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Abstract

The aim of this thesis is to present a theoretical framework through
which the rate of convergence towards normality can be studied (in the
univariate case) - thus providing insight as to what factors to consider
when applying the central limit theorem. This is done using Edge-
worth expansions of the cumulative distribution function and much
focus is placed on cumulants, which they rely upon. We also derive
a more general version of the Edgeworth expansion that allows for
expectation zero and unit variance to appear only asymptotically, as
opposed to the standard expansion that assumes these properties to
hold in general. The framework is then applied to variance-stabilizing
transformations for two underlying sampling distributions - the Pois-
son and the exponential. The results tell us that applying the variance-
stabilizing transformation in its most simple form does not lead to
improved convergence, due to the introduction of a bias and the vari-
ance not really being a constant for finite samples. Standardizing the
variance-stabilized variable, however, we do see signs of improved con-
vergence for both distributions. In the Poisson case the improvements
depend on the product of the rate parameter and the sample size, and
in the exponential case the improvements permeate through all tested
sample sizes. As such we advise to search for other transformations if
the underlying sampling distribution is Poisson, but suggest the stan-
dardized variance-stabilized transformation as a viable option if the
distribution is exponential.
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1. Introduction

1.1. Motivation

The central limit theorem plays an immensely important role in statistics and probability
theory. The ability to approximate the distribution of a sum of random variables using
a normal distribution allows for far less complex inference when the sample size is (suffi-
ciently) large. The theorem, however, somewhat fails to tell us just how fast the rate of
convergence actually is, and what factors we should be aware of before applying it. This
thesis aims to present a theoretical framework (to adress such questions) in the form of
Edgeworth expansions of the cumulative distribution function.

A very common practice within statistics is to apply some transformation to obtained
data in order to make it ”more” normal. A natural use for this framework would therefore
be to investigate some class of transformations and say if they bring a random variable
of interest closer to normality or not. In this thesis, we study variance-stabilizing trans-
formations. Whether these claim to improve inferential tools or not we have not been
able to deduce from the introductory literature on statistical inference. It could be that
their original purpose (from less compute-ready times) was to reduce complexity. This
motivates us to study them further.

1.2. Structure of the thesis

We begin Chapter 2 by briefly presenting some asymptotic results from maximum-likelihood
theory - such as the distribution of the maximum-likelihood estimator, the delta method
and the variance-stabilizing transformation. We then introduce the Edgeworth expansion
in its base form, give a pretty detailed presentation of cumulants - of which the Edgeworth
expansion rely upon - before returning to the Edgeworth expansion and presenting it in
a more general form. We proceed with a brief introduction of the natural exponential
family and why it forms a nice class of examples to study through this framework. At the
very end of the chapter we give a brief run-through of why improved convergence implies
improved inference, using confidence intervals and coverage probability.

In Chapter 3 we apply the variance-stabilizing transformation for two underlying sam-
ple distributions - the Poisson and the exponential - and use our framework to study
the convergence towards normality. The results are presented in tables and some brief
interpretations of them are given. We then suggest an improved version of the variance-
stabilizing transformation, apply it, and present the new results.

Lastly, we conclude the thesis in Chapter 4 by discussing cumulants, the usage of the
Edgeworth expansion in a more practical sense and how it, while being quite cumbersome
to work with, might be challenging to replace with simpler, more direct methods of study-
ing convergence towards normality. We present some of the possible shortcomings of the
Edgeworth expansion and the closely related Berry-Esseen bound as an alternative way of
studying the central limit theorem. We also discuss variance-stabilizing transformations,
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1.2. STRUCTURE OF THE THESIS

their drawbacks and possible improvements on them. For further work we suggest, in part,
simulation as a means of studying convergence towards normality, but also to continue
with the framework presented, but applied to a wider range of transformations.

2



2. Theoretical Framework

In this chapter we present all of the required theory in order to study finite sample con-
vergence towards normality for some (univariate) random variable whose asymptotic dis-
tribution is normal. This will allow us to study the effects of the variance-stabilizing
transformation, which will be our starting point.

2.1. MLE asymptotics and the delta method

In order to define the variance-stabilizing transformation, we first have to define the delta
method, which in turn relies on the asymptotic distribution of the maximum likelihood
estimator.

From here on out, we will assume that the Fisher regularity conditions hold and that
X1:n = (X1 . . . Xn) is a random sample of independent and identically distributed random
variables. Furthermore, assume that θ̂ = θ̂(X1:n) is the maximum likelihood estimator of
θ, which in turn yields that θ̂ is consistent for θ (Held and Bové 2020). It follows that the
asymptotic distribution of the maximum likelihood estimator satisfies

√
n(θ̂ − θ)

D−→ N(0, J−1(θ)), n → ∞, (2.1)

where
D−→ denotes convergence in distribution (Gut 2009, p. 147), and J(θ) denotes the

expected Fisher information (Held and Bové 2020, p. 81) with respect to the distribution
of the sample variable Xi.

The delta method now states that, if θ̂ is a statistic such that

√
n(θ̂ − θ)

D−→ N(0, σ2(θ)), σ(θ) > 0, n → ∞,

and g is a once differentiable function R → R with g′(θ) ̸= 0 for all θ. Then

√
n(g(θ̂)− g(θ))

D−→ N(0, [g′(θ)]2σ2(θ)) (2.2)

(DasGupta 2008, p. 40).

Remark 2.1. Variance-stabilizing transformations only work in the univariate case, hence,
we are restricted to only studying univariate transformations. It is, however, worth men-
tioning that there exists an equivalent definition of the delta method for the multivariate
case.

2.2. Variance-stabilizing transformations (VST)

The main idea behind VST is to make the estimator’s variance asymptotically indepen-
dent of the unknown parameter, thereby reducing the amount of unknowns when creating
confidence intervals and testing hypotheses. Whether the coverage probability is actually
improved or not remains to be seen.

3



2.3. THE EDGEWORTH EXPANSION (EE)

This is where the delta method, (2.2), comes into play. By solving the equation

c2 = [g′(θ)]2σ2(θ),

for some constant c, we can find such a transformation g. This in turn gives us an explicit
formula

g(θ) = c

∫
1

σ(θ)
dθ, (2.3)

in order to find a variance-stabilizing transformation (DasGupta 2008, p. 50). Here, the
integral sign denotes a primitive function, and the constant c can be chosen in whichever
way simplifies the transformation the most.

Remark 2.2. The variance-stabilizing transformation is a monotone function such that
if we make inferences about g(θ) it is always possible to take the inverse of g in order to
make inferences about θ (see DasGupta 2008, p. 50).

Example 2.1. Let X1:n be an iid sample of Poisson variables with rate parameter λ. The
maximum likelihood estimator of λ is

λ̂ = Xn =
1

n

n∑
i=1

Xi,

and the asymptotic distribution evaluates to

√
n(Xn − λ)

D−→ N(0, λ), n → ∞.

In order to find the VST we use (2.3) and solve

g(λ) = c

∫
1√
λ
dλ,

thus yielding g(λ) = 2c
√
λ. Choosing c = 1/2 we get the VST g(λ) =

√
λ. We can now

use the delta method (2.2) in order to retrieve the new asymptotic distribution

√
n

(√
Xn −

√
λ

)
D−→ N(0, 1/4),

which we can see is now independent of the unknown parameter λ.

2.3. The Edgeworth expansion (EE)

In this section we will give a brief overview of the Edgeworth expansion and state some
useful facts. We will not attempt to derive it in its entirety yet, but will instead focus on
breaking it down and getting acquainted with its components (for an in depth theoretical
derivation, see Barndorff-Nielsen and Cox 1989, ch. 4).

Let

Zn =

√
n(Xn − µ)

σ
, (2.4)

where µ = E[Xi], σ =
√

Var(Xi) and Xn is the sample mean.

