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Abstract

The main focus of this thesis lies on Bayesian approaches to port-
folio optimization. By using such statistical methods, it is possible
to account for parameter uncertainty in the optimization procedure.
Two different Bayesian approaches are utilized within the framework
of this thesis, alongside with the conventional approach. We derive
the weights of the market portfolio, which maximizes the Sharpe ra-
tio, in the Bayesian settings. The market portfolio is then applied
out-of-sample on empirical data consisting of asset returns through
years 2002-2023 from Swedish stocks included in the OMXS30 index,
as well as simulated data. The out-of-sample Sharpe ratio of the mar-
ket portfolio is tested against the equally-weighted portfolio and we
conclude that, in general, the market portfolio does not outperform
the equally-weighted approach.
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1 Introduction

The theory of portfolio optimization was pioneered by Harry Markowitz in the
1950s [1], with his original research focusing on constructing an optimal portfolio
using the mean-variance definition of return and risk. For his research into the
area, Markowitz received the Nobel Memorial Prize in Economic Sciences in 1990.
In the 70 years that have passed, the theory of portfolio optimization has under-
gone substantial development, with a range of different extensions and approaches.
DeMiguel et al. [2] provides an overview of several such approaches; one example
is shortsale-constrained portfolio optimization.
Furthermore, different concepts of risks have also been introduced within the the-
ory framework. Instead of variance as a risk measure, it is possible to use value at
risk (VaR) and conditional value at risk (CVaR) in the optimization procedure, as
in for example Bodnar et al. [3].
Like most models, the theory of portfolio optimization has its limitations and
weaknesses. As shown in the aforementioned and widely cited paper by DeMiguel
et al. [2], many portfolio optimization techniques struggle with diffuculties in
performing optimally when applied out-of-sample, on “unseen” data, owing to
estimation error and parameter uncertainty.
One way to deal with these issues is to apply a Bayesian perspective to portfolio
optimization, which takes parameter uncertainty into account in the optimization
process. Such a perspective was introduced within portfolio theory in the 1970s
by, among others, Winkler [4] and Barry [5].
Bayesian mean-variance portfolio optimization approaches are the main focus of
this thesis, in which the methods and results derived by Bauder et al. [6] and
Bodnar et al. [3] are utilized. We contribute to to the field by deriving the
weights of the market portfolio, which maximizes the Sharpe ratio, in a similar
Bayesian setting as the aforementioned authors. The properties of this portfolio are
then analyzed over several time periods, using empirical data consisting of returns
from Swedish stocks as well as and simulated data. Specifically, we analyze the
out-of-sample performance of the market portfolio and test it against the naive
equally-weighted portfolio, showing that it in general does not outperform the
naive approach in terms of the Sharpe ratio.
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2 Methods

2.1 General concepts in portfolio theory

2.1.1 Risk and return of a portfolio

Given the choice between two risky assets, a rational investor would naturally
prefer to hold the the asset with the highest expected return, given that it has
less than or equal risk compared to the asset with lower return. Following the
definition of of Capinski & Zastawniak [7], the asset with higher return in this
case dominates the one with less return. However, this also begs the question:
What do we mean by return and risk?
For the remainder of this thesis, the return will be defined as the percentage change
in price between two time periods. Furthermore, the risk is defined as either the
variance V or as the standard deviation SD of said returns, depending on the
context. In finance the latter is sometimes referred to as the volatility of the asset.
A portfolio P is a set of different assets, each with a specific weight wi in relation
to the other assets. A portfolio which satisfies the condition

k∑
i=1

wi = w⊤1 = 1,

where 1 denotes a k-dimensional vector of ones, is called a feasible portfolio, fol-
lowing the definition of Capinski & Zastawniak [7]. The weights, in general, can
be both positive and negative with the latter corresponding to short selling.
The mean return of a portfolio P is calculated as

RP = w⊤µ,

with µ ∈ Rk denoting the mean vector of the asset returns. Moreover, the variance
of the portfolio is calculated as

VP = w⊤Σw,

where Σ is the covariance matrix of the asset returns.

2.1.2 Sharpe ratio and risk-free rate

As a measure of performance for a portfolio, one may also consider the Sharpe
ratio, named after Willam Sharpe who introduced the measure in 1966 [8].

9



Definition 2.1 (Sharpe ratio). For a portfolio P with expected return RP and
standard deviation SDP , the ex-ante Sharpe ratio is defined as

SR = RP − rf

SDP

,

where rf is the risk-free rate.

The risk-free rate is defined as the rate of return an investor can achieve without
taking any risk in terms of variance. Government bonds are usually utilized as a
proxy for the risk-free rate; more information on how the concept is treated within
this thesis is available in section 3.3.
An advantage of the Sharpe ratio is that it considers not only the return yielded
by an investor, but also the risk taken to achieve such a return. A larger Sharpe
ratio is generally considered to be better. Since the standard deviation is bounded
below by zero, a negative Sharpe ratio implies that the return of the portfolio is
less than that of the risk-free asset.

2.1.3 Efficient frontier, market portfolio and capital market line
(CML)

A portfolio is called efficient if there is no other portfolio that dominates it, and all
efficient portfolios among the feasible portfolios together form the efficient frontier,
again following the definitions of Capinski & Zastawniak [7].
The relationship between the risk-free rate, the Sharpe ratio and the efficient
frontier are visualised in Figure 1.
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Hyperbolic efficient frontier

GMV

Risk−free rate

Market portfolio

CML

SD

R

Figure 1: Hyperbolic efficient frontier and CML

In Figure 1, all feasible portfolios consisting of risky assets only form the hyperbolic
efficient frontier.
The risk-free rate is here assumed to carry some level of return that is lower
than the return of the minimum variance portfolio, RGMV . This is the feasible
portfolio consisting of risky assets only with the lowest possible variance of all
such portfolios.
Between the hyperbolic efficient frontier and the risk-free rate lies the capital mar-
ket line (CML). As can be noted from the figure, the CML does not lie in the
feasible set of risky-only assets except at the tangency point with the hyperbolic
efficient frontier, a special point called the market portfolio. As will be shown later
on, the market portfolio maximizes the Sharpe ratio for an investor.
The portfolios that lie along the CML are, however, also feasible. The implication
of this is that one allocates capital not only in the market portfolio, but also in
the risk-free asset. The CML to the left of the market portfolio corresponds to
placing some part of the capital also in the risk-free asset, while the CML to the
right of the market portfolio corresponds to borrowing at the risk-free rate and
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investing the funds in the market portfolio. Another implication of this is that in
the presence of a risk-free asset with a lower return than the minimum variance
portfolio, the CML is the efficient frontier.

2.2 Portfolio optimization

Considering a portfolio of risky assets and, perhaps, also a risk-free asset, a natural
question arises for an investor: How should one invest in these assets in order to
maximize the return for some given level of risk? Or equivalently, for some given
level of return, how should one invest in the assets in order to minimize the risk?
Through the theory of portfolio optimization, we aim to answer exactly these sort
of questions.
In the following section a Bayesian approach to portfolio optimization is intro-
duced first, using the methods and following the same structure and notations as
presented by Bauder et al. [6], with some results derived from the development
made by Bodnar et al. [3]. It is then followed by the conventional or classical way
of portfolio optimization.

2.2.1 Bayesian approach

As in Bauder et al. [6], let Xt be the k-dimensional vector of asset returns at
time t and x(t−1) = (xt−n, ..., xt−1) be the observation matrix of the asset returns,
which are realizations of the former up to time t − 1. Now, the distribution of
x(t−1) depends on the parameter vector θ = (µ, Σ) where µ is the mean vector
and Σ the covariance matrix of the asset returns. In applying Bayes’ theorem, the
posterior distribution of θ is given by

π(θ|x(t−1)) ∝ f(x(t−1)|θ)π(θ),

where π(·) is the prior and f(x(t−1)|θ) is the likelihood function of X(t−1). The
return of a portfolio P at time t is expressed as

XP,t = w⊤Xt,

with w = (w1, ..., wk)⊤ as the k-dimensional vector of weights. The posterior
predictive distribution of these returns is now given by

f(xP,t|xt−1) =
∫

θ∈Θ
f(xP,t|θ)π(θ|x(t−1)) dθ. (1)
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Bauder et al. [6] have, under some assumptions and circumstances, derived a
stochastic representation for (1), with further developments made by Bodnar et
al. [3]. These will now be summarized.
Jeffreys prior

An investor with little or no prior knowledge about the asset returns may consider
a non-informative prior on their distribution. One example of such an approach is
the Jeffreys prior, named after Sir Harold Jeffreys. For multivariate distributions,
it is defined as the square root of the determinant of the Fisher information matrix.
Under this prior, the stochastic representation of (1) is given as in the following
proposition, derived from Bauder et al. [6] and Bodnar et al. [3].

Proposition 2.1. Let X1, X2, ... be infinitely exchangeable and multivariate cen-
tred spherically symmetric. Let π(θ) = |F|1/2 be Jeffreys prior where |A| denotes
the determinant of a square matrix A and F = −E[∂2 log(f(x(t−1)|θ))/∂θ∂θ⊤]
is the Fisher information matrix. Assume n > k, and let t(q, a, b2) denote
the univariate t-distribution with q degrees of freedom, location parameter a
and scale parameter b. Then the stochastic representation of the random vari-
able X̂p,t whose density is the posterior predictive distribution (1) is given by
t(dk,n,J , w⊤x̄t−1, rk,n,Jw⊤St−1w) with dk,n,J = n − k and

rk,n,J = n + 1
n(n − k) , x̄t−1 = 1

n

t−1∑
i=t−n

xi and St−1 =
t−1∑

i=t−n

(xi − x̄t−1)(xi − x̄t−1)⊤.

