
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

A comparative study of binary classi�cation
performance with Logistic Regression,
Support Vector Machines and Arti�cial
Neural Networks

Liliya Trila

Matematiska institutionen

Kandidatuppsats 2024:2

Matematisk statistik

Januari 2024

www.math.su.se

Matematisk statistik

Matematiska institutionen

Stockholms universitet

106 91 Stockholm

Mathematical Statistics
Stockholm University
Bachelor Thesis 2024:2

http://www.math.su.se

A comparative study of binary classification

performance with Logistic Regression, Support

Vector Machines and Artificial Neural

Networks

Liliya Trila∗

January 2024

Abstract

Binary classification is a common task in machine learning, where
the goal is to categorize data into one of two classes. In this thesis we
compare three methods for binary classification: logistic regression,
support vector machines and artificial neural networks. The aim of
this project is to understand the similarities and differences between
these methods.

In the first part of the project, we present the theory related to
each method. We also do a theoretical comparison of the methods.

In the second part of this project we compare these methods on
both simulated and real-world data. To evaluate the performance of
each method we use the performance metrics accuracy and AUC. The
results show that logistic regression and support vector classifiers have
very similar performance when the data is linearly separable. The
performance of artificial neural networks tend to be slightly lower for
small and high-dimensional datasets. When the data is not linearly
separable artificial neural network models tend to perform slightly
better on lower-dimensional data while support vector machines with
an RBF kernel perform slightly better on higher-dimensional data.
But overall, their performance is quite comparable.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: liliatrila@gmail.com. Supervisor: Taras Bodnar and Johannes Heiny.

Acknowledgement

I would like to thank my supervisors Taras Bodnar and Johannes Heiny for their
valuable feedback during the writing of this thesis.

In this project, ChatGPT was used to gain a better understanding of certain topics
and, in some cases, to improve grammar.

3

Contents

1 Introduction 5

2 Theory 6
2.1 Logistic regression . 6

2.1.1 Description of the model . 6
2.1.2 Estimation of the parameters 8
2.1.3 Common issues during the training process 9

2.2 Support vector machines . 10
2.2.1 Support vector classifiers . 10
2.2.2 Support vector machines and kernels 13

2.3 Artificial neural networks . 15
2.3.1 Description of the model . 15
2.3.2 Backpropagation and gradient descent 17
2.3.3 Common issues during the training process 18

2.4 Theoretical comparison of the models 18
2.5 Model evaluation . 19

2.5.1 Confusion matrix . 19
2.5.2 ROC and AUC . 20
2.5.3 Cross validation . 21

3 Data and model fitting 21
3.1 Data . 21

3.1.1 Setup of the simulation study 21
3.1.2 Real-world data . 23

3.2 Model fitting . 24

4 Results 25
4.1 Simulated data . 25
4.2 Real-world data . 28

5 Discussion 28
5.1 Predictive power . 28
5.2 Improvements . 30
5.3 Conslusions . 30

6 References 31

4

1 Introduction

Machine Learning is a branch of computer science and artificial intelligence that
focuses on developing algorithms that are capable of learning meaningful patterns
from data and making predictions when presented with new, unseen data. One
common task in ML is classification, which involves categorizing data into different
classes or categories based on some features. In binary classification, the goal is to
categorize data into one of two classes.

In this thesis, we compare three methods for binary classification: Logistic Regres-
sion, Support Vector Machines, and Artificial Neural Networks.

Logistic regression (LR) originated in classical statistics. When using LR, the goal
is not only to obtain a good predictive model but also to explain the relationship
between variables [9].

Support vector machine (SVM) is a method that originated in the field of machine
learning. It takes a more geometrical approach to data classification [13].

Artificial neural networks (ANN) also originated in the field of machine learning.
These models were developed to mimic the learning process of biological neurons
[6].

Numerous studies have compared these methods, suggesting that artificial neural
network models tend to outperform both logistic regression and support vector
machines. However, there are also studies where this is not the case [3] [12] [11] [8]
[2].

The aim of this project is to explore the similarities and differences between these
methods and understand why some methods perform better than others.

In Section 2, we will describe the theory related to all methods and make a the-
oretical comparison. In Section 3, we will outline how the simulation study was
conducted and present the real data used in this project. In Section 4, we will
present the results, and in Section 5, we will discuss these results.

5

2 Theory

2.1 Logistic regression

The theory that describes logistic regression has been taken from [7] and [9].

2.1.1 Description of the model

Logistic regression is a widely used statistical method for classification that models
the probability of the response variable based on one or more predictor variables.
In binary classification, the response variable Y follows a Bernoulli distribution,
taking on binary values 0 and 1. The predictor variables x = (x1, x2, ..., xp)

T can
be continuous or categorical. The conditional probability P (Y = 1|x) is modeled
by applying the sigmoid function, also known as the logistic function, to the linear
combination of the explanatory variables. Mathematically it can be written as

P (Y = 1|x) = eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp
=

eβ0+βTx

1 + eβ0+βTx

=
1

1 + e−(β0+βTx)
,

(1)

where β0 is the intercept and β = (β1, ..., βp)
T is the vector of coefficients.

The sigmoid function is a so-called link function, and it is defined as

σ(z) =
ez

1 + ez
=

1

1 + e−z
. (2)

It is a continuous function that maps real-valued input values to an output in the
interval (0, 1). The curve of the sigmoid function is known for its characteristic
S-shape, which increases smoothly from 0 to 1 as the input value ranges from
negative infinity to positive infinity. This allows us to interpret the model’s output
as the probability that Y = 1, given the input variables. The shape of the sigmoid
function is shown in Figure 1.

6

−5 0 5

0

0.2

0.4

0.6

0.8

1

z

σ
(z
)

1
1+e−z

1
1+e−0.5z

1
1+e−2z

Figure 1: Plot of the sigmoid function σ(z) = 1
1+e−vz when v = 1 (black curve),

when v = 0.5 (dashed curve) and when v = 2 (grey curve). The figure is from [7]

The logistic regression model can also be expressed in terms of the log odds of the
probability P (Y = 1|x)

log

(
P (Y = 1|x)

1− P (Y = 1|x)

)
= β0 + β1x1 + ...+ βpxp

= β0 + βTx.

