
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Comparative Analysis of Bayesian Logistic
Regression Using Gibbs and Metropolis-Hastings
Sampling with Diverse Prior Distributions

Xin Tang



Matematiska institutionen

Kandidatuppsats 2024:3

Matematisk statistik

Januari 2024

www.math.su.se

Matematisk statistik

Matematiska institutionen

Stockholms universitet

106 91 Stockholm



Mathematical Statistics
Stockholm University
Bachelor Thesis 2024:3

http://www.math.su.se

Comparative Analysis of Bayesian Logistic

Regression Using Gibbs and

Metropolis-Hastings Sampling with Diverse

Prior Distributions

Xin Tang∗

January 2024

Abstract

Investigating the convergence properties of MCMC algorithms is
crucial for Bayesian logistic regression, because it is closely related
to the accuracy of posterior distribution estimates. Effective con-
vergence is particularly key to enhancing the reliability and preci-
sion of Bayesian logistic regression models, which are widely used to
solve classification problems in fields such as medicine, biostatistics,
finance, and more. This thesis utilizes diverse diagnostic tools to ex-
plore and compare the convergence performance of posterior sampling
in Bayesian logistic regression using various MCMC algorithms, such
as Gibbs Sampling and Metropolis-Hastings random walk, in combi-
nation with different prior assumptions, including normal, Student’s
t, and Cauchy distributions. The primary motivation of this paper
is to provide guidance for selecting MCMC algorithms and prior as-
sumptions in Bayesian logistic regression contexts through the exper-
imental results. The primary conclusion of this research is that Gibbs
Sampling, in contrast to the Metropolis-Hastings random walk, consis-
tently attains quicker convergence and superior sampling effectiveness
across all three of our predetermined prior assumptions. This holds
for both low and high correlation scenarios within our simulated data.
Moreover, normal priors contribute to higher sampling effectiveness for
Gibbs models, and they also lead to faster convergence for Metropolis-
Hastings models than Student’s t and Cauchy priors.
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1 Introduction
The article begins with logistic regression. Logistic regression, a key statistical method for
binary or categorical outcomes, is especially useful in predicting event probabilities. Widely
applied in fields like medicine, social science, marketing, and econometrics, it is used for tasks
such as disease risk assessment, voter behavior analysis, and customer purchase propensity
prediction.

Bayesian logistic regression, integrating prior knowledge, enhances model interpretability
and prediction accuracy. It treats parameters as random variables, offering uncertainty
measures in parameter estimates, a feature traditional logistic regression lacks. Additionally,
Bayesian approaches adapt well to complex data structures, like missing data or hierarchical
data. Precisely for this reason, the ability of Bayesian logistic regression to provide insights
into the uncertainty of predictions and to handle complex models with hierarchical structures
makes it also valuable for various applications in machine learning.

In Bayesian logistic regression research, a major challenge is the difficulty in analytically
calculating the posterior distribution of parameters. This is primarily because, according
to Bayes’ theorem, the posterior distribution is the product of the likelihood and the prior
distribution divided by the marginal density integral, which often results in a complex form.
Especially, the marginal density integral in the denominator is hard to compute analyti-
cally. Moreover, the involvement of the sigmoid function in logistic regression models further
complicates the integral solution. Consequently, MCMC (Markov Chain Monte Carlo, here-
inafter referred to as MCMC) algorithms are typically introduced. MCMC avoids the ne-
cessity of solving complex integrals directly. This numerical approach is particularly useful
in situations where analytical solutions are hard to obtain or computationally expensive.

Given the widespread application of Bayesian logistic regression and the significance of
MCMC algorithms in obtaining posterior distributions of parameters, this thesis focuses
on comparing different MCMC algorithms combined with various prior information. The
comparison will be made in terms of convergence, multi-chain mixing, model complexity,
fitting and so on. The primary motivation of this paper is to provide guidance for selecting
prior assumptions and MCMC algorithms in Bayesian logistic regression contexts through
experimental results. Different combinations of MCMC algorithms and prior assumptions
yield varying levels of convergence and reliability. Knowing this variability is crucial for
selecting the most effective and reliable sampling methods in Bayesian logistic regression to
model real-world problems.

In this paper, I will utilize three commonly used informative priors: the normal distribu-
tion, Student’s t-distribution, and the Cauchy distribution. The normal distribution prior
is generally applied to depict the symmetry and centrality in parameter distributions. In
contrast, heavy-tailed distributions such as the t-distribution and the Cauchy distribution
are more effective for handling outliers and improving model robustness. Additionally, my
research will concentrate on two prevalent MCMC algorithms: Gibbs Sampling by using
PG (Pólya-Gamma, hereinafter referred to as PG) augmentation and the MH (Metropolis-
Hastings, hereinafter referred to as MH) random walk.

The choice of these two MCMC algorithms is based on several considerations. Firstly,
both Gibbs and MH algorithms are fundamental in the realm of MCMC and are widely
used in practical applications. Secondly, Gibbs and MH algorithms show unique advantages
in handling different types of data and models. For example, Gibbs is suitable for scenarios
where conditional distributions are easily manageable, while MH is applicable to a broader
range of situations. This makes them suitable for comparative analysis in this paper.
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In the upcoming chapters, I will introduce the theoretical background relevant to this
paper from Chapter 2 to Chapter 6. Chapter 7 will be dedicated to introducing the simulated
data, followed by Chapter 8, which presents the experimental results. Chapter 9 will be the
discussion section of this thesis, covering issues encountered during the experimental process
and the subsequent reflections.

It is worth mentioning that due to the lack of existing libraries and function support,
I have reimplemented the following content in R. These include: Gibbs sampling by using
PG augmentation combined with a Gaussian prior, based on the paper by Polson et al.
[12]; Gibbs sampling by using PG augmentation combined with heavy-tailed distributions,
namely the Student’s t-distribution and the Cauchy distribution, based on the paper by
Ghosh et al. [10]; MH random walk algorithms combined with three different priors (normal,
Student’s t, and Cauchy distributions), based on the book by Held et al. [11]; and the
improved Split-R̂ method and rank plot, based on the paper by Vehtari et al. [13]. The
pseudocode for part of these algorithms will be provided in subsequent chapters.
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2 Theoretical Framework of Logistic Regression
In the realm of statistical analysis, logistic regression stands as a pivotal model for the
exploration and interpretation of categorical response data. Its utility is most pronounced
in scenarios where the response variable under study is dichotomous, thereby encapsulating
outcomes in a binary format. This section outlines the basic concepts and mathematical
formulation of the logistic regression model, providing a pathway to comprehend the rela-
tionship between a binary response and one or more explanatory variables. The content of
this section is based on Chapter 5 of the work by Agresti et al. [4].

2.1 Logistic Regression Model
Envision an empirical setting where we are presented with N observations. Each observation
is associated with a binary response variable Y , exhibiting possible values of either 0 or
1. Accompanying these responses are M predictor variables, collectively represented by
Xi = (X1i, X2i, . . . , XMi) for the ith observation. The core objective of logistic regression is
to model the probability π(Xi) that Yi will equal 1 given the predictors Xi. This relationship
is articulated through the equation:

π(Xi) = P (Yi = 1|Xi) =
eηi

1 + eηi
, (1)

where ηi = βTXi is the linear predictor. The logistic regression model employs a link
function to connect the linear predictor to the probability scale. This link function in the
context of logistic regression is the logit function, which expresses the log odds of the binary
outcome:

logit(π(Xi)) = log

(
π(Xi)

1− π(Xi)

)
= ηi. (2)

2.2 Link Function in Logistic Regression
In the logistic regression framework, the ’link function’ is a critical component that facilitates
the modeling of a binary response variable on a continuous scale. It transforms the predicted
log odds of the outcome into a probability bounded between 0 and 1. Specifically, the logit
link function is defined as the natural logarithm of the odds of π(Xi):

log

(
π(Xi)

1− π(Xi)

)
= β⊤Xi. (3)

In logistic regression, the coefficient β represents the change in the log odds of the
outcome for a one-unit increase in the corresponding predictor variable. Exponentiating
these coefficients transforms them into odds ratios, which describe the relative effect of the
predictor variables on the odds of the outcome.

Within the framework of frequentist statistics, the parameters of the logistic regression
model are estimated using the method of maximum likelihood estimation (MLE). MLE is
aimed at finding the parameter values that maximize the likelihood of the observed data,
which, under the frequentist view, is equivalent to finding the parameter values that render
the observed outcomes as the most probable given the specified model.
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2.3 Likelihood Formulation in Logistic Regression
In logistic regression analysis, the likelihood function is crucial for parameter estimation,
serving a fundamental role across both frequentist and Bayesian statistical paradigms. For
frequentists, it is instrumental in finding optimal parameters by maximizing the likelihood
function. In the Bayesian perspective, the likelihood function is equally essential as it
updates prior knowledge to form the posterior probability distribution, where the posterior
is proportional to the product of the likelihood and the prior.

Consider a set of N observations with a binary response variable Yi, each associated with
a set of M predictors denoted by Xi. Each response Yi can be conceptualized as a Bernoulli
trial with a success probability π(Xi), which is a function of the predictors through the
logistic function.

The probability of observing a specific outcome Yi given Xi is modeled as:

P (Yi|Xi) = π(Xi)
Yi(1− π(Xi))

(1−Yi). (4)

The likelihood function L(β) for all observations is the product of individual probabilities,
representing the joint probability of observing the given set of responses:

L(β) =

N∏
i=1

π(Xi)
Yi(1− π(Xi))

(1−Yi). (5)

This function is maximized to obtain the estimates for β, which are the coefficients that
relate the predictors to the response variable in a logistic regression model.

3 Bayesian Inference in Logistic Regression
Based on Chapter 6 of the work by Held et al. [11], Bayesian inference provides a prob-
abilistic approach to the estimation of a model’s parameters. Unlike traditional methods
which treat parameters as fixed but unknown quantities, Bayesian inference considers them
as random variables with associated probability distributions. This chapter will introduce
the Bayes’ theorem and the important concepts associated with Bayesian theory, and will
lead into the Bayesian logistic regression model.