(2)

The condition n > k ensures that St−1 is positive definite and thus invertible.
Regarding the condition that the returns are multivariate centered spherically
symmetric, this neither implies that the unconditional distribution is normal nor
that the returns are independently distributed. A definition of the concept and its
properties is available in section 4.4 of Bernardo and Smith [9].
As noted by Bauder et al. [6], the results of Proposition 4.6 in Bernardo and Smith
[9] ensures that the conditional multivariate normal distribution satisfies both
the assumption of infinite exchangeability and multivariate centered spherically
symmetry. The multivariate t-distribution, however, does not not fulfill these
assumptions.
Proposition 2.1 can be utilized to calculate important characteristics of the poste-
rior predictive distribution, such as credible intervals. As for the expected return
and variance, the aforementioned papers provide analytical expressions for these
quantities.
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Corollary 2.1. Under the conditions of Proposition 2.1, let n − k > 2. Then,

E[w⊤Xt|x(t−1)] = w⊤x̄t−1

and

V ar(w⊤Xt|x(t−1)) = ck,nw⊤St−1w with ck,n = dk,n,J rk,n,J

dk,n,J − 2 .

Proofs of Proposition 2.1 and Corollary 2.1 are given in the appendix of Bodnar
et al. [3] and are based on the results of Bauder et al. [6].
Now, considering risky assets only, an investor aiming to construct an optimal
portfolio at time t − 1 for the next period maximizes the utility function

U(w) = E[Xp,t|x(t−1)] − γ

2V ar(Xp,t|x(t−1))

= w⊤x̄t−1 − ck,nγ

2 w⊤St−1w,
(3)

under the constraint that w⊤1 = 1 and where γ > 0 is the risk-aversion coefficient.
The solution to this optimization problem is given by

wMV,γ = S−1
t−11

1⊤S−1
t−11

+ γ−1c−1
k,nQt−1x̄t−1, where Qt−1 = S−1

t−1 − S−1
t−111⊤S−1

t−1

1⊤S−1
t−11

.

The expected return and variance is then expressed as

RMV,γ = 1⊤S−1
t−1x̄t−1

1⊤S−1
t−11

+ γ−1c−1
k,nx̄⊤

t−1Qt−1x̄t−1,

and
VMV,γ = ck,n

1⊤S−1
t−11

+ γ−2c−1
k,nx̄⊤

t−1Qt−1x̄t−1,

where it is used that Qt−11 = 0 and Qt−1St−1Qt−1 = Qt−1 in the expression for
VMV,γ. The objective Bayesian efficient frontier, derived by Bauder et al. [6], is
then expressed as

(R − RGMV )2 = x̄⊤
t−1Qt−1x̄t−1

ck,n

(V − VGMV ) ,

where
RGMV = 1⊤S−1

t−1x̄t−1

1⊤S−1
t−11

and VGMV = ck,n

1⊤S−1
t−11

14



refers to the return and variance of the global minimum variance portfolio, respec-
tively, whose weights are given by

wGMV = S−1
t−11

1⊤S−1
t−11

.

In the presence of a risk-free asset with return lower than that of the minimum
variance portfolio, the efficient frontier is equal to the CML, given by

(R − rf ) = SD ·
(

RM − rf

SDM,J

)
. (4)

Here, RM and SDM,J corresponds to the return and standard deviation of the
(Jeffreys) market portfolio, respectively. The CML and market portfolio weights
are derived in the following proposition and corollary.

Proposition 2.2. Under the conditions of Proposition 2.1 and the condition that
rf < RGMV , let n − k > 2. The weights along the Jeffreys CML are then given by

wCML,J = γ−1c−1
k,nS−1

t−1(x̄t−1 − rf1).

Now, the market portfolio is a special point along the CML, namely where the
CML intersects with the hyperbolic efficient frontier.

Corollary 2.2. Under the conditions of Proposition 2.1 and the condition that
rf < RGMV , let n − k > 2. The weights of the market portfolio are then given by

wM = S−1
t−1(x̄t−1 − rf1)

1⊤S−1
t−1(x̄t−1 − rf1)

.

Proofs of Proposition 2.2 and Corollary 2.2, from which Equation (4) follows, are
given in the appendix.
The return of a portfolio P along the CML can be expressed as

RCML,P = (w⊤
CML,P 1)w⊤

M x̄t−1 + (1 − w⊤
CML,P 1)rf ,

which may be interpreted as investing some part of the available funds in the
market portfolio, and some part in the risk-free asset. Since the (co)variance
between the risky assets and risk-free asset is assumed to be zero, the variance of
the portfolio can be found using Corollary 2.1.
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Conjugate prior
As opposed to the vague Jeffreys prior, an investor may also want to consider a
more informed approach. One such technique is using a conjugate prior, namely
the Black-Litterman model devised by Fisher Black and Robert Litterman [10].
In this setting, it is possible for an investor to incorporate expert information into
the portfolio optimization.
As in Bauder et al. [6], an extended variant of the Black-Litterman model is
considered here, with a prior not only on µ but also on Σ.
The conjugate prior for µ and Σ is given by

µ|Σ ∼ Nk

(
m0,

1
r0

Σ
)

,

Σ ∼ IWk(d0, S0).

Here, Nk denotes the k-dimensional normal distribution, and IWk is the inverse
Wishart distribution with d0 degrees of freedom. The parameter m0 reflects the
investor’s prior beliefs about µ, whereas the parameter S0 reflects the beliefs about
Σ. The parameters r0 and d0 are known as precision parameters for the two
aforementioned parameters.
For the remainder of this thesis, we will set r0 = d0 = 100, following the same
approach as Bauder et al. [6] in this regard. Furthermore, we will consider two
different priors for m0 and S0.
In the first case, known as Conjugate Bear, the investor is negative towards the
market and believes that m0 = 1

2 (x̄t−1 + ε), where εi ∼ N(−0.01, 0.01) are ran-
domly simulated, and S0 = 2 · St−1.
In the second case, known as Conjugate Bull, the investor is positive towards
the market and believes that m0 = 2 (x̄t−1 + ε) where εi ∼ N(0.01, 0.01) and
S0 = 1

2 · St−1.
Now, likewise to the Jeffreys prior, Bauder et al. [6] and Bodnar et al. [3] pro-
vides a stochastic representation of the posterior predictive distribution under the
conjugate prior.

Proposition 2.3. Let X1, X2, ... be infinitely exchangeable and multivariate cen-
tred spherically symmetric. Assume n + d0 − 2k > 0. Then, under the appli-
cation of the conjugate prior the stochastic representation of the random vari-
able X̂p,t whose density is the posterior predictive distribution (1) is given by
t(dk,n,C , w⊤x̄t−1,C , rk,n,Cw⊤St−1,Cw) with dk,n,C = n + d0 − 2k where

rk,n,C = n + r0 + 1
(n + r0)(n + d0 − 2k) , x̄t−1,I = nx̄t−1 + r0m0

n + r0

16



and
St−1,I = St−1 + S0 + nr0

(m0 − x̄t−1,I)(m0 − x̄t−1,I)⊤

n + r0
.

The expected return and variance is now given in Corollary 2.3, that together with
Proposition 2.3 is proven in the appendix of Bauder et al. [6] and Bodnar et al.
[3].

Corollary 2.3. Under the conditions of Proposition 2.3, let n+d0−2k > 2. Then,

E[w⊤Xt|x(t−1)] = w⊤x̄t−1,I

and
V ar(w⊤Xt|x(t−1)) = qk,nw⊤St−1,Iw with qk,n = dk,n,C rk,n,C

dk,n,C − 2 .

Using the results of Corollary 2.3 in the optimization procecure in Equation (3)
provides us with the weights for the optimal portfolios, expressed as

wMV,γ =
S−1

t−1,I1
1⊤S−1

t−1,I1
+ γ−1q−1

k,nQt−1,I x̄t−1,I , where

Qt−1,I = S−1
t−1,I −

S−1
t−1,I11⊤S−1

t−1,I

1⊤S−1
t−1,I1

.

It follows that the expected return and variance is then given by

RMV,γ =
1⊤S−1

t−1,I x̄t−1,I

1⊤S−1
t−1,I1

+ γ−1q−1
k,nx̄⊤

t−1,IQt−1,I x̄t−1,I ,

and
VMV,γ = qk,n

1⊤S−1
t−1,I1

+ γ−2q−1
k,nx̄⊤

t−1,IQt−1,I x̄t−1,I .

The Black-Litterman Bayesian efficient frontier, derived by Bauder et al. [6] is
now expressed as

(R − RGMV,I)2 =
x̄⊤

t−1,IQt−1,I x̄t−1,I

qk,n

(V − VGMV,I) ,

where
RGMV,I =

1⊤S−1
t−1,I x̄t−1,I

1⊤S−1
t−1,I1

and VGMV,I = qk,n

1⊤S−1
t−1,I1
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refers to the expected return and variance of the Black-Litterman global minimum
variance portfolio, whose weights are given by

wGMV,I =
S−1

t−1,I1
1⊤S−1

t−1,I1
.

As noted in the former sections, in the prescence of a risk-free asset the efficient
frontier is equal to the CML expressed as

(R − rf ) = SD ·
(

RM,I − rf

SDM,I

)
. (5)

Here, RM,I , SDM,I corresponds to the return and standard deviation of the Black-
Litterman market portfolio, respectively. The CML and market portfolio weights
under the informative prior are now derived.

Proposition 2.4. Under the conditions of Proposition 2.3 and the condition that
rf < RGMV,I , let n + d0 − 2k > 2. The weights along the Black-Litterman CML
are then given by

wCML,I = γ−1q−1
k,nS−1

t−1,I(x̄t−1,I − rf1).

The proof of Proposition 2.4 and the upcoming Corollary 2.4 follows analogously
from the proof in the appendix.

Corollary 2.4. Under the conditions of Proposition 2.3 and the condition that
rf < RGMV,I , let n + d0 − 2k > 2. The weights of the Black-Litterman market
portfolio are then given by

wM,I =
S−1

t−1,I(x̄t−1,I − rf1)
1⊤S−1

t−1,I(x̄t−1,I − rf1)
.

2.2.2 Conventional approach

An investor wishing to maximize the portfolio return w⊤µ for some given level of
risk w⊤Cw, considering a set of risky assets only, aims to solve the optimization
problem

max w⊤µ − γ

2w⊤Σw subject to w⊤1 = 1,

where γ > 0 corresponds to the risk-aversion coefficient, describing the investor’s
risk appetite, µ corresponds to the mean vector and Σ is the covariance matrix.
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The solution to this optimization problem, as given in Okhrin and Schmid [11], is
attained using Lagrange multipliers and yields

wP,γ = Σ−11
1⊤Σ−11

+ γ−1Rµ, where R = Σ−1 − Σ−111⊤Σ−1

1⊤Σ−11
.