(3)

Unlike probabilities, which are constrained to the interval [0, 1], the log odds is
unbounded and can be estimated by the linear function β0 + βTx. This implies
that binary logistic regression is a linear model in the log odds of the probability
P (Y = 1|x). Consequently, each parameter βj (j = 1, ...p) can be interpreted as
the change in log odds of the conditional probability for a one-unit change in xj ,
assuming xj does not interact with other variables and that all other variables are
held constant.

To use logistic regression as a classification method, we must choose a threshold
c, and assign the class based on whether the predicted probability is above or
below this threshold. In other words, to classify a new observation x⋆, we begin
by calculating the predicted conditional probability P (Y ⋆ = 1|x⋆) by plugging x⋆

in the estimated logistic function. If the predicted probability is greater than or
equal to c, the point is classified as belonging to class 1, and if it is less than c, the
point is classified as belonging to class 0. The threshold is often set to be 0.5 and
geometrically it corresponds to a hyperplane β0 + βTx = 0, which separates the
feature space into two regions. Points lying on one side of the hyperplane have a
predicted probability of belonging to one class, while points lying on the other side
have a predicted probability of belonging to the other class.

7

2.1.2 Estimation of the parameters

The coefficients β0 and β are estimated using the Maximum Likelihood Estima-
tion (MLE) method, which aims to find the parameter values that maximize the
likelihood of observing the given data.

Suppose we have N independent datapoints {Yi,xi}Ni=1. The joint likelihood can
be expressed as a product of individual likelihoods

L(β0,β) =

N∏
i=1

pyi

i (1− pi)
1−yi , (4)

where yi denotes the outcome of the i-th response variable and pi denotes the
probability that Yi = 1 given xi.

It is often easier to maximize the log-likelihood, which is obtained by taking the
log of the likelihood function

ℓ(β0,β) =

N∑
i=1

{
yi log (pi) + (1− yi) log (1− pi)

}
. (5)

By substitituting 1

1+e−(β0+βT xi)
for pi and simplifying, the expression becomes

ℓ(β0,β) =

N∑
i=1

{
yi(β0 + βTxi)− log (1 + eβ0+βTxi)

}
. (6)

Optimizing this function requires the use of numerical methods and one common
choice is the Newton-Raphson algorithm. To apply this method, we need to com-
pute the gradient vector and the Hessian matrix of the log-likelihood function
ℓ(β0,β) with respect to the parameters β0 and β = (β1, ..., βp). For convenience,
we will include the intercept into the vector of coefficients β.

The gradient vector and the Hessian matrix are obtained by taking the first and
second partial derivatives of the log-likelihood function. They are given by the
formulas

∂ℓ(β)

∂β
=

N∑
i=1

(yi − pi)xi, (7)

∂2ℓ(β)

∂β2
= −

N∑
i=1

pi(1− pi)xix
T
i . (8)

The Newton-Raphson algorithm updates the parameters β iteratively by using the
following formula

βt+1 = βt −
(
∂2ℓ(β)

∂β2

)−1
∂ℓ(β)

∂β
, (9)

where the derivatives are evaluated at βt.

8

2.1.3 Common issues during the training process

Training a logistic regression model can present various challenges, including over-
fitting, collinearity, and the handling of linearly non-separable classes.

Overfitting occurs when a model learns the patterns of the training data too well
and captures noise. This leads to the model failing to generalize to new, unseen
data.

Collinearity is a term used to describe pairwise linear dependence among some or
all predictor variables, which can result in unstable estimates of the coefficients.
When variables are highly correlated, it might be difficult for the model to identify
the individual impact of each predictor variable on the response variable.

Lastly, as was described in section 2.1.1, logistic regression is inherently a linear
model and therefore can only produce linear decision boundaries.

Common ways to adress the first two problems is to use regularization, i.e adding
a penalty term to the loss function. Two popular types of regularization are Lasso
(L1 regularization) and Ridge (L2 regularization)

L1 regularization

ℓ(β0,β) =

N∑
i=1

{
yi(β0 + βTxi)− log (1 + eβ0+βTxi)

}
− λ

p∑
j=1

|βj |, (10)

L2 regularization

ℓ(β0,β) =

N∑
i=1

{
yi(β0 + βTxi)− log (1 + eβ0+βTxi)

}
− λ

p∑
j=1

β2
j . (11)

The intercept is usually not regularized because penalizing it often leads to un-
derfitting. The regularization parameter λ is used to control the strength of the
penalty term, with larger values of λ leading to stronger regularization. In L2 reg-
ularization, increasing λ asymptotically shrinks the weights towards zero, while in
L1 regularization, increasing λ can shrink the weights all the way to zero. Thus
the L1 method also works as a selection method, which means that it can remove
non-significant variables. It is also possible to combine these two regularization
types, and the resulting method is called elastic net.

To adress linearly non-separable classes, we can use basis expansion. Basis expan-
sion is a term that describes the process of transforming the vector of independent
variables x into a higher-dimensional space where classes can be separated by a
linear boundary. This is possible because linear models only need to be linear
in their coefficients. However, doing so often leads to overfitting, and therefore,
basis expansion is often used with one of the regularization methods described
above.

9

2.2 Support vector machines

The theory that describes support vector machines has been taken from [7] and
[13].

2.2.1 Support vector classifiers

The support vector classifier is another popular classification method. The main
idea of this method is to find a hyperplane that optimally separates the data into
two classes. This is achieved by maximizing the margin, denoted as M , which is
defined as the distance between the hyperplane and the nearest data point(s) from
each class (referred to as support vectors). The target variable Y takes on values
{−1, 1} and x = (x1, x2, ..., xp)

T is a set of independent variables. An illustration
of how the support vector classifier works is shown in Figure 2.

Mathematically, a hyperplane is described by the equation βTx + β0 = 0. The
vector β is called the normal vector because it is orthogonal to the surface of the
hyperplane and β0 is the bias term. For any point x0 lying on the hyperplane, the
dot product βTx0 is equal to − β0. This implies that the distance from the origin
to the hyperplane is given by β0

||β|| , where ||β|| denotes the magnitude of the vector

β. The signed distance from any point x to the hyperplane is given by the formula
1

||β|| (β
Tx+ β0).

1 2 3 4 5

2
4
6
8

10
12
14
16

2M
x

y

(a) The support vector classifier
in the case of perfect separability.

1 2 3 4 5

2
4
6
8

10
12
14
16

ξ1
ξ2

ξ3

2M
x

y

(b) The support vector classifier
in the case of overlapping classes.

