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1 Background

This problem originates from an unpublished document by Sköld (2024);
consider a monitoring program that covers a single-time series of contami-
nant concentration and has a change of lab from A to B. We would like to
infer the trend component of data over some time T, considering the lab
change. For this model we’ll make some simplifying assumptions about the
data. Let the measured log-concentration before the lab change be equal to
c+δA then the concentration after the lab change will be equal to γ(c+δB),
where δA and δB are i.i.d.

Furthermore, we’ll assume that the log-concentrations of the measured
concentration is generated from a linear regression process, with equal trends
both before and after the change of laboratory. Letting yt denote the log-
concentration at time t and if the lab change happens at some time Tc, then
the log-concentration before lab change is given by yt = α + βt + ϵt for
t = 1, ..., Tc and yt = α+ γ + βt+ ϵt for t = Tc +1, ..., T , where α, α+ γ are
the respective models intercepts and ϵt is iid normal with mean 0 and some
variance σ2. By coding ut as a dummy for the lab change our model can be
written as:

y = Xθ + ϵ, (1)

x where the vector y = (y1, . . . , yT )
′, the matrix X is a (T × 3) matrix with

columns: X1 = (1, 1, . . . , 1)′, X2 = (1, 2, . . . , T )′, X3 = (u1, u2, . . . , uT )
′, the

parameter θ = (α, β, γ)′ and ϵ = (ϵ1, . . . , ϵT ) and ϵt ∼ N(0, σ2).
Three different methods for dealing with the lab change in assessing the

trend β have been proposed. Firstly, by ignoring the lab factor altogether
and estimating the trend β through ols (ordinary least squares) by fitting
the data to the restricted model. Secondly, by fully taking the lab change
into account, resulting in the ols estimate for β from using the full linear
regression model. Lastly, a selection method for using the full or restricted
model similar to stepwise regression. Begin with fitting the data to the full
model; if the p-value for the estimated γ̂full is less than 5%; estimate the
trend according to the second method; else use the first method. Note that
the critical cut-off point of 5% in our example is chosen arbitrarily.

To compare how these methods estimate the trend β, the Mean Squared
Error (MSE) defined as MSE = E((β̂ − β)2), of the resulting estimators
from each of the three methods was analyzed. The results showed that for
relatively low signal of γ to noise ratios the restricted model will produce
point estimates of β with lower Mean Squared Error (MSE) compared to
the full model. This, due to the inflated variance resulting from an extra
parameter. But as the signal of γ increases, in relation to the noise, the
added bias of the restricted model will produce higher MSE compared to the
full model. Because the distribution of the stepwise model’s estimate can be
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seen as a mixture of the distribution of the estimates resulting from the full
respective restricted model, the point estimates will be a weighted average
of the two models where the weights depend on the t-test for the estimate
γ̂full. Consequently, as gamma increases relative to noise, the probability of
selecting the full relative to the restricted model increases, which will tend
to the MSE of the full model.

These effect showed similar behavior in type I error (which in this case
would be the probability of falsely rejecting the null-hypothesis that there
exist no time trend); where the full model will offer nominal significance the
same as the actual, the restricted models actual significance of β will tend to
one as γ increases and the stepwise model’s estimate nominal significance of
β will resemble that resulting from the restricted model for relatively small
signals of γ and tend to the actual significance as γ increases in relation
to the noise. However, the cost of these unbiased properties of using the
estimates of the full model came at a cost of loss of power.

Berk, Brown and Zhao (2009) showed that when estimates are based
on a mixture of sampling distributions, arising from a rule such as in our
case above, the finite sampling distribution of that estimate can behave in a
way that departs from assumptions of how statistic are assumed to behave.
They argued that selection procedure such as ours, can lead to invalid sta-
tistical test and confidence intervals unless the selection procedure selects a
single model with a probability near unity and referred to a possible solu-
tion of sample-splitting, although this procedure is restricted for relatively
small sample sizes. As an alternative to the estimator resulting from step-
wise regression that is offered above, we will examine the use of a penalized
regression method known as the lasso and how this can be applied to incor-
porate the lab change for inferring the trend of our measured contaminant
concentration as formalized above. We will compare these approaches to see
which and when is more viable.