Then, the expected return and variance are given by

RP,γ = 1⊤Σ−1µ

1⊤Σ−11
+ γ−1µ⊤Rµ,

VP,γ = 1
1⊤Σ−11

+ γ−2µ⊤Rµ.

Since µ and Σ are unknown quantities, they need to be estimated from the return
samples.
With x̄t−1 and St−1 as in (2) we then get

µ̂ = x̄t−1 and Σ̂ = dnSt−1 with dn = 1
n − 1 .

Then, the weights for the sample optimal portfolio are given by

wS,γ = S−1
t−11

1⊤S−1
t−11

+ γ−1d−1
n Qt−1x̄t−1, where Qt−1 = S−1

t−1 − S−1
t−111⊤S−1

t−1

1⊤S−1
t−11

.

The sample estimators for expected return and variance are now obtained by

RS,γ = 1⊤S−1
t−1x̄t−1

1⊤S−1
t−11

+ γ−1d−1
n x̄⊤

t−1Qt−1x̄t−1,

and
VS,γ = dn

1⊤S−1
t−11

+ γ−2d−1
n x̄⊤

t−1Qt−1x̄t−1.

The sample efficient frontier is then, as in Bodnar and Schmid [12], expressed by

(R − RGMV,S)2 = x̄⊤
t−1Qt−1x̄t−1

dn

(V − VGMV,S) ,

where
RGMV,S = 1⊤S−1

t−1x̄t−1

1⊤S−1
t−11

and VGMV,S = dn

1⊤S−1
t−11

.

The sample CML is given by

(R − rf ) = SD ·
(

RM − rf

SDM,S

)
,

19



with RM and SDM,S corresponding to the return and standard deviation of the
(sample) market portfolio. The weights along the sample CML are derived in
Proposition 2.5.
Proposition 2.5. Under the conditions that rf < RGMV and det St−1 ̸= 0, the
weights along the sample CML are given by

wCML,S = γ−1d−1
n S−1

t−1(x̄t−1 − rf1).

The above proposition can be derived analogously from the proof in the appendix,
together with the fact that the weights of the sample market portfolio are the same
as in Corollary 2.2.

2.3 Performance evaluation

2.3.1 Out-of-sample analysis

To measure the performance of the portfolio optimization methods presented in
this thesis, a similar but modified out-of-sample analysis as the one implemented
by DeMiguel et al. [2] is considered.
That is, at time t = 0, the historical returns of the preceeding n ∈ {260, 520} weeks
(corresponding to five and ten years) are used in the optimization procedure to find
the weights, expected return and variance of the market portfolio. The weights are
then applied to the succeeding 104 weeks (two years), in order to generate a set of
out-of-sample returns. From these, the ex-post out-of-sample Sharpe ratio of the
period is computed using the sample mean and standard deviation. All portfolio
returns are calculated under the assumption that an investor is trading without
transaction costs.
The sample window is then shifted forward, dropping the first 104 returns and
now including the 104 returns that were out-of-sample in the last period, thus
keeping n fixed during the optimization process. New out-of-sample returns are
then generated for the succeeding 104 weeks. This procedure is repeated until the
end of the dataset.
For each time period, the resulting out-of-sample Sharpe ratio will be compared
to the estimators yielded in the portfolio optimization approaches. Furthermore,
the out-of-sample Sharpe ratio will be tested against the Sharpe ratio of a more
naive approach to portfolio allocation, namely the equally-weighted (1/k) portfolio.
In this setting, for a portfolio with k ∈ {10, 20} assets, each asset has weight
1/k. Finally, the cumulative ex-post out-of-sample Sharpe ratio is computed by
concatenating the out-of-sample returns from each period, yieleded in the iterative
process described above.
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2.3.2 Test statistic

In order to analyze whether there is any statistically significant difference between
the Sharpe ratio of the optimal portfolios and the equally-weighted portfolio, the
same hypothesis test as the one used by DeMiguel et al. [2] is considered.
Following the results of Jobson and Korkie [13], with the corrections made by
Memmel [14], the hypothesis test H0 : SRi − SRj = 0 between two different
portfolios i, j can be evaluated through the test statistic

SRi − SRj√
ϑ̂

, where ϑ = 1
W

(2 − 2ρi,j + 1
2(SR2

i + SR2
j − 2 · SRi · SRj · ρ2

i,j)) (6)

which is asymptotically normally distributed. In Equation (6), ρi,j corresponds
to the correlation between the returns of the two portfolios and W is the sample
size. The p-value for the two-tailed test is then calculated from the above statistic
using the cumulative distributive function of the standard normal distribution as
2Φ(−|z|). The test relies on the assumptions that the portfolio returns are serially
independent, normally distributed and that their distribution does not change
through time.
Furthermore, we also consider a more robust test, which does not rely on assump-
tions of normality, serial independence and identical distributions. Such a test
has been developed by Ledoit and Wolf [15] in 2008, by using a studentized boot-
strap method. The mathematics of this test is a lot more involved than in the
former case; the test has been deployed within this thesis using the function shar-
peTesting from the R-package PeerPerformance [16], using 1000 bootstrap
samples and optimal block length. We refer to [15] for more technical details.
As noted by, for example, Auer and Schumacher [17] and Kazak and Pohlmeier
[18], it is worth mentioning that both of these tests exhibit weaknesses in terms of
power and other properties.
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3 Data

3.1 Empirical returns

For the empirical study, adjusted weekly returns for 20 of the stocks included in
the Swedish OMXS30 index as of late 2023 are considered, with data ranging from
April 2002 to March 2023. The reason for not including all 30 stocks from the
index stocks is that not all have been publicly traded for a satisfactory length of
time.
Furthermore, a smaller portfolio consisting of 10 stocks only are also considered.
These stocks have been randomly selected from the larger data set. A full disclosure
of the assets included in the study are available in Table 1, where bold rows
correspond to the stocks in the 10-asset portfolio.
All data has been collected from Yahoo Finance [19].

Table 1: Included stocks

Ticker Full name
ALIV-SDB Autoliv SDB
ASSA-B Assa Abloy B
ATCO-A Atlas Copco A
AZN Astra Zeneca
ELUX-B Electrolux B
ERIC-B Ericsson B
GETI-B Getinge B
HEXA-B Hexagon B
HM-B Hennes & Mauritz B
INVE-B Investor B
KINV-B Kinnevik B
NDA-ABP Nordea Abp
NIBE-B Nibe B
SAND Sandvik
SEB-A SEB A
SHB-A Handelsbanken A
SKF-B SKF B
SWED-A Swedbank A
TEL2-B Tele2 B
VOLV-B Volvo B
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3.2 Simulated returns

For the simulation study, the sample mean vector and sample covariance matrix are
computed using the empirical returns as data, evaluated over the same time periods
as in the the empirical study. The sample mean vector and sample covariance
matrix are then used as parameters in a multivariate normal distribution, from
which new returns are simulated.
In the robustness analysis, a multivariate t-distribution with five degrees of freedom
is considered, using the same parameters as above.
For each of the considered time periods, n + 104 with n ∈ {260, 520} samples are
simulated. The first n returns are then used as data in the optimization procedure,
while the last 104 samples are used to generate out-of-sample returns. This ensures
that all returns considered are coming from the same distribution, which is one of
the assumptions of the Jobson and Korkie [13] test statistic, described in section
2.3.2.
Simulated returns are also used to construct the efficient frontiers in section 4.1. In
order to more clearly visualize the difference of the considered approaches, a shorter
estimation period is used here than in the out-of-sample analysis. The returns in
this section are simulated using the sample mean vector and sample covariance
matrix from the empirical time period 02-04-08 - 03-03-31 (52 weeks). With these
parameters, n = 104 samples are simulated from a multivariate normal distribu-
tion. Those samples are then used in both estimation periods n ∈ {52, 104}.

3.3 Risk-free rate

As a proxy for the risk-free rate, the yield on Swedish 2-year government bonds
are used. The yield has been adjusted to weekly, continuously compounded return
rates. All data has been collected from the Swedish Riksbank [20].
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4 Results

This section begins with a review of the efficient frontiers of the various portfolio
approaches in section 4.1.
The subsections 4.2-4.4 account for the out-of-sample analysis of the market port-
folio, executed by using the techniques described in section 3.2. The tables in these
subsections accounts for the results of five-year (n = 260 weeks) sample periods
and two-year (104 weeks) out-of-sample periods. Results for longer sample periods
are available in the appendix, and will be referenced when relevant to the text.

4.1 Efficient frontiers

Figure 2 displays the efficient frontiers of all considered portfolio optimization
approaches, with two different portfolio sizes and two different lengths of return
samples. The data is drawn from the same distribution in all cases, as described
in section 3.2.
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Figure 2: Efficient frontiers
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The plots exhibits the varying effect that the different priors have on the efficient
frontier, together with the influence of the portfolio size and sample length. In all
cases, the Conjugate Bull prior displays quite exaggerated behavior as compared
to the other priors, especially in the case when n = 52. The Jeffreys prior and the
Conjugate Bear prior lead to more conservative estimates.
Bauder et al. [6] notes that the conventional approach is prone to overoptimism,
and through simulations show that the non-informative Bayesian prior is preferable
in this regard. However, while the Jeffreys prior exhibit a slightly more tentative
efficient frontier in comparison to the conventional approach, these discrepancies
are dampened when the sample length is enlarged.

4.2 Empirical study

This section focuses on the out-of-sample results yielded when applying the market
portfolio weights to empirical asset returns, which are accounted for in section 3.1.
It should be mentioned that it is by no means possible to guarantee that the various
assumptions regarding the asset returns made in Proposition 2.1 and Proposition
2.3 will hold for the empirical data. The results should be read with this in mind.

4.2.1 Results for 20 stocks

Table 2 contains the estimators for the market portfolio Sharpe ratio in each of
the employed portfolio approaches, over all of the considered time periods. In
each time period, n = 260 weeks (five years) of return samples are used in the
optimization procedure, while 104 (two years) returns are kept out-of-sample.
As was indicated in Figure 2, the Jeffreys prior and Conjugate Bear prior both
show more conservative esimates of the Sharpe ratio as compared to both the
conventional approach and, especially, the Conjugate Bull prior.