3.1 Bayesian Theorem
Bayesian inference is rooted in Bayes’ theorem, which relates the likelihood and the prior
knowledge to form the posterior distribution. For any two events A and B, where P (B) > 0,
the theorem is defined as:

P (A|B) =
P (B|A)P (A)

P (B)
, (6)

where P (A|B) is the posterior probability of A given B, P (B|A) is the likelihood, P (A) is
the prior probability of A, and P (B) is the marginal likelihood of B.

3.2 Prior and Posterior Distributions
In Bayesian statistics applied to logistic regression, our inferential process begins by ar-
ticulating our initial assumptions about the parameters θ, encapsulated within the prior
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distribution π(θ). This prior distribution encompasses our a priori understanding, which
can be based on historical data, expert knowledge, or other relevant information.

Upon observing new data, these initial beliefs are updated using Bayes’ theorem. The
theorem provides a mechanism to revise our beliefs in the light of new evidence, culminating
in the posterior distribution p(θ|y). The fundamental equation of Bayes’ theorem in this
context is given by:

p(θ|y) = f(y|θ)π(θ)∫
f(y|θ)π(θ)dθ

. (7)

This equation asserts that the posterior distribution p(θ|y) is a result of updating the
prior distribution π(θ) with the likelihood f(y|θ), which measures the probability of observ-
ing the data y given the parameters θ. The denominator, the integral of the product of the
likelihood and the prior over all possible values of θ, serves as a normalizing factor ensuring
that the posterior distribution is a true probability distribution.

It follows from Bayes’ theorem that the posterior distribution is directly proportional to
the product of the likelihood and the prior distribution:

p(θ|y) ∝ f(y|θ)π(θ). (8)

This proportional relationship enables us to understand the posterior distribution qual-
itatively even without the exact normalization factor. In the Bayesian framework, the
posterior distribution represents a synthesis of our existing prior beliefs with the new evi-
dence provided from the data, thus giving a comprehensive probabilistic perspective on our
parameters. This approach transforms our view of parameters from fixed unknowns to ran-
dom variables characterized by a probability distribution. This distribution is continually
refined and updated as new evidence emerges, allowing for a more adaptive and informed
understanding of the parameters based on both prior knowledge and observed data.

3.3 Posterior Mean and Variance
The posterior mean E(θ|y) and variance var(θ|y) are pivotal in Bayesian inference, summa-
rizing the updated beliefs about the parameters after observing the data. They are defined
as follows:

E(θ|y) =
∫
θ p(θ|y) dθ, (9)

var(θ|y) =
∫
(θ − E(θ|y))2 p(θ|y) dθ. (10)

The posterior mean is a measure of the central tendency of the parameter values, which
is the expected value of the parameters given the data. The posterior variance quantifies the
uncertainty around the posterior mean, reflecting the variability of the parameter estimates.

3.4 Model Formulation with Bayesian Logistic Regression
In Bayesian logistic regression, we use a likelihood function similar to that of the traditional
logistic regression, combined with a prior distribution for the parameters. The likelihood
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function L(β) for N observations and M predictors is:

L(β) =

N∏
i=1

π(xi)
yi(1− π(xi))(1−yi), (11)

where π(xi) is the modeled probability of the i-th observation being a success.
Given that we have multiple model parameters β, we express the prior as a product of

density functions over all M parameters to reflect our independent prior beliefs about each
parameter:

p(β) =

M∏
j=0

fj(βj), (12)

where fj(βj) is the prior distribution for βj , the j-th coefficient. This factorial form allows
us to combine different prior distributions for each coefficient, catering to our specific prior
knowledge or assumptions about the parameter space. Although Equation 12 presents the
priors as a product of individual terms, suggesting independence, it can be extended to
include dependencies between parameters. This involves defining priors fj(βj) that encap-
sulate these dependencies, possibly through conditioning on other parameters or including
dependency-enforcing hyperparameters. Thus, the factorial form can still be compatible
with some dependent prior structure.

The posterior distribution p(β|y) is then derived by applying Bayes’ theorem:

p(β|y) =
L(β)

∏M
j=0 fj(βj)∫

L(β)
∏M
j=0 fj(βj)dβ

, (13)

which updates our beliefs about the regression coefficients β after considering the evidence
from the observed data. The denominator is the integral of the numerator over all possible
values of β, ensuring that p(β|y) is a proper probability distribution.

In practice, computing the integral in the denominator is often noncomputable, especially
as the number of regression coefficients increases. Therefore, we typically use numerical
approximation techniques such as MCMC to sample from the posterior distribution.

4 Theoretical Background on MCMC Methods
MCMC methods are a class of algorithms used for sampling from complex probability dis-
tributions, especially in scenarios where direct sampling is not tractable due to the absence
of analytical solutions. These methods allow for the construction of Markov chains whose
stationary distributions are the target posterior distributions p(θ|y).

The essence of MCMC lies in its numerical sampling prowess, providing a practical ap-
proach to estimate distributions that are otherwise mathematically noncomputable. This is
particularly valuable when dealing with posterior distributions that do not have closed-form
expressions, which is often the case in high-dimensional spaces or with non-conjugate priors.
By employing a transition mechanism that respects the Markov property — the future state
depends only on the current state and not on the sequence of events that preceded it —
MCMC methods iteratively construct a chain of samples. As the number of iterations grows
large, the distribution of the samples approximates the true posterior distribution, despite
the lack of an analytical form. This iterative approach not only approximates the posterior
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but also allows for the estimation of other integrals and expectations with respect to the
posterior that are crucial for Bayesian inference and decision making.

The most commonly used MCMC methods include the Gibbs sampler and the MH
algorithm. These are also the methods employed in this thesis. In the following subsections,
I will introduce the basic principles of Gibbs sampling and the MH random walk algorithm.
The highlight of this thesis, Gibbs sampling based on PG augmentation, will be covered in
a separate chapter (Chapter 5) due to its extensive theoretical content. The content of this
section is informed by Chapter 11 of the work by Gelman et al. [7] and Chapter 8.4 of work
by Held et al. [11].

4.1 Gibbs Sampling Methodology
Gibbs sampling, according to Gelman et al. [7], is a MCMC algorithm particularly useful
in sampling from a multivariate probability distribution. It was introduced by Geman and
Geman [9] in 1984 and is also known as alternating conditional sampling. Gibbs sampling
is based on the principle that it is simpler to sample from a series of univariate conditional
distributions than to sample directly from a joint multivariate distribution.

Consider a parameter vector θ = (θ1, θ2, . . . , θd) divided into d subvectors or components.
The Gibbs sampler iterates through these subvectors, sampling each one conditional on the
current values of all other components.

The algorithm can be described as follows for iteration t:

1. Start with some initial values θ(0) = (θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
d ).

2. For each component θj at iteration t, update its value by sampling from the conditional
distribution p(θj |θ(t−1)

−j ,y), where θ
(t−1)
−j represents all components of θ except θj at

their current values and y is the observed data.

3. Repeat this process, cycling through each component θj , until convergence is achieved
or a specified number of iterations is reached.

This procedure generates a Markov chain {θ(t)} where each state is a vector of the
parameter values at iteration t. The chain has the property that as t→∞, the distribution
of θ(t) converges to the joint posterior distribution p(θ|y), assuming proper conditions are
met.

For many standard statistical models, the conditional distributions required for Gibbs
sampling are often conjugate, which simplifies computation and makes the method particu-
larly attractive. This sampler is widely used in Bayesian statistics for its ease of implemen-
tation and its applicability to complex hierarchical models.

This paper adopts the Gibbs sampling algorithm based on PG data augmentation, the
details of which will be elaborated in the next chapter.

4.2 Metropolis-Hastings Algorithm
The Metropolis-Hastings algorithm is a cornerstone of the MCMC methods. It allows sam-
pling from complex probability distributions, particularly those in high-dimensional spaces,
by generating a Markov chain that converges to the desired posterior distribution p(θ|y).

According to Chapter 8.4 of work by Held et al. [11], the MH algorithm proceeds by
generating a sequence of sample values, where each new sample, θ∗, is drawn from a proposal
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distribution f∗(θ∗|θ(m)), and θ(m) is the current state of the chain. The proposed value θ∗
is accepted as the next state in the Markov chain with a probability α, given by:

α = min

{
1,

f(θ∗|y) · f∗(θ(m)|θ∗)
f(θ(m)|y) · f∗(θ∗|θ(m))

}
, (14)

where f(θ|y) is the target posterior distribution and f∗(θ∗|θ(m)) is the proposal density. If
θ∗ is rejected, then θ(m+1) is set to θ(m).

4.3 Metropolis-Hastings Random Walk Algorithm
After introducing the basic principles of Gibbs sampling and the MH algorithm, I will now
present the theoretical background of the first MCMC algorithm used in the experimental
part of this thesis, namely the MH random walk. The MH random walk algorithm, according
to the book of Held et al. [11], is a variation of the MCMC method tailored for sampling
from complex probability distributions that are challenging to sample directly.

The MH random walk algorithm differentiates itself from the standard Metropolis-
Hastings algorithm primarily through its choice of proposal distribution. While the stan-
dard MH algorithm can utilize various forms of proposal distributions, the MH random
walk algorithm specifically employs a symmetric distribution centered at the current sam-
ple point—typically a zero-mean normal distribution—to generate new candidate points,
facilitating exploration within the parameter space.

The MH random walk algorithm updates parameter values by incorporating a random
perturbation at each step, where this perturbation is drawn from a symmetric distribution
centered on the current parameter value. This stochastic perturbation strategy allows the
algorithm to ”randomly walk” through the parameter space, potentially reaching and inves-
tigating various regions of the target distribution. The random walk proposal enhances the
algorithm’s exploratory capabilities by enabling the chain to move through different regions
of the target distribution, not just towards areas of higher probability, thus improving sam-
pling efficiency and avoiding convergence to local optima. The acceptance probability for
moving to a new state in the MH random walk algorithm is given by:

α = min

{
1,

f(θ∗|x)
f(θ(m)|x)

}
, (15)

since the random walk proposal is symmetric about the current point, the proposal distri-
bution f∗(θ∗|θ(m)) (the probability of moving from the current state θ(m) to the proposed
state θ∗) and f∗(θ(m)|θ∗) (the probability of moving from the proposed state θ∗ back to the
current state θ(m)) are equal. This property allows us to disregard the proposal distribu-
tion in the calculation of the acceptance probability, as they cancel each other out when
calculating the ratio.