4



2.4. CUMULANTS

Now, the two-term Edgeworth expansion of the cumulative distribution function (CDF)
of Zn can be expressed in the following way (Barndorff-Nielsen and Cox 1989, p. 90):

FZn(x) = Φ(x)− ϕ(x)

(
ρ3H2(x)

6
√
n

+
ρ4H3(x)

24n
+

ρ23H5(x)

72n

)
+O(n

−3/2), (2.5)

where Φ and ϕ denote the standard normal CDF and standard normal density function
respectively, ρr = κr/σ

r, r = 3, 4, . . . , denote the standardized cumulants - κr the regular
cumulants - of order r of the underlying sample distribution (more on cumulants in the
next section), and O(an)/an is bounded as n → ∞ for any an. The Hi(x) factors originate
from a set of orthogonal polynomials called the Hermite polynomials and are defined as
(Barndorff-Nielsen and Cox 1989, p. 18)

ϕ(x)Hr(x) = (−1)r
dr

dxr
ϕ(x), r = 0, 1, 2 . . . . (2.6)

Since these polynomials appear in the same form, in each Edgeworth expansion, indepen-
dently of the underlying distribution, we will henceforth just consider them as a given.
However, when performing numerical evaluations of the EE - as we shall do at a later stage
- we will have to be a bit mindful of these, since they evaluate to zero for some values
on x, and therefore lead to entire terms disappearing from (2.5). The first eight Hermite
polynomials are

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x,

H6(x) = x6 − 15x4 + 45x2 − 15, H7(x) = x7 − 21x5 + 105x3 − 105x.

(2.7)

Proposition 2.1. If the Edgeworth expansion exists for a random variable X, then there
also exists Edgeworth expansions for transformations of X (Barndorff-Nielsen and Cox
1989, p. 121-122).

The result from Proposition 2.1 is important in the sense that as long as the Edgeworth
expansion exists for Zn (2.4), then it will also exist for transformations of Zn - in our case
variance-stabilizing transformations. In this thesis, we will only consider variables whose
Edgeworth expansions exist.

2.4. Cumulants

Looking at the Edgeworth expansion, as presented in (2.5), we can see that, for fixed x,
it really only depends on the sample size n and the standardized cumulants ρr. In order
to define cumulants, we start by defining the moment-generating function.

Definition 2.1. The moment-generating function (MGF) of a random variable X
is defined as

MX(t) = E[etX ],

provided there is some h > 0 such that this expectation exists for |t| < h (Gut 2009, p.
63).

Definition 2.2. The moments (sometimes referred to as raw moments) of a random
variable X whose moment-generating function exists are defined as

µr = E[Xr] = M
(r)
X (0), r = 1, 2, . . .

(Gut 2009, p. 64).

5



2.4. CUMULANTS

Having the MGF and the moments well defined we can now move on to defining the
cumulants.

Definition 2.3. The cumulant-generating function (CGF) of a random variable X
is defined as

KX(t) = log(MX(t)),

i.e., the logarithm of the moment-generating function (Barndorff-Nielsen and Cox 1989,
p. 6).

Remark 2.3. It is also possible (and even more general) to define the cumulant-generating
function in terms of the characteristic function φ(t) = E[eitX ]. However, we will only
consider distributions whose moments are well defined, hence we settle for the definition
using the moment-generating function.

Definition 2.4. The cumulants of a random variable X are defined as the coefficients
κr (r = 1, 2, . . . ) in the series expansion

KX(t) =
∞∑
r=1

κr
tr

r!
,

of the cumulant generating function, or, equivalently

κr = K
(r)
X (0),

i.e, the r:th derivative of the cumulant-generating function, evaluated at zero.

Remark 2.4. Sometimes, when we are working with variables that represent transfor-
mations of entire samples (e.g. Zn in (2.4)), it might be more productive to study the
cumulants of the underlying sample distribution. In these cases we will adopt the nota-
tion κr = κr(Xi), or κr = κr(Zn) to specify which cumulants we are referring to. This
will be especially useful when such transformations are affine and involve sums of random
variables, as will become evident later on.

Taking the derivative of the CGF several times, or identifying the coefficients in the series
expansion may, however, turn out to be rather cumbersome. In these cases we can enjoy
the fact that the cumulants can be expressed as functions of the central moments. The
first four cumulants are given as

κ1 = E[X]

κ2 = E[(X − E[X])2] (= Var(X))

κ3 = E[(X − E[X])3]

κ4 = E[(X − E[X])4]− 3(E[(X − E[X])2])2,

(2.8)

which in turn can be further reduced to the raw moments

κ1 = µ1

κ2 = µ2 − µ2
1

κ3 = µ3 − 3µ1µ2 + 2µ3
1

κ4 = µ4 − 4µ1µ3 + 12µ2
1µ2 − 3µ2

2 − 6µ4
1,

(2.9)

for µr = E[Xr]. We settle for the first four cumulants here because this is the highest
order we will use in our Edgeworth expansions.
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2.4. CUMULANTS

Remark 2.5. As is evident from (2.8) the first cumulant is the expectation and the sec-
ond cumulant is the variance. The third cumulant is the non-standardized skewness of
the distribution and ”improvements” on this might be referred to as improvements on the
skewness. The fourth cumulant is the difference between the fourth centralized moment -
the non-standardized kurtosis1 - and three times the squared variance. For simplicity, we
will henceforth refer to this as the kurtosis, short for kurtosis-correction factor.

When deriving the cumulants, we have some additional properties that might come in
handy - namely

κr(X + c) = κr(X) + c, r = 1

κr(X + c) = κr(X), r > 1 [translational invariance]

κr(cX) = crκr(X) [homogeneity of order r]

κr(X1 + . . .+Xn) = κr(X1) + . . .+ κr(Xn) [cumulative].

(2.10)

Example 2.2. Let X1:n be an iid sample of some distribution whose MGF exists. Now
consider the CGF of the standardized sample variable Zn (see (2.4)). After some calcula-
tions, using the properties of the moment-generating function (Gut 2009, ch. 3.3) we can
see that

KZn(t) = −
√
nµt

σ
+ nKXi

(
t

σ
√
n

)
.

Hence, the CGF of the underlying sample variable appears in the expression of the CGF
of Zn, thus making it more easily derivable. If we now want the higher-order cumulants
of Zn, using Definition 2.4, the first term disappears after the second differentiation and
we get

κr(Zn) =
dr

dtr

[
nKXi

(
t

σ
√
n

)]∣∣∣
t=0

= nκr

(
Xi

σ
√
n

)
(2.10)
=

n

(σ
√
n)r

κr(Xi), r = 2, 3, . . . .

That is, the cumulants of Zn can be expressed as some sample dependent factor multiplied
with the cumulant of the underlying sample distribution. This is in part due to the
cumulative property of (2.10) and will in general not hold after a variance stabilizing
transformation.

The above example highlights an issue with the Edgeworth expansion, as given in equation
(2.5). The coefficients ρr = κr(Xi)/σ

r take advantage of the cumulative property from
(2.10) in the sense that that the cumulants of Zn are easily relatable to the cumulants of
its underlying sample distribution. When this cumulative property does not hold (as will
become evident when we explore some examples of VST), the expansion in (2.5) does not
not hold either. We are therefore in need of a generalization of the Edgeworth expansion
that is directly dependent on the cumulants of the sample variable whose CDF we want
to expand.

12024-05-23: https://en.wikipedia.org/wiki/Kurtosis
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2.5. GENERALIZATION OF THE EDGEWORTH EXPANSION

2.5. Generalization of the Edgeworth expansion

Another restriction of the Edgeworth expansion from (2.5) is that it hinges on the fact
that E[Zn] = 0 and Var(Zn) = 1, i.e., that our sample variable has standard expecta-
tion and variance. This in turn yields an Edgeworth expansion that is free from the first
and second cumulants (the expectation and the variance). However, when working with
variance-stabilizing transformations we are using the delta method (2.2), which relies solely
on asymptotic results - for the distribution, as well as for the expectation and variance. It
would therefore be beneficial to have an expansion where the first and second cumulants
are included as well, since these deviations from standard expectation and variance might
not be negligible.

Let Tn
D−→ N(0, 1) differ from our previous Zn in the sense that it is not necessarily truly

standardized, only asymptotically. We now want to derive an expansion for FTn using its
cumulants. Using Definition 2.4 we start from the cumulant-generating function

KTn(t) = κ1t+ κ2
t2

2
+ κ3

t3

6
+ κ4

t4

24
+ . . . ,

including only the first four cumulants here as well. Adding and subtracting t2/2 and
exponentiation gives us the moment-generating function

MTn(t) = exp

{
t2

2

}
exp

{
κ1t+ (κ2 − 1)

t2

2
+ κ3

t3

6
+ κ4

t4

24
+ . . .

}
.