Table 2: Sharpe ratio estimators, empirical (20 stocks)

Sample period (out-of-sample period) Conventional Jeffreys Conjugate Bear Conjugate Bull
1. 02-04-08 - 07-03-26 (07-04-02 - 09-03-23) 0.353 0.338 0.191 0.443
2. 04-04-05 - 09-03-23 (09-03-30 - 11-03-21) 0.220 0.211 0.121 0.268
3. 06-04-03 - 11-03-21 (11-03-28 - 13-03-18) 0.141 0.135 0.075 0.181
4. 08-03-31 - 13-03-18 (13-03-25 - 15-03-16) 0.174 0.166 0.094 0.229
5. 10-03-29 - 15-03-16 (15-03-23 - 17-03-13) 0.304 0.291 0.168 0.390
6. 12-03-26 - 17-03-13 (17-03-20 - 19-03-11) 0.252 0.241 0.139 0.317
7. 14-03-24 - 19-03-11 (19-03-18 - 21-03-08) 0.285 0.273 0.156 0.343
8. 16-03-21 - 21-03-08 (21-03-15 - 23-03-06) 0.279 0.267 0.152 0.338
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The third and fourth period display notably lower Sharpe ratio estimates in com-
parison to the other periods. This is not very surprising, given the fact that both of
these periods contain empirical samples from the 2007–2008 financial crisis, which
saw catastrophic drops in asset prices that influence the estimators.
Table 3 accounts for the Sharpe ratio of the equally-weighted (1/k) portfolio,
as well as the out-of-sample Sharpe ratio yielded when applying the weights of
the various market portfolios to the out-of-sample returns, using the technique
described in section 2.3.1. Since the weights for the Jeffreys and conventional
portfolios coincide, they have the exact same result and as such they are listed
together in the table.
Displayed within parenthesis is the p-value of the out-of-sample market portfolio
tested against the equally-weighted portfolio, using the tests accounted for in sec-
tion 2.3.2. The first p-value correspond to the Jobson and Korkie [13] test, while
the second correspond to the Ledoit and Wolf [15] method. For the cumulative
Sharpe ratio, where the returns in each period have been concatenated together,
only the Ledoit and Wolf test is displayed since these returns explicitly violate the
assumption of non-changing distributions in the Jobson and Korkie test. As will
become apparent throughout this section, the difference in p-values between these
two tests are small.

Table 3: Out-of-sample Sharpe ratios and p-values, empirical (20 stocks)

Sample period (out-of-sample period) 1/k Jeffreys / Conventional Conjugate Bear Conjugate Bull
1. 02-04-08 - 07-03-26 (07-04-02 - 09-03-23) -0.114 -0.157 (0.53 / 0.52) -0.161 (0.51 / 0.50) -0.173 (0.39 / 0.39)
2. 04-04-05 - 09-03-23 (09-03-30 - 11-03-21) 0.277 -0.191 (0.00 / 0.01) -0.190 (0.00 / 0.01) -0.150 (0.01 / 0.01)
3. 06-04-03 - 11-03-21 (11-03-28 - 13-03-18) 0.056 -0.003 (0.49 / 0.48) -0.011 (0.45 / 0.44) -0.001 (0.50 / 0.49)
4. 08-03-31 - 13-03-18 (13-03-25 - 15-03-16) 0.250 0.316 (0.50 / 0.49) 0.333 (0.39 / 0.38) 0.349 (0.27 / 0.26)
5. 10-03-29 - 15-03-16 (15-03-23 - 17-03-13) 0.028 -0.003 (0.75 / 0.75) -0.004 (0.75 / 0.75) -0.013 (0.67 / 0.67)
6. 12-03-26 - 17-03-13 (17-03-20 - 19-03-11) 0.081 0.131 (0.69 / 0.70) 0.121 (0.75 / 0.76) 0.108 (0.82 / 0.82)
7. 14-03-24 - 19-03-11 (19-03-18 - 21-03-08) 0.137 0.119 (0.90 / 0.90) 0.122 (0.92 / 0.92) 0.139 (0.98 / 0.98)
8. 16-03-21 - 21-03-08 (21-03-15 - 23-03-06) 0.047 0.107 (0.59 / 0.60) 0.114 (0.55 / 0.55) 0.126 (0.47 / 0.48)
Cumulative Sharpe ratio 0.073 0.005 (0.12) 0.003 (0.12) 0.027 (0.27)

It is immediately recognizable that the out-of-sample Sharpe ratios in Table 3 are
generally much lower than their estimated counterparts in Table 2 and are, in
several cases, negative. They are in fact lower than their estimates, for all port-
folios, in all periods except one: period 4, which happens to contain returns from
the financial crisis in-sample that has caused an underestimation of the means for
the upcoming out-of-sample period. Moreover, although the considered optimiza-
tion approaches displayed quite different estimators in Table 2, their out-of-sample
Sharpe ratios are all very similar.
Clearly, the optimal portfolios do not show any general tendencies to consistently
outperform the equally-weighted approach. For α ≤ 0.05 where α denotes the
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probability of rejecting the null hypothesis, both of the test statistics employed
only recognizes a significant difference in period 2. However, in this period, the op-
timal portfolios significantly underperforms the equally-weighted approach. This
displays the catastrophic consequences of the risk exposure that may come with
the market portfolio during periods of financial turmoil.
The results in Table 3 are, as we shall see, quite general (with some exceptions
of course) to all the considered portfolio sizes, estimation periods, and data types
within this thesis. They underline the negative effects that estimation error has
on the optimal portfolios, and the results are in line with what DeMiguel et al.
[2] and others have shown before. Namely, that the out-of-sample Sharpe ratio of
optimal portfolios seldomly outperform the equally-weighted portfolio.
Although there is lack of statistical evidence to any general difference in terms
of the Sharpe ratio, it is however evident from Figure 3 that there is nonetheless
a quite large discrepancy between the equally-weighted portfolio and the optimal
portfolios.
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Figure 3: Weekly returns, empirical (20 stocks)

In the above figure, the out-of-sample returns of the portfolios in each time period
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are concatenated together. The dashed vertical lines represent re-optimization
instances, where old returns are dropped from the optimization sample and new
returns are included, as described in section 2.3.1.
All of the optimal portfolio approaches display much larger movements in terms of
return in comparison to the equally-weighted portfolio, which again illustrates the
significant risks an investor may expose herself to in applying the market portfolio
in practice. The consequences of this risk is also apparent in Figure 4, which shows
the cumulative return for all of the considered portfolios, with an initial value of
100. Here, each of the distinct periods has again been concatenated together to
form a series.
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Figure 4: Cumulative returns, empirical (20 stocks)

In applying any one of the optimal portfolios continuously into the market, the
investor early on loses almost all wealth during the financial crisis. This wealth
is not recaptured in the proceeding years to any significant degree, although the
portfolio with the Conjugate Bull prior display somewhat promising tendencies at
the end. This is in stark contrast to the equally-weighted portfolio. Heavy losses
are incurred in this portfolio as well, however not even nearly to the same degree
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as in the optimal portfolios.
The picture becomes somewhat different when looking at the cumulative return
within each period, as in Figure 5.
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Figure 5: Cumulative returns in each period, empirical (20 stocks)

The first period, which contain returns from the financial crisis out-of-sample,
lead to significant losses for the optimal investor as well as the equally-weighted
investor. In the second period, a large part of the negative returns of the financial
crisis are included in-sample, leading to a skewed estimation of the returns within
the optimization procedure. In applying the weights of these optimal portfolios to
the proceeding period, large losses are again incurred, which however is not the
case for the equally-weighted portfolio.
The returns in the other periods are slightly less negative, although the within-
period variance is high in several cases. It is again obvious that the three different
optimization approaches lead to quite similar results.
As for the longer sample period of n = 520 weeks, where tables are available in the
appendix, the conclusion that the optimal portfolios fail to outperform the equally-
weighted approach is also valid. The estimators for the Sharpe ratio in these cases
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are generally lower than in Table 2, and the estimators for the Conjugate Bull prior
are much closer to those of the conventional and Jeffreys prior. The out-of-sample
Sharpe ratios generally display more positive tendencies than in Table 3.

4.2.2 Results for 10 stocks

This section considers a set of smaller portfolios consisting of 10 stocks only, which
are listed in bold in Table 1. For the sake of parsimonity, an in-depth analysis of
the kind made in the last section will not be done here.
In Table 4, the estimators of the Sharpe ratios are noticeably smaller as compared
to the 20 stock-portfolio in Table 2.

Table 4: Sharpe ratio estimators, empirical (10 stocks)

Sample period (out-of-sample period) Conventional Jeffreys Conjugate Bear Conjugate Bull
1. 02-04-08 - 07-03-26 (07-04-02 - 09-03-23) 0.266 0.260 0.146 0.340
2. 04-04-05 - 09-03-23 (09-03-30 - 11-03-21) 0.161 0.157 0.087 0.175
3. 06-04-03 - 11-03-21 (11-03-28 - 13-03-18) 0.094 0.092 0.051 0.118
4. 08-03-31 - 13-03-18 (13-03-25 - 15-03-16) 0.132 0.129 0.072 0.167
5. 10-03-29 - 15-03-16 (15-03-23 - 17-03-13) 0.264 0.258 0.147 0.328
6. 12-03-26 - 17-03-13 (17-03-20 - 19-03-11) 0.200 0.195 0.111 0.252
7. 14-03-24 - 19-03-11 (19-03-18 - 21-03-08) 0.179 0.175 0.097 0.210
8. 16-03-21 - 21-03-08 (21-03-15 - 23-03-06) 0.186 0.181 0.099 0.217

As in the last section, turning to the out-of-sample Sharpe ratios in Table 5, it
is again recognizable that the optimal portfolios do not outperform the equally-
weighted approach.