Figure 2: The support vector classifier when classes are perfectly separable and

when classes overlap.

Hard margin

Suppose there are N datapoints {yi,xi}Ni=1. In the case of perfect separability
between classes, the problem of maximizing the margin M can be formulated as
follows

max
β0,β

M

Subject to
1

||β||
yi(β

Txi + β0) ≥ M, i = 1, ..., N.
(12)

The constraints guarantee that each data point is at least a signed distance of M

10

from the hyperplane, resulting in an empty margin around the boundary with a
width of 2M .

This problem can be simplified by multiplying both sides in the constraints by ||β||
and choosing ||β|| = 1

M . The result is that the right side of the constraints becomes
equal to 1 and it allows us to rewrite the problem as

min
β0,β

1

2
||β||2

Subject to yi(β
Txi + β0) ≥ 1, i = 1, ..., N.

(13)

This is a convex minimization problem (quadratic criterion with linear inequality
constraints) that can be solved using the method of Lagrange multipliers. The
function to be minimized with respect to the parameters β and β0 is

LP =
1

2
||β||2 −

N∑
i=1

αi[yi(β
Txi + β0)− 1]. (14)

This function is called the primal Lagrange function. However, in the case of
support vector classifiers, it is easier to optimize the dual Lagrange function, and it
allows us to use the kernel trick (which will be described in the next section).

To obtain the dual Lagrange function, we start by computing and setting the partial
derivatives of the primal function to 0. The resulting equations are

β =

N∑
i=1

αiyixi, (15)

0 =

N∑
i=1

αiyi. (16)

By substituting these equations back into the primal function, we obtain the dual
Lagrange function

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj . (17)

This function is maximized with respect to the parameters αi (i = 1, ..., N) under
the constraints (15), (16) and

αi ≥ 0, i = 1, ..., N,

αi[yi(β
Txi + β0)− 1] = 0, i = 1, ..., N.

(18)

From these constraints, we can see that if αi > 0, the corresponding point xi lies on
the margin and is a support vector. Furthermore, αi = 0 for all other points.

11

The vector of parameters β is estimated by plugging in the estimated α values into
the expression

β =

N∑
i=1

αiyixi. (19)

Because the α values for points that do not lie on the margin are 0, the vector β is
estimated through a linear combination of the support vectors.

The bias term is estimated by plugging in one of the support vectors {ys,xs}
into

α[y(βTx+ β0)− 1] = 0 (20)

and solving for β0.

To classify a new observation x⋆, we plug it into the estimated function

f(x⋆) = β̂Tx⋆ + β̂0. (21)

If the outcome is positive, then the point is classified as belonging to class 1, and
if it is negative, the point is classified as belonging to class -1.

Soft margin

If there are overlapping points, the problem of maximizing the margin M becomes
more complicated and we have to allow some points to be on the wrong side of
the margin. This is achieved by introducing slack variables ξ = (ξ1, ..., ξN) and
modifying the constraints as follows

1

||β||
yi(β

Txi + β0) ≥ M(1− ξi), i = 1, ..., N. (22)

The value ξi represents the proportional deviation from the margin, and all ξi ≥ 0.
A data point xi is correctly classified if ξi = 0. If 0 < ξi < 1, then the point is
on the correct side of the boundary but lies within the margin. A misclassfication
occurs when ξi > 1.

As in the case of perfectly separable classes, we can multiply both sides of the
constraints by ||β|| and choose ||β|| = 1

M . This results in the right side of the
constraints becoming equal to 1− ξi and the optimization problem becomes

min
β0,β

1

2
||β||2 + C

N∑
i=1

ξi

Subject to ξi ≥ 0, yi(β
Txi + β0) ≥ 1− ξi, i = 1, ..., N.

(23)

The term C
∑N

i=1 ξi bounds the total number of misclassifications. The param-
eter C controls the trade-off between achieving a wide margin and minimizing

12

the number of misclassifications. Smaller C creates a wider margin and allows
for more misclassifications, while larger C creates a smaller margin and thus fewer
misclassifications are allowed. The optimal value for C is determined through cross-
validation.

The Lagrange primal function to be minimized with respect to the parameters
β, β0 and ξi (i = 1, ..., N) is

LP =
1

2
||β||2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(β
Txi + β0)− (1− ξi)]−

N∑
i=1

µiξi. (24)

It is once again easier to optimize the dual Lagrange function and it is obtained in
the same way. The partial derivates of the primal function equated to 0 are

β =

N∑
i=1

αiyixi, (25)

0 =

N∑
i=1

αiyi, (26)

αi = C − µi, i = 1, ...N. (27)

And the dual Lagrange function is

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj . (28)

This function is maximized with respect to the parameters αi (i = 1, ..., N) under
the constraints (25)− (27) and

0 ≤ αi ≤ C,

αi[yi(x
T
i β + β0)− (1− ξi)] = 0,

µiξi = 0,

yi(x
T
i β + β0)− (1− ξi) ≥ 0,

(29)

for i = 1, ..., N.

2.2.2 Support vector machines and kernels

The support vector classifier described above is only suitable for data that is linearly
separable. To handle cases where classes are not linearly separable, we can use
basis expansion. Suppose that h(·) represents the transformation into a higher
dimensional space, then the dual Lagrange function can be written as

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj⟨h(xi), h(xj)⟩, (30)

13

where ⟨h(xi), h(xj)⟩ = h(xi)
Th(xj).

And the estimated classification function becomes

f(x) =β̂Th(x) + β̂0 (31)

=

N∑
i

α̂iyi⟨h(xi), h(x)⟩+ β̂0. (32)

We see that both functions only involve inner products of the transformed features.
This allows us to use the kernel trick, which is a way to perform computations in
the higher-dimensional space without explicitly computing the transformation h(·).
This is done by using a kernel function

K(x,x′) = ⟨h(x), h(x′)⟩ (33)

which computes inner products in the transformed feature space.

Some commonly used kernels are

Linear kernel: K(x,x′) = ⟨x,x′⟩,
d-th Degree polynomial kernel: K(x,x′) = (1 + ⟨x,x′⟩)d,

Radial basis kernel: K(x,x′) = exp(−γ||x− x′||2).
(34)

In this thesis we will use the linear kernel and the radial basis kernel. The lin-
ear kernel computes the inner products in the original feature space, while radial
basis function kernel computes the inner products in the infinitely dimensional
space.

