Kernel Methods in Credit Risk Prediction -
Using Support Vector Machines for Credit

Analysis

Rebecka Algervik

Kandidatuppsats 2024:11
Matematisk statistik
Augusti 2024

www.math .su.se

Matematisk statistik
Matematiska institutionen

Stockholms universitet
106 91 Stockholm

& (Zm’f/b

Sualeet Mathematical Statistics
2% & Stockholm University
Bachelor Thesis 2024:11

http://www.math.su.se

w/; + s“*«o
Stockholm
University

Kernel Methods in Credit Risk Prediction -
Using Support Vector Machines for Credit
Analysis

Rebecka Algervik*
August 2024

Abstract

The credit risk of housing loans is undergoing dynamic changes
in the global market- ing. With economic and market uncertain-
ties, lenders are carefully assessing credit risk associated with housing
loans. Factors such as borrower creditworthiness, em- ployment stabil-
ity, and property market trends play pivotal roles in determining the
level of credit risk. As financial institutions navigate these challenges,
they employ advanced analytics and risk management strategies to
reduce potential defaults and ensure the stability of their housing
loan portfolios. This study analyzed the HMEQ dataset, compris-
ing 3,364 observations and 12 in- put variables, to evaluate the per-
formance of four types of Support Vector Machine (SVM) models:
linear, polynomial, radial basis function (RBF), and sigmoid kernels.
The data preprocessing steps included handling missing values, con-
verting categor- ical variables into dummy variables, performing fea-
ture selection, addressing class imbalance by applying class weight
balancing, and feature scaling. The dataset was split into training
(70%) and testing (30%) sets. Model performance was assessed us-
ing metrics such as accuracy, precision, recall, false positive rate, F1
score, specificity, AUC values, and cross-validation. The results indi-
cated that the Polynomial kernel achieved the highest accuracy and
cross-validation scores, demonstrating its effectiveness in this context.
However, considering the AUC values, the RBF model emerges as the
most suitable model for this dataset. Additionally, balancing class
weights effectively addressed the issue of data imbalance.

*Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: rebecka.algervik@gmail.com. Supervisor: Taras Bodnar and Jan-Olov Persson.

Acknowledgement

I would like to express my gratitude to my supervisors, Taras Bodnar and Jan Olov
Persson, for their valuable feedback during the writing process.

I would also like to express my gratitude to ChatGPT for providing valuable sug-
gestions on the construction of the abstract and introduction, as well as for offering
advice to enhance the grammar throughout the entire thesis.

Contents

1 Introduction

2 Theory
2.1 Kernel methods o
2.1.1 General introduction to kernel methods
2.1.2 Kernel function L oo
2.1.3 Characterisation of Kernels
2.1.4 Dual representation
2.2 Support vector machine (SVM) L.
2.2.1 Hard-Margin SVM
2.2.2 Soft-Margin SVM
2.2.3 Kernel functionso
2.3 Model evaluation Lo
2.3.1 Confusion matrix
2.3.2 AUCand ROC
2.3.3 Cross-validation oL
3 Data
3.1 Data description
3.2 Data preprocessingo

3.2.1 Missing value o
3.2.2 Dummy variable o oo
3.2.3 Featureselection
3.2.4 Featurescaling Lo
3.3 Model Optimization with Balanced Class Weights

4 Modelling and Results

4.1 Confusion matrix
4.2 AUC and ROC
4.3 Cross-validation

5 Parameter tuning and conclusion

6 Discussion

6.1 Predictive power
6.2 Generalization capability o000
6.3 Improvements
6.3.1 Feature Creation
6.3.2 Choosing Neural Networks Instead of SVM
6.4 Conclusion

7 Appendix

32

32

34

35

36

38

38

39

40

40

41

41

43

1 Introduction

The housing loan market is a crucial part of the financial system and significantly
influences economic development. However, predicting loan default risk remains a
challenging task. Housing loan datasets typically include a large number of variables,
both numerical and categorical. These datasets often exhibit strong nonlinearity and
high-dimensional characteristics, making data modeling more complex.

One of the most well-known methods in machine learning is the support vector ma-
chine (SVM). SVM can capture complex patterns and relationships that may not be
evident in traditional linear models. Since their introduction by Vapnik in the 1990s
[2], SVMs have been widely studied. Recent studies have shown diverse applications
of SVMs: Alshawi (2024) addressed the issue of imbalanced datasets by employing
SVM kernels in conjunction with Generative Adversarial Networks (GANs) algo-
rithms to generate synthetic data [1]. Sonmez, Sabanci, and Aydin (2024) explored
a convolutional neural network-support vector machine-based approach for identi-
fying wheat hybrids [9]. Han, Chen, and Zhou (2024) proposed a hybrid machine
learning model combining a deep residual auto-encoder and SVM for classifying mu-
sical genres [3]. Khalifa (2024) integrated Independent Component Analysis (ICA)
with SVM to improve feature extraction and diagnosis for heart disease, addressing
current literature limitations and advancing prediction models [6].

While there are studies focusing on the application of SVMs to housing loan data,
this field still has room for further exploration and development. This paper aims
to contribute to this growing body of research by exploring effective handling of
nonlinear classification issues, challenges posed by high-dimensional features, and
the problem of imbalanced data. Specifically, we analyse a real dataset using the
SVM algorithm to classify bank applicants into good or bad credit categories.

In this study, we analyzed the HMEQ dataset, which comprises 3,364 observations
and 12 input variables after removing the missing values. The dataset was divided
into a training set (70%) and a testing set (30%). The data preprocessing steps
included deleting missing values, converting categorical variables into dummy vari-
ables, performing feature selection, addressing class imbalance by balancing class
weights, and applying feature scaling.

We then trained four types of SVM models using the training data: linear, polyno-
mial, radial basis function, and sigmoid kernels. The performance of each model was

evaluated on the testing data using metrics such as accuracy, precision, recall, false
positive rate, F1 score, specificity, AUC values, and cross-validation.

The structure of this paper is as follows: Section 2 introduces the theoretical foun-
dation. Section 3 provides a detailed description of the data preprocessing. Section
4 presents the results of the model evaluation. Section 5 discusses the parameter
tuning results. Finally, Section 6 summarizes the research conclusions and proposes
future research directions.

2 Theory

2.1 Kernel methods

Kernel methods are powerful, impacting many machine learning techniques, espe-
cially when dealing with non-linear relationships and complex data structures.

The fundamental concept behind kernel methods is to elevate data into a high-
dimensional feature space, thereby making non-linear relationships linearly separable
within that domain.

2.1.1 General introduction to kernel methods

All the theories are taken from [4], [7] and [8], unless stated otherwise.

We consider an instance of a binary classification problem mapped into feature space
H, a Hilbert space with higher dimensionality, as shown in Figure 1. Let us assume
that the true decision boundary forms an ellipse on the left; our objective is to
identify this boundary after the mapping, now in a three-dimensional space on the
right.

We perform a mapping of data points z; and x5 from the original space X to a higher-
dimensional feature space H, denoted as (21, 22, 23), through a mapping function ¢.
This mapping is defined as:

O(21,22) = (21,22,23) = (x%,\/ixlscg,xg). (1)

Feature mapping ¢ : R — R3

(xla IQ) = (Zla 22, Z3) = (ZE%? \/5%’1%2, JJ%)

Original space X Feature space H
z3
A L2
ko
21, 29, 2
(x17x2) (15 <2, 5)
-~_0 © ,‘\“‘Q'
\
° \\\ ° 0 len® e%e o
0] ‘e 4 \)
} o1 ¢ .,.\ M
) ° \ o\ o o g
! N 00 o
7/ B (6] 22
e \ AY -
= @ 9 \ AN
° \(*1,7;/»,4-;)
\
° ’
z1 A
2 2
T x 1
1 2
+:1:>—21+022+—Z3:1
a? b2 a? b2

Figure 1:Mapping of Binary Classification to Higher-Dimensional Feature Space

Here, ¢ represents the transformation function that elevates each data point from X
to the corresponding point in H. The resulting coordinates in H are expressed in
terms of the original coordinates (z1,x2). This mapping is essential in the context of
kernel methods, where nonlinear relationships in the original space can be linearly
modeled in the higher-dimensional feature space.