Table 5: Out-of-sample Sharpe ratios and p-values, empirical (10 stocks)

Sample period (out-of-sample period) 1/k Jeffreys / Conventional Conjugate Bear Conjugate Bull
1. 02-04-08 - 07-03-26 (07-04-02 - 09-03-23) -0.122 -0.107 (0.80 / 0.81) -0.111 (0.85 / 0.85) -0.127 (0.94 / 0.94)
2. 04-04-05 - 09-03-23 (09-03-30 - 11-03-21) 0.289 -0.080 (0.02 / 0.04) -0.086 (0.02 / 0.04) -0.058 (0.03 / 0.04)
3. 06-04-03 - 11-03-21 (11-03-28 - 13-03-18) 0.059 0.026 (0.47 / 0.46) 0.028 (0.52 / 0.52) 0.049 (0.81 / 0.81)
4. 08-03-31 - 13-03-18 (13-03-25 - 15-03-16) 0.221 0.337 (0.21 / 0.19) 0.323 (0.29 / 0.27) 0.316 (0.30 / 0.29)
5. 10-03-29 - 15-03-16 (15-03-23 - 17-03-13) 0.043 -0.017 (0.51 / 0.52) -0.016 (0.53 / 0.53) -0.017 (0.52 / 0.52)
6. 12-03-26 - 17-03-13 (17-03-20 - 19-03-11) 0.067 0.126 (0.63 / 0.63) 0.116 (0.70 / 0.70) 0.103 (0.77 / 0.77)
7. 14-03-24 - 19-03-11 (19-03-18 - 21-03-08) 0.158 0.001 (0.11 / 0.10) -0.012 (0.09 / 0.09) 0.002 (0.06 / 0.05)
8. 16-03-21 - 21-03-08 (21-03-15 - 23-03-06) 0.033 0.128 (0.21 / 0.23) 0.129 (0.21 / 0.22) 0.131 (0.15 / 0.16)
Cumulative Sharpe ratio 0.075 -0.003 (0.09) -0.014 (0.07) 0.007 (0.09)

Like in the case with 20 assets, period 2 suffers from significant underperformance,
while period 7 and the cumulative Sharpe ratio are close to significantly under-
performing. For the longer sample periods, with data available in the appendix, a
significant underperformance is noted during period 3.
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It is a somewhat surprising result that a smaller portfolio would perform worse or
equally bad as compared to a larger portfolio, given that there are fewer parameters
present in a smaller portfolio which should thus lead to smaller amplification of
estimation error. This result, in fact, conflicts with the conclusions of DeMiguel
et al. [2], who claim that a smaller portfolio has a greater chance to outperform
the equally-weighted approach.

4.3 Simulation study

This section considers normally distributed data, simulated using the techniques
described in section 3.2. The multivariate normal distribution satisfies the assump-
tions of multivariate centered spherical symmetry and infinite exchangeability,
which are the main assumptions in Proposition 2.1 and Proposition 2.3. Further-
more, the setup of the simulation also implies that the out-of-sample returns have
the same distribution as the in-sample returns.

4.3.1 Results for 20 stocks

Table 6 shows the Sharpe ratio estimators for the market portfolio in all of the
considered approaches. Likewise to the last section, the Jeffreys prior and the
Conjugate Bear prior both show more conservative estimates – especially the latter.
The estimated Sharpe ratios are generally higher than in the empirical study.

Table 6: Sharpe ratio estimators, normal distribution (20 stocks)

Sample period (out-of-sample period) Conventional Jeffreys Conjugate Bear Conjugate Bull
1. 02-04-08 - 07-03-26 (07-04-02 - 09-03-23) 0.540 0.517 0.295 0.660
2. 04-04-05 - 09-03-23 (09-03-30 - 11-03-21) 0.422 0.403 0.229 0.490
3. 06-04-03 - 11-03-21 (11-03-28 - 13-03-18) 0.402 0.385 0.219 0.485
4. 08-03-31 - 13-03-18 (13-03-25 - 15-03-16) 0.289 0.277 0.155 0.347
5. 10-03-29 - 15-03-16 (15-03-23 - 17-03-13) 0.409 0.392 0.226 0.506
6. 12-03-26 - 17-03-13 (17-03-20 - 19-03-11) 0.418 0.400 0.234 0.516
7. 14-03-24 - 19-03-11 (19-03-18 - 21-03-08) 0.396 0.379 0.215 0.465
8. 16-03-21 - 21-03-08 (21-03-15 - 23-03-06) 0.375 0.359 0.204 0.450

In Table 7, the resulting out-of-sample Sharpe ratios yielded when applying the
weights of the market portfolios are listed, together with the Sharpe ratio of the
equally-weighted portfolio and the p-values of the two tests within parenthesis.
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Table 7: Out-of-sample Sharpe ratios and p-values, normal distribution (20 stocks)

Sample period (out-of-sample period) 1/k Jeffreys / Conventional Conjugate Bear Conjugate Bull
1. 02-04-08 - 07-03-26 (07-04-02 - 09-03-23) 0.092 0.301 (0.09 / 0.09) 0.303 (0.09 / 0.09) 0.310 (0.07 / 0.07)
2. 04-04-05 - 09-03-23 (09-03-30 - 11-03-21) 0.045 0.123 (0.55 / 0.56) 0.131 (0.52 / 0.53) 0.149 (0.43 / 0.43)
3. 06-04-03 - 11-03-21 (11-03-28 - 13-03-18) 0.134 0.172 (0.74 / 0.73) 0.168 (0.77 / 0.76) 0.164 (0.79 / 0.79)
4. 08-03-31 - 13-03-18 (13-03-25 - 15-03-16) 0.046 0.144 (0.30 / 0.29) 0.149 (0.28 / 0.26) 0.180 (0.15 / 0.13)
5. 10-03-29 - 15-03-16 (15-03-23 - 17-03-13) 0.004 0.112 (0.32 / 0.31) 0.109 (0.34 / 0.33) 0.096 (0.39 / 0.38)
6. 12-03-26 - 17-03-13 (17-03-20 - 19-03-11) 0.169 0.278 (0.30 / 0.31) 0.289 (0.28 / 0.28) 0.310 (0.20 / 0.21)
7. 14-03-24 - 19-03-11 (19-03-18 - 21-03-08) 0.137 0.294 (0.23 / 0.23) 0.295 (0.23 / 0.22) 0.301 (0.20 / 0.20)
8. 16-03-21 - 21-03-08 (21-03-15 - 23-03-06) 0.204 0.114 (0.43 / 0.45) 0.119 (0.45 / 0.47) 0.126 (0.48 / 0.49)
Cumulative Sharpe ratio 0.096 0.170 (0.08) 0.167 (0.10) 0.191 (0.02)

As in the case for the empirical data, the out-of-sample Sharpe ratios are in many
cases lower than their estimator counterparts. However, in comparison to the
empirical study, they are in general higher and none of the periods have negative
Sharpe ratios. Nevertheless, only the cumulative Sharpe ratio for the Conjugate
Bull prior displays a significant outperformance at level α ≤ 0.05, albeit that the
p-values in the other periods are often smaller than in the empirical study. These
results are in line with the conclusions of DeMiguel et al. [2], who notes that even
for normally distributed data there is a need for extremely long estimation periods
if the optimal portfolios are to outperform the equally-weighted portfolio.
Although there is no consistent outperformance in terms of the Sharpe ratio within
the periods, and the cumulative Sharpe ratio at first glance may seem only slightly
better, the difference between the optimal portfolios and the equally-weighted
portfolio is striking when looking at the cumulative returns.
In the empirical setting, the optimal portfolios led to catastrophic losses. In this
simulation setting, the results are the opposite.
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Figure 6: Cumulative returns, normal distribution (20 stocks)

Figure 6 displays extreme returns for the optimal portfolios, especially for the
Conjugate Bear prior. This also, again, illustrates the issue with looking only at
Sharpe ratios as a performance measure. Looking more closely within each period,
as in Figure 7, it is apparent that period 6 contributes a lot to the accumulated
returns.
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Figure 7: Cumulative returns in each period, normal distribution (20 stocks)

It should be noted that period 6 also, at instances, contain significant losses. This
exhibits the high risk of the various market portfolios within this period, and
accounts for the fact that the Sharpe ratio is not significantly different from that
of the equally-weighted portfolio. It also demonstrates another important fact of
the market portfolio: When the return of the minumum variance portfolio and the
risk-free rate are close to eachother, which is the case in period 6, the tangency
point between the CML and the hyperbolic efficient frontier (see Figure 1 for a
visual reference) will lie in a section with higher risk. In this specific example,
the market portfolio for the Conjugate Bear prior corresponds to a risk-aversion
coefficient γ of less than one, implying that it is associated with very high risk.
Clearly, however, this extreme risk has also led to extreme rewards in this specific
setting.
As for the longer sample periods accounted for in the appendix, it is interest-
ing to note that all periods generally show smaller Sharpe ratios out-of-sample,
many which are lesser than that of the equally-weighted portfolio. However, no
significant difference is noted here.
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4.3.2 Results for 10 stocks

Looking at the smaller portfolios consisting of 10 stocks only, the estimators for
the Sharpe ratios in Table 8 are, as in the empirical case, lower.

Table 8: Sharpe ratio estimators, normal distribution (10 stocks)

Sample period (out-of-sample period) Conventional Jeffreys Conjugate Bear Conjugate Bull
1. 02-04-08 - 07-03-26 (07-04-02 - 09-03-23) 0.380 0.371 0.211 0.471
2. 04-04-05 - 09-03-23 (09-03-30 - 11-03-21) 0.280 0.273 0.156 0.327
3. 06-04-03 - 11-03-21 (11-03-28 - 13-03-18) 0.247 0.241 0.138 0.315
4. 08-03-31 - 13-03-18 (13-03-25 - 15-03-16) 0.209 0.205 0.113 0.258
5. 10-03-29 - 15-03-16 (15-03-23 - 17-03-13) 0.281 0.274 0.156 0.343
6. 12-03-26 - 17-03-13 (17-03-20 - 19-03-11) 0.365 0.357 0.209 0.453
7. 14-03-24 - 19-03-11 (19-03-18 - 21-03-08) 0.209 0.204 0.116 0.257
8. 16-03-21 - 21-03-08 (21-03-15 - 23-03-06) 0.294 0.287 0.161 0.350

The out-of-sample Sharpe ratios in 9 again exhibit the curious fact that the smaller
portfolios seems to perform worse than the larger ones, a fact which is also con-
firmed by the longer sample periods available in the appendix.

