −Rti−1A−B)2

C
,

Where
A = e−adt ,

B = b(1− e−adt),

and

C =
σ2

a
(1− e−2adt).

The maximum likelihood estimators of A, B, and C are one-to-one transformations of (a,b,σ2).
Then we have

∂L

∂A
= 0− 1

C

n

∑
t=1

−Rti−1(Rti −Rti−1A−B) = 0, (8)

∂L

∂B
= 0− 1

C

n

∑
t=1

−1(Rti −Rti−1A−B) = 0, (9)

and
∂L

∂C
=− n

C
+

1
C2

n

∑
t=1

(Rti −Rti−1A−B)2 = 0. (10)

By calculating equations (8)-(10), we obtain:

A =
∑

n
t=1 RtiRti−1 −B ·∑n

t=1 Rti−1

∑
n
t=1 Rti−1

, (11)

B =
1
n
(

n

∑
t=1

Rti −A ·
n

∑
t=1

Rti−1), (12)

and

C =
∑

n
t=1(Rti −Rti−1A−B)2

n
. (13)

Then we solve the equation system (11)-(13) and apply Invariance of the MLE, we have

A =
n∑

n
t=1 RtiRti−1 −∑

n
t=1 Rti ·∑n

t=1 Rti−1

n∑
n
t=1 R2

ti−1
− (∑n

t=1 Rti−1)
2 = e−âdt

and, consequently

â =− 1
dt

ln(
n∑

n
t=1 RtiRti−1 −∑

n
t=1 Rti ∑

n
t=1 Rti−1

n
n

∑
t=1

R2
ti−1

− (
n

∑
t=1

Rti−1)
2

).

As B = 1
n ∑

n
t=1(Rti −Rti−1A) = b(1− e−adt) and A = e−adt , we obtain

b̂ =
1

n(1− e−âdt)
(

n

∑
t=1

Rti − e−âdt
n

∑
t=1

Rti−1).

16



As C = σ2

a (1− e−2adt) =
∑

n
t=1(Rti−Rti−1 A−B)2

n , we obtain

σ̂2 =
2â

n(1− e−2âdt)

n

∑
t=1

(Rti −Rti−1e−âdt − b̂(1− e−âdt))2.

Here We define a function to estimate parameters from historical data in python, drawing
inspiration from the MIT open-source framework. [1]:

" " "
Arguments o f t h e f u n c t i o n
d a t a 1 : a r r a y − l i k e s e q u e n c e o f R_t_ ( i −1)
d a t a 2 : a r r a y − l i k e s e q u e n c e o f R _ t _ i
n : SampleSize −1
d t : i n c r e m e n t s o f t ime
" " "
d e f p a r a _ e s t i m a t o r ( da ta1 , da ta2 , n , d t ) :

Sx = sum ( d a t a 1 ) #sum of s e q u e n c e o f R_t_ ( i −1)
Sy = sum ( d a t a 2 ) #sum of s e q u e n c e o f R _ t _ i
Sxx = sum ( d a t a 1 * d a t a 1 ) #sum of s e q u e n c e o f R_t_ ( i −1)^2
Sxy = sum ( d a t a 1 * d a t a 2 ) #sum of s e q u e n c e o f R_t_ ( i −1)* R _ t _ i
Syy = sum ( d a t a 2 * d a t a 2 ) #sum of s e q u e n c e o f R _ t _ i ^2

# c a l c u l a t e a h a t
a_1 = ( n * Sxy − Sx * Sy ) / ( n * Sxx − Sx **2)
a = −np . l o g ( a_1 ) / d t

# c a l c u l a t e b h a t
b_1 = np . exp ( − a * d t )
b = ( Sy − b_1 *Sx ) / ( n *(1 − b_1 ) ) #

# c a l c u l a t e s igma h a t
s i g m a _ s q u a r e _ 1 = ( Syy − 2* b_1 * Sxy + b_1 * b_1*Sxx − 2*b *(1 − b_1 ) * ( Sy−b_1*Sx )+ n*b**2 *(1 − b_1 ) * * 2 )
s i g m a _ s q u a r e = (2* a * s i g m a _ s q u a r e _ 1 ) / ( n−n *( b_1 * b_1 ) )
s igma = np . s q r t ( s i g m a _ s q u a r e )

# r e t u r n t h e e s t i m a t e s o f a , b , s igma
r e t u r n a , b , s igma
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4.4 Forecasting and Accuracy

To forecast interest rates using the Vasicek model, the involved parameters a, b and σ need to be
calibrated. This calibration process is carried out using maximum likelihood estimation in last section.
Once calibrated, the parameter estimates will be utilized to forecast future expected interest rates
through the following conditional expectation formula [12]

E[Rti | Rti−1 ] = Rti−1e−adt +b(1− e−adt).

In order to measure the accuracy of our approach, we compute the square root of the mean square
error (RMSE), denoted as ε , defined as

ε =

√
1
n

n

∑
t=1

eh
2,

where eh = Rh − R̂h represents the residual between the actual interest rate Rh and the corresponding
fitted values R̂h.