The gamma parameter in the radial basis function (RBF) kernel decides how
strongly each training point influences the model. When gamma is low, each point
has a widespread effect, spreading the decision boundary. With high gamma, each
point has a localized impact, focusing the decision. However, if gamma is too high,
it might lead to overfitting.

14

2.3 Artificial neural networks

The theory that describes neural networks has been taken from [6], [7] and [1].

2.3.1 Description of the model

Artificial neural networks are a group of machine learning models inspired by the
structure and function of biological neural networks. They consist of interconnected
nodes or neurons, with weights assigned to the connections between them. These
neurons are organized into layers, with the first layer as the input layer and the
last layer as the output layer. The layers in-between are known as hidden layers
since their outputs are not directly observable. In this project we focused on fully-
connected feed-forward neural networks. In other words networks in which all
neurons in one layer are connected to all neurons in the next layer, with information
flowing only in one direction (from the input layer through one or more hidden layers
and to the output layer). An example of this type of network can be seen in Figure
2.

x1

x2

x3

x4

...

xp

h
(1)
1

h
(1)
2

h
(1)
3

...

h
(1)
M

h
(2)
1

h
(2)
2

h
(2)
3

...

h
(2)
K

p̂

Figure 3: A fully-connected feedforward neural network with 2 hidden layers

The architecture of a two-hidden-layer fully-connected feed-forward neural network
in more detail can be described as follows:

The input layer is defined by a set of input variables x = (x1, x2, ..., xp)
T with the

number of neurons matching the number of input features. The purpose of the
input layer is to pass the input data to the first hidden layer of the network.

In the first hidden layer, each neuron processes input data by computing a linear
combination of the variables and applying a non-linear activation function. Math-
ematically, this is expressed as

h(1)
m = f (1)

 p∑
j=1

w
(1)
mjxj + b(1)m

 , m = 1, ...,M, (35)

15

where w
(1)
mj represents the weight connecting the j-th input node to the m-th node

in the first hidden layer, b
(1)
m represents the bias term in the m-th node, f (1)()

represents the activation function, h
(1)
m is the output of the m-th neuron, and M is

the number of units in the first hidden layer.

This process is then repeated in the second hidden layer. Each neuron receives
the output data from the first hidden layer, computes a weighted sum of the vari-
ables, and applies a non-linear activation function. This can be described using the
following equation

h
(2)
k = f (2)

(
M∑

m=1

w
(2)
kmh(1)

m + b
(2)
k

)
, k = 1, ...,K. (36)

Here w
(2)
km represents the weight connecting the m-th node in the first hidden layer

to the k-th node in the second hidden layer, b
(2)
k represents the bias term in the

k-th node, f (2)() represents the activation function, h
(2)
k is the output of the k-th

node, and K is the number of neurons in the second hidden layer.

In this project we used the same activation function in both hidden layers. Acti-
vation functions play an important role in neural networks because they introduce
non-linearity to the model, allowing it to capture complex relationships between
the input and output data. Without a non-linear activation function, the neural
network would collapse into a linear model. One of the most commonly used acti-
vation functions is the Rectified Linear Unit (ReLU) function, which was used in
this project. It is defined as

g(z) = max{0, z}. (37)

This function returns z for all positive values of z and 0 for all negative values
of z. The reason it is commonly used as an activation function is because it is
very similar to a linear function which makes it computationally efficient and easily
differentiable, but at the same time it introduces non-linearity to the model. The
derivative is 0 for all negative values and 1 for all positive values. The deriva-
tive is undefined at z = 0, but in practice, one often selects one of the one-sided
derivatives.

Finally, the output layer takes as input the output data from the second hidden
layer and generates the predicted value. In binary classification, the output layer
consists of a single neuron that produces the probability that Y = 1. It is defined
as

p̂ = f (3)

(
K∑

k=1

w
(3)
k h

(2)
k + b(3)

)
. (38)

w
(3)
k represents the weight connecting the k-th node in the second hidden layer to

the output node, b(3) is the bias term, f (3) is the activation function, and p̂ is the
predicted outcome.

The activation function f (3)() is the sigmoid function. The reason for this is the
same as for logistic regression: it transforms an unbounded function into a proba-
bility.

16

More generally, when predicting a categorical variable with G categories, the neural
network’s output layer consists of G neurons. The activation function that is used
is the softmax function

Softmax(z)i =
ezi∑G
j=1 e

zj
. (39)

2.3.2 Backpropagation and gradient descent

Training a neural network means minimizing the loss function R(θ) with respect
to the parameters θ. In the case of binary classification, the most commonly used
loss function is the binary cross-entropy loss function, which measures the difference
between the predicted probability distribution and the true probability distribution
of the data. For a dataset with N datapoints {xi, yi}Ni=1, the binary cross-entropy
loss is defined as

R(θ) =
1

N

N∑
i=1

−
{
yi log (p̂i) + (1− yi) log (1− p̂i)

}
. (40)

Here, yi represents the outcome of the variable Yi, and p̂i is the predicted probability
that Yi = 1. The vector of parameters θ represents all the weights and biases present
in the model. In a two-hidden-layer network described above there are in total Mp
weights and M biases in the first layer, KM weights and K biases in the second
layer, and K weights and one bias in the output layer.

The most commonly used method to minimize the loss function is the gradient
descent method, which is a first-order optimization method that aims to find the
minimum of a function by iteratively adjusting the parameters in the direction of
steepest decrease of the gradient.

The update rule for the gradient descent method is

θt+1 = θt − α
∂R(θ)

∂θ
, (41)

where ∂R(θ)
∂θ is the gradient of the loss function evaluated at θt. The learning rate

α is a small positive value that determines the stepsize in each iteration.

The loss function can be written as a sum of individual losses

R(θ) =

N∑
i=1

Ri(θ). (42)

This fact can be used to derive different variants of the gradient descent method.
If we use the entire dataset to compute the gradient, the method is called batch
gradient descent. In this version of the method, the parameters are updated after
each epoch, i.e after one complete cycle through all datapoints in the training
process. Batch gradient descent works well when the dataset is small and there are
few parameters. However, for large datasets with many parameters, the algorithm
becomes very slow and, in some cases, it becomes computationally too expensive
to compute the gradient.