Table 9: Out-of-sample Sharpe ratios and p-values, normal distribution (10 stocks)

Sample period (out-of-sample period) 1/k Jeffreys / Conventional Conjugate Bear Conjugate Bull
1. 02-04-08 - 07-03-26 (07-04-02 - 09-03-23) 0.125 0.121 (0.97 / 0.97) 0.116 (0.93 / 0.92) 0.123 (0.98 / 0.98)
2. 04-04-05 - 09-03-23 (09-03-30 - 11-03-21) -0.020 0.085 (0.43 / 0.44) 0.081 (0.46 / 0.46) 0.073 (0.48 / 0.48)
3. 06-04-03 - 11-03-21 (11-03-28 - 13-03-18) 0.156 0.112 (0.60 / 0.61) 0.110 (0.59 / 0.60) 0.105 (0.55 / 0.55)
4. 08-03-31 - 13-03-18 (13-03-25 - 15-03-16) 0.058 0.150 (0.22 / 0.20) 0.147 (0.23 / 0.21) 0.151 (0.23 / 0.21)
5. 10-03-29 - 15-03-16 (15-03-23 - 17-03-13) 0.010 0.114 (0.23 / 0.22) 0.111 (0.24 / 0.23) 0.099 (0.28 / 0.28)
6. 12-03-26 - 17-03-13 (17-03-20 - 19-03-11) 0.176 0.176 (1.00 / 1.00) 0.172 (0.96 / 0.96) 0.175 (0.99 / 0.99)
7. 14-03-24 - 19-03-11 (19-03-18 - 21-03-08) 0.105 0.199 (0.43 / 0.43) 0.213 (0.38 / 0.38) 0.240 (0.25 / 0.25)
8. 16-03-21 - 21-03-08 (21-03-15 - 23-03-06) 0.156 0.113 (0.69 / 0.69) 0.117 (0.71 / 0.72) 0.126 (0.77 / 0.78)
Cumulative Sharpe ratio 0.088 0.102 (0.74) 0.093 (0.91) 0.106 (0.66)

Studying the cumulative returns in Figure 8, it is evident that the smaller portfolios
generates remarkably lower returns over time as compared to the larger portfolios
in Figure 6. However, the accumulated return of the optimal portfolios are still a
lot larger than that of the equally-weighted portfolio.
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4.4 Robustness analysis

This section considers data simulated from a multivariate t-distribution with five
degrees of freedom, as described in section 3.2. The setup of the simulation study
is such that the out-of-sample returns come from the same distribution as the
in-sample returns. However, the multivariate t-distribution does not satisfy the
assumptions of multivariate centered spherical symmetry and infinite exchange-
ability.

4.4.1 Results for 20 stocks

As in the preceding sections, the analysis begins by looking at the Sharpe ratio
estimators in Table 10. In the first period, all portfolios except the Conjugate Bull
prior are omitted. This is due to the fact that the return of the minimum variance
portfolio in these cases are smaller than that of the risk-free rate, which implies
that the market portfolio does not exist.
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Table 10: Sharpe ratio estimators, t-distribution (20 stocks)

Sample period (out-of-sample period) Conventional Jeffreys Conjugate Bear Conjugate Bull
1. 02-04-08 - 07-03-26 (07-04-02 - 09-03-23) - - - 0.306
2. 04-04-05 - 09-03-23 (09-03-30 - 11-03-21) 0.392 0.375 0.218 0.480
3. 06-04-03 - 11-03-21 (11-03-28 - 13-03-18) 0.248 0.237 0.134 0.292
4. 08-03-31 - 13-03-18 (13-03-25 - 15-03-16) 0.307 0.294 0.170 0.369
5. 10-03-29 - 15-03-16 (15-03-23 - 17-03-13) 0.336 0.322 0.185 0.417
6. 12-03-26 - 17-03-13 (17-03-20 - 19-03-11) 0.282 0.270 0.158 0.367
7. 14-03-24 - 19-03-11 (19-03-18 - 21-03-08) 0.306 0.293 0.167 0.356
8. 16-03-21 - 21-03-08 (21-03-15 - 23-03-06) 0.500 0.479 0.270 0.565

It is notable that the estimators in Table 10 are in many cases smaller than in
the normally distributed simulation setting, as accounted for in Table 6. Turning
to Table 11, it is once more apparent that the out-of-sample Sharpe ratios are in
general much lower than their estimator counterparts.

Table 11: Out-of-sample Sharpe ratios and p-values, t-distribution (20 stocks)

Sample period (out-of-sample period) 1/k Jeffreys / Conventional Conjugate Bear Conjugate Bull
1. 02-04-08 - 07-03-26 (07-04-02 - 09-03-23) 0.035 - - 0.186 (0.28 / 0.30)
2. 04-04-05 - 09-03-23 (09-03-30 - 11-03-21) 0.051 0.084 (0.75 / 0.74) 0.087 (0.73 / 0.73) 0.083 (0.75 / 0.75)
3. 06-04-03 - 11-03-21 (11-03-28 - 13-03-18) 0.222 0.051 (0.10 / 0.10) 0.052 (0.11 / 0.10) 0.054 (0.10 / 0.10)
4. 08-03-31 - 13-03-18 (13-03-25 - 15-03-16) -0.006 -0.142 (0.24 / 0.26) -0.130 (0.29 / 0.30) -0.100 (0.39 / 0.41)
5. 10-03-29 - 15-03-16 (15-03-23 - 17-03-13) 0.173 0.316 (0.16 / 0.13) 0.314 (0.18 / 0.15) 0.307 (0.20 / 0.17)
6. 12-03-26 - 17-03-13 (17-03-20 - 19-03-11) -0.108 0.024 (0.14 / 0.14) 0.020 (0.16 / 0.16) 0.006 (0.20 / 0.20)
7. 14-03-24 - 19-03-11 (19-03-18 - 21-03-08) 0.104 0.036 (0.58 / 0.59) 0.040 (0.60 / 0.60) 0.057 (0.67 / 0.67)
8. 16-03-21 - 21-03-08 (21-03-15 - 23-03-06) 0.099 0.141 (0.71 / 0.71) 0.144 (0.69 / 0.69) 0.155 (0.61 / 0.61)
Cumulative Sharpe ratio 0.076 0.038 (0.31) 0.037 (0.302) 0.078 (0.95)

No significant differences are noted in comparison to the equally-weighted portfolio,
and the same thing can be said about the longer sample periods in the appendix.
Figure 9 accounts for the accumulated returns of the portfolios, where the first
period in which the Jeffreys and Conjugate Bear market portfolio did not exist
has been dropped from the data.
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Figure 9: Cumulative returns, t-distribution (20 stocks)

The accumulated returns in the above figure exhibit a behavior which is more
reminiscent of the empirical returns in Figure 4 than in the normally distributed
data. The change of distribution in the simulated setting has, apparently, had a
profound effect on the resulting cumulative returns.
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4.4.2 Results for 10 stocks

As a final analysis, we consider the smaller 10-stock portfolios under the t-
distribution setting. In Table 12, all of the considered approaches are omitted in
the first period due to the market portfolio not existing.

Table 12: Sharpe ratio estimators, t-distribution (10 stocks)

Sample period (out-of-sample period) Conventional Jeffreys Conjugate Bear Conjugate Bull
1. 02-04-08 - 07-03-26 (07-04-02 - 09-03-23) - - - -
2. 04-04-05 - 09-03-23 (09-03-30 - 11-03-21) 0.234 0.228 0.129 0.260
3. 06-04-03 - 11-03-21 (11-03-28 - 13-03-18) 0.213 0.208 0.120 0.259
4. 08-03-31 - 13-03-18 (13-03-25 - 15-03-16) 0.237 0.232 0.135 0.293
5. 10-03-29 - 15-03-16 (15-03-23 - 17-03-13) 0.252 0.246 0.140 0.310
6. 12-03-26 - 17-03-13 (17-03-20 - 19-03-11) 0.156 0.152 0.085 0.199
7. 14-03-24 - 19-03-11 (19-03-18 - 21-03-08) 0.254 0.248 0.143 0.307
8. 16-03-21 - 21-03-08 (21-03-15 - 23-03-06) 0.296 0.289 0.165 0.353

As before, we note lower Sharpe ratio estimators in the smaller portfolios. Regard-
ing the out-of-sample returns in Table 13, a significant underperformance against
the equally-weighted portfolio is noted for all optimal portfolios in period 3. No
significant differences are noted in the longer sample periods, as shown in the
appendix.

Table 13: Out-of-sample Sharpe ratios and p-values, t-distribution (10 stocks)

Sample period (out-of-sample period) 1/k Jeffreys / Conventional Conjugate Bear Conjugate Bull
1. 02-04-08 - 07-03-26 (07-04-02 - 09-03-23) - - - -
2. 04-04-05 - 09-03-23 (09-03-30 - 11-03-21) 0.037 0.069 (0.75 / 0.75) 0.067 (0.76 / 0.76) 0.064 (0.78 / 0.78)
3. 06-04-03 - 11-03-21 (11-03-28 - 13-03-18) 0.234 0.031 (0.02 / 0.02) 0.030 (0.03 / 0.02) 0.026 (0.02 / 0.02)
4. 08-03-31 - 13-03-18 (13-03-25 - 15-03-16) -0.026 -0.135 (0.31 / 0.32) -0.132 (0.35 / 0.35) -0.131 (0.33 / 0.33)
5. 10-03-29 - 15-03-16 (15-03-23 - 17-03-13) 0.161 0.256 (0.34 / 0.29) 0.262 (0.30 / 0.25) 0.263 (0.27 / 0.23)
6. 12-03-26 - 17-03-13 (17-03-20 - 19-03-11) -0.110 -0.109 (0.98 / 0.98) -0.102 (0.91 / 0.91) -0.091 (0.79 / 0.79)
7. 14-03-24 - 19-03-11 (19-03-18 - 21-03-08) 0.135 0.151 (0.87 / 0.86) 0.143 (0.93 / 0.93) 0.138 (0.98 / 0.97)
8. 16-03-21 - 21-03-08 (21-03-15 - 23-03-06) 0.101 0.206 (0.31 / 0.31) 0.197 (0.36 / 0.36) 0.188 (0.39 / 0.39)
Cumulative Sharpe ratio 0.078 0.041 (0.353) 0.034 (0.3) 0.04 (0.304)
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5 Conclusions and discussion