2.1.2 Kernel function

Let us conduct a mapping of two data points, denoted as x = (x1,25) and 2/ =
(z), x}), originating from the original space X to a higher-dimensional feature space
H. In this elevated space, the data points are represented as (21, 29, 23) and (21, 25, 23)
respectively. The entire mapping process can be elegantly expressed through inner
products within the two spaces.

The mapping function, denoted as ¢, can be precisely defined as follows:

< P(21,22),0(2],5) > =< (21,22,23),(2],25,25) >
=< (af, \/—551172;172) (277, \/_xle,xQ) >
=(<za >)
= K(x,2").

(2)

Here the symbol IC(z,2”) represents the kernel function, a fundamental mathematical
tool extensively employed in machine learning and statistical modelling.

With the aid of the kernel function, we can compute inner products within feature
spaces. These inner products provide us with the geometric properties of high-
dimensional spaces, including both distances and angles.

Distance in the feature space is:

16(2) — ¢(2)||* = (d(z) — ¢(a")" (d(x) — ¢(a"))
= K(z,z) — 2K(z,2") + K(a',2").

And angle in the feature space is :

< ¢(),0(z") >= ||¢()]| - |¢()]| cos 0

<o@)o) > Ka) (4)
6@ - 16@) ~ R /K@)

= cosf =

To make better use of these inner product, we introduce the inner product matrix,
also known as the Gram matrix or kernel matrix. The elements of this matrix are
the inner products of input samples in the feature space, providing us with a means
to measure the similarity and dissimilarity between samples.

Inner Product Matrix is :

< P(1),0(01) > -+ < @(w1),P(zN) >

K= : - :
< olan),p(z1) > - < olzy)d(zn) >
K(xy,xy) -+ K(z,2n)
= z : : (5)
’C(l’N,l'l) L ’C(ZL‘N,I'N)

2.1.3 Characterisation of Kernels

With the geometric properties of kernel functions in high-dimensional spaces, the
theorem titled ”Characterisation of Kernels” on page 61 of [7] provides a compre-
hensive understanding of their behavior and implications in machine learning and
mathematical analysis.

Theorem 2.1 Let X be a vector space. A function

K:XxX—R,

which is either continuous or has a finite domain, can be decomposed
K(2,2) =< 6(2), 6(2) > (6)

into a feature map ¢ into a Hilbert space H applied to both its arguments followed by
the evaluation of the inner product in ‘H, if and only if it satisfies the finitely positive
semi-definite property.

The " finitely positive semi-definite property” describes a property of the function K
used to define a kernel function. This property ensures that for any finite dataset
X1, %9, ..., Ty, the corresponding kernel matrix is positive semi-definite.

For any set of n data points, the kernel matrix K satisfies the following condition:

N N
Z Z UZ'UjIC(l’i,Ij> Z 0.

i=1 j=1
where v; are arbitrary real numbers, and z; and x; represent data points.

This theorem establishes a connection between kernel functions C and feature maps
¢. Given a kernel function I that satisfies the finitley positive semi-definite property,
we can find a corresponding feature map ¢. Conversely, given a feature map ¢, we
can construct a kernel function K using the inner product in the Hilbert space.
Working directly in the input space may be computationally expensive, but by using
the kernel trick, we can implicitly work in a higher-dimensional space.

2.1.4 Dual representation

Having established the connection between kernel functions and feature maps, let’s
explore their dual representation further. The concept of dual representation lies in
its capacity to operate implicitly in a high-dimensional feature space, facilitated by
kernel methods. This capability allows us to effectively address non-linear relation-
ships and complex data structures without explicit knowledge of the feature space’s
form or dimensionality.

We describe a simple recognition algorithm, as shown in Figure 2. We assume that
our data are mapped into an inner product space H. Samples y belong to binary
classification, y € {1, —1}. For example, training samples {(z1,v1), ..., (Tn,yn)} are
mapped into a feature space H with points {(¢(z1),v1), ..., (é(xn), yn)}. Using the
inner product, we can measure the distance in the space H.

Testing sample (z,y) 2, (p(z),y) »y=7

v oy =sgn(< o(z) —cw >)

Figure 2: Illustration of a Simple Recognition Algorithm in Feature Space H

Beginning by computing the means of the two classes in the feature space, we obtain:

10

o= 3 o), e=— Y o) (7

ilyi=+1 ilyi=—1

Here m, and m_ represent the counts with positive and negative labels, respectively.
The difference between two vectors becomes: w = ¢, — c_. To separate the two
classes, we draw a line orthogonal to w passing through the midpoint of w. The
midpoint is defined as ¢ = (¢4 + ¢_)/2, accurately portraying the decision boundary
hyperplane (depicted as the dotted line).

To evaluate a new testing sample, we calculate the angle between the vector ¢(z) — ¢
and w to check whether it is smaller than 7/2 or not . This lead to

y = sgn({p(x) — ¢, w)). (8)

To compute y, we need to express the vectors ¢; and w in terms of xy,...,z,. Sub-
stitute equation (9) with inner product to obtain the decision function:

((x) — ;) = (mi+ T /C(m,m—mi > Kwa) +o. ©

ifyi=+1 ilyi=—1

Here, we have defined b :

1
b= 5((!\07\!)2—(HC+H)2)- (10)
Similarly, b becomes
1 1 1
— . + ..
(G lyi=y;=—1 (&) lyi=y;=+1

To facilitate our analysis, we introduce Wahba’s Representer Theorem (see page 90
of [8]). It loosely states that the solutions to certain risk minimisation problems,
which involve an empirical risk term and a quadratic regulariser, can be expressed
as expansions in terms of the training samples:

w = Za@(l‘i)- (12)

11

With the help of equation (12), the normal vectors w of decision hyperplanes can be
written as the general linear combinations of training samples.

W= 3 ble) = o 3 o) = Y il (13)

ilyi=+1 dlyi=—1

We consider the following linear function in the feature space H,

fla) =W"¢(x) +b

Let (¢p(x) — c,w) = f(x), then the output of y becomes:
y = sgn((¢(z) — c,w))
= sgn(f(z))

— sqn(w”¢(x) +b)

= sgn((Zf: Oéi¢<$i)>T¢(37) +b) (14)

N

= sgn((Y- cwo(w) 6(x)) +1)

N

= sgn(z a; K(x;,x) +b)

=1

where b is the same in (11).

Here the «; can be viewed as a dual form of the normal vector for the hyperplane.
Finding w is equivalent to finding «;. The length of w corresponds to the dimension
of the feature space H, while the number of «; corresponds to the number of training
samples.

Through the dual representation, we can utilize kernel methods to implicitly map the
raw data to a high-dimensional feature space and perform computations in this space.
This enables us to handle data more effectively, achieving more precise classification
or recognition.

12

2.2 Support vector machine (SVM)

SVM is a supervised learning algorithm designed to address both classification and
regression problems. SVM aims to find an optimal decision boundary that separates
different classes. One of the notable strengths of SVM lies in its ability to handle
high-dimensional data effectively.