4.4 Pseudocode for MH Random Walk Algorithm
The following presents the pseudocode for implementing the Metropolis-Hastings random
walk algorithm with normal, Student’s t, and Cauchy priors.
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Algorithm 1 Metropolis-Hastings Random Walk for Normal, Student’s t and Cauchy Priors
1: Initialize β(0) = MLE
2: Set hyperparameters µ, Σ
3: if prior type is ”normal” then
4: Set prior specific parameters for normal distribution
5: else if prior type is ”t”/”Cauchy” then
6: Set degrees of freedom df for Student’s t-distribution / Cauchy distribution
7: end if
8: for i← 1, . . . , Niter do
9: βi ∼ MVN(β

(i−1)
chain ,Σ) ▷ Draw from multivariate normal

10: Calculate acceptance probability α
11: if prior type is ”normal” then
12: α← min{1, post_normal(βi,Y,X,µ,Σ)

post_normal(β(i−1)
chain ,Y,X,µ,Σ)

}
13: else if prior type is ”t” (df = 7) or ”Cauchy” (df = 1) then
14: α← min{1, post_t(βi,Y,X,df)

post_t(β(i−1)
chain ,Y,X,df)

}
15: end if
16: if α > runif(1) then
17: β

(i)
chain ← βi

18: else
19: β

(i)
chain ← β

(i−1)
chain

20: end if
21: Store β

(i)
chain

22: end for
23: return βchain

In this pseudocode:

- β
(i)
chain represents the current values for the regression coefficients at iteration i.

- µ and Σ represent the mean and covariance matrix for the prior distribution, and Σ is also
used as the covariance matrix for the proposal distribution.

- Niter is the number of iterations for the algorithm.
- Prior type indicates whether a normal, Student’s t-distribution or Cauchy distribution is used

as the prior.
- For the Student’s t-prior, df represents the degrees of freedom for the distribution, which is

set to 7. In special case df = 1, it represents Cauchy distribution.
- Y is the binary response vector in the dataset, consisting of 0 and 1 values, generated from

the simulation for Bayesian logistic regression.
- X is the matrix of covariates.
- α is the acceptance probability calculated at each iteration based on the prior type.
- βchain stores the posterior sampling of the parameters across iterations.
- post_normal and post_t functions calculate the posterior probability for Bayesian logistic

regression. The post_normal function uses a normal distribution as the prior, while post_t
is designed for cases where the prior is a Student’s t-distribution, including its special case
of the Cauchy distribution with one degree of freedom.

13



5 Gibbs Sampling for Bayesian Logistic Regression
In this chapter, we will delve into the core of the theoretical segment of our thesis, exploring
the foundational principles of the algorithms presented in two key pieces of literature and
reimplementing their algorithmic components. These two algorithms are the PG-augmented
Gibbs sampling for prior distributions with Gaussian distribution(Polson et al. [12]), and
the PG-augmented Gibbs sampling for prior distributions with heavy-tailed distributions,
specifically the Cauchy and t-distributions (Ghosh et al. [10]).

5.1 Pólya-Gamma Augmentation Gibbs Sampling with Gaussian
prior for Bayesian Logistic Regression

Bayesian logistic regression poses computational challenges due to the non-conjugacy of
the binomial likelihood with the Gaussian prior. This non-conjugacy leads to intractable
posterior distributions, making direct sampling methods infeasible. To address this, Polson
et al. [12] introduced a novel PG data augmentation strategy in 2013, which offers a tractable
approach to sampling from the posterior distribution.

5.1.1 The Pólya-Gamma Augmentation Scheme

The key innovation in Polson et al. [12] is the introduction of PG latent variables, trans-
forming the logistic regression likelihood into a form that resembles a Gaussian model. This
transformation is facilitated by the PG distribution’s property of being a scale mixture of
Gaussians, allowing for an efficient Gibbs sampling scheme. The approach diverges from
that of Albert and Chib [5] by utilizing a scale mixture rather than a location mixture, and
by replacing truncated normals with PG variables.

5.1.2 Advantages of the Pólya-Gamma Method

The PG method is particularly advantageous due to its conjugacy properties when combined
with a Gaussian prior. The integral identity proved in Theorem 1 in the 2013 paper by Polson
et al. [12],

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞

0

e−ωψ
2/2p(ω)dω, (16)

where p(ω) denotes the density of the random variable ω following a Pólya-Gamma distri-
bution, ω ∼ PG(b, 0), for b > 0. Here, ψ = xTi β represents the log odds of success, and β
is assumed to have a Gaussian prior, β ∼ N(ϕ,B). The term κ = a− b

2 demonstrates how
the logistic likelihood can be expressed in a Gaussian form, allowing direct sampling from
the posterior. The PG augmentation simplifies the posterior to be Gaussian conditional on
the PG variables, leading to the Gibbs sampling steps:

(ωi|β) ∼ PG(ni, xTi β), (17)

and
(β|y, ω) ∼ N(mω, Vω), (18)

with Vω = (XTΩX+B−1)−1 and mω = Vω(X
T ξ+B−1ϕ), where X is the design matrix and

Ω is the diagonal matrix whose diagonal elements are ωi. Furthermore, ϕ and B represent
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the mean vector and variance-covariance matrix of the Gaussian prior, respectively. The
vector ξ is defined as ξ = (y1 − n1/2, . . . , yN − nN/2), where yi is the number of successes,
ni is the number of trials, and yi ∼ Binom(ni,

1
1+e−ψi

).
In this paper, we focus on a specific scenario where a = b = 1 and ni = 1. Under these

conditions, the formulas previously discussed can be reformulated as follows:
Considering the integral identity in Equation 16, with a = b = 1, it simplifies to:

eψ

(1 + eψ)
= 2−1eκψ

∫ ∞

0

e−ωψ
2/2p(ω)dω, (19)

where κ = a− b/2 becomes κ = 1− 1/2 = 1/2.
In the PG augmentation context, especially for binary logistic regression, we set ni = 1

since it corresponds to the number of trials or observations for the ith data point. In this
scenario, each data point represents a single Bernoulli trial, making ni naturally equal to 1.
The Gibbs sampling steps become:

(ωi|β) ∼ PG(1, xTi β), (20)
and

(β|y, ω) ∼ N(mω, Vω), (21)
where the expressions for Vω and mω remain the same as the general case mentioned earlier
(see formulas 17 and 18), but the sampling for ωi and the value of κ are adjusted as per
the specified conditions.

5.1.3 Gaussian Representation of the Posterior

To derive our Gibbs sampler, we turn to Theorem 1 in the 2013 paper by Polson et al. [12]
and express the likelihood contribution of observation i as follows:

Li(β) = (
expXTβ

1 + expXTβ
)yi(

1

1 + expXTβ
)1−yi =

{exp(xTi β)}yi
1 + exp(xTi β)

∝ exp(κix
T
i β)

∫ ∞

0

exp

(
−ωi

(xTi β)
2

2

)
p(ωi|ni, 0)dωi, (22)

where κi = yi − ni/2, the value of yi can be either 0 or 1, and ni = 1. Furthermore,
p(ωi|ni, 0) is the density of a Pólya-Gamma random variable with parameters (ni, 0). By
combining the terms from all n data points, we obtain the following expression for the
conditional posterior of β, given ω = (ω1, ..., ωn):

p(β|ω, y) ∝ p(β)
N∏
i=1

Li(β|ωi) = p(β)

N∏
i=1

exp

(
κix

T
i β − ωi

(xTi β)
2

2

)
. (23)

This simplifies to a Gaussian form(Polson et al. [12]), which is amenable to direct
sampling:

p(β|ω, y) ∝ p(β) exp
(
−1

2
(z −Xβ)TΩ(z −Xβ)

)
, (24)

where z = (κ1/ω1, ..., κn/ωn), and Ω = diag(ω1, ..., ωn). This yields a conditionally Gaussian
likelihood in β, with working responses z, design matrix X, and diagonal covariance matrix
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Ω−1. Since the prior p(β) is Gaussian, a simple linear-model calculation leads to the Gibbs
sampler defined above.

Writing the posterior distribution in the form of a Gaussian, as shown in Equation 24,
is particularly sampling-friendly because the Gaussian distribution is one of the most well-
understood and widely used probability distributions. Its linear and symmetric properties
enable efficient and accurate sampling using standard statistical software packages. This is
crucial as it allows us to avoid more computationally intensive and less efficient numerical
methods. Moreover, the mathematical properties of the Gaussian distribution, especially
its conjugacy, ensure that the posterior has a closed-form solution, greatly simplifying the
sampling process. Each sampling step can be explicitly expressed as a mathematical formula
without the need for approximations. This simplification leads to significant improvements
in computational speed and convergence, facilitating efficient Bayesian inference in complex
multi-parameter spaces.

5.1.4 Sampling from the Posterior

To iterate the Gibbs sampler, one samples from the PG distribution for ωi given β and then
from the Gaussian posterior for β given ωi and y. This procedure creates a Markov chain that
converges to the true posterior distribution. The sampler’s simplicity and efficiency make
it suitable for a wide range of Bayesian applications, particularly where Gaussian priors are
employed due to their conjugacy with the Gaussian likelihood, allowing closed-form updates
for the posterior distributions.

In summary, the Pólya-Gamma method provides a computationally efficient and theo-
retically sound approach to Bayesian logistic regression, overcoming the challenges posed
by the traditional non-conjugate models. The method’s ability to convert the binomial
likelihood into a Gaussian form by integrating out the PG variables justifies its preference,
particularly when the Gaussian prior is in place.