As mentioned in the introduction, many portfolio optimization techniques have
been shown to struggle with difficulties when applied out-of-sample. By turning
to Bayesian statistics it is possible to account for the parameter uncertainty when
constructing an optimal portfolio which, at least in theory, takes into account the
estimation error.
Within the framework of this thesis, we have introduced both the conventional
theory of portfolio optimization and a Bayesian approach with several different
prior distributions. The latter have been shown by Bauder et al. [6] to, under
some circumstances, improve the estimation of the expected return, variance and
thereby the efficient frontier.
The aim of this thesis was to test the methods introduced by Bauder et al. [6] and
developed by Bodnar et al. [3] out-of-sample, and to see if they could outperform
the equally-weighted portfolio in terms of the Sharpe ratio. To this end, we have
mathematically derived the weights of the market portfolio, which maximizes the
Sharpe ratio, in a Bayesian setting with two different priors. Using both empirical
and simulated historical data, the market portfolio has then been applied out-of-
sample in a series of periods.
The overall conclusions are in line with earlier research, namely that the various
optimal portfolios generally fail to outperform the equally-weighted approach in
terms of the Sharpe ratio. This conclusion comes, however, with a word of caution
given that the power of the tests applied in the thesis have been questioned, as
mentioned in section 2.3.2. Furthermore, the choice of variance as a risk measure
and the Sharpe ratio as a performance measure is by no means arbitrary and may
very well be put into question. In utilizing the variance as risk, large deviations
from the mean return inflates the perceived risk – even though such deviations
may be positive. This can be illustrated by an example.
Consider the following sequences of returns:

(a) 10%, 10%, 0.5%, -1%

(b) 2%, 2%, 2%, -1%.

The cumulative return of sequence (a) is equal to 20.39%, which is notably higher
than that of sequence (b) with 5.06%. However, the standard deviation in (a) is
also higher. Assuming a risk-free rate of zero, this leads to to the fact that (b) will
have a better Sharpe ratio of 0.833 than that of (a) with a Sharpe ratio of 0.819.
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It is no easy task to explain why a rational investor would prefer a portfolio or an
asset with returns as in (b) rather than (a). In utilizing variance as a risk measure,
we are stuck in this counterintuitive and illogical corner. As an alternative, one
may consider other risk measures, such as value at risk (VaR) and conditional
value at risk (CVaR). These are, however, beyond the scope of this thesis.
Even though the optimal market portfolios fail to outperform the equally-weighted
portfolio in terms of the Sharpe ratio, we have illustrated that there is still a large
difference between these approaches in terms of pure return. Part of this difference
may be attributed to the risk that comes with the market portfolio which, as have
been shown, can lead to both ruin and extreme riches. When applying the market
portfolio in practice, the results depend on a range of different factors: portfolio
size, sample size, choice of prior, relationship between the risk-free rate and the
return of the minimum variance portfolio and – of course – the properties of the
returns themselves, to mention some of them.
The results of the thesis may seem disheartening. Nevertheless, applying a
Bayesian perspective to portfolio optimization still leads to several interesting
contributions. There are many aspects which have not been touched within the
scope of this thesis, such as computing credible intervals, studying more closely
the distributional properties of the weights in a Bayesian optimal portfolio, or
utilizing different risk measures.
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6 Appendix

6.1 Proof: CML and market portfolio

This proof is written with respect to the Jeffreys prior; the proof for the conjugate
prior and sample approach follows analogously.
Consider as in Figure 1 a line drawn from the point (0, rf ), where rf is the return
of the risk-free asset, up to the hyperbolic efficient frontier. The slope of such a
line, drawn up to the expected return and variance of a feasible portfolio P , can
be written as

RP − rf

SDP

= w⊤x̄t−1 − rf√
ck,nw⊤St−1w

, (7)

where w⊤x̄t−1 and St−1 are as in (2) and the results from Corollary 2.1 are used
in the right hand side of the equation.
Maximizing the slope of this line is equivalent to maximizing the Sharpe ratio,
since the left hand side of (7) is equal to the Sharpe ratio. In order to find the
weights of the CML and market portfolio we thus maximize the utility function

max w⊤x̄t−1 − rf√
ck,nw⊤St−1w

over vectors w ∈ Rk subject to the constraint w⊤1 = 1.
Forming the Lagrangian

F (w, λ) = w⊤x̄t−1 − rf√
ck,nw⊤St−1w

− λ(w⊤1 − 1),

and taking the gradient and equating it to zero yields

∇w F (w, λ) =

√
ck,nw⊤St−1w x̄t−1 − w⊤x̄t−1−rf√

ck,nw⊤St−1w
ck,nSt−1w

ck,nw⊤St−1w
− λ1 = 0.

After simplification and using the identities for variance/standard deviation and
expected return of the portfolio, this yields

RP − rf

VP

ck,nSt−1w = x̄t−1 − λSDP 1. (8)
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By multiplying from the left with w⊤ we get

RP − rf

VP

ck,nw⊤St−1w = RP − λSDP ,

so that
λ = rf

SDP

.

Setting γ = RP −rf

VP
in (8) now yields the equation

γck,nSt−1w = (x̄t−1 − rf1). (9)

Noting that γ depends on w, if we now let the weights in γ be parametrized, and
let n − k > 2 so that det St−1 ̸= 0, we can solve for the CML weights as

wCML = γ−1c−1
k,nS−1

t−1(x̄t−1 − rf1).

Assume now instead that we wish to solve (9) for the market portfolio weights,
which should sum to one. Using the constraint w⊤1 = 1 again yields

γ = 1⊤c−1
k,nS−1

t−1(x̄t−1 − rf1).

It then follows that the weights of the market portfolio are given by

wM = S−1
t−1(x̄t−1 − rf1)

1⊤S−1
t−1(x̄t−1 − rf1)

,

due to the fact that the constant ck,n is cancelled out in the numerator and de-
nominator. This also implies that the weights for the market portfolio is the same
for the conventional sample approach and the Jeffreys prior.
It is now necessary to confirm that γ ̸= 0 in the case of the market portfolio. This
can be shown by using the expected return of the minimum variance portfolio.
Now

RGMV = w⊤
GMV x̄t−1 = S−1

t−11
1⊤S−1

t−11
x̄t−1.

Following the assumption of rf < RGMV and 1⊤S−1
t−11 > 0, we now have

γ = 1⊤S−1
t−1 x̄t−1 − rf 1⊤S−1

t−11 > 0,

where
1⊤S−1

t−1 x̄t−1 = S−1
t−11 x̄t−1

due to the symmetry of S−1
t−1.
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The return of a CML portfolio can be expressed as

RCML,P = (w⊤
CML,P 1)w⊤

M x̄t−1 + (1 − w⊤
CML,P 1)rf .

Since the (co)variance of the risk-free return is assumed to be zero, the variance of
this portfolio can be attained using Corollary 2.3 and analogously for the conjugate
and sample case.
Interpreting again Equation (7) as the slope parameter of the CML, we can now
parametrize the line using SDP for some portfolio P so that the line is given by

(RP − rf ) = SDP

(
RM − rf

SDM

)
.

This also implies that the Sharpe ratio is equal for all portfolios along the CML.
□
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6.2 Results for longer sample periods

6.2.1 Empirical returns - 20 stocks

Table 14: Sharpe ratios, empirical (20 stocks, long)

Sample period (out-of-sample period) Conventional Jeffreys Conjugate Bear Conjugate Bull
1. 02-04-08 - 12-03-19 (12-03-26 - 14-03-17) 0.171 0.168 0.095 0.184
2. 04-04-05 - 14-03-17 (14-03-24 - 16-03-14) 0.164 0.160 0.091 0.180
3. 06-04-03 - 16-03-14 (16-03-21 - 18-03-12) 0.153 0.150 0.085 0.166
4. 08-03-31 - 18-03-12 (18-03-19 - 20-03-09) 0.186 0.182 0.104 0.200
5. 10-03-29 - 20-03-09 (20-03-16 - 22-03-07) 0.218 0.213 0.121 0.228

Table 15: Out-of-sample Sharpe ratios and p-values, empirical (20 stocks, long)

Sample period (out-of-sample period) 1/k Jeffreys / Conventional Conjugate Bear Conjugate Bull
1. 02-04-08 - 12-03-19 (12-03-26 - 14-03-17) 0.161 0.029 (0.12 / 0.12) 0.038 (0.15 / 0.15) 0.060 (0.23 / 0.24)
2. 04-04-05 - 14-03-17 (14-03-24 - 16-03-14) 0.077 0.122 (0.56 / 0.56) 0.122 (0.57 / 0.57) 0.117 (0.59 / 0.59)
3. 06-04-03 - 16-03-14 (16-03-21 - 18-03-12) 0.148 0.008 (0.25 / 0.25) 0.007 (0.25 / 0.25) -0.001 (0.21 / 0.20)
4. 08-03-31 - 18-03-12 (18-03-19 - 20-03-09) 0.001 0.026 (0.83 / 0.83) 0.018 (0.89 / 0.89) 0.016 (0.89 / 0.89)
5. 10-03-29 - 20-03-09 (20-03-16 - 22-03-07) 0.214 0.135 (0.57 / 0.56) 0.137 (0.58 / 0.57) 0.149 (0.64 / 0.63)
Cumulative Sharpe ratio 0.112 0.071 (0.44) 0.071 (0.45) 0.076 (0.49)
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6.2.2 Empirical returns - 10 stocks

Table 16: Sharpe ratio estimators, empirical (10 stocks, long)

Sample period (out-of-sample period) Conventional Jeffreys Conjugate Bear Conjugate Bull
1. 02-04-08 - 12-03-19 (12-03-26 - 14-03-17) 0.137 0.136 0.076 0.141
2. 04-04-05 - 14-03-17 (14-03-24 - 16-03-14) 0.136 0.134 0.075 0.140
3. 06-04-03 - 16-03-14 (16-03-21 - 18-03-12) 0.116 0.114 0.064 0.123
4. 08-03-31 - 18-03-12 (18-03-19 - 20-03-09) 0.147 0.145 0.082 0.150
5. 10-03-29 - 20-03-09 (20-03-16 - 22-03-07) 0.152 0.151 0.085 0.157