Traditional SVM employs a linear decision boundary, but to handle non-linear pat-
terns, kernel methods come into play. Kernel methods play a pivotal role in SVM by
mapping input data into a higher-dimensional feature space and capture non-linear
decision boundaries.

SVM can be categorized into two main types: Hard-margin SVM and Soft-margin
SVM. Hard-margin SVM aims for perfect separation of classes with no misclassifi-
cations, while soft-margin SVM allows for some misclassifications to achieve a more
robust and generalized solution.

2.2.1 Hard-Margin SVM

e Class 1:y; = +1
e Class 2:y; = —1

Figure 3: Illustration of Hard-Margin SVM with Linear Decision Boundary

Let us consider a linearly separable two-classification problem, with training data

13

(xi,y:),1 € {1,...,n},x; € R, and y; belongs to two-class with labels as shown in

Figure 3 on the left:
+1, if z; € class 1
Yi = { (15)

—1, if x; € class 2.

In geometry, the Decision Hyperplane is defined as w”z + b = 0, where w represents
the normal vector orthogonal to the hyperplane, and b represents the intercept.

When the normal vector w moves towards class 1, a Support Vector Hyperplane is
defined as w'z + b = 1 by the first encountered point belonging to class 1. Con-
versely, when the normal vector w is oriented towards class 2, another Support Vector
hyperplane is defines as w”z 4+ b = —1 by the first encountered point belonging to
class 2.

With w?z; +b > 1if y; = +1, and wa; +b < 1 if y; = —1, we combine them into
one constraint : y;(wlx; +b) > 1.

With the aim of measuring the distance between two hyperplanes, specifically from
both wlz+b=1and wlz+b = —1to wrz+b = 0,we obtain d, and d_ respectively:

d+:_

Our goal is to finding an optimal decision boundary that separates two labels, which
could be achieved by maximising the margin (see Figure 3).
1 1 2 2

in = (d d_) = = =
margin = (de) +(d-) = pn Tl = ol = Vare

In order to maximize the margin, we minimize v w”w.

The problem of maximizing the margin (d;) + (d-) can be formulated as follows:

1
Minimize &(w) = EwTw,
T

(16)
subject to y;(w'x;) +b>1 Vie{l,...n}

This formulation represents the optimisation problem for the Hard-Margin SVM,
where ®(w) is the objective function to be minimized, and the constraints ensure

14

that each training point is correctly classified with a margin of at least 1. The
solution to this problem provides the optimal hyperplane for linearly separating the
two classes.

This convex minimization problem can be solved effectively using the Lagrange mul-
tipliers method:
1 !
Minimize L(w,b,a) = §wTw - Z ailyi(whz; +b) — 1],
i=1
subject to «o; >0 Vie{l,...n},
T

where o = (v, g, ...,)" .

By computing partial derivatives of the function L from (17) with respect to w and
b, and setting them equal to 0, we obtain

N
w = Zaiyia:i, (18)
i=1

!
Z a;y; = 0. (19)
i=1

Suppose ¢ represents a feature mapping associated with a kernel function K(x,2), in
this case, we obtain the following in the feature space

N
1
Minimize L(w,b,a) = §wTw - Z ai[yi(w” é(z;) + b) — 1],
i=1
subject to a; >0 Vie {l,...n}.

(20)

And v
w=>ayid(x:), (21)
i1

N
Z a;y; = 0. (22)
i=1

15

Substituting equations (21) and (22) into the function (17), we obtain

N N
whw = Z Z a;a; vy K(z,25), (23)

i=1 j=1

and

w? () = Zajyle(avi,xj). (24)

With results (23) and (24) substituted into the function w, we obtain

N L NN
w = Z o — 5 Z Z a0y yi K (i,x5). (25)
i1 i=1 j—=1

Under the following two constraints, we could find the maximisation of w:

N N N
1
Minimize w:E ai—gg E ai&jyiyjlc(xia$j)7
i=1

i=1 j=1
N

subject to (1) Zaiyi =0,
i=1

(2) a; >0, Vie{l,...n}.

If o, w*, b* are the optimal solutions, then
of (y; (W d(z;) +0*) —1) =0, with i=1,...,n. (27)

By the Karush-Kuhn-Tucker (KKT) conditions on the page 199 of [7] , we obtain
that if o > 0, then
yi(w T p(x;) +0*) = 1,

then ¢(z;) is on the margin and is one of the support vectors. Otherwise, when
af = 0, all the corresponding data lies outside of margin.

Since most of o are zero, the decision boundary is only determined by the support
vectors, then

w=aiyola) = Y alyslz) (28)

af#0

16

Again, using the KKT conditions, we get
o (yy(wTg(x,) +0*) —1) =0, when o] > 0. (29)
Recall that y, = 41, so by the equation (29), ¢(x;) is on the margin, that is
wT¢(xy) + b* = 1 and we get
wT () + 0" =y (30)

Hence, the intercept b can be computed with

N
b* =y — Z oy (zi,20). (31)
i=1
To classify a new testing sample, we can plug in new data with
N
wT(b(znew) + b= Z Oéiyilc(xiaxnew) + b. (32)

i=1
If the result is positive, classify z,.., as belonging to class 1; otherwise, classify it as
belonging to class 2. That is

N

Ynew = Sgn(z aiyilc(xhxnew) + b) (33)

=1

2.2.2 Soft-Margin SVM

If there is overlap between two classes in a two-classification problem or if linear
separability is not achievable as shown in Figure 4, we can allow for some degree of
tolerance towards classification errors, meaning that certain points may fall within
the margin. This concept is known as soft-margin SVM .

The problem of maximising the margin (dy) + (d_) can be formulated as follows by
introducing slack variables &;:

N
L 1
Minimize O(w,€) = Ju W + C;&, C >0,
subject to & >0, yi(wix)+b>1-& Vie{l,...n}

(34)

17

® Class 1:y; = +1
@ Class 2:y; = —1

Figure 4:Illustration of Soft-Margin SVM with Tolerance for Classification Errors

The parameter C is a regularisation parameter that controls the trade-off between
achieving a low training error and a low testing error. A smaller C value results in a
wider margin, allowing for more training points to be misclassified. A larger C value
enforces a stricter margin, imposing more substantial penalties for misclassification.

This convex minimisation problem can be also solved effectively using the Lagrange
multipliers method:

Minimize

L(w,b, ﬁ)——w w+025, Zalyzw T+ b)—1+&] - Z%, (35)

=1 =1
subject to «; > 0,6 >0,Vi € {1,...,n}.

By computing partial derivatives of the function L from (35) with respect to w,b and
¢, and setting them equal to 0, we obtain

N
w = Z QG YT, (36)
i=1

N
i=1

18

pi=C—a

Suppose ¢ is a feature mapping associated with a kernel function K(x,z), we replace
x; by ¢(z;) in (35), then we obtain the following in the feature space

Minimize
L(w,b¢, a,8) = —w w+02a Zal yi(w' o(a) +b) =1+ &] — Z@@,
=1 =1

subject to «; > 0,6 >0,Vi € {1,...,n}.

(39)
And
w = Z ayip(x;) = XTYa, (40)
N
D iy =0=y"q, (41)
i=1
C—Ozi—ﬁi:O:> ai:c_ﬁi :>0§Ozi,ﬂi§0, (42)
Bi=C—a
where

XT = [d(z1), ..., d(x,)],
Y = diag(y1, .., Yn),

yT = [yla"'7yn]7

ol =layg, ..., q).