5.1.5 Pseudocode for Gibbs Sampling with Normal Priors

The following presents the pseudocode for the PG augmented Gibbs Sampling with Gaussian
priors.
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Algorithm 2 PG augmented Gibbs Sampling with Gaussian priors
1: Initialize β(0) to MLE
2: for t = 1, 2, . . . , T do
3: for i = 1, 2, . . . , N do
4: Generate ω(t)

i ∼ PG(ni, xTi β(t−1))
5: end for
6: Compute Ω(t) as a diagonal matrix with entries ω(t)

i

7: Compute V (ω) = (XTΩ(t)X +B−1)−1

8: Compute m(ω) = V (ω)(XT k +B−1b)
9: Generate β(t) ∼ N (m(ω), V (ω))

10: end for
11: return {β(1), . . . , β(T )}

In this pseudocode:

- β(0) is the initial estimate for the regression coefficients (Setting MLE in this project).
- T is the total number of iterations.
- N is the number of observations.
- ni is the number of trials (set to 1 if each observation corresponds to a single trial).
- XT is the transpose of the design matrix X.
- ω

(t)
i are the Pólya-Gamma random variables generated at iteration t.

- Ω(t) is the diagonal matrix of ω(t)
i values.

- V (ω) and m(ω) are the posterior variance and mean for the regression coefficients.
- β(t) is the sample of the regression coefficients at iteration t.
- PG, N indicate Pólya-Gamma and normal distributions, respectively.
- k is the vector of Y − 1

2
.

- B and b are the prior covariance and mean of β.
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5.2 Gibbs Sampling with Heavy-Tailed Priors via PG Augmenta-
tion

5.2.1 Review of Existing Literature

The 2018 paper by Ghosh et al. [10] primarily aimed to address the challenges posed by
the separation problem in logistic regression. Separation occurs when a linear combination
of predictors can perfectly classify observations, leading to infinite maximum likelihood
estimates for regression coefficients. The heavy-tailed nature of the Cauchy distribution,
as a prior, contributes to more robust posterior estimation, especially in scenarios with
extreme values or separation. This methodology effectively stabilizes the model estimation
under challenging conditions.

In my thesis, while acknowledging the contributions of 2018 paper by Ghosh et al.
[10], I diverge in my research focus. Rather than addressing the separation problem and its
associated instability in logistic regression models, my work centers on exploring the efficacy
of different combinations of priors and MCMC algorithms. Specifically, I draw upon the
approach mentioned in Ghosh et al. [10], which is the use of Gibbs sampling with PG data
augmentation and employing heavy-tailed distributions such as Cauchy and Student-t as
priors.

The primary objective of my thesis is to compare and contrast these methodological
variations in Bayesian logistic regression. This involves examining different choices of priors,
posterior sampling algorithms, and the strengths and weaknesses of the models, offering
insights into their relative performances rather than delving into the problem of model
instability due to separation.

Polson et al. [12] in their 2013 research have found Gibbs sampling algorithms for logistic
regression using latent variables. Polson and colleagues demonstrated that the likelihood
function for logistic regression could be expressed as a mixture of normals by incorporating
Pólya-Gamma distributed latent variables, thus facilitating Gibbs sampling. Building on
this result, Choi and Hobert [6] developed a uniformly ergodic Gibbs sampler in their 2013
work. Further advancements were made by Ghosh et al. [10] in 2018, who complemented the
methodology with a Student-t prior distribution. They extended the approach by integrating
independent Student-t priors, thus evolving a Gibbs sampler specifically designed for logistic
regression models.This signifies that their work proposed a theoretical method using latent
variables to simplify posterior sampling for logistic regression models, paired with Student-t
priors. The following theoretical part of this section is based on the literature by Ghosh et
al. [10] from 2018.

5.2.2 Theoretical Basis and Sampling Steps

We define a random variable U as the weighted sum of an infinite sequence of exponential
random variables Wl with rate parameter 1, expressed as

U =

(
2

π2

) ∞∑
l=1

Wl

(2l − 1)2
, (25)

where each Wl is independently and identically distributed.
The density function of U , denoted as h(u), is an alternating series given by

h(u) =

∞∑
l=0

(−1)l (2l + 1)√
2πu3

exp

(
− (2l + 1)2

8u

)
, 0 < u <∞. (26)
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Utilizing this function, we construct the Pólya-Gamma distribution for a non-negative
parameter k through an exponential tilting of h(u), resulting in the density

p(u; k) = cosh

(
k

2

)
exp

(
−k

2

2
u

)
h(u), 0 < u <∞, (27)

such that a random variable with this density follows a PG(1, k) distribution.
For modeling purposes, we consider the Student-t distribution with ν degrees of freedom,

location parameter 0, and scale parameter σj . It is known that the Student-t distribution
can be represented as an inverse-gamma (IG) scale mixture of normal distributions. This
relationship is denoted as

βj |γj ∼ N (0, γj), γj ∼ IG

(
ν

2
,
νσ2

j

2

)
. (28)

For the Bayesian logistic regression model, we assume β and Γ = diag(γ1, γ2, . . . , γp).
The dependent random vectors (y1, z1), (y2, z2), . . . , (yn, zn) are such that each yi follows
a Bernoulli distribution with success probability exp(xTi β)/(1 + exp(xTi β)) and each zi is
independently drawn from a PG(1, |xTi β|) distribution. The augmented posterior density is
p(β,Γ, ZD|y), where ZD = diag(z1, z2, . . . , zn).

To sample from this posterior, we iteratively cycle through the following Gibbs sampling
steps:

1. Update β from the conditional distribution

β|Γ, ZD, y ∼ N
(
(XTZDX+ Γ−1)−1XT ỹ, (XTZDX+ Γ−1)−1

)
, (29)

where ỹi = yi − 1
2 and ỹ = (ỹ1, ỹ2, ..., ỹn)

T .

2. Update each γj independently from the conditional distribution

γj |β, ZD, y ∼ IG

(
ν + 1

2
,
β2
j + νσ2

j

2

)
, (30)

for j = 1, 2, . . . , p.

3. Update each zi independently from the conditional distribution

zi|β,Γ, y ∼ PG(1, |XT
i β|), (31)

where i = 1, 2, . . . , n, Xi represents the covariate vector for the i-th observation, and
zi realizes the data augmentation for the logistic regression model.

Steps 1 (Equation 29) and 3 (Equation 31) of the Gibbs sampler utilize the properties
of the normal and Pólya-Gamma distributions, respectively, for conditional sampling. Step
2 (Equation 30) leverages the inverse-Gamma distribution as the conditional distribution
for the precision parameters γj , aligning with the Student-t representation of the regression
coefficients β. This sequence of updates forms a Markov chain that converges to the target
joint posterior distribution p(β,Γ, ZD|y) and generates a posterior sampling chain for the
parameter β, allowing for Bayesian inference of the model parameters.

5.2.3 Pseudocode for Gibbs Sampling with Student’s t and Cauchy Priors

The following shows the pseudocode for the PG Data Augmentation Gibbs Sampling algo-
rithm with Student’s t and Cauchy priors.
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Algorithm 3 PG augmented Gibbs Sampling with Student’s t and Cauchy priors
1: Initialize β(0) to MLE
2: Set hyperparameters v = 1, 7, σ = rep(1, 6), T = 20000
3: for t = 1, 2, . . . , T do
4: Compute ỹ = Y − 1

2
5: Initialize γ vector for scale parameters
6: for j = 1, 2, . . . , D do
7: γ[j]← draw from Inv-Gamma

(
v+1
2 , βi[j]

2+vσ[j]2

2

)
8: end for
9: Construct diagonal matrix Γ with γ

10: Xβ ← Xβ(t−1)

11: Initialize vector z for auxiliary variables
12: for i = 1, 2, . . . , N do
13: z[i]← draw from PG distribution using rpg(ni, Xβ)
14: end for
15: Construct diagonal matrix Z with z

16: βmean ←
(
XTZX + Γ−1

)−1
XT ỹ

17: βcov ←
(
XTZX + Γ−1

)−1

18: β(t) ← draw from N (βmean, βcov)
19: Store β(t) in βchain
20: end for
21: return βchain

In this pseudocode:

- βi represents the current estimate for the regression coefficients at iteration i.
- D is the number of covariates (or predictors) in the matrix X.
- N is the number of observations in the dataset.
- T is the total number of iterations.
- ni is set to 1, indicating that each observation corresponds to a single Bernoulli trial.
- ỹ is the adjusted response vector, Y − 1

2
.

- γ is a vector of scale parameters drawn from the inverse-gamma distribution.
- Γ is a diagonal matrix with elements of γ on its diagonal.
- Xβ is the matrix X multiplied by the regression coefficients vector βi.
- zi is a vector of augmentation variables from the Pólya-Gamma distribution.
- Z is a diagonal matrix with elements of zi on its diagonal.
- v is the degrees of freedom for the Student’s t prior distribution. In our experiments, setting
v = 1 corresponds to a Cauchy prior, while v = 7 indicates a Student’s t-prior.

- σ is a vector where each element represents the scale parameter for the prior distribution of
the corresponding regression coefficient’s variance in the Student’s t model.

- βmean is the mean of the posterior distribution for the regression coefficients.
- βcov is the covariance of the posterior distribution for the regression coefficients.
- βchain stores the sampled regression coefficients across iterations.
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6 Diagnostic Tools for Convergence Check and Model
Selection

This chapter will introduce several commonly used diagnostic tools for assessing the con-
vergence and stability of MCMC algorithms, as well as criteria for model selection. This
includes some relatively new diagnostic methods, such as the improved Split-R̂ and rank
plot introduced by Vehtari et al. [13] in 2021. These methods and tools will be used in the
simulated experiments of this thesis. Through these means, we can evaluate the differences
in chain convergence, chain mixing, and the effectiveness of sample information exhibited by
the MCMC algorithms when combined with different priors, and the respective advantages
and disadvantages of the models.

6.1 Trace Plot
A Trace Plot, also known as a trajectory plot, is a graphical tool used to assess the con-
vergence of parameters in MCMC methods. It illustrates the variation trend of model
parameters during the MCMC sampling process by plotting the iteration values of the pa-
rameters.