Table 17: Out-of-sample Sharpe ratios and p-values, empirical (10 stocks, long)

Sample period (out-of-sample period) 1/k Jeffreys / Conventional Conjugate Bear Conjugate Bull
1. 02-04-08 - 12-03-19 (12-03-26 - 14-03-17) 0.133 0.051 (0.26 / 0.28) 0.047 (0.25 / 0.27) 0.053 (0.28 / 0.31)
2. 04-04-05 - 14-03-17 (14-03-24 - 16-03-14) 0.082 0.086 (0.95 / 0.96) 0.088 (0.94 / 0.94) 0.091 (0.90 / 0.90)
3. 06-04-03 - 16-03-14 (16-03-21 - 18-03-12) 0.159 -0.106 (0.01 / 0.01) -0.113 (0.01 / 0.01) -0.125 (0.01 / 0.01)
4. 08-03-31 - 18-03-12 (18-03-19 - 20-03-09) 0.017 -0.009 (0.82 / 0.82) -0.015 (0.78 / 0.78) -0.015 (0.77 / 0.77)
5. 10-03-29 - 20-03-09 (20-03-16 - 22-03-07) 0.212 0.151 (0.63 / 0.63) 0.143 (0.59 / 0.59) 0.148 (0.61 / 0.61)
Cumulative Sharpe ratio 0.113 0.041 (0.13) 0.036 (0.11) 0.037 (0.10)
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6.2.3 Simulated returns - 20 stocks

Table 18: Sharpe ratio estimators, normal distribution (20 stocks, long)

Sample period (out-of-sample period) Conventional Jeffreys Conjugate Bear Conjugate Bull
1. 02-04-08 - 12-03-19 (12-03-26 - 14-03-17) 0.265 0.259 0.147 0.264
2. 04-04-05 - 14-03-17 (14-03-24 - 16-03-14) 0.289 0.283 0.161 0.291
3. 06-04-03 - 16-03-14 (16-03-21 - 18-03-12) 0.244 0.239 0.136 0.245
4. 08-03-31 - 18-03-12 (18-03-19 - 20-03-09) 0.263 0.258 0.147 0.272
5. 10-03-29 - 20-03-09 (20-03-16 - 22-03-07) 0.189 0.185 0.105 0.202

Table 19: Out-of-sample Sharpe ratios and p-values, normal distribution (20
stocks, long)

Sample period (out-of-sample period) 1/k Jeffreys / Conventional Conjugate Bear Conjugate Bull
1. 02-04-08 - 12-03-19 (12-03-26 - 14-03-17) 0.197 0.022 (0.24 / 0.24) 0.020 (0.24 / 0.24) 0.023 (0.23 / 0.24)
2. 04-04-05 - 14-03-17 (14-03-24 - 16-03-14) 0.001 0.009 (0.95 / 0.95) 0.018 (0.89 / 0.89) 0.032 (0.79 / 0.79)
3. 06-04-03 - 16-03-14 (16-03-21 - 18-03-12) -0.058 -0.022 (0.70 / 0.70) -0.017 (0.67 / 0.67) -0.001 (0.53 / 0.53)
4. 08-03-31 - 18-03-12 (18-03-19 - 20-03-09) -0.051 0.010 (0.54 / 0.53) 0.015 (0.51 / 0.51) 0.016 (0.51 / 0.50)
5. 10-03-29 - 20-03-09 (20-03-16 - 22-03-07) 0.075 -0.095 (0.05 / 0.05) -0.098 (0.05 / 0.05) -0.082 (0.07 / 0.06)
Cumulative Sharpe ratio 0.035 0.002 (0.58) 0.004 (0.61) 0.008 (0.63)
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6.2.4 Simulated returns - 10 stocks

Table 20: Sharpe ratio estimators, normal distribution (10 stocks, long)

Sample period (out-of-sample period) Conventional Jeffreys Conjugate Bear Conjugate Bull
1. 02-04-08 - 12-03-19 (12-03-26 - 14-03-17) 0.199 0.196 0.113 0.204
2. 04-04-05 - 14-03-17 (14-03-24 - 16-03-14) 0.253 0.250 0.144 0.263
3. 06-04-03 - 16-03-14 (16-03-21 - 18-03-12) 0.165 0.163 0.093 0.168
4. 08-03-31 - 18-03-12 (18-03-19 - 20-03-09) 0.200 0.197 0.111 0.200
5. 10-03-29 - 20-03-09 (20-03-16 - 22-03-07) 0.149 0.147 0.083 0.155

Table 21: Out-of-sample Sharpe ratios and p-values, normal distribution (10
stocks, long)

Sample period (out-of-sample period) 1/k Jeffreys / Conventional Conjugate Bear Conjugate Bull
1. 02-04-08 - 12-03-19 (12-03-26 - 14-03-17) 0.184 0.025 (0.24 / 0.24) 0.026 (0.25 / 0.25) 0.035 (0.27 / 0.27)
2. 04-04-05 - 14-03-17 (14-03-24 - 16-03-14) -0.023 -0.049 (0.81 / 0.81) -0.045 (0.84 / 0.84) -0.039 (0.88 / 0.88)
3. 06-04-03 - 16-03-14 (16-03-21 - 18-03-12) -0.078 0.011 (0.34 / 0.34) 0.018 (0.31 / 0.31) 0.037 (0.20 / 0.20)
4. 08-03-31 - 18-03-12 (18-03-19 - 20-03-09) -0.059 0.012 (0.46 / 0.46) 0.021 (0.41 / 0.41) 0.028 (0.36 / 0.35)
5. 10-03-29 - 20-03-09 (20-03-16 - 22-03-07) 0.106 0.010 (0.26 / 0.25) -0.004 (0.20 / 0.20) -0.015 (0.14 / 0.14)
Cumulative Sharpe ratio 0.026 0.004 (0.69) 0.007 (0.74) 0.013 (0.81)
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6.2.5 Robustness analysis - 20 stocks

Table 22: Sharpe ratio estimators, t-distribution (20 stocks, long)

Sample period (out-of-sample period) Conventional Jeffreys Conjugate Bear Conjugate Bull
1. 02-04-08 - 12-03-19 (12-03-26 - 14-03-17) 0.275 0.269 0.152 0.274
2. 04-04-05 - 14-03-17 (14-03-24 - 16-03-14) 0.278 0.272 0.155 0.283
3. 06-04-03 - 16-03-14 (16-03-21 - 18-03-12) 0.235 0.230 0.134 0.255
4. 08-03-31 - 18-03-12 (18-03-19 - 20-03-09) 0.235 0.230 0.134 0.251
5. 10-03-29 - 20-03-09 (20-03-16 - 22-03-07) 0.282 0.276 0.158 0.292

Table 23: Out-of-sample Sharpe ratios and p-values, t-distribution (20 stocks,
long)

Sample period (out-of-sample period) 1/k Jeffreys / Conventional Conjugate Bear Conjugate Bull
1. 02-04-08 - 12-03-19 (12-03-26 - 14-03-17) 0.041 0.055 (0.89 / 0.89) 0.052 (0.91 / 0.91) 0.039 (0.98 / 0.98)
2. 04-04-05 - 14-03-17 (14-03-24 - 16-03-14) -0.033 0.058 (0.43 / 0.43) 0.062 (0.41 / 0.42) 0.067 (0.38 / 0.38)
3. 06-04-03 - 16-03-14 (16-03-21 - 18-03-12) 0.083 -0.088 (0.24 / 0.25) -0.085 (0.25 / 0.26) -0.077 (0.26 / 0.27)
4. 08-03-31 - 18-03-12 (18-03-19 - 20-03-09) 0.090 0.075 (0.89 / 0.89) 0.074 (0.89 / 0.88) 0.079 (0.92 / 0.92)
5. 10-03-29 - 20-03-09 (20-03-16 - 22-03-07) 0.104 0.014 (0.46 / 0.45) 0.011 (0.45 / 0.44) 0.008 (0.43 / 0.42)
Cumulative Sharpe ratio 0.055 0.026 (0.59) 0.026 (0.59) 0.025 (0.58)
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6.2.6 Robustness analysis - 10 stocks

Table 24: Sharpe ratio estimators, t-distribution (10 stocks, long)

Sample period (out-of-sample period) Conventional Jeffreys Conjugate Bear Conjugate Bull
1. 02-04-08 - 12-03-19 (12-03-26 - 14-03-17) 0.230 0.228 0.132 0.241
2. 04-04-05 - 14-03-17 (14-03-24 - 16-03-14) 0.190 0.187 0.107 0.194
3. 06-04-03 - 16-03-14 (16-03-21 - 18-03-12) 0.144 0.142 0.080 0.142
4. 08-03-31 - 18-03-12 (18-03-19 - 20-03-09) 0.181 0.179 0.102 0.183
5. 10-03-29 - 20-03-09 (20-03-16 - 22-03-07) 0.164 0.162 0.091 0.168

Table 25: Out-of-sample Sharpe ratios and p-values, t-distribution (10 stocks,
long)

Sample period (out-of-sample period) 1/k Jeffreys / Conventional Conjugate Bear Conjugate Bull
1. 02-04-08 - 12-03-19 (12-03-26 - 14-03-17) 0.011 0.121 (0.22 / 0.22) 0.123 (0.22 / 0.22) 0.120 (0.22 / 0.23)
2. 04-04-05 - 14-03-17 (14-03-24 - 16-03-14) -0.041 -0.001 (0.72 / 0.72) 0.000 (0.71 / 0.71) -0.005 (0.74 / 0.74)
3. 06-04-03 - 16-03-14 (16-03-21 - 18-03-12) 0.060 -0.100 (0.27 / 0.27) -0.101 (0.27 / 0.27) -0.102 (0.26 / 0.26)
4. 08-03-31 - 18-03-12 (18-03-19 - 20-03-09) 0.074 0.071 (0.98 / 0.98) 0.069 (0.97 / 0.97) 0.069 (0.96 / 0.96)
5. 10-03-29 - 20-03-09 (20-03-16 - 22-03-07) 0.115 0.158 (0.66 / 0.67) 0.164 (0.62 / 0.63) 0.180 (0.50 / 0.51)
Cumulative Sharpe ratio 0.040 0.056 (0.75) 0.058 (0.73) 0.056 (0.75)
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