The three-term Maclaurin expansion ex = 1 + x + x2/2 where x = κ1t + (κ2 − 1)t2/2 +
κ3t

3/6 + κ4t
4/24 yields an expression

MTn(t) = exp

{
t2

2

}(
1 +A1t+ . . .+A8t

8 + . . .
)
,

where the coefficients A1, . . . , A8 are functions of the cumulants. After some tedious
calculations (see Appendix A.1) we retrieve

A1 = κ1, A2 =
1

2
(κ21 + κ2 − 1), A3 =

κ3
6

+
(κ2 − 1)κ1

2
,

A4 =
(κ2 − 1)2

8
+

κ1κ3
6

+
κ4
24

, A5 =
κ1κ4
24

+
(κ2 − 1)κ3

12
,

A6 =
κ23
72

+
(κ2 − 1)κ4

48
, A7 =

κ3κ4
144

, A8 =
κ24
1152

.

(2.11)

Remark 2.6. Notice how A1, A2 and A5 evaluate to zero when κ1 = 0 and κ2 = 1.
Notice also how the remaining coefficients simplify significantly under this condition. We
get A3 = κ3/6, A4 = κ4/24, A6 = κ23/72, while A7 and A8 remain unchanged.

Now assuming κr−Ir=2 = O(n−1/2) for r = 1, 2, 3, 4 it follows that (κr−Ir=2)(κm−Im=2) =
O(n−1) for r,m = 1, 2, 3, 4, where Ii=j is the indicator variable that takes on the value 1
when i = j and 0 otherwise. Using the three-term Maclaurin expansion we are getting all
of the cumulant-products of this form, and we can write

MTn(t) = exp

{
t2

2

}
(1 +A1t+ . . .+A8t

8 +O(n−3/2)). (2.12)

8



2.5. GENERALIZATION OF THE EDGEWORTH EXPANSION

The next step is to invert (2.12) in order to retrieve the density function. To do this, we
use the fact that ∫

etxϕ(x)Hr(x)dx = tr exp

{
t2

2

}
, t ∈ R

(Barndorff-Nielsen and Cox 1989, p. 91) where Hr(x) is the Hermite polynomial of degree
r as in (2.5) and ϕ(x) is the standard normal density. Now, using the definition of Hermite
polynomials as in (2.6), one can retrieve an expansion for the density

fTn(x) = ϕ(x) (1 +A1H1(x) + . . . A8H8(x)) +O(n−3/2). (2.13)

Using (2.6) once again, one can retrieve the cumulative distribution function as

FTn(x) = Φ(x)− ϕ(x) (A1H0(x) + . . .+A8H7(x)) +O(n−3/2) (2.14)

(see Barndorff-Nielsen and Cox 1989, p. 91 for similar progression).

It would now be appropriate to compare (2.14) to (2.5) in order to see if our generalization
works. An initial test we might want to do is to just write out (2.14) under the assumption
that κ1 = 0 and κ2 = 1 and see if it looks similar to (2.5). Using the coefficients from
Remark 2.6, we get

FTn(x) = Φ(x)− ϕ(x)

(
κ3H2(x)

6
+

κ4H3(x)

24
+

κ23H5(x)

72
+

κ3κ4H6(x)

144
+

κ24H7(x)

1152

)
+O(n−3/2).

It looks fairly similar, apart from the last two terms in the parenthesis, which do not ap-
pear in (2.5). This motivates us to see how the two expansions actually perform in relation
to one another, and the standard normal CDF. Since (2.5) only allows for expansion of
standardized variables, we will have to choose a Tn with expectation zero and variance one.

For example, let

Tn
(2.4)
= Zn.

We know that Tn
D−→ N(0, 1) and that E[Tn] = 0, Var(Tn) = 1. Hence κ1(Tn) = 0 and

κ2(Tn) = 1. The idea is now to evaluate the two different expansions (2.5) and (2.14) for
some distribution F and some values x and compare them to the standard normal CDF
to see if they behave similarly (and if they approximate the standard normal distribution
well). Let FB denote expansion (2.5) (B for Barndorff) and let FG denote expansion
(2.14) (G for generalized). We then get the two Edgeworth expansions

FB
Tn
(x) = Φ(x)− ϕ(x)

(
κ3(Xi)H2(x)

6σ3
√
n

+
κ4(Xi)H3(x)

24σ4n
+

κ3(Xi)
2H5(x)

72σ6n

)
+O(n−3/2),

(2.15)

FG
Tn
(x) = Φ(x)− ϕ(x)

(
κ3(Tn)H2(x)

6
+

κ4(Tn)H3(x)

24
+

κ3(Tn)
2H5(x)

72

+
κ3(Tn)κ4(Tn)H6(x)

144
+

κ24(Tn)H7(x)

1152

)
+O(n−3/2),

(2.16)

to evaluate numerically, where we have used the fact that ρr = κr/σ
r for r = 3, 4, . . . in

(2.15).

Using Xi ∼ Po(λ) we get the following results for some (equidistributed) values on x,
while keeping λ = 5 and n = 50 constant:

9



2.6. THE NATURAL EXPONENTIAL FAMILY

Table 2.1.: Comparison of Edgeworth expansions for standardized Tn when sampling dis-
tribution is Po(λ = 5) and n = 50 against the standard normal CDF.

x FB
Tn
(x) Φ(x) FG

Tn
(x)

-2.00 0.02101 0.02275 0.02101

-1.65 0.04756 0.04947 0.04756

-1.30 0.09552 0.09680 0.09551

-0.95 0.17132 0.17106 0.17132

-0.60 0.27654 0.27425 0.27654

-0.25 0.40514 0.40129 0.40515

0.10 0.54396 0.53983 0.54397

0.45 0.67663 0.67364 0.67664

0.80 0.78922 0.78814 0.78922

1.15 0.87425 0.87493 0.87424

1.50 0.93154 0.93319 0.93153

1.85 0.96605 0.96784 0.96605

From Table 2.1 we can see that, out of the twelve rows in total, in six of them FB
Tn

and

FG
Tn

are equal, and in the remaining six they only differ from each other by an order of
10−5. Both of them have a maximum difference from Φ of order 10−3 - they seem to be
approximating the normal distribution rather well. The important thing to take away
from this result is that FG

Tn
appears to work just as well as FB

Tn
when Tn is standardized.

This will make comparisons between standardized and transformed variables a bit easier,
since we can use the same Edgeworth expansion, (2.14), for both of them.

2.6. The natural exponential family

Since our main interest somewhat lies in cumulants, it would be nice to choose a family
whose cumulant-generating functions are easily expressible. One such family is the natural
exponential family.

Definition 2.5. The natural exponential family (NEF) (univariate case) consists of
all distributions whose densities can be expressed as

f(x; θ) = h(x) exp{xη(θ)−A(η(θ))},

where η(θ) represents the “natural parameter”, a parametrization of the distribution pa-
rameter θ.

Remark 2.7. When talking about the natural parameter, we might simply refer to it as
η, even though it is technically a function of the distribution parameter θ.

Example 2.3. For X ∼ Bernoulli(π):

f(x;π) = πx(1− π)1−x

= exp

{
x ln

(
π

1− π

)
+ ln(1− π)

}
We can now identify η(π) = ln(π/(1− π)), and A(η(π)) = − ln(1− π), from which we get
A(η) = ln(1 + eη).

10



2.7. SUMMARIZING THE MAIN THEORY

2.6.1. Moments and cumulants of NEF

The moments and cumulants of the NEF distributions are rather concisely expressed, and
this is why they form a nice class of examples to look at. Starting from the moment-
generating function: let X belong to the natural exponential family. We have that

MX(t) = E[etX ] =

∫
X
h(x) exp{xt+ xη −A(η)}dx.

By adding and subtracting A(η+ t) to the exponent, the right-hand side can be rewritten
as

exp{A(η + t)−A(η)}
∫
X
h(x) exp{x(η + t)−A(η + t)}dx,

from which we can use the normalizing condition of densities and retrieve

MX(t) = exp{A(η + t)−A(η)}. (2.17)

From (2.17) follows the cumulant-generating function

KX(t) = A(η + t)−A(η), (2.18)

Furthermore, since the r:th cumulant refers to the r:th derivative of the CGF, evaluated
at t = 0, we can also express the cumulants themselves rather explicitly. Upon taking the
derivative, the second term of (2.18) vanishes, and we get

κr(X) =
dr

dtr

[
A(η + t)

]∣∣∣
t=0

, (r = 1, 2, . . . ). (2.19)

This will be useful in the following section.