In MCMC processes, for each parameter, the Trace Plot plots all its iteration values. A
key feature of such a plot is its ability to visually show the variation of parameter values
over iterations, helping to identify whether the parameter has reached a steady distribution.
If a parameter’s trace plot shows a stable, trendless “cloudy” distribution, it generally
indicates that the parameter has converged. The content of this subsection is inspired by
and organized from the ideas found in Gelman et al. [7].

6.1.1 The Burn-in Phase

Understanding the burn-in phase is very important for interpreting Trace Plots. The initial
part of the Trace Plot, known as the burn-in phase, represents the period where MCMC
samples typically do not reflect the target distribution due to the influence of initial con-
ditions. In the Trace Plot, the burn-in phase usually appears as an unstable region at the
beginning of the chart, where parameter values may fluctuate significantly or show cer-
tain trends. When these fluctuations gradually decrease and the parameter values begin
to stabilize and oscillate around a certain constant or region, it usually indicates that the
burn-in phase has ended and the sampling chain is entering a state of convergence. Before
conducting further statistical analysis, we typically discard the samples from this phase.

6.1.2 Evaluating Convergence Using Trace Plots

Trace Plots are primarily used to check for convergence in the following two aspects:

• Stability: The trace plot should exhibit a stable distribution with no significant
trends, indicating that the chain has reached equilibrium.

• Mixing: Trace plots of multiple chains should overlap and interweave with each other,
showing good mixing, which indicates consistency between different chains.

While Trace Plot is one of the key tools for understanding and diagnosing MCMC models,
they also have limitations. It is difficult to accurately judge the convergence of complex
models based solely on trace plots. Therefore, it is generally recommended to use them in
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conjunction with other diagnostic tools (such as Gelman-Rubin diagnostics, etc.) for a more
comprehensive assessment of convergence.

6.2 Potential Scale Reduction Factor (PSRF) also known as R̂

Gelman and Rubin [8] in their work introduced the Potential Scale Reduction Factor, which
is abbreviated as PSRF and is also known as R̂, as a diagnostic for assessing the convergence
of MCMC method. The method involves running m > 1 parallel chains and is predicated
on the convergence of these chains, which is achieved when the chains are indistinguishable
from one another. The diagnostic utilizes the within-chain and between-chain variances,
denoted by W and B, respectively. The PSRF is then estimated by the formula:

R̂ =

√
d+ 3

d+ 1
· V̂
W
, (32)

where V̂ is a pooled estimate of variance, considering both within-chain and between-chain
variances and d represents degrees of freedom estimated by the method of moments:

d =
2V̂ 2

Var(V̂ )
, (33)

where V̂ is the variance estimate mentioned above and Var(V̂ ) is its variance.
When the Potential Scale Reduction Factor (PSRF) is close to 1, more precisely, ac-

cording to Gelman and Rubin [8], when PSRF < 1.1, it indicates that all MCMC chains
have converged to the target posterior distribution, implying a consistent estimation of the
model parameters across the chains. On the other hand, a PSRF greater than 1.1 suggests
that there is a substantial difference between the chains, implying that they may not have
converged to the same distribution or that convergence is occurring slowly, and more iter-
ations may be required to ensure convergence. In the experiment of this paper, I utilized
the gelman.diag function from the coda R package to calculate the PSRF values for the
posterior samples. For more information about PSRF, refer to the R documentation [2].

6.3 Improved Split-R̂ Diagnostic
In the previous section, we introduced the R̂ (PSRF) diagnostic method and its standards,
originally proposed by Gelman and Rubin in 1992. However, in their 2021 study, Vehtari et
al. [13] indicated that PSRF has serious flaws. Specifically, traditional R̂ fails to correctly
diagnose convergence failures when the chain exhibits heavy tails or when the variance varies
across chains. Consequently, Vehtari et al. proposed an improved diagnostic method known
as Split-R̂.

In this study, we adopt the improved Split-R̂ diagnostic introduced by Vehtari et al. [13]
in 2021 and reimplemented in R. The Split-R̂ diagnostic is particularly adept at identify-
ing non-stationarity and inadequate mixing within chains, which are critical indicators of
convergence.

The Split–R̂ diagnostic functions by partitioning each Markov chain into two halves. It
then assesses the convergence of each segment independently, evaluating the variances both
within and between these partitions of the chains. Specifically, the between-chain variance,
denoted as B, and the within-chain variance, denoted as W , are calculated as follows:
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B =
N

M − 1

M∑
m=1

(
θ̄(.m) − θ̄(..)

)2
, where θ̄(.m) =

1

N

N∑
n=1

θ(nm), θ̄(..) =
1

M

M∑
m=1

θ̄(.m); (34)

W =
1

M

M∑
m=1

s2m, where s2m =
1

N − 1

N∑
n=1

(
θ(nm) − θ̄(.m)

)2
. (35)

In the equations above, N is the number of draws per chain, M is the number of chains,
S = MN is the total number of draws from all chains, θ(nm) is the n-th draw of the m-th
chain, θ(.m) is the average of draws from the m-th chain, and θ(..) is the average of all draws.

The improved diagnostic combines a weighted average of within-chain variance (W ) and
between-chain variance (B), providing an estimate for the variance of the quantity being
estimated in the posterior distribution. The refinement lies in the Split-R̂’s ability to account
for an initial overestimation of variance in the initial chain distributions, achieved through
the following formulation:

ˆV ar
+
(θ|y) = N − 1

N
W +

1

N
B. (36)

In the end, the diagnostic process finalizes with the computation of the Split-R̂ value:

R̂ =

√
ˆV ar

+
(θ|y)

W
. (37)

This value, for an ergodic process, approaches 1 as N goes to infinity, signaling con-
vergence. The document (Vehtari et al. [13]) suggests a more stringent threshold for the
improved convergence diagnostic R̂, proposing improved Split-R̂ < 1.01 as opposed to the
earlier recommendation of R̂ < 1.1. This tighter threshold reflects more rigorous standards
is supported by the results detailed in an appendix of the paper (Vehtari et al. [13]). The
updated criterion is part of an effort to address the limitations of the traditional R̂ in iden-
tifying convergence, especially in the presence of heavy-tailed distributions or variable vari-
ances across chains. This adaptation also ensures that the Split-R̂ statistic remains robust
against the initial sampling biases, which could lead to an underestimation of variability,
providing a more reliable measure for the convergence of MCMC samplings.

Because both PSRF (R̂) and the improved Split-R̂ reflect the convergence and mixing
of the posterior sampling chains, we will use both of these diagnostic tools in the upcoming
Results section and compare their diagnostic outcomes.

6.4 Effective Sample Size (ESS)
A key challenge in MCMC sampling is the autocorrelation in the generated samples, which
reduces the effective information each sample carries about the posterior distribution. This
leads to the necessity of using the Effective Sample Size (ESS) as a metric (see R documen-
tation [1]).

The ESS quantifies the number of independent-like samples within the correlated MCMC
chain. It is critical for assessing the efficiency and reliability of the MCMC algorithm. Higher
autocorrelation results in a lower ESS, suggesting that a greater number of iterations may
be required for reliable estimates. Conversely, a high ESS value is the desired outcome,
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as it implies that the sampling within the chain has lower autocorrelation, better chain
mixing, and better convergence performance. In the experiments of this paper, I used the
effectiveSize function from the coda R library to calculate the effective sample size. For
more information, please refer to the relevant R documentation [1].

6.5 Rank Plot
In our statistical analysis practice, to effectively assess the convergence of multiple Markov
chains to the same posterior distribution, we have adopted rank plots as an innovative
graphical diagnostic tool (see Vehtari et al. [13]) to complement or even replace traditional
trace plots. Rank plots visualize the relative positioning of each chain within the overall
posterior distribution by ranking the posterior sample values across all chains and indepen-
dently plotting histograms for each chain. Uniform distributions in the rank plots across
all chains indicate that the chains are sampling from the same posterior distribution with-
out any chain-specific biases. Similarity and absence of significant skewness in the rank
distributions across chains usually signify a good chain mixing.

The advantage of rank plots is particularly evident in the assessment of inter-chain
mixing. Unlike trace plots, which can become visually cluttered with long chains, rank plots
provide clearer visual feedback on the quality of mixing. Trace plots may become difficult
to interpret due to the overlay of multiple chains, whereas rank plots, by displaying the
distribution of ranks for each parameter value, allow for direct observation of the uniformity
of mixing. Thus, rank plots emerge as a powerful tool for evaluating the quality of mixing
and convergence across chains, especially when dealing with complex models with multiple
parameters and extended chains. In this paper, I reimplemented the section on rank plots
from Vehtari et al. [13] using R code.

6.6 Ranking Plot for WAIC
The Ranking Plot is a crucial visualization tool used in the evaluation of model selection
criteria, specifically focusing on WAIC (Watanabe-Akaike Information Criterion, hereinafter
referred to as WAIC) or DIC (Deviance Information Criterion). This section delves into the
theoretical underpinnings and practical applications of WAIC criteria (see Watanabe [14]),
as well as how it is represented in Ranking Plots. In the experiment, I used the WAIC function
from the LaplacesDemon package to calculate the WAIC values for each model. For detailed
information, please refer to the R documentation on the WAIC function [3].

6.6.1 Watanabe-Akaike Information Criterion (WAIC)

WAIC is a fully Bayesian criterion for model selection, which estimates the out-of-sample
prediction error. It is defined as:

WAIC = −2(LPPD− pWAIC), (38)

where LPPD is the log pointwise predictive density for the model, and pWAIC represents
the effective number of parameters, serving as a penalty term to avoid overfitting. WAIC is
particularly useful for comparing models with different numbers of parameters or different
structures.

When the WAIC is low, it indicates better model fitting, improved predictive perfor-
mance, and lower model complexity. Conversely, a higher WAIC suggests poor model
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fitting, potential overfitting, and subpar predictive performance. We can say that models
with lower WAIC values are our better choices. For this reason, WAIC serves as a criterion
for Bayesian model selection.