17

Other variants of gradient descent that work better for large datasets are stochastic
gradient descent and mini-batch gradient descent. In stochastic gradient descent,
the gradient is calculated on a single randomly selected datapoint from the dataset,
and the parameters are updated based on the gradient from that observation. In
mini-batch gradient descent, the gradient is computed on a small batch of randomly
selected datapoints from the dataset.

To compute the gradient of the loss function we use the backpropagation algorithm.
Because of the compositional form of the loss function this is done using the chain
rule of calculus, which allows us to break down the computation of the gradient into
simpler parts. The algorithm begins in the output layer and computes the partial
derivatives of the loss function with respect to the parameters in that layer. These
partial derivatives are then used to compute the derivatives of the loss function
with respect to the parameters in the previous layer, and this process is repeated
until the input layer is reached.

2.3.3 Common issues during the training process

Common challenges during the training process of neural networks include overfit-
ting and the handling of the non-convexity of the loss function.

Neural networks are very susceptible to overfitting because they have a lot of pa-
rameters, so it is important to apply some sort of regularization during training.
One common technique is to add a penalty term to the loss function

R(θ, λ) = R(θ) + λJ(θ), (43)

where J(θ) represents the regularization term.

Common penalty terms include L1 norm and L2 norm. They have been described
for logistic regression in section 2.1.3.

Another way to regularize a model is through early stopping, which involves stop-
ping the training process before the model reaches the global minimum. This is
usually done by dividing the training data into a training set used for updating
the model parameters and a validation set used for monitoring performance and
deciding when to stop training.

However, due to the non-convex nature of the loss function, there is no guarantee
that the optimization process will find the global minimum. There is always a
possibility it may get stuck on a local minimum or a saddle point. Therefore, it
is important to choose appropriate initial values and learning rate. If the learning
rate is too large, the algorithm might oscillate or even diverge. If it is too small, the
algorithm may converge too slowly. The initial values for the weights and biases in
a neural network are often set to small random values.

2.4 Theoretical comparison of the models

Both support vector classifiers and logistic regression are linear models and thus
are limited to linear decision boundaries.

18

The optimization problem for the soft margin classifier in (23) can be rewritten
as

min
β0,β

N∑
i=1

[
1− yi(β

Txi + β0)
]+

+
λ

2
||β||2, (44)

where
∑N

i=1[zi]
+ =

∑N
i=1 max{0, zi} is called the hinge loss.

So it can be written as the hinge loss + L2 penalty.

The hinge loss and the negative log-likelihood function (which is the negative of the
log-likelihood function) have been shown to have similar shapes [14]. This indicates
that logistic regression and support vector classifiers are expected to have similar
performance.

The negative log-likelihood function is also equivalent to the binary cross entropy
used in neural networks. Thus, artificial neural networks and logistic regression
use the same function to optimize the parameters. Both of these methods also
use the sigmoid function to convert a linear function into a probability. The main
difference lies in the fact that logistic regression applies the sigmoid function to
a linear combination of the input variables, while a neural network model applies
the sigmoid function to the linear combination of the outputs of the last hidden
layer. (Note that it can also be used as an activation function in hidden layers).
Because the activation functions in the hidden layers are not linear, the neural
network is thus a lot more flexible and can capture more complex relationships in
the data.

But logistic regression can use basis expansion and support vector classifiers can
be extended to support vector machines to become more flexible.

2.5 Model evaluation

The theory has been taken from [5] and [4].

2.5.1 Confusion matrix

In binary classification, a confusion matrix is a 2 × 2 matrix that summarizes the
performance of a classification method. The positive class is represented by Y = 1,
and the negative class is represented by Y = 0 (-1 for SVMs). The matrix contains
four values: true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN). These describe how well the model’s predicted classes align with
the true classes of the observations. The sums of column values correspond to the
actual number of observations in each class, and the sums of row values correspond
to the predicted number of observations in each class.

Real classes
1 0

Predicted 1 True Positives (TP) False positives (FP)
classes 0 False Negatives (FN) True Negatives (TN)

Table 1: A confusion matrix

19

From the confusion matrix, we can compute several metrics to evaluate the perfor-
mance of the model:

� Accuracy is the proportion of all observations that are correctly classified by
the model

Accuracy =
TP + TN

TP + TN + FP + FN
. (45)

� True positive rate, which is also called recall or sensitivity is the proportion
of observations that belong to class 1 that are correctly classified by the
model

TP rate =
TP

TP + FN
. (46)

� False positive rate is the proportion of observations that belong to class 0
that are uncorrectly classified as belonging to class 1 by the model

FP rate =
FP

FP + TN
. (47)

� Precision is the proportion of observations that are predicted to belong to
class 1 that actually belong to class 1.

Precision =
TP

TP + FP
(48)

� Specificity is the proportion of observations that belong to class 0 that are
correctly classified by the model.

Specificity =
TN

FP + TN
. (49)

� F1 Score is the harmonic mean of recall and precision.

F1 Score = 2 · Precision ·Recall

Precision+Recall
(50)

2.5.2 ROC and AUC

A Receiver Operating Characteristic (ROC) curve is a graphical representation of a
binary classification model’s performance at different classification thresholds. The
true positive rate (sensitivity) is plotted on the y-axis, while the false positive rate
(1 - specificity) is plotted on the x-axis. The diagonal line, where the true positive
rate equals the false positive rate, represents the performance expected from random
guessing. AUC is the area under the ROC graph. AUC ranges from 0 to 1, and
the higher the AUC the better the performance of a classification method.

Figure 4 shows an example of a ROC-graph.

20

Figure 4: A ROC curve created in R.

2.5.3 Cross validation

Cross validation is a method that is used to evaluate the model performance. In
the simplest form, data gets divided into two groups, a training and a test set.
The training set is used to estimate the parameters, i.e to train the model and
the test set is used to evaluate the model performance. In more advanced kind
of cross validation, which is called k-fold cross validation, data gets divided into k
groups and one of the subsets is chosen for testing and the rest of them are used for
training. This is repeated k times, so that each subset is used for testing exactly
once. The performance measures are computed for each test set and the final result
is obtained by averaging those.

3 Data and model fitting

3.1 Data

To compare the three methods described above, we tested their predictive power
using both simulated and real-world data.

3.1.1 Setup of the simulation study

In this simulation study, we generated datasets with different characteristics and
compared the predictive power of the methods. Each dataset was split into a
training set (80%) and a testing set (20%). To get more accurate results, each
simulation experiment was repeated 30 times.