2.6.2. Variance-stabilizing transformations for NEF

Recalling that the second cumulant is equal to the variance, we can formulate a direct
method of retrieving the VST of a random variable X belonging to the natural exponential
family. Using this and (2.19) we get that

Var(X) =
d2

dt2

[
A(η + t)

]∣∣∣
t=0

,

from which it now follows, using (2.3), that the VST can be expressed as

g(θ) = k

∫ (
d2

dt2

[
A(η(θ) + t)

]∣∣∣
t=0

)−1/2

dθ, (2.20)

for some constant k.

In summary, if we have the density function expressed in terms of its natural exponential
parametrization, we can derive the expression for its CGF, and in turn, its VST rather
directly.

2.7. Summarizing the main theory

We have now presented the main theory of this thesis. We have a generalized version of the
Edgeworth expansion (2.14) that allows for all three distribution properties (normality,
expectation zero and unit variance) to only appear asymptotically, while still retaining the
advantages of having a truly standardized variable. This expansion is also more general in
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2.8. HOW WE APPLY THE THEORY

the sense that it is a function of the cumulants of the variable whose cumulative distribu-
tion function we want to expand (2.11), instead of relying on linearity and cumulativity
(2.10). We have presented three general ways of acquiring the cumulants: as coefficients
in a series expansion of the cumulant-generating function, as derivatives of the cumulant-
generating function - Definition 2.4 - and as functions of the raw moments (2.9).

So what do we do now? The idea is to try the Edgeworth expansion out as a tool for
examining the rate of convergence towards normality. For this, we have specifically chosen
to study variance stabilizing transformations (2.3), since these take some standardized
variable Tn, and through some transformation g(Tn), make its variance asymptotically
independent of its unknown parameter. Through the delta method (2.2) this comes at the
price of loosing the standardization - therefore forming a nice basis of examples to look at
through the lens of this framework. To make things a bit easier, we have also chosen a spe-
cific family of distributions - the natural exponential family - whose cumulant-generating
functions seem to be rather easily retrieved (2.18).

2.8. How we apply the theory

Looking at at any of the Edgeworth expansions we have presented so far, we can see
that they all start with the term Φ(x), the cumulative distribution function of a standard
normal distribution. If the variable whose CDF we want to expand is truly standard
normal, i.e., such that κ1 = 0, κ2 = 1, κ3 = κ4 = κ5 = . . . = 0 (the normal distribution
is the only distribution with this property), all that comes after this first term would
evaluate to zero - thus leaving a perfect equality between the left- and right-hand sides.
This, somewhat loosely, implies that if whatever comes after this first term is close to zero,
the distribution is close to normal. Hence, one approach would be to examine

sup
x∈I

∣∣∣∣∣∣
8∑

j=1

AjHj−1(x)

∣∣∣∣∣∣ (2.21)

both pre- and post-VST, for some interval I that accounts for most of the probability mass
of a normal distribution. This would, however, be a bit conservative in the sense that the
supremum does not really tell us the whole story. It only tells us where the deviations from
normality are the largest. It could very well be the case that the VST is closer to normal
in some sub-interval of I while further away in another. In order to loosen this up a bit,
we could therefore make sure to put several different sub-intervals of I through (2.21).
This would then paint a broader picture of how the VST actually affects the normality.

For the sub-intervals of I we decide on five (approximate) percentiles of the standard
normal distribution - the 5th, 40th, 60th and 95th. Setting I = [−5, 5], which accounts for
1− c · 10−7 of the probability mass of the standard normal distribution for some constant
c, we then have the sub-intervals

I1 = [−5,−1.64]

I2 = [−1.64,−0.25]

I3 = [−0.25, 0.25]

I4 = [0.25, 1.64]

I5 = [1.64, 5]

(2.22)

to examine. Using all of this, we are now ready to jump into some examples. Before
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2.9. IMPLICATIONS OF IMPROVED CONVERGENCE

we do that, however, we will briefly try to concretize why improved convergence towards
normality implies improved inference.

2.9. Implications of improved convergence

So far we have only assumed that improved convergence towards normality of the cumula-
tive distribution function of some asymptotically normal variable Tn implies improvements
for inferential tools. In this last section of the theory we will try to make these improve-
ments a bit more concrete by showing how improved convergence affects the difference
between nominal and actual coverage.

Let Tn = Tn(θ)
D−→ N(0, 1) be our (transformed) sample statistic - a function of our

sample and the unknown parameter θ - with cumulative distribution function FTn . Also
let Φ denote the CDF of a standard normal distribution. A two-sided 100% · (1 − α)
confidence interval for θ would then, under the normality assumption, be

Iθ = {θ : x1 ≤ Tn(θ) ≤ x2} , (2.23)

where x1 = Φ−1(α/2) and x2 = Φ−1(1 − α/2) are, respectively, the α/2 and 1 − α/2-
quantiles of the standard normal distribution. Now, we want to look at the actual coverage
probability of Iθ and show that the difference between the actual coverage and the nominal
coverage decreases as FTn approaches Φ. The true coverage probability is defined as

Pn(θ) = P(θ ∈ Iθ) = P(x1 ≤ Tn ≤ x2) = FTn(x2)− FTn(x1). (2.24)

Using the fact that

(1− α)− (Φ(x2)− Φ(x1)) = (1− α)−
(
1− α

2
− α

2

)
= 0,

we can rewrite (2.24) to

Pn(θ) = (1− α) + (FTn(x2)− Φ(x2))− (FTn(x1)− Φ(x1)),

which is equivalent to

Pn(θ)− (1− α) = (FTn(x2)− Φ(x2))− (FTn(x1)− Φ(x1)).

Now applying the triangle-inequality, this yields

|Pn(θ)− (1− α)| ≤ |FTn(x2)− Φ(x2)|+ |FTn(x1)− Φ(x1)|
≤ 2 sup

x∈R

∣∣FTn(x)− Φ(x)
∣∣, (2.25)

where, in the last step, we have used the fact that the sum of two distances has to be less
or equal to twice the maximal possible distance.

Interpreting (2.25) we can see that the left-hand side is the absolute difference between
the nominal and actual coverage and the right-hand side gives an upper bound to this
difference - twice the supremum distance between the two distribution functions FTn and
Φ. Tying this back to previous sections by considering FTn the Edgeworth expansion of the
cumulative distribution function we can see that the right hand side is precisely two times
the expression we presented in (2.21). Thus we can say that as this distance approaches
zero, so does the difference between the nominal and true coverage of the confidence
interval in (2.23), which would lead to better inference of the unknown parameter θ. This
concludes the theory of this thesis and we will now move on to applications.
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3. Applications

In this chapter, we will look at two example distributions - the Poisson and the exponential.
We will derive the cumulants for the standardized sample variables, the variance-stabilizing
transformations and then the cumulants for the variance-stabilized sample variables. Hav-
ing gathered the cumulants we will plug them into the Edgeworth expansion of the cu-
mulative distribution function for each variable and, using (2.21), we will see if the VST
brings the variable closer to normality in each of the sub-intervals presented in (2.22) or
not.

Having gone through both of the examples and interpreted their respective results we will
suggest a general improvement to the variance-stabilized statistic, apply it, and present
the new results.

3.1. Poisson distribution

Let X1:n = (X1, . . . , Xn) be a sample of iid Po(λ) random variables. When referring to
the underlying sample distribution we will henceforth just refer to it as X. The Poisson
distribution belongs to the natural exponential family because its probability mass function
can be rewritten as

fX(x) = e−λλ
x

x!
=

1

x!
exp{x lnλ− λ}.

We can see that this matches the criteria from Definition 2.5, hence we can directly retrieve
the natural parameter as η(λ) = lnλ and the function A(η(λ)) = λ which further yields
A(η) = eη. From this, using (2.18), we retrieve the cumulant generating function as

KX(t) = A(η + t)−A(η) = elnλ+t − elnλ = λ(et − 1).

The cumulants are now rather easily derived as

κr(X) = K
(r)
X (0) = λ, for r = 1, 2, . . ..

Now defining

Zn =

√
n(Xn − λ)√

λ

as our standardized sample variable, where Xn is the sample mean, we can obtain its third
and fourth cumulants, using the result from Example 2.2, as

κr(Zn) =
n

(
√
nλ)r

κr(X) for r = 2, 3, . . .

which yields
κ1(Zn) = 0

κ2(Zn) = 1

κ3(Zn) = 1/
√
nλ

κ4(Zn) = 1/(nλ),

(3.1)

since we already know the first and second cumulants due to the standard expectation
and variance of Zn.
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3.1. POISSON DISTRIBUTION

Remark 3.1. Together with (2.16), the cumulants from (3.1) nicely show why standard-
ized Poisson variables converge to normality “faster” when the rate parameter is high,
even though the sample size might be very small. The bigger the product nλ gets, the
smaller the correction terms in the Edgeworth expansion become - hence the CDF for the
standard normal distribution will on its own approximate FZn rather well in those cases.