6.6.2 Ranking Plot

Ranking Plots are used to visually compare models using WAIC. Each model is plotted with
its criterion value (WAIC), allowing for an easy comparison across models. Ranking Plots
are particularly useful in scenarios where several models are compared, as they offer a clear,
visual representation of which models perform better according to the WAIC criterion. The
application of Ranking Plots in model selection is powerful as it provides a straightforward
method to assess the trade-off between model complexity and fit.
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7 Setup of the Simulation
This chapter will introduce the specific details of the simulated dataset used in this thesis.

7.1 Predictor Variables
The simulated dataset in this thesis comprises five predictor variables, denoted as x1, x2, x3,
x4, x5, along with an intercept term (a column of ones). These correspond to six parameters:
β0, β1, β2, β3, β4, β5. The predictor variables are not independent; instead, correlation among
them is introduced by setting different correlation coefficients, with ρ = 0.1, 0.3, 0.6, 0.9.

Our specific setup involves predictor variables following a multivariate normal distribu-
tion, with means set to (−3, 2, 0, 1,−1)T , and the covariance matrix defined as (1−ρ)× I+
ρ× J , where I is the identity matrix and J is an all-ones 5× 5 matrix.

The reason for simulating the predictor variables X in this manner is that, within the
context of Bayesian logistic regression, it is a common practice to simulate predictor variables
from a multivariate normal distribution with predefined means and covariance matrices. The
choice of means and covariance structure is arbitrary in this context, and by doing so, we
can simplify and effectively control the generation of the simulated dataset (X, Y) for the
Bayesian logistic regression model.

Additionally, we introduce correlation among the predictor variables for two main rea-
sons. Firstly, we aim to better replicate real-world data, as correlations are commonly
observed in real datasets. Secondly, we aim to study whether the utilization of different
prior distributions in scenarios with varying levels of correlation leads to significant differ-
ences in the convergence performance of distinct MCMC algorithms.

7.2 The Sample Size of the Simulated Dataset
In this experiment, the sample size is set to 100 because we aim to avoid the implications
of the Bernstein-von Mises theorem, and we wish to observe the effect of the chosen prior.
Therefore, our data sample size is not very large.

The Bernstein-von Mises theorem is an important result in Bayesian statistics. It es-
sentially states that, under certain regularity conditions, the posterior distribution of a
parameter converges to a normal distribution as the sample size increases, regardless of the
form of the prior distribution. This convergence is centered around the MLE, with the vari-
ance of the normal distribution inversely proportional to the sample size. In simpler terms,
the theorem implies that for large sample sizes, Bayesian inference (using the posterior dis-
tribution) and frequentist inference (relying on point estimates like the maximum likelihood
estimator) will give similar results. This is because the posterior distribution becomes more
concentrated around the maximum likelihood estimate as the sample size grows. However,
for smaller sample sizes, the choice of the prior can have a significant impact on the results,
and the posterior distribution may not approximate a normal distribution. In such cases,
the specific characteristics of the prior distribution play a more prominent role in Bayesian
analysis, which is also the core objective of this paper, to check effect of priors in different
MCMC algorithms.

7.3 Iterations
In this thesis, we set the number of iterations for the MCMC algorithm to 20,000 based on
the following considerations:
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1. Convergence Assurance: MCMC methods are iterative and can take a significant
number of steps to converge to the target distribution, especially in complex models or
high-dimensional spaces. A higher number of iterations increases the likelihood that
the chain has reached convergence.

2. Accuracy and Stability: More iterations can lead to more accurate and stable
estimates of the parameters. It allows for a better exploration of the parameter space,
ensuring that less frequent regions of high posterior probability are visited.

3. Burn-in Period: A portion of the initial iterations (often called the ’burn-in’ period)
may be discarded because the chain might not have reached its stationary distribution
yet. A large total number of iterations ensures that there is still a substantial amount
of data left for analysis after removing the burn-in.

4. Actual Testing Performance: In addition, I conducted multiple iteration tests on
the simulated dataset. The test results indicated that setting the iteration count to
20,000 is a relatively ideal choice. This is because at this point, Gibbs Sampling and
MH random walk exhibit significant differences in terms of convergence, which aligns
with the objectives of our paper. Additionally, the choice of iteration count also takes
into consideration the trade-off with computer computational power.

Furthermore, it is worth mentioning that we have implemented a thinning strategy
(selecting every 4th sample) when using the MH random walk algorithm. This is done
to reduce the autocorrelation in the posterior sampling results. Additionally, our sampling
begins from the 1001st iteration, as we consider the first 1000 iterations to be the burn-in
phase. This approach is adopted because the MH random walk algorithm exhibits more
pronounced autocorrelation and has a slower convergence rate in MCMC. Therefore, for the
MH random walk algorithm, the actual number of iterations amounts to 81,000.

7.4 Starting Value for the MCMC Chain
In this thesis, we set the initial value for the MCMC sampling to the MLE. This is because
we aim to accelerate the convergence phase of the sampling process. Despite our limited
sample size, which might impede the MLE from being a perfect estimate of the true β values,
this approach is still considered to be a more rational choice for the initial value compared
to an all-zero initialization.

7.5 The Number of Chains
In the simulation, we sampled the posterior distribution of each model parameter by gen-
erating 4 independent MCMC chains. The primary reason for choosing multiple chains is
to reduce the risk of bias arising from a single chain. A single chain might be influenced by
random fluctuations and chance, potentially failing to fully represent the entire posterior
distribution. By independently generating multiple chains, we can more effectively test and
ensure the convergence of the model. This means if all chains converge to the same distri-
bution, demonstrating good mixing and consistent convergence, we can be more confident
that our results closely approximate the true posterior distribution.
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7.6 Prior Assumptions
The following introduces the settings of the prior distributions involved in this paper. Since
the relevant literature does not provide explicit recommendations for the mean and covari-
ance matrix of the normal prior, no matter for Gibbs sampling or for MH random walk,
this study adopts standard settings based on conventional practice. Meanwhile, specific set-
tings for the location and scale parameters of the Student’s t and Cauchy priors for Gibbs
sampling are based on recommendations from Ghosh et al. [10]. Additionally, to ensure
the reliability of the simulated experimental results, the same prior assumptions are applied
to both the PG-augmented Gibbs Sampling algorithm and the Metropolis-Hastings random
walk algorithm (hereinafter referred to as ”the two algorithms”) in comparative experiments.
The prior settings for the two algorithms are as follows:

1. Normal Prior Assumption

• Mean vector: Set to (0, 0, 0, 0, 0, 0)T . This implies that a prior mean of 0 is
specified for each parameter βi (i = 0, 1, 2, . . . , 6).

• Covariance matrix: Set as a 6 × 6 diagonal matrix with diagonal elements of
1. This indicates that each parameter βi (i = 0, 1, 2, . . . , 6) has a variance of 1,
and there is no prior correlation between variables.

2. Student’s t and Cauchy Prior Assumption

• Location parameter vector: Set uniformly to (0, 0, 0, 0, 0, 0)T . This reflects
the central location of both the Student’s t and Cauchy priors set at 0, consistent
with the settings in Ghosh et al. [10].

• Scale parameter vector: Set to (10, 2.5, 2.5, 2.5, 2.5, 2.5)T . This indicates that
the scale parameter for the intercept β0 is 10, while the scale parameters for the
remaining coefficients β1 to β5 are all 2.5 and they are independent. A larger scale
parameter means more data dispersion and thicker tails. Here, the distribution
of intercept β0 has a wider tail than β1 to β5. The scale parameter settings also
align with recommendations from the 2018 literature by Ghosh et al. [10].

7.7 The Proposal Distribution
The proposal distribution in the MH random walk algorithm is a multivariate normal dis-
tribution. It takes the sampling value from the previous step as the mean vector and the
identity matrix as the covariance matrix. This is a common and well-established setting in
practice and for our parameter configurations. Our focus was on comparing convergence
performance between MH and Gibbs sampling, as well as examining the impact of factors
such as prior distributions. Given the scope of our research, the use of a conventional pro-
posal distribution was a pragmatic choice that allowed us to focus on these key aspects of
the analysis.

7.8 The True Values of β

To simplify, I employed runif(6, -3, 3), which means randomly drawing 6 real numbers
as the true values for β, each with equal probability, within the range from -3 to 3.
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8 Results
In this chapter, I will present the results of simulated experiments conducted on the sim-
ulated dataset, as introduced in Chapter 7. This research involves an in-depth diagnostic
analysis of the results using Bayesian logistic regression models and various MCMC algo-
rithms. The main diagnostic and comparative aspects include:

1. Convergence and Mixing of Chains: Trace plots are used to analyze the conver-
gence of the chains, and rank plots are introduced for more effective verification of
chain mixing. Additionally, I employ both the improved Split-R̂ and the traditional
PSRF to assess multi-chain mixing.

2. Auto-correlation and Effectiveness of Samples: The ESS (Effective Sample
Size) is utilized to determine the effectiveness of samples and their impact on chain
convergence.

3. Model Evaluation and Selection: A ranking plot based on the WAIC is used to
assess the fittning and predictive performance of the models, and to discuss issues
related to model selection.

Before delving into the experimental results, 3 key points need to be clarified:

1. The MCMC algorithms used in the simulated experiments are PG-augmented Gibbs
sampling and MH random walk. In the discussions that follow, unless specifically
stated otherwise, all references to Gibbs sampling refer to PG-augmented Gibbs sam-
pling, and all mentions of the MH algorithm refer to the MH random walk.

2. The model includes six parameters, including the intercept parameter, ranging from
β0 to β5. While part of our discussion in this chapter primarily focuses on the single
parameter β1, it should be noted that the results for the other parameters also exhib-
ited outcomes similar to β1, allowing us to draw a set of broad conclusions that are
applicable to these parameters as well.

3. In the subsequent paragraphs and tables, the notation MCMC + prior is used to denote
a model that incorporates a specific MCMC method combined with a prior assumption.
For instance, MH+t refers to a model that employs the Metropolis-Hastings random
walk with a Student’s t-distribution as its prior.

8.1 Verification of Posterior Distribution Integrals
Before performing convergence diagnostics, I first calculated the integrals of the chains
from the posterior sampling results in the simulated experiments. This step is crucial for
validating the effectiveness of the MCMC samplings, as in Bayesian statistics, the integral
of the posterior distribution must be 1 to ensure it is a valid probability density function
(PDF).