Substituting equations (40), (41), and (42) into the function (35), we obtain

N N

whw = Z Z a0y y K (2,25, (43)
i=1 j=1

and

To(x;) = Zajyle(avi,xj). (44)

19

With the results of (43) and (44) substitued into the function w from (40), we obtain
w= a1, — %ozTYKYa, (45)

where a = (a1, g, ..., an)T, 1w = (1,...,)T € R,

Under the following two constraints, we could find the maximization of w

1
Minimize w = a’l,4; — §aTYKYoz,

subject to (1) o'y =0, (46)
(2) 0<o;<C, Vie{l,...n}.
If o, w*, b*, £ are the optimal solutions, then
* *T * *
(Y;)+) —1+ ;) =0,)
{O‘Z (5s(w™ plas) +67) 5552 . vie{l..n} (47)

We use the KKT conditions and the first equation of (47), then we get the following
results

af = 0= y(wTo(x;) +b*) > 1,
0<af <C=y(whe(z;)+b*) =1, (48)
of = C = y(wTe(z) +b°) < 1.

If0 < af <C, and y;(wTé(x;) + b*) = 1, then ¢(x;) is positioned on the margin
and qualifies as one of the support vectors. When o = 0, all the corresponding data
lie outside of margin. If af = C, all the data points lie either inside or on the margin
(see Figure 4).

Again, using the KKT conditions, we get
of (g (wTg(zy) +0*) —1) =0 when 0<af<C.
So ¢(z;) is on the margin w*? ¢(x;) + b* = +1, and
wrp(zy) + b* =y, (49)

Hence, the intercept b can be computed with (44) and (49), then we get

N
b =y — Z o7y (i, m). (50)
i=1

20

To classify a new testing sample, we can plug in new data with

N
W A (Tnew) + b = Z QYK (T, T new) + 0. (51)

i=1

If the result is positive, classify x,., as belonging to class 1; otherwise, classify it as
belonging to class 2. That is

N
Ynew = Sgn(z aiyilc(xiaxnew) + b) (52)

i=1

The optimisation problem for the soft margin SVM in equation (34) can be written

as
N

. A
min » [1—yi(w"z; + b)) + Zlwll” (53)

w7b .
=1

The expression S~ [1 — y;(w”x; + b)]4, where the subscript + denotes the positive
part, is known as the hinge loss.

2.2.3 Kernel functions

The choice of kernel functions for our SVM model is crucial as it directly affects
its ability to capture complex data patterns. The four kernel functions introduced
in Table 1 form the basis of our SVM model, enabling us to investigate different
approaches for separating and classifying data points effectively. In the following
sections, we’ll analyze the performance of these kernel functions and their impact on
our SVM model’s effectiveness.

Table 1: SVM Models with Four Kernels

SVM model | Solving problem Kernel function
"linear” Linear K(z,z)=at 2= Xz
"poly” Partially linear K(z,2) = (y(x-2) +7)?
"rbf” Partially nonlinear | K(z,2) = exp(—||z — z||*),7 > 0
7sigmoid” Nonlinear K(z,z) = tanh(y(z - 2) +),y >0

21

Here, "poly” refers to polynomial functions, "rbf” refers to radial basis functions,
and "sigmoid” refers to the sigmoid function.

2.3 Model evaluation

To assess the effectiveness of the SVM model, we introduce specific indices for eval-
uation. The model evaluation metrics come from [10].

2.3.1 Confusion matrix

A confusion matrix is a specialized form of a contingency table, with two dimensions
labeled as ”actual” and ”predicted”. It includes identical sets of ”classes” in both
dimensions, with each combination representing a variable in the contingency table.

The binary confusion matrix template incorporates four key result categories: true
positives, false negatives, false positives, and true negatives, in addition to positive
and negative classifications. These outcomes can be organised into a 2 x 2 confusion
matrix as follows:

Table 2: A confusion matrix

Predicted condition
Total population = P+N Positive Negative
Positive (P) True positive | False negative
Negative (N) False positive | True negative

From the confusion matrix, we will describe some metrics that offer a comprehensive
evaluation of a classification model’s performance.

1. Accuracy: the overall correctness of the model, measuring the ratio of correctly
predicted instances to the total instances

True Positives + True Negatives

ACC = .
True Positives + True Negatives 4+ False Positives + False Negatives

2. Precision(Positive Predictive Value): the proportion of correctly predicted positive

22

observations out of the total predicted positives

True Positives

PPV = .
True Positives + False Positives

3. Recall (Sensitivity, True Positive Rate): recall measures the ability of the model
to capture all the positive instances, indicating the proportion of correctly predicted
positives out of the total actual positives

True Positives

TPR = .
True Positives + False Negatives

4. False Positive Rate: it represents the proportion of negative instances that were
incorrectly predicted as positive out of the total actual negatives

False Positives

FPR =

False Positives + True Negatives

5. F1 Score: the F1 score is the harmonic mean of precision and recall, providing a
balanced measure that considers both false positives and false negatives

F1 Score — 2 % Precision x Recall

Precision + Recall

6. Specificity (True Negative Rate): specificity measures the ability of the model to
correctly identify negative instances out of the total actual negatives

True Negatives

TNR = .
True Negatives + False Positives

2.3.2 AUC and ROC

ROC and AUC provide a valuable means to assess and compare the discriminatory
power of classification models, particularly in binary classification tasks.

ROC (Receiver Operating Characteristic): ROC is a visual tool that illustrates how
well a classification model performs across different discrimination thresholds. It
represents the trade-off between the true positive rate (recall) and the false positive
rate (1 - specificity) as we adjust the threshold for classifying instances.

23

In our approach, we first measure the distance of each testing sample to the decision
boundary of our classification model. This distance serves as an indicator of how
confidently a sample is classified. By measuring the distance between samples and
each class, we can better understand the model’s predictions.

To convert these distances into meaningful probabilities, we employ Platt scaling
and the sigmoid function. Platt scaling transforms the raw SVM decision function
values into probability estimates, providing a probabilistic interpretation of the clas-
sification.

If a sample is far from the decision boundary, it is assigned a higher probability of
belonging to a particular class, and vice versa. The probability P(y = 1|z) of a
sample point belonging to class 1 is calculated using the formula:

1

Ply =1le) = 1+ exp(Af(z) + B)

where:

e P(y = 1|z): The probability of a sample point belonging to class 1
e f(z): The original SVM output (the decision function value)

e A and B: Parameters obtained through cross-validation fitting

By using this method, we ensure that the distances to the decision boundary are
effectively translated into probabilistic terms, enhancing the interpretability and re-
liability of our classification model.

By setting various probability thresholds, we create confusion matrices for each sam-
ple. These matrices allow us to compute the true positive rate (TPR) and false
positive rate (FPR) at each threshold setting. TPR, also known as recall, measures
the proportion of positive instances that are correctly classified, while FPR quantifies
the proportion of negative instances that are incorrectly classified as positive.

By plotting TPR against FPR across different threshold settings, we can generate the
ROC curve, providing valuable insights into the classification model’s performance
and its ability to distinguish between the positive and negative classes.

24

AUC (Area Under the Curve): AUC is the area under the ROC curve. It quantifies
the overall performance of a classification model by measuring the area between the
ROC curve and the baseline. AUC values range from 0 to 1, where a higher AUC
indicates better discrimination ability. An AUC of 0.5 suggests a classifier performing
no better than random chance, while an AUC of 1.0 represents a perfect classifier.

2.3.3 Cross-validation

Cross-validation is a statistical technique employed to assess the performance of
machine learning models by segmenting the dataset into subsets for both training
and validation purposes. It entails iteratively employing different data subsets for
training and validation to accurately measure the model’s generalization ability while
mitigating bias stemming from data partitioning.