Now moving on to the variance-stabilized variable, the first step is to retrieve the variance-
stabilizing transformation (we already did this in Example 2.1, but for the sake of coherence
we will do it again). Using (2.20) we can retrieve the VST as

g(λ) = c

∫
1√

κ2(X)
dλ = c

√
λ

1/2

c=1/2
=

√
λ,

and through the delta method (2.2) construct a variable

√
n

(√
Xn −

√
λ

)
D−→ N(0, (g′(λ))2λ)

= N(0, 1/4),

which yields

Vn = 2

(√
nXn −

√
nλ

)
D−−−→

(2.2)
N(0, 1)

as our variance-stabilized sample variable. Looking at Vn we can see that

nXn = X1 + . . .+Xn ∼ Po(nλ).

Defining Y = nXn we can instead look at

Vn = 2(
√
Y −

√
nλ), (3.2)

which simplifies things a bit. If we now calculate the cumulants of
√
Y we can then

calculate the cumulants of Vn using the homogeneity and translational invariance of (2.10).
We decide to use the moments (2.9) in order to express the cumulants. Using Definition
2.2 we get the moments of

√
Y as

µr = µr(
√
Y ) =

dr

dtr
E
[
et

√
Y
]∣∣∣

t=0
= E

[
dr

dtr
et

√
Y

]∣∣∣
t=0

= E
[
Y

r/2
]
=

∞∑
y=0

y
r/2e−nλ (nλ)

y

y!
.

(3.3)

We will have to evaluate this sum numerically for r = 1, 2, 3, 4 in order to get the first four
cumulants, but before we do that we can construct the expressions for the cumulants of√
Y and Vn using these moments.

The cumulants of
√
Y can then be expressed, using (2.9), as

κ1(
√
Y ) = µ1

κ1(
√
Y ) = µ2 − µ2

1

κ1(
√
Y ) = µ3 − 3µ1µ2 + 2µ3

1

κ1(
√
Y ) = µ4 − 4µ1µ3 + 12µ2

1µ2 − 3µ2
2 − 6µ4

1

from which we can retrieve the cumulants of Vn through

κ1(Vn) = κ1

(
2(
√
Y −

√
nλ)
)

(2.10)
= 2

(
κ1(

√
Y )−

√
nλ
)
= 2µ1 − 2

√
nλ

κr(Vn)
r>1
= 2rκr(

√
Y ).
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3.1. POISSON DISTRIBUTION

More explicitly expressed we get

κ1(Vn) = 2(µ1 −
√
nλ)

κ2(Vn) = 4(µ2 − µ2
1)

κ3(Vn) = 8(µ3 − 3µ1µ2 + 2µ3
1)

κ4(Vn) = 16(µ4 − 4µ1µ3 + 12µ2
1µ2 − 3µ2

2 − 6µ4
1)

(3.4)

as the cumulants of the variance-stabilized variable.

We now have expressions for the cumulants of both Zn and Vn. What is left to do is to
compare the two variables using (2.21). However, before doing this, we can make a rather
nice simplification. Looking at the cumulants from (3.1), the moments from (3.3) and the
cumulants from (3.4) we can see that they all depend only on the product of n and λ. We
could therefore introduce a new variable θ = nλ in order to avoid having to adjust for two
parameters.

So, how do we choose which values of θ to look at? We have an infinite sum that we
want to approximate numerically (see Appendix A.2.3), so we are a bit bounded by what
our computer can handle. After some experimentation, we land on four different values:
θ = 5, 10, 25, 100. For the lowest θ = 5, the error seems to be of order 10−3 and for the
highest θ = 100, the error decreases to the order 10−6.

For the sub-intervals in (2.22) we get the following results:

Table 3.1.: Cumulants of Zn and suprema differences between FG
Zn

(x) and Φ(x) when
underlying sample distribution is Poisson

θ κ1 κ2 κ3 κ4 sup
x∈I1

sup
x∈I2

sup
x∈I3

sup
x∈I4

sup
x∈I5

5 0 1 0.447 0.20 0.01657 0.03111 0.03357 0.02878 0.01181

10 0 1 0.316 0.10 0.01092 0.02080 0.02240 0.01947 0.00842

25 0 1 0.200 0.04 0.00651 0.01263 0.01365 0.01206 0.00549

100 0 1 0.100 0.01 0.00310 0.00615 0.00669 0.00510 0.00285

Table 3.2.: Cumulants of Vn and suprema differences between FG
Vn
(x) and Φ(x) when un-

derlying sample distribution is Poisson. Green cells signify improvement over
Zn and the rest can be considered either unchanged or worse.

θ κ1 κ2 κ3 κ4 sup
x∈I1

sup
x∈I2

sup
x∈I3

sup
x∈I4

sup
x∈I5

5 -0.130 1.144 -0.595 1.408 0.04948 0.05359 0.01861 0.05985 0.01800

10 -0.083 1.045 -0.211 0.209 0.01820 0.02215 0.01894 0.02003 0.01128

25 -0.051 1.016 -0.110 0.049 0.00977 0.01377 0.01328 0.01272 0.00719

100 -0.025 1.004 -0.061 0.203 0.00461 0.00459 0.00833 0.01090 0.00423

For i = 1, . . . , 4, j = 1, . . . , 9 let i denote the rows, and j the columns. We should then
compare entry (i, j) in Table 3.1 to entry (i, j) in Table 3.2. We can start by looking at
the cumulants. According to the delta method (2.2) we expect to see κ1(Vn) → 0 and
κ2(Vn) → 1, and this seems to be the case, which is reassuring. Looking at the third
cumulants, j = 3, we can see that except for θ = 5, the size of κ3(Vn) has shrunk sig-
nificantly in comparison to κ3(Zn) - this is a good result. However, when looking at the
fourth cumulant, j = 4, we can see a similar increase on κ4(Vn) in comparison to κ4(Zn)
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3.2. EXPONENTIAL DISTRIBUTION

for all values on θ except θ = 25 where the increase is more mild.

Moving on to the suprema we can see that there are only four cells in Table 3.2 that have
smaller suprema than Table 3.1. Three of these are in the interval I3 = [−0.25, 0.25] -
where the probability mass is the most dense - circa 20% of the mass lies in this interval.
For θ = 5 the relative difference between Vn and Zn is more significant than in the other
cases - the supremum difference of Vn has almost halved in size in comparison to Zn. In
all of the other cases, the relative difference is less significant.

In conclusion, we cannot say that the variance-stabilizing transformation yields signifi-
cant improvements in the Poisson case - in the sense that the Edgeworth expansion of
the cumulative distribution function from (2.14) for our variance-stabilized variable does
not land closer to the standard normal CDF than before transformation. There is some
evidence that points to improvements for values close to the center of the distribution,
but only for very small θ = nλ - in which cases the exact distribution would probably be
rather easy to calculate without using a normal approximation.

3.2. Exponential distribution

Let X1:n denote an iid sample of Exp(µ) variables with E[Xi] = µ and Var(Xi) = µ2.
From here on out, let X represent the underlying sample distribution. We define our
standardized variable as

Zn =

√
n(Xn − µ)

µ
.

In order to retrieve the cumulants of X this time, we start from the moment-generating
function (see Gut 2009, Appendix B)

MX(t) =
1

1− µt
,

from which the cumulant-generating function can be retrieved as

KX(t)
2.3
= ln(MX(t)) = − ln(1− µt).

Using a standard Maclaurin expansion, this can be expanded to

KX(t) = µt+ µ2 t
2

2
+ µ3 t

3

3
+ µ4 t

4

4
+ . . .

= µt+ µ2 t
2

2
+ 2µ3 t

3

3!
+ 3!µ4 t

4

4!
+ . . . ,

in which the r:th cumulant of X can be extracted as the coefficient preceding tr/r! as in
Definition 2.4. Now using the result from Example 2.2 once again,

κr(Zn)
r>1
=

n

(µ
√
n)r

κr(X),

and the cumulants of Zn evaluate to

κ1(Zn) = 0

κ2(Zn) = 1

κ3(Zn) =
2√
n

κ4(Zn) =
6

n
.