Here is the Python code for predicting interest rates and calculating their RMSE.

# F u n c t i o n t o c a l c u l a t e R_i +1 c o n s i d e r i n g a one − s t e p f o r e c a s t h o r i z o n
d e f r _ V a s i c e k ( n , a , b ) :

i f n == 0 : # base c a s e
r e t u r n 4 . 9 9 # i n t e r e s t r a t e 2024 −03 −15

e l s e :
r e t u r n r _ V a s i c e k ( n −1 , a , b )* np . exp ( − a ) + b *(1 − np . exp ( − a ) )

# F u n c t i o n t o c a l c u l a t e RMSE
d e f c a l c u l a t e _ r m s e ( a c t u a l _ v a l u e s , p r e d i c t e d _ v a l u e s ) :

# Arguments a c t u a l _ v a l u e s and p r e d i c t e d _ v a l u e s i s a a r r a y − l i k e s e q u e n c e .

# Ensure bo th a r r a y s have t h e same l e n g t h
i f l e n ( a c t u a l _ v a l u e s ) != l e n ( p r e d i c t e d _ v a l u e s ) :

r a i s e V a l u e E r r o r ( " A c t u a l and p r e d i c t e d a r r a y s must have t h e same l e n g t h . " )

# C a l c u l a t e t h e mean s q u a r e e r r o r (MSE)
mse = np . mean ( ( a c t u a l _ v a l u e s − p r e d i c t e d _ v a l u e s ) * * 2 )

# C a l c u l a t e t h e s q u a r e r o o t o f t h e mean s q u a r e e r r o r (RMSE)
rmse = np . s q r t ( mse )

r e t u r n rmse

18



5 Dataset

This section provides details of the dataset used for forecasting interest rates. Our dataset records
daily interest rates, known as Market Yield, with 1-year maturities, sourced from the Federal Reserve
Economic Data for the USA.

Figure presents a time plot of U.S. daily interest rates, specifically highlighting the 1-year Treasury
constant maturity rates, with shaded areas representing U.S. recessions.

Figure 2: Time plots of daily U.S. interest rate from February 1962 to February 2024 : 1-year
maturity rate.

6 The Model

6.1 Data Selection

In this section, we delve into various data selection methods for estimating parameters using Maximum
Likelihood Estimators. Given the uncertainty surrounding the optimal amount of data required for
accurate parameter estimation, our aim is to identify the best datasets that yield the most reliable
forecast results. We will employ the square root of the mean square error (RMSE) to quantify this
accuracy in the next session. Since interest rates may be sensitive to recent trends, two out of three
methods include data from the most recent year. Furthermore, to maintain the mean-reverting property
in the Vasicek model, parameter a is should be a positive constant. As a result, estimates with negative
values of a will be excluded.
We examine three distinct data selection methods: Conventional Few-Year Data, Partitioned Dataset,
and Rolling Window Technique.
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6.1.1 Training Data

All data points from 1962 to 2024-02-13 will be used for training, resulting in approximately 100
subsets.

Method 1: Conventional Few-Year Data This method involves utilizing data from the past few
years, typically less than five years, to estimate parameters. After applying this method, we obtained
the following parameter estimates:

Partitions â b̂ σ̂

2021 to 2024 0.0066 11.62 0.184

2022 to 2024 0.060 5.34 0.220

2023 to 2024 0.102 5.070 0.232

Table 1: Parameter estimates for Conventional Few-Year Data Method

Method 2: Partitioned Dataset Here, we utilize the entire dataset and partition it into multiple
segments, progressively excluding data from the oldest year in each subsequent partition. This
approach allows us to assess the impact of dataset size on parameter estimation accuracy and
explore whether specific partitions yield superior results. After applying this method, we obtained
the following parameter estimates. Here, we display only a subset of the results, but all the valid
parameter estimates will be used in forecasting.

Partitions â b̂ σ̂

1968 to 2024 0.0026 4.78 0.26

1969 to 2024 0.0027 4.58 0.26

1970 to 2024 0.0029 4.11 0.26

1971 to 2024 0.0026 4.89 0.26

1972 to 2024 0.0026 5.02 0.26

1973 to 2024 0.0026 4.66 0.26

1974 to 2024 0.0027 4.15 0.27

1975 to 2024 0.0027 4.08 0.26

Table 2: Parameter estimates for Partitioned Dataset Method

Method 3: Rolling Window Technique In this method, we implement rolling window tech-
niques with a fixed window size of 10. By continuously updating the dataset window, we aim to
capture changes in parameter estimates over time and identify potential improvements in estimation
accuracy. After applying this method, we obtained the following parameter estimates. Here, we
display only a subset of the results, but all the valid parameter estimates will be used in forecasting.