In our case, after dividing the dataset into a training set (70%) and a testing set
(30%), we use the training set to perform cross-validation. With k-Fold Cross-
Validation, our training set is divided into k£ equally sized subsets. During each
iteration, k — 1 subsets are utilized for training, while the remaining subset serves
as the validation set. This process is reiterated k times, with a different validation
set chosen each time. Ultimately, the model’s performance is evaluated by averaging
the results from the k validation iterations.

3 Data

3.1 Data description

The data we will analyse comes from a bank in the USA (downloaded from http://
www.creditriskanalytics.net/datasets-private2.html), the name of the bank
was not disclosed for privacy reasons. It contains information on 5960 equity loans
and 12 features. A home equity loan is a financial arrangement in which the borrower
utilises the equity in their home as collateral for the loan.

All the variables are presented in the Appendix Table 1. We have 2 categorical
variables, ” Reason” and ” Job”, 5 continuous variables, ” Loan”, ” Mortdue”, ” Value”,

25

20 YR »o»

”Clage”, and ”"Debtinc”, and 5 discrete variables, ”Yoj”, " Derog”, " Delinq”, ” Ninq”,
and ”Clno” in the dataset.

3.2 Data preprocessing

3.2.1 Missing value

The SVM algorithm involves distance measurement, and the support vectors deter-
mine the position of the hyperplane. If there are missing values in the support vectors,
it will affect the position of the hyperplane, potentially resulting in underfitting or
overfitting of the trained model. Therefore, SVM requires careful preprocessing to
handle missing values. Common strategies include deletion and imputation, such as
filling in missing values based on models using regression or neural networks.

Table 3: The number of missing values

Name Number
LOAN 0
MORTDUE 518
VALUE 112
REASON 252
JOB 279
YOI 515
DEROG 708
DELINQ 580
CLAGE 308
NINQ 510
CLNO 222
DEBTINC 1267

To illustrate the importance of handling missing values, Table 3 shows the number
of missing values. Since the number of missing values for each observation is not
significant, we chose to drop all observations with missing values. After removing all
the missing values, we retained 3364 observations and 12 variables.

Next, we examined the data distribution after deleting the missing values. Fig-
ure 5 shows the data distribution using the first two variables after deleting the

26

400000 A o0 ® Paymentintime
. ® Loan defaulted

350000 -
(0]
[@)]
®
£ 300000 A
o
€
@ 250000
€ P
= o
% 200000 o° o™ o® ‘>
c [® ’
o [J
§ 150000
4:5; .. ®e (])
g 100000 - o o
< N Y4 &

50000 - ® q & o
o L

0 20000 40000 60000 80000
Amount of the loan

Figure 5: The distribution of the data with first and second variables.

missing values, revealing a significant overlap between the two classes. We selected
these two variables because a two-dimensional plane can clearly show relationships
and distributions among data points, making it easier for people to understand the
structure and potential patterns in the data. Compared to high-dimensional data,
two-dimensional data is simpler to visualize and interpret. Although the dataset con-
tains multiple variables, it’s common to initially choose a few features for preliminary
exploration, such as the amount of the loan and the amount due on existing mort-
gages in our dataset. These two features are considered important in the banking
data domain for initial exploration.

However, this initial exploration revealed a challenge. It is evident that a single linear
boundary is insufficient for effectively separating the classes in this visualization.
Consequently, a linear kernel model may not achieve optimal performance on this

27

dataset. Furthermore, the dataset exhibits a high degree of imbalance; specifically,
the proportions of good and bad customers are unequal, with a ratio of 0.91 to
0.09, respectively. Dealing with imbalanced data poses a challenge for SVM, as it
may bias the model towards the majority class and hinder its ability to accurately
classify instances from the minority class. We will address this issue later.

3.2.2 Dummy variable

In order to make our SVM model suitable, we convert all categorical variables, such
as "Job” and "Reason”, into dummy variables. This ensures that categorical data is
correctly represented without implying any ordinal relationship.

After converting the categorical variables into dummy variables, and including our
10 numerical variables, the total number of variables in the dataset becomes 18.

3.2.3 Feature selection

Feature selection plays a crucial role in machine learning by improving model perfor-
mance and interpretability. By selecting the most relevant features, we can reduce
overfitting, decrease training times, and enhance the model’s ability to generalize to
unseen data.

Before proceeding with feature selection, it is essential to partition the dataset into
training and testing sets. We use a 70:30 ratio for this split. This ratio strikes a
balance by providing enough data for the model to learn effectively (70% for training)
while ensuring a sufficient amount of unseen data for reliable performance evaluation
(30% for testing). This strategy helps mitigate the risk of information leakage from
the training set to the testing set, thereby reducing the potential for model overfitting.

In the feature selection process for numerical variables, we employ the variance
threshold technique as a critical step in our data preprocessing. This technique in-
volves removing features with low variance, which indicates limited variation within
the dataset. Specifically, we calculate the variance for each feature and eliminate
those whose variance falls below a predefined threshold. The rationale behind this
technique is that features with low variance contribute little to the dataset’s diversity
and are less likely to be useful for the model. For example, a feature with a vari-

28

ance close to zero indicates that nearly all its values are the same, offering minimal
contribution to the model.

While SVM classification tasks are less impacted by multicollinearity due to their
use of kernel functions to map data to higher-dimensional spaces, strong linear rela-
tionships between features in small datasets can still affect SVM performance. Such
relationships may cause the model to fit noise rather than capturing true patterns.
To address this, we use feature selection or dimensionality reduction techniques. We
utilized the Variance Inflation Factor (VIF) to identify multicollinearity within the
dataset. Notably, both MORTDUE and VALUE exhibited VIF values exceeding 20,
as shown in Figure 6, indicating a strong presence of multicollinearity between them.
As anticipated, a higher housing value is associated with a higher mortgage amount.
Multicollinearity arises when two or more variables in a model are highly correlated,
leading to redundancy in the information they provide. To resolve this issue, we will
introduce feature scaling in the subsequent steps.

VIF Values for Each Feature

DEBTINC A

CLNO A

NINQ -

CLAGE A

DELINQ A

Feature

DEROG A

YOJ 1

VALUE 4

MORTDUE A

LOAN A

0 5 10 15 20 25
VIF Value

Figure 6: Variance Inflation Factor (VIF) Values for Features

For categorical variables, our feature selection strategy involves applying the chi-
squared statistic. This statistical test assesses the independence between categor-

29

ical variables by comparing the observed frequency distribution with the expected
frequency distribution under the assumption of independence. Higher chi-squared
values indicate stronger associations between variables, suggesting their potential
relevance as features in the model.

To implement this strategy, we compute the chi-squared statistic for each categorical
variable, such as ”Job” and ”Reason,” using dummy variables in relation to the
target variable "Bad”. We select the ones with p-values below a specified threshold
(e.g., 0.05). This ensures that we are choosing features that have a statistically
significant association with the target variable. In this case, we select the two features
with p-values below 0.05: ”JOB_ProfExe” and "JOB_Sales”. These features are
statistically significant in their association with the target variable ”Bad”.

After testing various combinations of numerical and categorical variables—such as
7 numerical and 2 categorical, 8 numerical and 2 categorical, and 10 numerical and
2 categorical—we have decided to proceed with a combination of 10 numerical and
2 categorical variables. This combination was chosen because the SVM models per-
formed the best with it. With a total of 12 features, we will use them to evaluate
our SVM models.

3.2.4 Feature scaling

When examining our dataset, we discovered that our numerical variables exhibit
varying ranges. For instance, one feature ranges from 0 to 10, while another spans
from 1,000 to 90,000. Such differences can potentially lead to poor performance of
machine learning algorithms. Appendix Table 2 provides the descriptive statistics
for all quantitative variables in our dataset.