1.1 The Lasso

As an alternative to regular linear regression, Hoerl and Kennard (1970)
proposed ridge regression which minimizes residual sum of squares while
constraining the coefficients L2 norm values to some non-negative value.
Tibishirani (1996) introduced the least absolute shrinkage selection operator
(lasso), which preforms both variable selection and estimation by penalizing
the L1 norm. Working in the gaussian linear regression setting with N
samples and p predictors the lasso solutions are given by
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β̂ = argmin
α,β

N∑
i=1

(y − α−
p∑

i=1

xiβj)
2

subject to

p∑
i=1

|β| ≤ t.

(2)

The solution to (2) can also be given by its Langrarian form;

β̂ = argmin
α,β

N∑
i=1

(y − α−
N∑
i=1

xiβj)
2 + λ

p∑
i=1

|βj |. (3)

Similarly to ridge regression, lasso regression has the effect of shrinking
some estimates towards zero, but because of penalization on the L1 norm
lasso has the potential of shrinking some coefficients to exactly zero for large
enough values of λ. Thus the lasso has the ability of preforming variable
selection as-well as estimation.

The value of λ is generally chosen through K-fold cross validation. A
process where the sample data is divided randomly into K groups, the K-th
group being the test set and the remaining K − 1 groups the training set.
Based on the training set, the lasso solutions are then calculated across a
grid of λ values. Then, for each value of λ the mean squared prediction
error (MSEP) is calculated based on the test set. This is done for all of the
K different groups, after the resulting MSEP values are averaged for each
λ in the grid. Generally the λ that produced the smallest MSEP is chosen.
However, other values of λ have been proposed, Hastie et al. (2008), chapter
3 for suggest selection on the ”1se-rule” which involves the selecting the most
sparse model within one standard error of ”the best” (”the best” meaning the
λ with the smallest MSEP). Furthermore, in the special case of K-fold cross-
validation where K = N (where N is the number samples) this becomes
what’s known as leave-one-out cross validation. Unlike ridge regression,
the lasso generally does not offer analytical solutions so other methods are
needed. Efron et al (2004) constructed a modified LARS algorithm that
produces solutions to the entire path of lasso solutions, which becomes useful
when estimating λ through cross validation.

1.2 Statistical Testing for the Lasso

Working within the framework of (1), in the case of ordinary least squares,
the solutions are given by

θ̂ = (XTX)−1XTy. (4)

From which it easily be shown, that the covariance matrix for the estimates
is given by

V ar(θ̂) = (XTX)
−1

σ2, (5)
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and the standard erors for predictor j could be easily gotten by taking the
square root of j:th diagonal element of the covariance matrix multiplied by
the standard deviation σ. From there confidence intervals and significance
test for predictors can be constructed. In case of the lasso there arrises a
problem, since no closed form solution generally exists. Tibishirani (1996)
proposed the bootstrap (Efron (1979)) for retrieving the standard errors of
the lasso estimates by way of resampling the residuals, which can be used
for calculating z-scores and it’s related p-values, like in classical hypothesis
testing. Another approach for statistical testing is taken by moving away
from the frequentist view of hypothesis testing and viewing the problem in
the Bayesian context which we will explain in the next section.

1.3 Bayesian Lasso

Tibshiraini (1996) showed that the lasso solutions to β could be seen as the
Bayesian posterior mode for independently identically distributed Laplace
(double exponential) priors for βj with density

f(β) =

p∏
j=1

1

2τ
e−|βj |/τ ,where 1/τ = λ.

To see this consider the regular linear regression setting (without an inter-
cept) with N samples and p predictors. Then each of the responses are
assumed iid with yi ∼ N(

∑p
j=1 xijβj , σ

2) and therefore, the likelihood of y
is given by

f(y|β, σ2) =
1

(2πσ2)n/2
e

1
2σ2

∑N
i=1(yi−

∑p
j=1 xijβj)

2

.

By Bayes theorem, the posterior is given by is proportional to the likelihood
multiplied by the prior, that is:

f(β|y, σ2) ∝ f(y|β, σ2)f(β).

The β that maximizes the posterior is equivalent to the β that minimizes the
negative log posterior. Which when using the Laplace distribution above,
gives the following negative log posterior;

1

2σ2

N∑
i=1

(yi −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj |.