Through these comprehensive investigations, our goal is to determine whether specific subsets of
the data provide advantages in achieving accurate parameter estimation or if they all result in similar
estimates.
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Partitions â b̂ σ̂

1962 to 1972 0.007 6.07 0.13

1963 to 1973 0.007 7.37 0.15

1964 to 1974 0.009 7.15 0.19

1965 to 1975 0.015 6.52 0.21

1966 to 1976 0.014 6.14 0.22

1967 to 1977 0.016 6.67 0.22

1968 to 1978 -0.0009 -10.52 0.22

1969 to 1979 -0.002 -1.29 0.26

1970 to 1980 -0.001 -10.43 0.36

1971 to 1981 0.006 13.30 0.43

Table 3: Parameter estimates for Rolling Window Techniques

6.1.2 Testing Data

The test data comprises actual daily interest rates spanning from February 13, 2024, to April 13, 2024,
constituting a single subset.

6.2 Parameters Estimations in Vasicek Model

All valid estimates from previous section are utilized to compute the corresponding RMSE with
the test data. We select the four estimates with the lowest RMSE values and plot their fitted values
alongside the real data in the figure below.

Partitions â b̂ σ̂ RMSE

2009 to 2019 0.0009 5.28 0.057 0.0395

1985 to 1995 0.01 5.06 0.208 0.04

1972 to 2024 0.0026 5.02 0.26 0.0397

2023 to 2024 0.102 5.070 0.232 0.0679

Table 4: Parameter estimates and the corresponding RMSE for Vasicek models

In the plot below, each of the four curves represents the fitted values derived from different sets
of estimated parameters, showcasing the variance between these fitted values and the actual data.
It is evident that the fitted values fail to fully capture the volatility observed in the actual data, as
the random term is omitted in our fitted models. This omission stems from the utilization of the
conditional expectation formula detailed in Section 4.

21



Figure 3: Plotting the curves with the lowest RMSE against the actual data

6.3 Forecasting US Interest Rates

6.3.1 1-Step-Ahead Forecast

Considering a one-step forecast horizon and using the estimated parameters from the subset 2023-
2024, where i corresponds to 2024-04-30 and i−1 to 2024-04-29, the expected interest rate value on
2024-04-30 is

E[Rti | Rti−1 ] = Rti−1e−adt +b(1− e−adt) = 5.20 · e−0.102 +5.07 · (1− e−0.102) = 5.187.

Here, we have the forecasted interest rate of 5.187 for 2024-04-30, which closely aligns with the
actual value of 5.25. It’s worth noting that at the time of writing this thesis, 2024-04-30 was still in
the future.

6.3.2 Bootstrap Confidence Interval

In this section, we conduct an analysis through simulating 1000 paths of the Vasicek model

Rti | Rti−1 = Rti−1 e−a +b(1− e−a)+σ

∫ ti

ti−1

e−a(t−u)dWu,

using the bootstrap technique. The parameters chosen for the simulation are the same as 1-Step-Ahead
Forecast, namely a = 0.102, b = 5.07 and σ = 0.232.
The bootstrap simulation technique draws bootstrap samples by sampling from the estimated function
instead of the real function, which is not known in our case. We perform parameters estimation for
every simulated path and use the results to compute our 1-Step-Ahead Forecast. After repeating the
process for 1000 paths, we will obtain 1000 forecasts for the US interest rate for 2024-04-30.

We compute statistics of interest, specifically the 95 percent confidence interval of the forecasts
and the distributions of our estimates of the three parameters. The 95 percent confidence interval
lies in (5.165,5.208). Our findings indicate that the result 5.187 from the last section falls within the
interval, implying a 95 percent confidence level in the accuracy of our estimate.
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Figure 4: The plot showing 95 percent confidence intervals for the forecast

The distributions of the three estimated parameters are depicted in the figure below. Upon
examination of the plots, it is apparent that the parameter estimates used in our model also lie
within the 95 percent confidence interval, indicating a 95 percent confidence level in the accuracy of
parameter estimation.

Figure 5: The plot showing the distributions and 95 percent confidence intervals for the
parameter estimation
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7 Discussion

Based on the Vasicek model, we have inferred that the one-step horizon interest rate in the USA
is approximately 5 percent. While our thesis primarily focuses on the mathematical and statistical
aspects of the Vasicek model, it is important to acknowledge that we have not constructed a yield
curve or derived bond prices, which are essential for comprehensive interest rate forecasting. However,
these elements could be incorporated by applying a similar methodology to various treasuries and
bonds. Despite its potential, this specific aspect falls outside the scope of our thesis, as our primary
emphasis lies in the mathematical and statistical application of the Vasicek model. This limitation
highlights the inherent uncertainty in our predictions, although our methodology provides a robust
framework.

Upon reflection, it becomes evident that there may be alternative statistical methods capable of
providing more optimal parameter estimates. Our assumption of constant parameters has constrained
our ability to capture historical data from a dynamic perspective. Exploring statistical techniques that
address this limitation could potentially lead to more accurate predictions.

This process has provided valuable insights into the role of mathematics and statistics in applied
science. Despite encountering challenges arising from the absence of advanced mathematical con-
cepts such as stochastic calculus, this experience has offered an opportunity to translate theoretical
knowledge into practical applications.
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