(3.5)
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3.2. EXPONENTIAL DISTRIBUTION

Notice how the cumulants of Zn are completely independent of µ. This can be understood
by rewriting the variable as

Zn =

√
n

µ
Xn −

√
n,

from which using the MGF

M√
n
µ

Xn
(t) = MX1+...+Xn

(
t

µ
√
n

)
=

(
1

1− µ t
µ
√
n

)n

=

(
1

1− 1√
n
t

)n

,

we can recognize that Zn itself is actually completely independent of µ. This is because µ
is a scaling factor, and the standardization removes scale from the equation. So, for Zn,
we only really have to consider one parameter, and that is the sample size n.

Now let us move on to the variance-stabilizing transformation. Using (2.3) we can retrieve
it as

g(µ) = c

∫
1√

κ2(X)
dµ = c

∫
1

µ
dµ

c=1
= lnµ,

which gives us the VST variable

Vn =
√
n(ln

(
Xn

)
− lnµ)

D−−−→
(2.2)

N(0, 1).

Now, in order to get the cumulants of Vn we can start by looking at the distribution of
Xn. Through the MGF we get

MXn
(t) = MX1+...+Xn

(
t

n

)
=

(
1

1− µ
n t

)n

,

which tells us that Xn ∼ Gamma(n, µ/n) where n is the shape and µ/n is a scale param-
eter. Let Y = Xn and denote θ = µ/n in order to simplify notation. The MGF of lnY
can then be retrieved as

MlnY (t) = E[et lnY ] = E[Y t]

=

∫ ∞

0
ytfY (y)dy

=

∫ ∞

0
yt

1

Γ(n)
yn−1 1

θn
e−

y/θdy

= θt
Γ(n+ t)

Γ(n)

∫ ∞

0

1

Γ(n+ t)
yn+t−1 1

θn+t
e−

y/θdy

= θt
Γ(n+ t)

Γ(n)
,

using the normalizing condition of density functions in the last step. From this we can,
using Definition 2.3 get the cumulant-generating function

KlnY (t) = ln(MlnY (t)) = t ln
µ

n
+ ln(Γ(n+ t))− ln(Γ(n)),

from which we can tell, using Definition 2.4, that

κ1(lnY ) = ln
µ

n
+

d

dt

[
ln(Γ(n+ t))

]∣∣∣
t=0

and

κr(lnY ) =
dr

dtr

[
ln(Γ(n+ t))

]∣∣∣
t=0

, r > 1.
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3.2. EXPONENTIAL DISTRIBUTION

Remark 3.2. Taking derivatives of the logarithm of the gamma function yields the
polygamma function, which is defined as

Ψ(r)(z) =
dr+1

dzr+1
ln(Γ(z)).

These can be evaluated using some software of choice. In this thesis, we use the function
“psi” from the R-package “pracma” in order to evaluate these derivatives.1

We thus get the cumulants of lnY as

κ1(lnY ) = ln
µ

n
+Ψ(0)(n)

κ2(lnY ) = Ψ(1)(n)

κ3(lnY ) = Ψ(2)(n)

κ4(lnY ) = Ψ(3)(n),

from which we can, using (2.10), express the cumulants of Vn as

κ1(Vn) =
√
n(κ1(lnY )− lnµ) =

√
n(Ψ(0)(n)− lnn)

κr(Vn) = n
r/2κr(lnY ), r > 1

which yields, more explicitly stated

κ1(Vn) =
√
n(Ψ(0)(n)− lnn)

κ2(Vn) = nΨ(1)(n)

κ3(Vn) = n
3/2Ψ(2)(n)

κ4(Vn) = n2Ψ(3)(n).

(3.6)

As we can see, both the cumulants of Zn (3.5) and Vn (3.6) are completely independent
of µ and only depend on the sample size n. This allows us to focus solely on the sample
size parameter n when performing evaluations.

Now, we turn to the comparison of the Edgeworth expansions (2.14) of the distribution
functions of Zn and Vn. We first have to decide on what values of n to look at. This
time, since we have the cumulants of the variance-stabilized variable as closed analytical
expressions - as some constant multiplied with a polygamma-function evaluated at n -
we are not held back by computational restrictions in the same way as in the Poisson
case. We are therefore allowed to try out some pretty hefty numbers on n, which might be
interesting. After some light experimentation we decide on the values n = 10, 102, 103, 104.
For our sub-intervals we use the same as in the Poisson case, the ones presented in (2.22).

1https://search.r-project.org/CRAN/refmans/pracma/html/psi.html
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3.2. EXPONENTIAL DISTRIBUTION

Table 3.3.: Cumulants of Zn and suprema differences between FG
Zn

(x) and Φ(x) when
underlying sample distribution is exponential

n κ1 κ2 κ3 κ4 sup
x∈I1

sup
x∈I2

sup
x∈I3

sup
x∈I4

sup
x∈I5

10 0 1 0.632 0.6000 0.02650 0.04830 0.05802 0.05302 0.01982

102 0 1 0.200 0.0600 0.00656 0.01251 0.01380 0.01244 0.00553

103 0 1 0.063 0.0060 0.00193 0.00384 0.00422 0.00383 0.00183

104 0 1 0.020 0.0006 0.00060 0.00121 0.00133 0.00121 0.00059

Table 3.4.: Cumulants of Vn and suprema differences between FG
Vn
(x) and Φ(x) when un-

derlying sample distribution is exponential. Green cells signify improvement
over Zn and the rest can be considered either unchanged or worse.

n κ1 κ2 κ3 κ4 sup
x∈I1

sup
x∈I2

sup
x∈I3

sup
x∈I4

sup
x∈I5

10 -0.161 1.05166 -0.349 0.2320 0.03116 0.04293 0.04049 0.03979 0.02237

102 -0.050 1.00502 -0.101 0.0203 0.00859 0.01335 0.01332 0.01316 0.00771

103 -0.016 1.00050 -0.032 0.0020 0.00261 0.00421 0.00421 0.00419 0.00252

104 -0.005 1.00005 -0.010 0.0002 0.00082 0.00133 0.00133 0.00133 0.00081

Comparing Table 3.3 and Table 3.4, we can start by looking at the cumulants. From
Table 3.4 we see that κ1(Vn) and κ2(Vn) appear to tend to 0 and 1 respectively as n gets
larger - which somewhat confirms that we have used the delta method correctly. Moving
on to the third and fourth cumulants we can see that they have significantly decreased in
absolute value post-VST. For the third cumulant, for all n, the cumulants of Vn are close
to half the size of the third cumulant of Zn. The fourth cumulant has seen an even more
significant decrease - the fourth cumulants of Vn are close to one third of the size of the
fourth cumulant of Zn, for all n. This we believe bodes well for the variance-stabilized
variable, but when actually comparing suprema between the two tables we can see that
the results are pretty underwhelming.

For x ∈ I1, I5 - far out in the tails - Zn actually lands closer to the normal distribution
than Vn for all n. This, however, only accounts for roughly 10% of the probability mass
of a normal distribution. Looking at the 90% that remain we can see that for n = 10 Vn

actually lands closer to normality than Zn. Right in the middle, x ∈ I3, we can see that
Vn is actually closer to normality for n = 10, 102, 103 and identical to Zn for n = 104.
However, only n = 10 see a significant improvement whereas for n = 102, 103 the improve-
ment is very mild.

These results are somewhat similar to the Poisson distribution, albeit a bit more tilted
towards improvement for the variance-stabilized variable. We only really see improvement
right in the middle of the distribution, at I3 = [−0.25, 0.25], and for a very low n = 10. We
do however see significant improvements on the third and fourth cumulants after variance-
stabilization. So why do these improvements on the cumulants not permeate through the
Edgeworth expansion? It is hard to tell from just looking at these numbers but one such
reason could be that the standardized mean and variance of Zn just weighs heavier in
favor of normality than improvements on the third and fourth cumulants. Recall from
Remark 2.6 how three entire coefficients out of the eight in total evaluate to zero when the
first cumulant is 0 and the second is 1. This is already a pretty powerful attribute, that
Zn possess. All in all, we would probably not recommend using the variance-stabilizing
transformation in the exponential case either. Not in its current form at least.
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3.3. IMPROVING THE VST

3.3. Improving the VST

Reflecting on the results of the Poisson distribution case, it might not be that unrea-
sonable that the VST did not improve convergence towards normality since we only saw
an improvement on the third cumulant, whereas the fourth cumulant was significantly
worsened - and standardization of mean and variance was lost - by the transformation.
In the exponential case, however, both the third and fourth cumulants saw significant
improvements, but still: underwhelming results. This has lead us to believe that true
standardization weighs far heavier as a component than improvements on skewness and
kurtosis when trying to approach normality.