Thus for a given value σ2 the posterior mode of β is equivalent to the
solutions that minimizes (3) (with α = 0). If we were to include an intercept
- an independent flat prior for α could be added and would also yield the
solution to (3).
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Park and Cassella (2008) conditions on σ2 in the prior distribution of
β as to avoid possible problems in the sampling distribution. Furthermore
they make use of the Laplace distribution as a scale mixture of normal,
makes for easy implementation of Gibbs sampler within this hierarchical
framework for the Bayesian model. They used a non-informative prior on
σ2 and suggested an empirical Bayes approach for estimating the penalty
parameter λ, and for a full Bayesian they suggested placing a hyper prior
on λ thats conjugate. The priors for a full Bayesian is illustrated below.

f(σ2) = σ−2

f(β|σ2, λ2) =

p∏
j=1

λ

2σ
e−λ|βj |/σ

f(λ2) =
δr

Γ(r)
(λ2)r−1e−δλ2

.

These could be implemented into some MCMC algorithm like Gibbs or
Metropolis-Hastings in order to sample from the posterior. Although the
posterior mode provides the analogy to the frequentist lasso, Park and
Casella (2008), suggest that the posterior mean or median provide a more
naturally Bayesian estimate. Furthermore, in contrast to the frequentist
lasso that solely provides us points estimates and offered no obvious pro-
cedure for dealing with standard error for hypothesis testing, the Bayesian
lasso approximates an entire sampling distribution, which can be used for
statistical hypothesis testing by constructing credible intervals, say.

1.4 Modifying the Lasso

Many generalizations of the lasso have been offered, Zhu and Hastie (2005)
proposed the elastic net, which is a type mixture of ridge and lasso penal-
ization. Zou (2006) introduced the adaptive lasso which penalizes on the L1

norm but by a different magnitude for each of the coefficients based on some
initial estimates (usually ols or ridge). Returning to our model problem in
Section 1.1, we wish to modify the lasso as to only penalize on the lab pa-
rameter γ, this ensures us that our β coefficient will always be included in
the model and leads us to minimize the following function:

argmin
α,β,γ

N∑
i=1

(yi − α− βxi − γui)
2 + λ|γ| (6)

Assuming that all the covariates in X are centered, then for all lasso
solutions α = ȳ. Further, we will assume without loss of generality, that
ȳ = 0. Thus our problem reduces down to minimizing

∑N
i=1(yi−βxi−γui)

2

subject to γ ≤ t, for some non-negative t. Consider the cost function, this
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corresponds to the function of an ellipse centered at the ols solution. That
is RSS = ||y|| + ||x||β2 + ⟨x, u⟩βγ + ||u||γ2 − 2⟨y, x⟩β − 2⟨y, u⟩γ. Figure 1
plots this situation for a fixed value of t, where γ̂m and γ̂s corresponds to
the ols solution regressing on the full (m) respective restricted (s) model.
The point where contour tangents the shaded area corresponds to our lasso
solution. This will differ from the full ols estimates as long as the area does
not cover this point. Moreover, for all t ≤ |γ̂m| the lasso estimate γ̂l will
equal sign(γ̂m) · t.

Figure 1: Contours corresponding to the residual sum of squares (blue),
shaded area represents the constraint for the modified lasso. The highlighted
points represents the various solutions, with γ̂m corresponding to the ols
solution regressing on the full model. γ̂s represents the ols solution regressing
on the simple mode. γ̂l being the lasso solution.

Assume first that the estimate of the lab parameter resulting from the
full ols solution, γm is positive. Then we know that lasso solution for the
lab parameter γl ≥ 0 and the equation can be written as

Q(β, γ) =
N∑
i=1

(yi − βxi − γui)
2 + λγ.

Let θ be a (1× 2) vector with entries θ1 = β and θ2 = γ. Then, solving for
the θ that minimizes the equation above yields,

∂Q

∂θ
=

∂

∂θ
RSS(θ) + λ

∂θ2
∂θ

∂Q

∂θ
= −2XT (y −Xθ) + λ

[
0
1

]
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θ̂ = (XTX)
−1

(XTy − λ/2

[
0
1

]
).