To address this issue, we standardized our numerical variables. This process involved
performing z-score standardization to ensure comparability and establish a consistent
scale across all variables. Specifically, each variable was transformed to have a mean
of 0 and a standard deviation of 1. While this step helped in making the variables
more comparable, it also contributed to reducing potential multicollinearity issues
among continuous variables, as illustrated in Figure 7.

Standardizing the data resolved multicollinearity among continuous variables by en-
suring that each variable contributes equally to the model’s learning process, re-
gardless of its initial scale. This transformation removed scale differences between

30

variables, allowing the algorithm to focus on the relative importance of each variable
rather than its absolute magnitude.

VIF Values for Each Feature

DEBTINC A

CLNO A

NINQ 1

CLAGE A

DELINQ A

Feature

DEROG A

YOJ 1

VALUE 4

MORTDUE 4

LOAN -

0 1 2 3 4 5
VIF Value

Figure 7: Effect of Feature Scaling on Variance Inflation Factor (VIF) Values

3.3 Model Optimization with Balanced Class Weights

Handling imbalanced datasets can lead to model bias towards the majority class,
which can adversely affect the performance and accuracy of the model. To address
this issue, we utilized a class weight adjustment strategy known as the ”balanced”
mode.

The ”Balanced” Class Weight Mode is an adaptive weight allocation strategy that
adjusts the weights of classes based on the number of samples in each class within
the dataset. This mode allows the model to place more emphasis on the minority
class, thereby improving performance on imbalanced datasets.

In our case, implementing the ”"balanced” mode involves specifying the parameter
class_weitght = "balanced” when configuring the machine learning model. This

31

parameter automatically adjusts the class weights based on the distribution of classes
in the training data. Specifically, the class weight is given by

n_samples

Ww; = .
n_classes * n_i

where:

w_i: Weight of class ¢

n_samples: Total number of samples in the dataset

e n_classes: Number of classes

n_i: Number of samples in class i

In SVM, adjusting class weights modifies the model’s sensitivity to different classes
by incorporating these weights during the optimization process. This helps prevent
the model from favoring the majority class excessively, thereby improving overall
performance.

By utilizing the "balanced” class weight mode, the performance of the SVM on
imbalanced datasets is enhanced, ensuring fair treatment for all classes.

4 Modelling and Results

After completing data preprocessing, which included deleting missing values, convert-
ing categorical variables into dummy variables, feature selection, addressing class im-
balance by balancing class weights, and feature scaling, we utilized the scikit-learn
package in Python to fit Support Vector Machine (SVM) models (see [5]). These
models were trained with four different kernels: the linear kernel, the polynomial
kernel, the radial basis function (RBF) kernel, and the sigmoid kernel.

4.1 Confusion matrix

Table 4 displays the confusion matrix for SVM models employing four different ker-
nels on the testing data, which consists of 1,010 observations and 12 variables. This

32

visualization presents the evaluation metrics for each SVM model, showing their abil-
ity to capture True Positives (TP), False Negatives (FN), False Positives (FP), and

True Negatives (TN) within the dataset.

Table 4: Confusion Matrices for SVM Models with Four Different Kernels
Linear kernel

Polynomial kernel

Predicted 1 | Predicted 0 Predicted 1 | Predicted 0
Actual 1 44 39 Actual 1 36 47
Actual 0 160 767 Actual 0 56 871
RBF kernel Sigmoid kernel
Predicted 1 | Predicted 0 Predicted 1 | Predicted 0
Actual 1 53 30 Actual 1 50 33
Actual 0 92 835 Actual 0 379 548

Table 5 presents the performance metrics of four SVM models, including accuracy,
precision, recall, false positive rate (FPR), F1 score, and specificity. Among these,
accuracy, FPR, and specificity are computed using the formulas from Section 2.3.1.
However, precision, recall, and F1 score are calculated with average='weighted’,
meaning they are averaged and weighted by the number of true instances for each
label (support). More details can be found in the Appendix: Derivation of Perfor-
mance Metrics for the RBF Kernel.

Table 5: The evaluations values from SVM models for testing set

SVM model | ACC PPV TPR FPR | F1-Score | TNR
”Linear” 0.8030 | 0.8911 | 0.8030 | 0.1726 0.8376 0.8274
" Poly” 0.8980 | 0.9029 | 0.8980 | 0.0604 0.9004 | 0.9396
"Rbf” 0.8792 | 0.9160 | 0.8792 | 0.0992 0.8935 0.9008
”Sigmoid” | 0.5920 | 0.8752 | 0.5920 | 0.4088 0.6831 0.5912

The models achieved accuracies of 0.8030, 0.8980, 0.8792, and 0.5920. Notably,
the Polynomial and RBF models exhibit commendable accuracy, while the Sigmoid
model falls below 0.6. Among these, the SVM with the Polynomial kernel emerges
as the best-performing model when considering accuracy, recall, false positive rate
(FPR), F1 score, and specificity(TNR). The RBF model, however, demonstrates the
best precision. Overall, the Polynomial model shows excellent performance in binary
classification, making it a strong choice due to its distinct strengths.

33

4.2 AUC and ROC

AUC (Area Under the Curve) is another evaluation metric used to assess the perfor-
mance of a binary classification model. A higher AUC indicates better discrimination
and a more effective separation between positive (the minority class) and negative
(the majority class) instances.

Receiver Operating Characteristic (ROC) - Multiple Kernels

1.0 A
0.8 1
g
8 0.6 1
()
2
=
%]
o
a
$0.41
'_
0.2 1
—— Kernel: linear (area = 0.78)
Kernel: poly (area = 0.75)
—— Kernel: rbf (area = 0.87)
0.0 A —— Kernel: sigmoid (area = 0.64)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 8: Comparison of AUC Values for SVM Models Using Four Different Kernels

Observing the AUC values in Figure 8, we can draw several inferences based on
different ranges. The Sigmoid Model, with an AUC of 0.64, suggests moderate dis-
criminatory power. Although it has some ability to distinguish between classes, its
overall performance is limited. In contrast, the Linear Model and the Polynomial
Model, with AUC values of 0.78 and 0.75 respectively, exhibit acceptable discrimina-

34

tory power and can effectively differentiate between positive and negative instances.
The RBF Model, with an AUC of 0.87, demonstrates strong discriminatory power
and can distinguish between classes effectively, reflecting robust predictive perfor-
mance. Considering the AUC values, the RBF Model emerges as the most suitable
model for this dataset.

4.3 Cross-validation

In our case, after dividing the dataset into a training set (70%) and a testing set
(30%), we use the training set to perform cross-validation. With 5-Fold Cross-
Validation, the training set is divided into 5 equally sized subsets. The process
involves iteratively training the model on 4 of these subsets while using the remain-
ing subset for validation. This process is repeated 5 times, with each subset taking
turns as the validation set. The model’s performance is then evaluated by averag-
ing the results across the 5 validation iterations. Figure 9 presents a comprehensive
summary of the cross-validation outcomes.

Accuracy Comparison for Different Kernels

—8— Training Accuracy
Testing Accuracy
Average Accuracy
0.8
0.6 1
>
1)
I
35
(%]
O
<
0.4
0.2
0.0

Linear Poly RBF Sigmoid

Figure 9: Cross-Validation Results for SVM Models

35

Notably, the small difference between the training and testing accuracies indicates
good model consistency, with no significant overfitting or underfitting observed. The
SVM models with Polynomial kernel achieves the highest average accuracy in cross-
validation, while the Sigmoid kernel performs the worst.