21

In Experiment 1 and 2 and in the first part of Experiment 3, the response variable
was simulated using the logistic function. In other words, we first computed some
function of the independent variables and then applied the sigmoid function

P(Y = 1|x) = 1

1 + e−(f(x))
. (51)

After that, we used the rbinom function in R to get the outcome of a Bernoulli
random variable with that probability.

Experiment 1

In the first experiment, the aim was to investigate the predictive performance of
the methods while varying the number of observations (N) and predictors (p). We
simulated datasets with 10, 30, 50, and 100 continuous predictors and with 500
and 2000 observations. The predictor variables were simulated from a standard
multivariate normal distribution.

The response variable was generated using a linear function

f(x) = β0 + βTx. (52)

Each element of the vector of coefficients β was drawn independently from a uniform
random variable on the interval (1.5, 2.5), and the intercept β0 was manually chosen
to achieve a balanced distribution of classes. These coefficients were simulated once
and used in all 30 simulations.

Experiment 2

In the second experiment, the aim was to investigate the predictive performance
of the methods while varying the number of observations and the number of cate-
gorical predictors. We simulated datasets with 7, 10, and 15 predictors (5 of which
were continuous) and with 500 and 2000 observations. The continuous variables
were simulated from a standard multivariate normal distribution. The categorical
variables were generated by first simulating standard uniform random variables and
then dividing them into 4 bins, resulting in categorical predictors with 4 categories.
After that, these variables got transformed into dummy variables.

The response variable was generated using this function

f(x) = β0 + βTx+

m∑
j=1

3∑
k=1

βjkdjk. (53)

Here, m is the number of categorical predictors, and djk represents the k-th dummy
variable in the j-th categorical predictor.

All coefficients were once again drawn independently from a uniform random vari-
able on the interval (1.5, 2.5), and the intercept β0 was chosen subsequently to get
a balanced distribution of classes. These coefficients were used in all 30 simula-
tions.

Experiment 3

22

In the third experiment, the goal was to investigate how the classifiers would per-
form on data that cannot be separated by a single linear decision boundary. We
generated two datasets with 500 observations and 2 predictor variables. We de-
cided to only have two predictors because it allowed us to visualise the decision
boundary.

Part 1

In the first dataset, the predictor variables were simulated from a standard bivariate
normal distribution.

The response variable was modeled using this function

f(x) = β0 + β1x
2
1 + β2x2. (54)

The coefficients were chosen to be β1 = 4, β2 = −4 and β0 = −3.17.

Part 2

For the second dataset we simulated data with four distinct clusters. Each cluster
was generated from a bivariate normal random variable with a unique mean vector
and the identity covariance matrix. The first two clusters, representing the positive
class (y = 1), were chosen to have mean vectors (1.5, 1.5) and (−1.5,−1.5), while
the remaining two clusters, representing the negative class (y = 0), were chosen to
have mean vectors (1.5,−1.5) and (−1.5, 1.5). Both variables got standardized and
the R function sample was used to shuffle the data.

3.1.2 Real-world data

For the real data, we used two datasets obtained from the UCI machine learning
repository. To evaluate the performances of the classification methods, we decided
to use 5-fold cross-validation. We used the R package caret to create folds. Before
fitting the models, the continuous variables got normalized and the binary variables
got transformed into dummy variables.

Breast Cancer Wisconsin (Diagnostic) dataset

The first dataset that we used contains 569 observations and 31 variables. 30 of
these variables are continuous and computed from images of a breast mass, describ-
ing various characteristics of the cells present in the images. The last variable is a
binary response variable indicating whether these cells are malignant (cancerous)
or benign (non-cancerous). Out of the 569 observations, 357 are classified as benign
and 212 as malignant. Some of the variables are higly correlated.

Early stage diabetes risk prediction dataset

The second dataset that we used consists of 520 observations and 17 variables. The
response variable indicates whether a patient is diabetic or not. Among the 16
predictors, 15 are binary and include factors such as the patient’s gender and (yes-
no) responses to questions regarding symptoms or experiences that are associated
with diabetes such as if the patient has experienced sudden weight loss or visual
blurring. There is one continuous variable and it represents patient’s age. Out of
the 520 observations, 320 are classified as diabetic (positive), and 200 are classified
as non-diabetic (negative).

23

3.2 Model fitting

Logistic regression

The logistic regression models were fitted using the glmnet package in R. We used
the L2 regularized version of logistic regression, and the value for λ was chosen
through 5-fold cross-validation. (We decided to use L2 regularized version to avoid
overfitting and because the breast cancer dataset has correlated predictors)

Support vector machines

The SVM models were fitted using the e1071 package in R. The hyperparameters,
namely C and γ, were selected through 5-fold cross-validation. In experiments 1
and 2, we used the linear kernel and in experiment 3, the radial basis kernel was
used. For real-world datasets, we fitted models with both kernels.

Artificial neural networks

The neural network models were fitted using the keras package in R. We used the
mini-batch gradient descent method with a batch size or 50 to train the models,
and the learning rate was set to 0.03. To prevent overfitting, we employed early
stopping. To determine the optimal architecture of the neural network, we used
cross-validation. We divided the training set into three sets: a training set, a
validation set and a test set. A total of 240 models were generated, with the
number of hidden units in the first layer ranging from 1 to 15 and in the second
layer from 0 to 15. For each model, accuracy was computed, and the model with
the highest accuracy was selected. All models were trained for a maximum of 300
epochs. When the optimal number of neurons was obtained, we divided the entire
training data into a training set (90%) and a validation set (10%) and the training
process stopped if the validation loss started to increase.

24

4 Results

Once the models were trained, we evaluated their performance on the test data
using the accuracy and AUC as performance metrics. For real data, as mentioned
earlier, we employed 5-fold cross-validation to test the model performance.

4.1 Simulated data

Experiment 1

Model N p Accuracy AUC

LR 0.9197 (0.023) 0.9778 (0.009)
SVC 500 10 0.9167 (0.024) 0.9770 (0.011)
ANN 0.9096 (0.024) 0.9711 (0.012)

LR 0.927 (0.016) 0.9834 (0.009)
SVC 500 30 0.93 (0.023) 0.9844 (0.008)
ANN 0.9193 (0.024) 0.9779 (0.01)

LR 0.9177 (0.027) 0.9768 (0.017)
SVC 500 50 0.9183 (0.034) 0.9790 (0.012)
ANN 0.8853 (0.054) 0.9529 (0.035)

LR 0.875 (0.030) 0.9586 (0.017)
SVC 500 100 0.877 (0.034) 0.9568 (0.021)
ANN 0.8033 (0.046) 0.8880 (0.041)

(a) Results for N = 500.