So let us just standardize the variance-stabilized statistic. We have

E[Vn] = κ1(Vn),

Var(Vn) = κ2(Vn).

Hence, we can define a new variable

V std
n =

Vn − κ1(Vn)√
κ2(Vn)

.

The cumulants would now theoretically, using (2.10), evaluate to

κ1(V
std
n ) = 0

κ2(V
std
n ) = 1

κ3(V
std
n ) =

κ3(Vn)

(κ2(Vn))
3/2

κ4(V
std
n ) =

κ3(Vn)

(κ2(Vn))2
.

(3.7)

We say “theoretically” here because in the Poisson case we have actually not been able
to derive the exact cumulants for the variance-stabilized variable, only approximations.
We should therefore take care to use these approximated values when creating this new,
standardized, variance-stabilized variable V std

n .

Looking back at Table 3.2 (VST Poisson) and Table 3.4 (VST exponential), we can see
that the second cumulant, κ2(Vn), is actually approaching 1 from the positive direction in
both cases. Now looking at the third and fourth cumulants of (3.7) this leads us to believe
that, apart from regaining the seemingly powerful property of standardized expectation
and variance, we should see even further improvements on skewness and kurtosis for V std

n .
As long as this second cumulant of the variance-stabilized variable approaches 1 from the
positive direction, this should hold for any variance-stabilized variable, with no regards to
the underlying sample distribution.
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3.3. IMPROVING THE VST

3.3.1. Standardized VST Poisson distribution

Now, using (3.7), we compile the results for V std
n in the Poisson distribution case. We

show the results for Zn once again in order to make comparing them easier.

Now comparing Zn to V std
n , the results are as follows (θ = nλ):

Cumulants of Zn and suprema differences between FG
Zn

(x) and Φ(x) when underlying
sample distribution is Poisson

θ κ1 κ2 κ3 κ4 sup
x∈I1

sup
x∈I2

sup
x∈I3

sup
x∈I4

sup
x∈I5

5 0 1 0.447 0.20 0.01657 0.03111 0.03357 0.02878 0.01181

10 0 1 0.316 0.10 0.01092 0.02080 0.02240 0.01947 0.00842

25 0 1 0.200 0.04 0.00651 0.01263 0.01365 0.01206 0.00549

100 0 1 0.100 0.01 0.00310 0.00615 0.00669 0.00600 0.00285

Table 3.5.: Cumulants of V std
n and suprema differences between FG

V std
n

(x) and Φ(x) when

underlying sample distribution is Poisson. Green cells signify improvement
over Zn and the rest can be considered either unchanged or worse.

θ κ1 κ2 κ3 κ4 sup
x∈I1

sup
x∈I2

sup
x∈I3

sup
x∈I4

sup
x∈I5

5 0 1 -0.486 1.075 0.02335 0.06429 0.06427 0.03643 0.01790

10 0 1 -0.197 0.191 0.00592 0.01495 0.01523 0.01132 0.00683

25 0 1 -0.107 0.047 0.00310 0.00699 0.00737 0.00627 0.00341

100 0 1 -0.061 0.202 0.00261 0.00729 0.00671 0.00449 0.00213

As can be seen from Table 3.5, there is a lot more green now, in comparison to Table
3.2. Even though the fourth cumulant is still a lot worse for V std

n than Zn whereas the
improvements on the third cumulant is about the same as it was for the non-standardized,
variance-stabilized Vn, the improvement seems significant. This tells us that standard-
ized expectation and variance really does mean a lot for convergence towards normality.
Furthermore, these results somewhat indicate that improvement on the skewness weigh
heavier than improvements on kurtosis. Maybe the lower the order of the cumulant, the
more it affects the properties of the distribution? If such is the case, it would be nice if
one could formulate it more concretely. We will return to this in the final chapter.

Either way, in the Poisson case, standardizing the variance-stabilized variable has definitely
shown some evidence of improvement. If one is working with a θ = nλ of either 10 or
25 we would at least not feel too bad mentioning the standardized variance-stabilized
transformation as an option. We are, however, a bit weary of the results on the fourth
cumulant for both versions of the variance-stabilized statistic. Maybe one should look to
other types of transformations if the goal is to improve inference for Poisson variables.
This, we will also return to in the final chapter.
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3.3. IMPROVING THE VST

3.3.2. Standardized VST exponential distribution

Once again, let us compile the results for V std
n using (3.7) and compare the results to Zn

when the underlying sampling distribution is exponential.

Cumulants of Zn and suprema differences between FG
Zn

(x) and Φ(x) when underlying
sample distribution is exponential

n κ1 κ2 κ3 κ4 sup
x∈I1

sup
x∈I2

sup
x∈I3

sup
x∈I4

sup
x∈I5

10 0 1 0.632 0.6000 0.02650 0.04830 0.05802 0.05302 0.01982

102 0 1 0.200 0.0600 0.00656 0.01251 0.01380 0.01244 0.00553

103 0 1 0.063 0.0060 0.00193 0.00384 0.00422 0.00383 0.00183

104 0 1 0.020 0.0006 0.00060 0.00121 0.00133 0.00121 0.00059

Table 3.6.: Cumulants of V std
n and suprema differences between FG

V std
n

(x) and Φ(x) when

underlying sample distribution is exponential. Green cells signify improvement
over Zn and the rest can be considered either unchanged or worse.

n κ1 κ2 κ3 κ4 sup
x∈I1

sup
x∈I2

sup
x∈I3

sup
x∈I4

sup
x∈I5

10 0 1 -0.324 0.2098 0.00906 0.02254 0.02443 0.02087 0.01162

102 0 1 -0.100 0.0201 0.00287 0.00615 0.00675 0.00605 0.00312

103 0 1 -0.032 0.0020 0.00093 0.00191 0.00211 0.00190 0.00095

104 0 1 -0.010 0.0002 0.00030 0.00060 0.00066 0.00060 0.00030

Green all over! Surely, Table 3.6 provides some pretty strong evidence in favor of the
standardized variance-stabilized sample variable V std

n approaching normality faster than
the simply standardized variable Zn, when the underlying sample distribution is exponen-
tial. This also furthers our current hypothesis that standardization of mean and variance
weigh heavier than improvements on the third and fourth cumulants. Having the first two
cumulants now standardized this allows for the improvements on skewness and kurtosis
to really shine through. Using this transformation in order to improve inference when the
underlying sample distribution is exponential might be a rather viable option.

23



4. Conclusions and Discussion

4.1. About the theoretical framework

The theory we have presented should in a sense serve as a motivation for why the cumu-
lants are of interest when studying convergence towards normality from a purely theoretical
perspective (and perhaps convergence in a more general sense as well). The cumulants
depend on the cumulant-generating function and the cumulant-generating function in turn
depends on the moment-generating (or characteristic) function. So in a sense, it all comes
down to how the MGF (or characterstic function) is affected by the given transformation.
We know that a distribution is uniquely determined by its MGF M : R → (0,∞) (if it
exists) and the CGF is logM : (0,∞) → R. This yields a one-to-one correspondence
between the generating functions and no information is lost. Depending on context, one
could choose to study whichever generating function that yields the easiest calculations.

4.1.1. Benefits of cumulants

There are, however, some noteworthy benefits of studying the cumulant-generating func-
tion that one should be aware of when choosing which generating function to work with.

Recall from introductory courses in probability that

E

[∑
i

Xi

]
=
∑
i

E[Xi]

always holds true, and that in the iid case

Var

(∑
i

Xi

)
=
∑
i

Var(Xi).

The cumulants are in a sense a generalization of this property. The first cumulant is the
expectation, the second is the variance and the r:th cumulant of a sum of iid random
variables is

κr

(∑
i

Xi

)
(2.10)
=

∑
i

κr(Xi).

They are cumulative, hence their name. Remember also how

Var(aX + b) = a2Var(X).

This property is also generalized, for r = 2, 3, . . . as

κr(aX + b) = arκr(X).