According to our results (Table 1), for all models under different values of ρ, the integrals
of the posterior distributions are close to 1, suggesting that the MCMC sampling might
have converged to the true posterior distribution. The consistent results across different
ρ settings strengthen the credibility of the model’s posterior distributions. However, the
integral being 1 is only a necessary condition and does not fully confirm the accuracy of the
sampling. Further diagnostics are necessary to validate the accuracy and convergence of the
MCMC sampling.
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ρ Method β0 β1 β2 β3 β4 β5

0.1 Gibbs+normal 1.000978 1.000978 1.000978 1.000978 1.000978 1.000981
Gibbs+t 1.000978 1.000978 1.000978 1.000978 1.000979 1.000980

Gibbs+Cauchy 1.000978 1.000978 1.000978 1.000978 1.000978 1.000982
MH+normal 1.000939 1.000977 1.000975 1.000977 1.000975 1.000978

MH+t 1.000969 1.000978 1.000978 1.000976 1.000978 1.000975
MH+Cauchy 1.000970 1.000975 1.000976 1.000977 1.000977 1.000974

0.3 Gibbs+normal 1.000978 1.000978 1.000978 1.000978 1.000980 1.000983
Gibbs+t 1.000978 1.000978 1.000978 1.000978 1.000979 1.000982

Gibbs+Cauchy 1.000978 1.000978 1.000978 1.000978 1.000980 1.000975
MH+normal 1.000976 1.000976 1.000977 1.000978 1.000978 1.000977

MH+t 1.000978 1.000978 1.000977 1.000978 1.000978 1.000978
MH+Cauchy 1.000978 1.000978 1.000978 1.000978 1.000977 1.000978

0.6 Gibbs+normal 1.000978 1.000978 1.000978 1.000978 1.000978 1.000978
Gibbs+t 1.000978 1.000978 1.000978 1.000978 1.000978 1.000978

Gibbs+Cauchy 1.000978 1.000980 1.000978 1.000978 1.000978 1.000978
MH+normal 1.000977 1.000978 1.000978 1.000977 1.000978 1.000978

MH+t 1.000978 1.000978 1.000977 1.000978 1.000976 1.000978
MH+Cauchy 1.000978 1.000978 1.000977 1.000978 1.000978 1.000978

0.9 Gibbs+normal 1.000978 1.000978 1.000978 1.000978 1.000978 1.000978
Gibbs+t 1.000978 1.000978 1.000978 1.000978 1.000978 1.000978

Gibbs+Cauchy 1.000978 1.000978 1.000978 1.000978 1.000978 1.000978
MH+normal 1.000978 1.000978 1.000978 1.000978 1.000978 1.000978

MH+t 1.000978 1.000978 1.000978 1.000978 1.000978 1.000978
MH+Cauchy 1.000978 1.000978 1.000978 1.000978 1.000978 1.000978

Table 1: The posterior integral of β for different models across various ρ values

8.2 Analysis of Estimations
To ensure the accuracy of posterior sampling, this section compares the means of posterior
distributions, MLE, and true parameter values (see Table 2 and Table 3). Ideally, the mean
of the posterior distribution should be close to the true parameter values with minimal error,
reflecting the high credibility of posterior sampling.

As we have observed, for a limited sample size (n=100), the posterior means obtained
through MCMC sampling methods are similar to the MLE. Additionally, the deviation of
the posterior distribution’s mean from the true parameter values is not significant and is
acceptable.

β1 MLE Posterior mean
Gibbs+normal Gibbs+t Gibbs+Cauchy MH+normal MH+t MH+Cauchy

ρ = 0.1 1.339022 0.9054439 0.6852904 0.9626719 0.9400584 0.6844759 0.6911559 0.6862541
ρ = 0.3 1.339022 1.1819641 0.7615924 1.2477004 1.2153344 0.7442198 0.7749092 0.8239267
ρ = 0.6 1.339022 1.9241888 1.0288777 1.9737189 1.9376159 0.9996676 1.0449753 1.3151916
ρ = 0.9 1.339022 1.9811506 0.8459840 1.7582428 1.7104387 0.8348128 0.8496338 0.8851541

Table 2: True Values, MLE, and Posterior Means of β1 for Various ρ Levels

30



β1 |ErrorMLE| |ErrorPosterior Means|
Gibbs+normal Gibbs+t Gibbs+Cauchy MH+normal MH+t MH+Cauchy

ρ = 0.1 1.339022 0.433578 0.653732 0.376350 0.398964 0.654546 0.647866 0.652768
ρ = 0.3 1.339022 0.1570579 0.577430 0.091322 0.123688 0.594802 0.564113 0.515095
ρ = 0.6 1.339022 0.5851668 0.310144 0.634697 0.598594 0.339354 0.294047 0.023830
ρ = 0.9 1.339022 0.6421286 0.493038 0.419221 0.371417 0.504209 0.489388 0.453868

Table 3: Absolute Error for MLE and Posterior Means of β1 for Various ρ Levels

8.3 Trace plot
The provided Figure 1 and Figure 2 in this chapter display the convergence behavior and
sampling characteristics of a single parameter β1 for six statistical models at two differ-
ent levels of correlation coefficients (ρ = 0.1 and ρ = 0.9) by using trace plot. In these
two extreme cases of correlation, the three models using Gibbs sampling ( Gibbs+normal,
Gibbs+t, Gibbs+Cauchy) all show stable trace lines without any apparent burn-in period.
This indicates that the Gibbs sampling method is capable of achieving rapid and effective
convergence for data with both low and high correlation.

In contrast, the trace plots of the MH method at ρ = 0.1 exhibit a lower effective
sampling rate, as evidenced by long periods where sample points remain unchanged, which
indicates poor sampling efficiency.

At the higher correlation level of ρ = 0.9, the noticeable trend and fluctuations in the
trace lines of the MH random walk related models, particularly MH with Cauchy prior,
suggest that the posterior samples may be highly autocorrelated, indicating a lack of inde-
pendence and effectiveness in the samples. This also implies that the chains obtained by
the MH algorithm may still not have converged.

For the sake of brevity, I have omitted the trace plots for ρ values of 0.3 and 0.6 in this
section. This is because the results at ρ = 0.3 are very similar to those at ρ = 0.1, and the
trace plots at ρ = 0.6 are highly similar to those at ρ = 0.9. This observation suggests that
at lower correlations (below 0.5), the MH-related models primarily exhibit poor sampling
efficiency in their trace plots, while at higher data correlations (above 0.5), the trace plots
of these models primarily demonstrate issues of high autocorrelation in sampling.

It is important to note that since plotting multiple chains’ traces in the same traceplot
can lead to visual confusion, the traceplots in this chapter only involve a single chain for β1.
For an check of multi-chain’s mixing and consistency, I will elaborate in the next subsections.

8.4 Rank Plot
To more clearly assess the mixing and convergence consistency of the chains, I introduced
the rank plot. As shown in Figure 3, rank plots for the four chains of β1 in the six models
at ρ = 0.1 were constructed, where the Gibbs+normal, Gibbs+t, and Gibbs+Cauchy models
displayed uniformly distributed ranks across their four chains. This indicates that the com-
bination of Gibbs sampling with these three prior distributions demonstrates good mixing
and consistency.

However, the performance of models related to the MH algorithm in the rank plots
was less satisfactory, which showed evident non-uniform distributions, indicating either an
abundance or scarcity of certain ranks in sampling. This could suggest insufficient inter-
chain mixing or that they may not have converged to the same distribution.
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Additionally, I have chosen to omit the rank plot analysis for ρ values of 0.3, 0.6, and
0.9, as it has been verified that the rank plots exhibit similar outcomes to those at ρ = 0.1
when the correlation coefficient assumes other values.

Figure 1: Trace Plot: Gibbs Sampling vs Metropolis-Hastings Randow Walk for β1 (ρ = 0.1)

Figure 2: Trace Plot: Gibbs Sampling vs Metropolis-Hastings Randow Walk for β1 (ρ = 0.9)
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Figure 3: Rank plot of β1 across 4 chains for different models at ρ = 0.1

8.5 Analysis of Split-R̂ and PSRF
In this chapter, I will analyze the convergence behavior of MCMC samplings by calculating
the Potential Scale Reduction Factor (PSRF) and Split-R̂ values for different statistical
models at multiple correlation coefficient (ρ) levels. Theoretically, when the Potential Scale
Reduction Factor (PSRF) is below 1.1 or the Split-R̂ is below 1.01, it is indicative that all
chains generated by the MCMC algorithm for a model may have converged to the same
distribution.

Let us first explore the differences among the models in terms of the Split-R̂ index. As
shown in Figure 4, with any prior assumption, the Gibbs sampling technique maintains
a Split-R̂ value below 1.01 from the start, significantly indicating the high convergence
efficiency of the Gibbs sampling algorithm. In contrast, the MH random walk, regardless
of the prior used, exhibits a relatively slower convergence rate, generally requiring 2000
to 5000 iterations to lower the R̂ value below 1.01. Particularly, with data correlation as
high as 0.9, the MH random walk combined with the Cauchy prior necessitates up to 12500
iterations to achieve convergence. Worse still, when ρ equals 0.1, the combinations of MH+t
and MH+Cauchy, even after 20,000 iterations, have their Split-R̂ values remaining slightly
above the convergence threshold of 1.01. Additionally, it is noteworthy that in most cases,
the fastest convergence rate with MH random walk is observed when the prior is a normal
distribution. Conversely, using Cauchy or Student’s t-distributions as priors tends to slow
down the convergence. However, there is an exception: when the data correlation coefficient
ρ is 0.3, the convergence rate of MH random walk with a normal prior is slightly slower than
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with Student’s t or Cauchy priors.

Figure 4: Split-R̂ trends for different models of β1 under varying correlations

We also explored the use of the PSRF by utilizing the gelman.diag function from
the coda library, known as the traditional R̂, for generating similar graphs. However, we
encountered errors during the computation process, attributable to the calculation method
of the gelman.diag function. This issue warrants further discussion, which we will reserve
for the discussion section (Chapter 9). Consequently, I opted to employ a tabular approach
to compare the Split-R̂ and PSRF after completing 20,000 iterations.