Model N p Accuracy AUC

LR 0.9183 (0.015) 0.9779 (0.006)
SVC 2000 10 0.9174 (0.016) 0.9776 (0.006)
ANN 0.9148 (0.016) 0.9752 (0.007)

LR 0.9432 (0.011) 0.9897 (0.003)
SVC 2000 30 0.9412 (0.009) 0.9889 (0.003)
ANN 0.938 (0.014) 0.9864 (0.004)

LR 0.9523 (0.012) 0.9932 (0.003)
SVC 2000 50 0.9528 (0.012) 0.9928 (0.003)
ANN 0.9486 (0.01) 0.9905 (0.004)

LR 0.9458 (0.010) 0.9889 (0.005)
SVC 2000 100 0.9484 (0.012) 0.9918 (0.003)
ANN 0.9439 (0.014) 0.9909 (0.004)

(b) Results for N = 2000.

Table 2: Experiment 1: The mean value and standard deviation for accuracy and

AUC for different N and p.

Experiment 2

Model N p Accuracy AUC

LR 0.8823 (0.03) 0.9574 (0.017)
SVC 500 7 0.882 (0.03) 0.9554 (0.018)
ANN 0.8703 (0.033) 0.9456 (0.019)

LR 0.879 (0.03) 0.9574 (0.016)
SVC 500 10 0.8793 (0.028) 0.9556 (0.016)
ANN 0.8403 (0.0411) 0.9263 (0.032)

LR 0.8773 (0.03) 0.9477 (0.022)
SVC 500 15 0.864 (0.034) 0.9436 (0.022)
ANN 0.813 (0.0436) 0.8743 (0.0357)

(a) Results for N = 500.

Model N p Accuracy AUC

LR 0.8869 (0.015) 0.9575 (0.008)
SVC 2000 7 0.8868 (0.016) 0.9573 (0.008)
ANN 0.8815 (0.0154) 0.9545 (0.008)

LR 0.8898 (0.016) 0.9621 (0.009)
SVC 2000 10 0.889 (0.016) 0.9618 (0.009)
ANN 0.8844 (0.0173) 0.9588 (0.0104)

LR 0.8952 (0.014) 0.9669 (0.006)
SVC 2000 15 0.8957 (0.016) 0.9659 (0.007)
ANN 0.8911 (0.018) 0.9616 (0.008)

(b) Results for N = 2000.

Table 3: Experiment 2: The mean value and standard deviation for accuracy and

AUC for different N and p.

25

Experiment 3

Part 1

(a) Logistic Regression (b) Support vector machine

(c) Neural Network

Figure 5: Experiment 3 part 1: Predicted decision boundaries for the first simulated

test dataset.

Model Accuracy AUC
LR 0.74 (0.038) 0.8169 (0.037)
SVM 0.884 (0.03) 0.9579 (0.015)
ANN 0.906 (0.029) 0.9674 (0.014)

Table 4: Experiment 3 part 1: The mean value and standard deviation for accuracy

and AUC

26

Part 2

(a) Logistic Regression (b) Support vector machine

(c) Neural Network

Figure 6: Experiment 3 part 2: Predicted decision boundaries for the first simulated

test dataset.

Model Accuracy AUC
LR 0.467 (0.08) 0.4567 (0.04)
SVM 0.8877 (0.04) 0.9414 (0.03)
ANN 0.888 (0.04) 0.9551 (0.023)

Table 5: Experiment 3 part 2: The mean value and standard deviation for accuracy

and AUC.

27

4.2 Real-world data

Method Accuracy AUC
LR 0.9738 0.9938
SVC 0.9772 0.9949
SVM 0.9298 0.9859
ANN 0.9685 0.9940

Table 6: The average accuracy and AUC obtained with 5-fold cross-validation for

the breast cancer dataset.

Method Accuracy AUC
LR 0.9231 0.9757
SVC 0.9307 0.9666
SVM 0.9750 0.9940
ANN 0.9500 0.9809

Table 7: The average accuracy and AUC obtained with 5-fold cross-validation for

the diabetes dataset.

5 Discussion

5.1 Predictive power

Experiment 1 and 2

In Table 2, the results from the first experiment are presented.

In the case N = 500 the average accuracy and AUC scores are very similar for the
LR and the SVC models for all p, while the average scores for the ANN models
are slightly lower when p = 10, 30 and the difference increases as the number of
predictors increases. We can see that the average scores seem to increase slightly as
we go from 10 to 30 predictors for all methods, but after that, they decrease. The
most rapid decrease happens for the ANN models. These results are quite expected.
The increase in the number of predictors leads to a higher number of parameters in
the model. This, in turn, makes it more computationally challenging to train the
model and thus more data is needed. Because ANN have more parameters than
the other models, they are more affected by the increase in dimensionality.

In the case N = 2000, the average scores for all models are quite similar, with
marginal differences between the classifiers. However we observe quite unexpected
results. The average scores for accuracy and AUC seem to increase for all models
as p increases (although it appears to reverse when p = 100). One possible expla-
nation that we could find for this lies in the way we simulated the data. During the
simulation process, the first step in computing the response variable was to calcu-
late a linear combination of the predictors. Since these predictors were simulated
from standard normal random variables, the sum was also normally distributed
with a variance equal to the sum of individual variances (since the predictors were
independent). Thus adding more variables increased the variance and in turn led

28

to more separated classes.[10] In other words, the improved performance is not due
to the models becoming better at separating the data, but because the data is more
separated. This could probably have been avoided if we let the magnitude of the
vector of coefficients be equal to 1.

In Table 3, the results for the second experiment are summarized.

In the case N = 500, the average scores for the LR and SVC models are very similar.
The average scores for the ANN model is similar to the LR and SVC models when
p = 7, however, as p increases, the predictive performance of the ANN models
decreases more rapidly.

In the case N = 2000, all models have similar performance, and the difference
between classifiers stays more or less the same as p increases. We can see that the
average values for accuracy and AUC increase as p increases in the case of mixed
variables too, but not as much. Likely due to the fact that the variance of the sum
of the predictors doesn’t increase as much.