Let the matrix (XTX)
−1

be denoted by C, with entries cii for i = 1, 2.
Then the lasso-solution for γ is given by γ̂l = (γ̂m − λc22/2)

+. Similar
calculations show that if γm < 0, then γ̂l = (γ̂m + λc22/2)

−. The so-
lution corresponds to the soft thresholding operator Sλc22/2(γ

m) and thus

γ̂l = sgn(γ̂m)(|γ̂m| − λc22/2)
+. This differs from the stepwise procedure of

estimating γ and is illustrated in Figure 2 for a fixed λ and known variance
case.

Figure 2: Estimates of γ̂ using the modified lasso (left) and stepwise re-
gression (right) plotted against the full ols estimate with the 45 degree line
(dashed) for reference

In our Bayesian approach the modification will differ from the ordinary
Bayesian lasso in that an independent flat prior for both α and β will be
used and a double-exponential prior for γ. This way, the posterior mode
will correspond to the solution in (3). Furthermore, instead of using a vague
gamma prior as in Park and Casella (2008), we will be using a standard half-
Cauchy hyper prior on λ as in van Erp et. al (2019). For σ2 an improper
independent prior of the form in section 2.3 is still used. The priors that
will be used in this modified Bayesian lasso are summarized below:

f(α, β, σ2) ∝ σ−2

f(γ|λ, σ) = λ

2σ
e

λ
σ
|β|

f(λ) =
1

π(1 + λ2)
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These priors could then be used to sample from the posterior through
some Markov Chain Monte Carlo (MCMC) method; see Held and Bove
(2020), chapter 8 for example.

2 Methods

2.1 Aim

To evaluate how the lasso preforms in our single time-series monitoring
program, a small Monte Carlo (MC) simulation study is preformed. We asses
several performance metrics across different parameter values and compare
how inference and estimation differ across models and parameter values.
These include the frequentist lasso; where the λ is chosen by leave-one-out
cross validation, the Bayesian lasso; using a standard half-Cauchy prior for
λ and step-wise regression model as described previously; where the lab
parameter is omitted if the related p-value falls under 0.05. We will also for
comparison add the ordinary least square solutions from the restricted and
full model.

2.2 Data Generation

The response values was generated according y = Xθ + ϵIT as defined as
in (1). For all simulations of data, we will let the intercept α = 0, the
timeframe equal ten years (T = 10). The lab parameter will be constructed
such that the first five years corresponds to measurements from lab A and
latter five years from lab B. The parameters β, γ and σ will be varied over
a range of values.

2.3 Simulation settings

The simple, multiple and stepwise models were all constructed using base R
lm function. For the frequentist lasso we implemented the glmnet package
by Friedman et al (2010), using penalty.facor argument to penalize only the
time coefficient and setting nfolds = 10 for leave-one-out cross-validation.
The Bayesian lasso was implemented using Rstan by Stan development team
(2020); the number of Markov chains was set to 4, with each chain having
5000 iterations and where the first half were used as burn-ins. Across all
simulation we set n = 500.

2.4 Performance metrics

To evaluate the methods performance of point estimation and statistical
hypothesis testing we will be considering the follow metrics, along with their
MC approximation:
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• Bias: This assesses how how far away and in what direction our esti-
mate of the trend parameter β̂ is compared to true parameter β and is
defined as E[β̂]− β.. In case of the Bayesian lasso the point estimate
is taken to be the mean of our posterior distribution of β. If β̂i is the
estimated coefficient for simulation i then the MC approximation of
bias is given by:

B̂ias(β̂) =
1

n

n∑
i=1

β̂i − β

• Root square mean error(RMSE): This is the root of the squared errors

defined as

√
E[(β̂ − β)2]. This can be decomposed into the sum of the

estimators squared bias and variance, thus this metric incorporates
the standard errors of our estimator as-well as its bias. As in the bias
case, we will use the posterior mean for the Bayesian lasso and the
Monte Carlo approximation of RMSE is given by

̂RMSE(β̂) =

√√√√ 1

n

n∑
i=1

(β̂i − β)2

• Type I error : Type I error defines the probability of a statistical test
falsely rejecting the null-hypothesis for given significance level. An
appropriate test should have type I close to the target significance
level. In our case the null corresponds to the hypothesis that no trend
exists (β = 0). For the frequentist methods we will base our test
on the two-sided p-value from the t-statistic given by the β̂/SE(β̂).
We will reject the null for p-values less than 0.05. Because of the
problem concerning the lasso estimator’s standard errors, as discussed
in Section 2.2, we will from the suggestion of a referee(M. Sköld), be
using the standard errors from the full regression model. If pi is our
p-value for simulation i then the type I errors are approximated by