5 Parameter tuning and conclusion

When evaluating model performance, it’s essential to strike a balance between recall
and accuracy. This objective aims to achieve a harmonious blend of correctly iden-
tifying cases from both classes while maintaining overall prediction accuracy. For a
bank, this balance is crucial to increase profitability by issuing more loans and avoid-
ing the misclassification of good customers as bad. Pursuing this balance ensures
that the bank can accurately identify both good and bad customers, optimizing both
financial gains and risk management.

Polynomial models performance across varying C parameters

0.9 A
0l8 | \
0.7 1
0.6
~——__
0.5 +
0.4 -
— recall
0.3 1 —_— auc
accuracy

T T T

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Value of C parameter

Figure 10: Learning Curve of Polynomial Model with Varied C Parameter Values

36

In our pursuit of achieving improved results in both accuracy and recall, we explored
the impact of adjusting the C parameter in the Polynomial model (see Section 2.2.2
above). Figure 10 illustrates the model’s performance across varying C parameters
ranging from 0.01 to 20. Notably, the highest AUC value reaching 0.79, was observed
at C = 0.01, with a testing accuracy of 0.9217 and a recall of 0.2410. Although the
testing accuracy improved, the significant drop in recall indicates that the model
became less effective at identifying the minority class. This suggests that fine-tuning
the C parameter may not significantly enhance the overall performance of the Poly-
nomial model, as it risks compromising recall in favor of accuracy, thereby making
it challenging to strike a favorable balance between the two metrics.

Searching for the best threshold with ROC curve

1.0 A

0.8 1

o
(o)]
1

e
H
1

True Positive Rate

0.2 1

0.0 - s —— ROC curve (area = 0.79)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 11: Searching for the best threshold with ROC curve

Adjusting only the parameters of the SVM itself is no longer sufficient to meet our
requirements. We need to investigate whether improvements can be achieved by
tuning the ROC curve threshold for the model. By adjusting the thresholds on the

37

ROC curve (see Figure 11), we aim to find the optimal balance between recall and
the false positive rate, maximizing the distance between recall and the false positive
rate. This means we aim for high recall while keeping the false positive rate low,
demonstrating effective detection of positive samples while minimizing incorrectly
identifying negative samples as positives. Typically, finding a balanced point in
the classification of positive and negative classes helps achieve a balance in model
performance between accuracy and recall. Our final model testing accuracy is 0.7812,
and recall is 0.6988. This result maintains a balance between accuracy and recall.

6 Discussion

6.1 Predictive power

Section 4.1 presents the performance metrics of four SVM models, including accuracy,
precision, recall, false positive rate (FPR), F1 score, and specificity.

The accuracies of the four SVM models were 0.8030, 0.8980, 0.8792, and 0.5920,
respectively. Notably, the Polynomial SVM model achieved the highest accuracy at
89.80%, indicating its superior performance in classifying samples within the dataset,
followed by the RBF model. This observation aligns with our prediction from the
two-dimensional visualizations in Figure 5, which suggested the presence of nonlinear
data relationships where linear kernel models might not perform optimally. The
Sigmoid SVM model, however, recorded the lowest accuracy at 59.20%.

To further understand the classification capabilities of each model, we analyzed ad-
ditional performance metrics such as False Positive Rate (FPR) and True Negative

Rate (TNR).

For the linear kernel: The model has a False Positive Rate (FPR) of 0.1726 and a True
Negative Rate (TNR) of 0.8274. Although the FPR is relatively high, indicating some
misclassification of negative samples, the TNR reflects that the model still performs
reasonably well in identifying negative samples.

For the polynomial kernel: The model has an FPR of 0.0604, which is lower than that
of the linear kernel, indicating fewer misclassifications of negative samples. The TNR
is high at 0.9396, demonstrating excellent accuracy in identifying negative samples.

38

This suggests that the polynomial kernel model performs best in handling negative
samples.

For the radial basis function (RBF) kernel: The model shows an FPR of 0.0992 and
a TNR of 0.9008, indicating robust classification performance with high accuracy for
both positive and negative samples. While the RBF kernel performs well overall, the
polynomial kernel still shows superior performance in terms of TNR.

For the Sigmoid kernel: The model’s high FPR of 0.4088 and low TNR of 0.5912
indicate poor performance in classifying negative samples, highlighting its weaker
classification capabilities.

In summary: Based on the analysis, the polynomial kernel SVM model exhibits
the best overall performance, particularly excelling in the classification of negative
samples. It is well-suited for datasets with complex, nonlinear relationships. In
contrast, the Sigmoid kernel SVM model’s higher FPR and lower TNR indicate less
reliable classification performance, making it less favorable for accurate classification.

6.2 Generalization capability

Generalization capability refers to the performance of a machine learning model
on unseen data, specifically its predictive ability on data outside the training set.
Models with strong generalization capability typically exhibit stable and accurate
performance across various evaluation metrics, whereas models with weaker general-
ization capability may perform poorly on certain metrics, especially on unseen data.
Table 6 shows the results of cross-validation from four SVM models.

Considering the differences between training and testing accuracy, as well as the
average accuracy, we draw the following conclusions:

Polynomial Kernel: The Polynomial kernel demonstrates the best generalization
ability with the small difference between training and testing accuracy (0.0277). It
achieves the highest average accuracy (0.9048) and is ranked first in testing accuracy
(0.8980), indicating its superior performance.

RBF Kernel: The RBF kernel shows good generalization ability with a slightly
larger difference between training and testing accuracy (0.0269). Its testing accuracy
(0.8792) is the second highest, and its average accuracy (0.8760) is also competitive.

39

Table 6: Cross-validation from SVM models
"Linear” | ”Poly” | "Rbf” | ”Sigmoid”

1 fold score 0.8565 | 0.9108 | 0.8811 0.6242
2 fold score 0.8132 | 0.9002 | 0.8917 0.6051
3 fold score 0.7919 | 0.8854 | 0.8471 0.6200
4 fold score 0.8301 | 0.9108 | 0.8896 0.6030
5 fold score 0.8000 | 0.9170 | 0.8702 0.5957

Average accuracy | 0.8144 | 0.9048 | 0.8760 0.6096
Training accuracy | 0.8182 | 0.9257 | 0.9061 0.6024
Testing accuracy 0.8030 | 0.8980 | 0.8792 0.5920

However, it does not surpass the Polynomial kernel in these metrics.

Linear Kernel: The Linear kernel exhibits a moderate generalization ability with
a difference of 0.0152 between training and testing accuracy. Its testing accuracy
(0.8030) is the lower among the models, and its average accuracy (0.8144) is also
lower compared to the Polynomial and RBF kernels.

Sigmoid Kernel: The Sigmoid kernel has the weakest generalization ability, with the
difference between training and testing accuracy (0.0104). Both its testing accuracy
(0.5920) and average accuracy (0.6096) are the lowest among the models, indicating
poorer performance.

In summary: The Polynomial kernel achieves the highest average accuracy and shows
the best balance between training and testing accuracy, making it the most suitable
choice for achieving strong generalization. Therefore, we recommend using the Poly-
nomial kernel SVM model for better overall performance.

6.3 Improvements

6.3.1 Feature Creation

To enhance model performance, we can leverage feature engineering, which involves
creating new features from existing ones to improve the model’s effectiveness.

We generated new features by combining existing ones to capture ratios or propor-

40

tional relationships. The following new feature was created:

Mortdue-to-Value Ratio: Derived by dividing ”Mortdue” (mortgage due) by ” Value”

(property value):
Mortdue

Mortdue-to-Value Ratio =
Value

Introducing this new features into SVM models resulted in varying performance
outcomes. Detailed comparisons can be found in Table 7.