As observed in Table 4, overall, both Gibbs sampling and MH models remain below the
convergence threshold for PSRF and Split-R̂ across different levels of ρ. Only two outliers
are observed, namely the MH+t and MH+Cauchy models at ρ = 0.1, where their Split-R̂ values
exceed the threshold of 1.01.

This indicates that the conclusions derived from PSRF and Split-R̂ are largely consistent.
After completing 20,000 iterations, the sampling chains of all models essentially reached
convergence. However, a divergence in conclusions between PSRF and Split-R̂ emerged
when ρ is 0.1. The PSRF indicated that MH+t and MH+Cauchy had achieved convergence
(with values of 1.0798 and 1.0704, both below the PSRF threshold of 1.1), whereas Split-R̂
suggested that these combinations were only nearing convergence (with values of 1.0329 and
1.0243), not fully reaching the stringent convergence threshold of 1.01. This subtly suggests
that Split–R̂ may be more stringent than PSRF.
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ρ Method Gibbs+normal Gibbs+t Gibbs+Cauchy MH+normal MH+t MH+Cauchy
0.1 PSRF 1.0001 1.0002 1.0002 1.0222 1.0798 1.0704

Split-R̂ 1.0000 1.0000 1.0000 1.0041 1.0329 1.0243
0.3 PSRF 1.0001 1.0002 1.0005 1.0062 1.0373 1.0184

Split-R̂ 1.0000 1.0000 1.0001 1.0006 1.0067 1.0017
0.6 PSRF 1.0004 1.0003 1.0002 1.0159 1.0034 1.0126

Split-R̂ 1.0000 1.0000 1.0000 1.0014 1.0004 1.0056
0.9 PSRF 1.0001 1.0000 1.0000 1.0096 1.0480 1.0221

Split-R̂ 1.0000 1.0000 1.0000 1.0009 1.0085 1.0055

Table 4: PSRF and Split-R̂ of β1 for different models across various ρ values

8.6 ESS across Different Models and Correlation Levels
Figure 5 presents a comparison of the Effective Sample Size (ESS) for six models based
on different MCMC algorithms and prior distributions at various levels of correlation. It
is observed that the Gibbs sampling model with a normal prior consistently maintains the
highest ESS values (approximately between 6500 and 8800, equating to about 32.5% to 44%
sample effectiveness) across all correlation settings. This indicates that the Gibbs+normal
model obtained the most actual independent samples in our set of 20,000 iteration samplings.
Although the effective sample sizes of Gibbs+t and Gibbs+Cauchy are slightly lower than
Gibbs+normal, they still reach about 4000 to 7500 in 20,000 iterations, approximately 20%
to 37.5% effectiveness. In contrast, the models using MH random walk show significantly
lower ESS values, with effective samples consistently below 500. This demonstrates that
even after applying a thinning strategy of sampling every four steps, MH random walk
may require more iterations to achieve a comparable number of effective samples as Gibbs
sampling. Therefore, Gibbs sampling, regardless of the prior assumption, provides higher
sampling efficiency, greater sample independence, and better effectiveness, especially the
combination with a normal prior. Additionally, it is observed that at ρ = 0.6 or 0.9,
the sample effectiveness when MH is combined with the Cauchy prior is lower than when
combined with normal or Student’s t-priors. This implies that, among the six combinations,
the MH combined with Cauchy prior has the smallest number of effective samples in cases
of high data correlation.

It is worth mentioning that my design involves first calculating the ESS values for indi-
vidual chains in MCMC and then computing the average effective sample size (ESS) across
multiple chains. The advantage of this approach is that it helps avoid randomness and
increases the credibility of the experimental results.

8.7 Ranking Plot with WAIC
As shown in Figure 6, the WAIC values of all 24 models are very close to each other,
indicating that the convergence of the chains and the sampling efficiency are not always
directly related to the WAIC values. For example, as we have previously observed, although
the models using the MH algorithm did not perform well in terms of chain mixing and
effective sample size (ESS), their WAIC values do not differ significantly from those models
using Gibbs sampling. We will delve further into this point in the discussion section(see
Chapter 9.2).
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Figure 5: Effective sample size trends for different models under varying correlations

Figure 6: WAIC Ranking plot for all models
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9 Summary and Discussion
9.1 Summary of Results
Based on the experimental results, it is observed that after 20,000 iterations, the posterior
distribution integrals obtained by combining Gibbs Sampling and the Metropolis-Hastings
random walk algorithm with three different prior distributions are all very close to 1. Ad-
ditionally, the posterior mean accuracy of all models is generally acceptable.

By analyzing the trace plots and rank plots, it was found that the posterior single
chains obtained using the MH algorithm did not show obvious signs of convergence, but
instead had issues with low sampling efficiency and autocorrelation. Additionally, the rank
plots also indicated poor multi-chain mixing and inconsistent convergence when using the
MH algorithm. Conversely, the chains sampled using Gibbs sampling exhibit rapid and
stable convergence, as evidenced by their trace plots. Additionally, the rank plots for these
chains demonstrate effective mixing across multiple chains. In the validation using Split-
R̂, we observed a consistent conclusion: regardless of the chosen prior assumption, models
employing Gibbs sampling exhibited significantly superior convergence efficiency compared
to the MH random walk algorithm. Notably, the combination of MH method with a normal
prior demonstrated better convergence efficiency than other priors. This may be partly
attributed to the fact that the simulated dataset X also follows a normal distribution.
In the evaluation of Effective Sample Size (ESS), the conclusion was further supported:
models using Gibbs sampling exhibited significantly higher posterior sampling effectiveness
compared to those using the MH algorithm. Among them, the Gibbs model combined with
a normal prior had the highest number of effective samples. In contrast, models employing
MH random walk had a significantly lower number of effective samples, indicating high
autocorrelation and low sampling effectiveness.

Finally, after ranking the models using WAIC, we did not find significant differences
among them. However, it is important to note that this does not directly lead to the
conclusion that “the predictive ability of the models are theoretically similar.” This is
because when the chains have not fully converged, the estimation of parameters becomes
inaccurate, rendering the WAIC values unreliable. On the other hand, this also suggests
that a model’s WAIC is not directly linked to the chain’s convergence performance. I will
discuss this point in further detail in the following subsection.

9.2 Discussion
The results of the simulated experiments conducted in this thesis are closely related to a
variety of factors, including the sample size of the simulated dataset, the number of param-
eters, the setting of prior parameters, the number of iterations in the MCMC algorithm, the
step length in MH sampling and the choice of the proposal distribution. Therefore, these
experimental results are not universally applicable. For example, when the sample size is
set to 50 and other conditions remain unchanged, the results indicate that the Cauchy prior
significantly affects the convergence of the chain. Regardless of which MCMC algorithm is
used, its posterior sampling is difficult to converge effectively, as evidenced by multiple indi-
cators such as trace plot, Split-R̂, and ESS. I also tried different parameter values from those
recommended in the 2018 literature for Cauchy and Student’s t-prior distributions, and the
results showed that the differences from the recommended configuration were not signifi-
cant. However, some predictable differences do exist. For instance, significantly increasing
the sampling step length in the Thinning strategy of the MH algorithm can increase the
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effectiveness of MH algorithm’s posterior samples and reduce autocorrelation in sampling.
But it is important to recognize that due to the increased step length, the total number of
iterations significantly increases, indirectly indicating that the MH algorithm is less efficient
in convergence than Gibbs sampling, a conclusion consistent with our experimental findings.

It’s also important to note that the convergence performance of the MH algorithm is
closely related to the choice of proposal distribution. The MH algorithm requires careful
tuning and optimization to achieve optimal performance, which is not the main focus of
this paper. The selection of a common proposal distribution was motivated by the desire
for simplicity, computational efficiency, and the scope of our research objectives. Certainly,
we can seek to find a more optimal proposal distribution by adjusting parameters. As per
experience, the MH random walk algorithm typically selects acceptance rate in the range of
20% to 50% to prevent excessively small step sizes and, consequently, insufficient exploration
of the parameter space. However, our experimental results have already indicated that the
effective sample proportion for the Gibbs models falls within the same range of 20% to
50%. This suggests that even if all samples the MH random walk algorithm generates are
effective, its effective sample size remains similar to that of the Gibbs models. This results
comes at the cost of computational and time expenses. Therefore, in practice, even with the
adoption of an optimal proposal distribution, our comparative results may still demonstrate
the superiority of Gibbs sampling.

In Section 8.5, we discussed the inability to calculate PSRF values at lower iteration
counts, attributed to failures in the Cholesky decomposition of the covariance matrix during
the computation process by the gelman.diag function. This issue arises when MCMC chains
do not converge adequately, or their mixing is insufficient, leading to a singular or near-
singular covariance matrix, which in turn impedes the Cholesky decomposition. As a result,
the PSRF values cannot be successfully calculated in the early stages when chain samples
are insufficient, preventing the creation of PSRF trend graphs similar to those depicted in
Figure 4. This also underscores the relative computational instability of PSRF compared
to Split-R̂.

In our study, it is crucial to note that the WAIC does not have a direct relationship
with the MCMC convergence efficiency of models. WAIC focuses on the overall predictive
ability of a model, rather than on the process of estimating model parameters or their
convergence. MCMC convergence efficiency refers to the number of iterations required to
reach the target posterior distribution. Given that WAIC and MCMC convergence efficiency
play different roles in Bayesian model evaluation, in our experiments, models using the
MH algorithm exhibited similar WAIC values to other models, even with a lower ESS
(Effective Sample Size, see Figure 5), a slower convergence process (see Figure 4) and
poor parameter mixing(see Figure 3). However, we must not overlook the fact that a
good MCMC convergence is a prerequisite for an effective WAIC evaluation. If MCMC
sampling has not converged, even an apparently favorable WAIC value might be misleading
due to inaccurately estimated parameters. Therefore, before employing WAIC for model
evaluation, it is essential to ensure that MCMC sampling has indeed converged.
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