P̂ (p < 0.05|β = 0) =
1

n

n∑
i=1

1(pi < 0.05)

In contrast to frequentist case, which assigns probability to data given
that the null is true, in the Bayesian framework we directly test whether
the null is true given the data. Therefore, we will define type I error
for the Bayesian method based on whether the credible intervals of β
covers our null. If the 95 % credible intervals for the posterior of β for
simulation i is given by CI(βi), then the Monte Carlo approximation
is given by:

P̂ (0 /∈ CI(β)) =
1

n

n∑
i=1

1(0 /∈ CI(βi))
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• Power : While the type I error denotes a test false positive the power
measures the probability of a true positive, i.e. correctly rejecting
the null. The ability to correctly detect a trend (β ̸= 0) in our case.
The p-value is derived the same as in the type I above, but with the
exception of being one sided corresponding to the true effect’s sign and
the MC is given by:

P̂ (p < 0.05|β ̸= 0) =
1

n

n∑
i=1

1(pi < 0.05)

By similar argument as above, we will define the Bayseian power as
P (β < 0) or P (β > 0) and approximate it by:

P̂ (β > 0) =
1

n

n∑
i=1

1(0 < CIl(βi)),

P̂ (β < 0) =
1

n

n∑
i=1

1(0 > CIh(βi))

where CIl and CIh is the lower and upper bound of a 90 % credible
interval of the posterior of β for simulation i.

3 Results

3.1 Bias

Figure 3 illustrates the different methods bias as a function of the lab pa-
rameter γ across different noise variances σ. The performance of the fre-
quentist lasso shows a similar pattern as that of step-wise regression, in that
it increases with the effect of γ relative to the noise, up to a point where it
decreases towards zero. Meaning that the cross validation procedure chooses
larger penalties λ up to a certain point, where λ then tends to zero. An ad-
vantage of the lasso relative to the stepwise in this case, is the ability of
estimating values of γ between zero and the estimate resulting from the full
OLS model. As this means that β can take on values in between the values
from the full and restricted model, which could explain the lower bias of
the lasso compared to the stepwise. However, we could decrease this dif-
ference on average, by selecting a higher p-value for the γ estimate in the
stepwise procedure. Though this could lead to issues of bi-modality for large
γ that wouldn’t be captured by inspecting bias. We can further note, that
there exists a relatively large discrepancy between the estimator from the
frequentist and Bayesian lasso.
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Figure 3: Simulated bias for the different methods as a function of γ at
different values of σ when β = 0
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3.2 Root Mean Squared Error

Figure 4 plots the root mean squared error as a function of γ for different
values of σ when β = 0. Because the lasso and step methods all have some
degree of penalization or variable selection we can observe a lower RMSE
when σ is relatively high compared to the effect of γ. For these values we
can also see that the frequentist lasso estimates has a higher RMSE relative
to the RMSE estimated from the step-wise method. This, again resulting
in the fact that when noise is relatively high the stepwise procedure seems
to set the γ coefficient to zero while the lasso solution has the ability to
take on nonzero values, resulting in relatively higher standard errors of β
because of the extra parameter, but lower than the full fit. As γ increases
relative to noise, it would appear that the higher bias of step-wise compared
to lasso we observed in the previous figure dominates the decreased variance.
It can be noted that the Bayesian lasso outperforms the frequentist lasso for
low signal to noise ratios. Because of the discrepancy in bias for the two
versions of lasso, illustrated in the previous figure, this would imply that the
standard errors of the Bayesian mean estimator is considerably lower than
the frequentist one.

3.3 Type I Error

The type I errors for the same value as above are shown in Figure 5. The
frequentist and lasso type I errors showed similar behavior as the step ones,
it increases for as the relative effect size of γ grows, up till a point where
it then begins to decrease. It can be noted that the increase in type I
error, that occurs when the effect of γ is relatively low, is smaller for the
frequentist lasso in relation to the step-wise procedure and even more so
for the Bayesian lasso. Although for relatively highest values of γ, the
stepwise enjoys a smaller type I error. Even though the Bayesian lasso
provided higher biases on average, the type I error is lower compared to the
frequentist. This suggesting that the credible intervals constructed in the
Bayesian case produces a comparatively more conservative test.