Table 7: Models Performance with new feature: Mortdue-to-Value Ratio

Kernel Function | Original accuracy | New Features Accuracy
Linear 0.8030 0.8129
Polynomial 0.8980 0.9059
RBF 0.8792 0.8802
Sigmoid 0.5920 0.6010

Introducing the "Mortdue-to-Value Ratio” improved the performance of all kernel
models, as reflected in the increased accuracy across each model.

6.3.2 Choosing Neural Networks Instead of SVM

Since SVM models require manual feature selection, which involves significant human
intervention, opting for neural networks offers a more efficient and potentially more
effective alternative.

Neural networks can automatically learn and extract features from raw data, thereby
reducing the need for labor-intensive feature engineering. Additionally, neural net-
works are known for their flexibility in handling complex data patterns and can po-
tentially achieve superior performance compared to traditional SVM models. This
is especially true in scenarios involving high-dimensional or unstructured data.

6.4 Conclusion

In this study, we compared four kernel methods for binary classification using SVM
models: linear, polynomial, radial basis function (RBF), and sigmoid kernels. The

41

accuracy values for these models were 0.8030, 0.8980, 0.8792, and 0.5920, respectively,
while the AUC values were 0.78, 0.75, 0.87, and 0.64. These results demonstrate the
effectiveness of the SVM models in classifying binary data. The Polynomial model
stood out as the best performer, achieving the highest accuracy and the most robust
cross-validation results. However, when considering AUC values, the RBF model
appears to be the most suitable choice for this dataset. Additionally, cross-validation
results indicated that none of the models showed signs of overfitting or underfitting.

Furthermore, in the pursuit of an optimal balance between accuracy and recall,
the Polynomial model achieved accuracy and recall values of 0.7812 and 0.6988,
respectively, underscoring its robustness in handling the dataset.

Additionally, to address class imbalance, we applied class weight balancing, which
successfully adjusted the weights between different classes, enhancing the model’s
performance.

42

7 Appendix

Table 1: The variables of the dataset

Name

\ Type

\ Description

Bad

Category

Target:
1 = applicant defaulted on loan or seriously delinquent;
0 = applicant paid loan

Loan

Continuous

Amount of the loan request:
value ranges from $1100 to $89900

Mortdue

Continuous

Amount due on existing mortgage:
value ranges from $2063 to $399550

Value

Continuous

Value of current property:
value ranges from $8000 to $855909

Reason

Category

DebtCon = debt consolidation;
Homelmp = home improvement

Job

Category

Occupational categories:

Office: office work

ProfExe: professional executive
Mgr: manager

Self: self-employed

Other: other

Sales: sales

Yoj

Discrete

Years at present job:
value ranges from 0 year to 41 years

Derog

Discrete

Number of major derogatory reports:
value ranges from 0 to 10 times

Deling

Discrete

Number of delinquent credit lines:
value ranges from 0 to 15 times

Clage

Continuous

Age of oldest credit line in months:
value ranges from 0 to 1168 months

Ninq

Discrete

Number of recent credit inquiries :
value ranges from 0 to 17 times

Clno

Discrete

Number of credit lines:
value ranges from 0 to 71 times

Debtinc

Continuous

Debt-to-income ratio:
value ranges from 0.52 to 203

43

Table 2: Descriptiv statistics for the quantitative variables in the dataset

count mean std min 25% 50% 5% max
LOAN 3364.0 | 19154.4 | 10875.4 | 1700.0 | 12000.0 | 17000.0 | 23825.0 | &89900.0
MORTDUE | 3364.0 76249.6 | 45095.4 | 5076.0 | 49351.3 | 67278.5 | 92986.8 | 399412.0
VALUE 3364.0 | 107501.4 | 54728.2 | 21144.0 | 71235.0 | 94453.5 | 122339.3 | 512650.0
YOJ 3364.0 9.1 7.6 0.0 3.0 7.0 13.0 41.0
DEROG 3364.0 0.1 0.6 0.0 0.0 0.0 0.0 10.0
DELINQ 3364.0 0.3 0.8 0.0 0.0 0.0 0.0 10.0
CLAGE 3364.0 181.0 82.8 0.5 118.7 176.7 230.4 1168.2
NINQ 3364.0 1.0 1.5 0.0 0.0 1.0 2.0 13.0
CLNO 3364.0 22.1 9.4 0.0 16.0 21.0 27.0 64.0
DEBTINC 3364.0 34.1 8.0 0.8 294 35.1 39.1 144.2

Derivation of Performance Metrics for RBF Kernel

We use the RBF kernel as an example, utilizing the RBF kernel confusion matrix
from Section 4.1 and the confusion matrix from Section 2.3.1 to compute Precision,
Recall, and F1-Score. These metrics are averaged and weighted according to the
number of true instances for each label (support).

Precision

The precision for each class can be computed as follows:

Precision_positive =

Precision_negative =

True_positive

True_negative

True_positive + False_positive T 53430
835

44

True_negative + False_negative 835+ 30

~ 0.366

~ 0.965

To compute the weighted precision:

Precision_weighted =

B Numbers_Positive

Numbers_Negative

X Precision_positive +

~ Total_population Total_population

. 2) x 0.
_ (53+30) x 0 3661—(|)—1(0835 +92) x 0.965 oo

Recall

The recall for each class can be computed as follows:

True_positive

o3 ~ 0.639

Recall_positive =

True_negative

True_positive 4+ False_negative T 53430

835 = 0.901

Recall negative =

To compute the weighted recall:

Recall_weighted =

B Numbers_Positive

True_negative + False_positive 835+ 02

Numbers_Negative

X Recall_positive +

~ Total_population Total_population

. 2) x 0.901
_ (53+30) x 0 6391—(|)—1(O835 +92) x 0.901 oo

F1-Score

The F1-Score for each class can be computed as follows:

x Recall_negative

F1-score_positive =

Precision_positive + Recall _positive

2 X Precision_positive x Recall positive 2 x 0.366 x 0.639

0.366 + 0.639

X Precision_negative

~ (0.465

F1-score_negative =

Precision_negative + Recall negative

45

2 X Precision_negative x Recall negative 2 x 0.965 x 0.901

0.965 + 0.901

~ 0.932

To compute the weighted F1-score:

F1-score_weighted =

_ Numbers_Positive Numbers_Negative

X F1-score_positive + x F1-score_negative

~ Total_population Total_population
53 4 30) x 0.465 + (835 + 92) x 0.932
_ (53 +30) x + (835 + 92) x ~ 0.8935
1010
References

[1] Alshawi, B. (2024). Comparison of svm kernels in credit card fraud detection

using gans. International Journal of Advanced Computer Science € Applications,
15(1).

[2] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,
20:273-297.

[3] Han, X., Chen, W., and Zhou, C. (2024). Musical genre classification based on
deep residual auto-encoder and support vector machine. Journal of Information
Processing Systems, 20(1):13-23.

[4] Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The
elements of statistical learning: data mining, inference, and prediction, volume 2.
Springer.

[5] James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to
statistical learning, volume 112. Springer.

[6] Khalifa, A. N. (2024). Optimization heart disease prediction using independent
component analysis and support vector machine. International Journal of Current
Innovations in Advanced Research, pages 14-22.

[7] Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for pattern analysis.
Cambridge university press.

[8] Smola, A. J. and Schélkopf, B. (1998). Learning with kernels, volume 4. Citeseer.

46

[9] Sonmez, M., Sabanci, K., and Aydin, N. (2024). Convolutional neural network-
support vector machine-based approach for identification of wheat hybrids. Fur
Food Res Technol, 250:1353-1362.

[10] Tan, P.-N., Steinbach, M., and Kumar, V. (2016). Introduction to data mining.
Pearson Education India.

47