Experiment 3

In Table 4 and Figure 5 the results for the first part of experiment 3 are presented.
We see that the model with the best predictive performance is the ANN model,
followed by the SVM model with the RBF kernel. As expected, the LR model
is not capable of capturing the non-linearity of the data, as illustrated in Figure
5. However, it still performs reasonably well in terms of the performance metrics.
Even though the LR model cannot handle non-linear patterns, its straight-line
decision boundary still does a pretty good job of separating the data in this case.
Both the ANN and the SVM model are capable of producing the correct decision
boundary. In Figure 5, we can see that both methods generate very similar decision
boundaries.

In Table 5 and Figure 6 the results for the second part of experiment 3 are presented.
We see that the ANN model is once again the best model in terms of predictive
power, but the difference between the ANN and SVM with the RBF kernel is very
small. In Figure 8, we see that both models are capable of generating correct
decision boundaries. The LR model, on the other hand, performs very poorly. The
accuracy and AUC scores indicate that it performs worse than if the model would
just predict the same class every time.

Real data

In Table 6, the results for the breast cancer dataset are presented. The method with
the highest accuracy and AUC is the SVC model, followed by the LR model. The
ANN model has slightly lower performance, but the difference between classifiers
is quite small. The SVM model with the RBF kernel has overall good performance
but lower than the other methods. Both SVC and LR produce linear (hyperplane)
decision boundaries, leading us to conclude that the classes in this dataset can be

29

effectively separated with a hyperplane. Thus, using the SVM with RBF kernel
probably leads to overfitting.

In Table 7 the results for the diabetes dataset are presented. The model with the
highest accuracy and AUC is the SVM model with the RBF kernel, followed by the
ANN model. The LR and SVC models both have very good performance but lower
than the orther methods. This makes us conclude that there is some non-linearity
in this data, but that a hyperplane is able to separate the classes pretty well.

5.2 Improvements

In this study, we only looked at the predictive power of the methods, but it would
also be interesting to look at the interpretabilty of the models. In real-life appli-
cations, it is often important to try and understand the relationship between the
response variable and the explanatory variables, especially when trying to under-
stand what factors play a role in the development of a serious disease like cancer
or diabetes.

Another improvement that we could do would be to use a different simulation
method to avoid the problem that we encountered in this simulation study.

5.3 Conslusions

In this study, we compared three methods for binary classification: logistic regres-
sion, support vector machines, and artificial neural networks. The results indicate
that LR and SVC models exhibit very similar performance when the data can be
separated by a hyperplane. On small and high-dimensional datasets, ANN models
seem to have worse performance. However, for larger datasets, their performance
becomes comparable to the other methods.

For data that cannot be separated by a linear boundary (hyperplane), there is
some indication that LR and SVC models still perform similarly, but they exhibit
worse performance compared to the ANN and SVM models. ANN models tend to
perform slightly better on lower-dimensional data, while SVM with an RBF kernel
performs better on higher-dimensional data. Overall, their performance is quite
comparable.

30

6 References

[1] Charu C. Aggarwal. Neural Networks and Deep Learning. 2018.

[2] P Amini et al. “Evaluating the High-Risk Groups for Suicide: A Com-
parison of Logistic Regression, Support Vector Machine, Decision Tree,
and Artificial Neural Network”. In: Iranian Journal of Public Health
45.9 (2016), pp. 1179–1187.

[3] A Arora et al. “Comparison of logistic regression, support vector ma-
chines, and deep learning classifiers for predicting memory encoding
success using human intracranial EEG recordings”. In: Journal of Neu-
ral Engineering 15.6 (Dec. 2018), p. 066028. doi: 10.1088/1741-
2552/aae131.

[4] Geoff Dougherty. Pattern Recognition and Classification. 2013.

[5] Tom Fawcett. An introduction to ROC analysis. 2005.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[7] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Ele-
ments of Statistical Learning. 2nd ed. 2009.

[8] RW Issitt et al. “Classification Performance of Neural Networks Versus
Logistic Regression Models: Evidence From Healthcare Practice”. In:
Cureus 14.2 (Feb. 2022), e22443. doi: 10.7759/cureus.22443.

[9] Frank E. Harrell Jr. Regression Modeling Strategies. 2nd ed. 2015.

[10] Amanda Möller. Predictive Power of Logistic Regression versus Ran-
dom Forest: A simulation study. 2019. url: https://www.math.su.
se/publikationer/uppsatsarkiv/.

[11] Joachim Sester et al. “A comparative study of support vector ma-
chine and neural networks for file type identification using n-gram
analysis”. In: Forensic Science International: Digital Investigation 36
(2021). DFRWS 2021 EU - Selected Papers and Extended Abstracts
of the Eighth Annual DFRWS Europe Conference, p. 301121. issn:
2666-2817. doi: https://doi.org/10.1016/j.fsidi.2021.301121.
url: https://www.sciencedirect.com/science/article/pii/
S2666281721000184.

[12] SH Teshnizi and SM Ayatollahi. “A Comparison of Logistic Regression
Model and Artificial Neural Networks in Predicting Student’s Aca-

31

https://doi.org/10.1088/1741-2552/aae131
https://doi.org/10.1088/1741-2552/aae131
http://www.deeplearningbook.org
https://doi.org/10.7759/cureus.22443
https://www.math.su.se/publikationer/uppsatsarkiv/
https://www.math.su.se/publikationer/uppsatsarkiv/
https://doi.org/https://doi.org/10.1016/j.fsidi.2021.301121
https://www.sciencedirect.com/science/article/pii/S2666281721000184
https://www.sciencedirect.com/science/article/pii/S2666281721000184

demic Failure”. In: Acta Informatica Medica 23.5 (Oct. 2015), pp. 296–
300. doi: 10.5455/aim.2015.23.296-300.

[13] Vladimir Vapnik. The nature of statistical learning theory. 1995.

[14] Ji Zhu and Trevor Hastie. “Kernel Logistic Regression and the Im-
port Vector Machine”. In: Journal of Computational and Graphical
Statistics 14.1 (2005), pp. 185–205. doi: 10.1198/106186005X25619.

32

https://doi.org/10.5455/aim.2015.23.296-300
https://doi.org/10.1198/106186005X25619