3.4 Power

In Figure 6 the power of the different methods respective tests are plotted
as a function of σ when the lab parameter γ = 0. We can observe that the
power of the lasso method is somewhat lower than the step-wise method.
This is expected since the test statistic of the lasso is based on the standard
errors of the full fit, compared to the step-wise which also considers using
the standard errors of the restricted model (depending on the p-value related
to the estimate of γ). Furthermore, we can observe that the power of the
Bayesian lasso is even lower than the frequentist method. This again sug-
gests a more conservative credible intervals compare to frequentist methods.

14



Figure 4: Simulated root mean squared error (RMSE) for the different meth-
ods
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Figure 5: Simulated type I errors the different methods
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As γ increases the test would increasingly suffer from false power due to the
point estimates biases.

Figure 6: Simulated power of the different methods as a function of the noise
standard deviation for β = 0.10(left) and β = 0.20(right) when γ = 0.

4 Discussion

4.1 Summary

In this paper we have investigated the use of the lasso in the normal linear
regression setting relating to a problem arising from estimating the trend of
a single-time series that has undergone a lab change and how it compares to
previously suggested methods. We modified the lasso to fit our problem task
and investigated how a Bayesian analog of the lasso-type estimator behaved
when preforming estimation and statistical hypothesis test. We did this by
conducting a simulation study and evaluated four different methods across a
defined set of performance metrics. Concerning point estimation, the results
showed that the frequentist lasso showed similar behavior in bias to that of
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the stepwise method, but differed significantly from the Bayesian lasso in
that regard. The RMSE was reduced for all three relevant methods when
noise became significant, in this case though, the frequentist lasso performed
worse than both the step-wise procedure and the Bayesian lasso. In the case
of statistical hypothesis testing, the type I error of the frequentist lasso also
mimicked the behavior of the step-wise method - it increased up to a point
where it then began to decrease towards the actual significance. Power
analysis showed that the frequentist lasso inhibited lower power compared
to the step-wise. The Bayesian lasso showed lower type I than both the
previous methods but the cost of significantly lower power.

4.2 Further Extensions

• Bootstrapping standard errors: In the frequentist lasso we used the
standard errors begotten from the full least squares fit. Briefly men-
tioned in Section 2.2, an alternative approach would have been method
of bootstrapping residuals. Since data is assumed normal a parametri-
cal bootstrapping such as described in Tibshirani et al. (2015), chapter
6 could instead been applied. Based on Efron (2012) that states how
the a parametric bootstrap can be used for computation of Bayes pos-
terior sampling distribution, one would expect this parametric boot-
strap lasso to show similar performance to the Bayesian lasso and could
be worth investigating in future works.

• Inter-calibration: In the unpublished work, Sköld (2024) also mentions
how an inter-calibration procedure, where the same concentration is
measured in both lab A and B yielding a correction factor γ̂cf could be
used. If the log concentrations in lab A and B is defined by yA and yB
then the correction factor is given by γ̂cf = yB − yA and can be used
to improve estimating the lab coefficient γ whenever |γ| > |γ − γ̂cf |.
In case of the lasso this could be used by penalizing on the distance
from the correction factor γ̂cf . Then our lasso-type solution would
minimize the residual sum of squares subject to |γ− γ̂cf | < t, for some
t ≥ 0. Geometrically would result in a shifting the constraint area in
Figure 1 to be centered at γ̂cf . In the context of the Bayesian lasso
this would similarly shift the location of the Laplace distributed prior
on γ from 0 to the estimated correction factor γ̂cf .

• Multiple time-series: A common situation is that the monitoring pro-
grams of contaminant concentration has multiple time series which are
all location-specific. In this case we could model the log-concentration
with location-specific intercepts and annual trends but all having a
common lab parameter γ to take into account the lab change. Ex-
tending this to the lasso framework could mean just penalizing on the
parameter γ, but it could also be extended to penalize on the location
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specific time trends. Relevant could even be using the generalization of
the lasso known as Group lasso, Yuan and Lin (2005) which would al-
low all the location-specific trend parameters to be entered or removed
from the model simultaneously, thus encouraging sparsity if there is
no difference among the locations
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