Assuming one were to choose cumulants as means of studying convergence towards nor-
mality: the cumulants of the standard normal distribution are κ1 = 0, κ2 = 1 and
κ3 = κ4 = κ5 = . . . = 0, and no other distribution holds this property. Therefore, if
one were to show that the rate at which the cumulants converge to the set of the standard
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4.1. ABOUT THE THEORETICAL FRAMEWORK

normal cumulants increases after some transformation, for all cumulants, it should follow
that the rate of convergence towards normality increases as well. If this is possible, we
would in a sense be isolating the part of the problem that actually matters. Using the
MGF this would involve the problem of solving integrals (in the continuous case) in the
form of

Mg(X)(t) = E[eg(X)t] =

∫ ∞

−∞
eg(x)tfX(x)dx,

for some random variable X and transformation g. Depending on g this might be really
hard, or impossible, to solve analytically and (like in the Poisson case) numerical methods
would have to be applied in order to approximate the integral. There might be some tricks
one could try using Jensen’s inequality (see Held and Bové 2020, p. 354) but this would
depend on g. Assume

h(x) = eg(x)t

is a concave function, h′′(x) ≤ 0. It then follows from Jensen’s inequality that

E[h(X)] = Mg(X)(t) ≤ eg(E[X])t.

Now taking the logarithm of both sides yields

Kg(X)(t) ≤ g(E[X])t,

an upper bound for the cumulant-generating function of the transformed variable that
seems fairly easy to work with. Of course, in order to find the cumulants one would
have to take derivatives of this, which probably breaks the inequality. Also, the cumulant-
generating function is defined on the whole real line - hence, an upper bound is not enough.
We mention Jensen’s inequality because through it we are able to harness the inverse
relationship between the logarithm and the exponential, thus simplifying the expressions.
For further work, it would be interesting to see if this would and could be useful from an
analytical perspective.

4.1.2. The Edgeworth expansion as a practical tool

Using the Edgeworth expansion as a means of studying convergence in a more practical
sense requires making a number of decisions. How many cumulants should we choose?
The more we choose, the more complex of an expression we have to work with. The co-
efficients increase in number, but also the terms within each coefficient increase, and the
Hermite polynomials increase in order as well. Within this, there lies also the problem
of deciding how many terms of the Edgeworth expansion to include, which depends on
how many terms from the Maclaurin expansion of the moment-generating function we
choose to include. Making informed decisions throughout all of this requires a pretty so-
phisticated understanding of mathematical analysis and probability theory, making it less
accessible as a practical tool. If one manages to convince themselves of the validity of the
Edgeworth expansion, it might be fruitful to try and find more direct methods of studying
convergence from a theoretical perspective, possibly using only cumulants. This might,
however, turn out to be challenging.

Briefly returning to the speculation we mentioned in the second to last paragraph of
Section 3.3.1 - that our results seem to indicate that the significance of the cumulants
seem to decrease as their orders increase, in terms of how much of an effect they have on
convergence towards normality. Actually, we have already given an answer to this, failing
to mention the consequences. Remembering the result from Example 2.2, that

κr(Zn) =
n

(σ
√
n)r

κr(X), r > 1
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it is evident that κr(Zn) = O(n1−r/2) as long as κr(X) is finite (which is not necessarily
the case). This tells us that we should expect higher order cumulants to have less of an
impact on convergence towards normality simply as a consequence of them being smaller
and therefore having less of an impact in the Edgeworth expansion. In our generalization of
the Edgeworth expansion (2.14), we loosened the assumption on the cumulants to κr(Tn)−
Ir=2 = O(n−1/2) for r = 1, 2, 3, 4, but we do in fact hope for a similar behaviour from the
cumulants of the not necessarily standardized Tn as well, due to it being asymptotically
standard normal. Now looking back to the coefficients A1, . . . , A8 from (2.11), we can see
that built into the Edgeworth expansion is not only a weighing of the cumulants but also
the interactions between them. It is probably possible to intuit effects on convergence
simply by studying how the cumulants change through some transformation, but actually
giving a number to those changes seems challenging to do without using the Edgeworth
expansion.

4.1.3. Neglected downsides of the Edgeworth expansion

A fact that we have neglected to mention about Edgeworth expansions, but that may
have affected the outcome, is that the rate of convergence in the tails of the distribution
is usually slower than it is in the centre, when using Edgeworth expansions. In order
to adjust for this fact one may use something called saddle-point approximations (see
DasGupta 2008, chapter 14). We have, however, not had the time to delve into this
during the work on this thesis. It should however be noted, that the results we get far out
in the tails in our Edgeworth expansions may be inaccurate.

4.1.4. The Berry-Esseen bound

When applying the central-limit theorem for some variable Tn
D−→ N(0, 1) we are using

the approximation

FTn(x) = P(Tn ≤ x) ≈ P(Z ≤ x) = Φ(x)

where Z ∼ N(0, 1). Hence, the error of our approximation would be∣∣FTn(x)− Φ(x)
∣∣,

which is very similar to what we have seen earlier. The Berry-Esseen bound states that
there exists a universal constant C such that

sup
x∈R

∣∣∣∣∣P
(√

n(Xn − µ)

σ
≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ Cβ3
σ3

√
n
,

where Xn is the mean of an iid sample X1:n, µ = E[Xi], σ2 = Var(Xi) and β3 =
E[(Xi − µ)3] < ∞ (see DasGupta 2008, p. 142). Looking a bit closer at this we can
see that β3/(σ

3√n) is actually the same as the ρ3/
√
n coefficient present in the first error

term in our initial presentation of the Edgeworth expansion (2.5). Hence, it is possible
to give an upper bound for the error of the approximation using only the third cumulant
and this universal constant C. One drawback of this bound however, as opposed to the
generalization of the Edgeworth expansion we have presented is that it requires our sample
variable to be standardized, which is a property we usually lose when using the simple
version of the variance-stabilizing transformation. It would, however, be interesting to
check if this is applicable to the standardized VST.

There exist modifications of the Berry-Esseen bound that loosen the restriction on stan-
dardization, but in such cases the constant C is no longer universal and harder to find (see
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Theorem 11.6 DasGupta 2008, p. 146). These bounds are, however, valuable in terms of
understanding the rate of convergence. Loosely speaking, the Berry-Esseen bound can be
considered a precursor to the Edgeworth expansion.

4.2. About variance-stabilizing transformations

As we saw in the previous chapter, standardization of the variance-stabilized variable
yielded some pretty good results. This method, however, requires us to first calculate
the cumulants of the variance-stabilized statistic and then use these to re-standardize the
variable and calculate the new cumulants. Seemingly, this does not require a lot of extra
work - see (3.7). The homogeneity (2.10) of cumulants allows us to derive these new cu-
mulants easily. It would, however, be very nice if one could pre-adjust the VST such that
it accounts for these errors right from the start.

4.2.1. Errors introduced by the VST

What we are actually doing when applying the variance-stabilizing transformation is that
we are making the first-order term in the asymptotic expansion of the variance of the
statistic independent of the unknown parameter (see “b” in Theorem 3.9 DasGupta 2008,
p. 44) - we are making this term a constant. This means that higher order terms could
still very much be dependent on the unknown parameter and such, the variance is not
really a constant for finite samples. Furthermore we are actually introducing some bias
when applying the VST, usually of the second order. One option would therefore be to
try and adjust for these second-order errors preemptively.

From the literature (see DasGupta 2008, p. 54-55), we can see that perturbing the transfor-
mation by some constant can achieve either second-order bias correction or second-order
variance-stabilization - but apparently no set of constants can achieve both simultaneously.
Because of this, we deem the method of perturbing the transformation with a constant as
not fruitful enough. The re-standardization method would then be a better option. We
have not been able to find clear evidence that simultaneous second-order bias-correction
and variance-stabilization is possible at all. Apparently, second-order bias-correction on
its own is rather fruitful and we will now present a general method for achieving it.

4.2.2. Second-order bias correction of the VST

Consider, for some statistic Tn, the second order Taylor expansion around E[Tn] = µ,
where µ is the expected value of the statistic,

E[g(Tn)] ≈ E

[
g(µ) + g′(µ)(Tn − µ) +

1

2
g′′(µ)(Tn − µ)2

]
= g(µ) +

1

2
g′′(µ)Var(Tn).

We want a method of adjusting the VST such that this second term cancels.

Example 4.1. In the Poisson distribution case we have

E[Xn] = λ

Var(Xn) =
λ

n

g(λ) =
√
λ,
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which gives us

E

[√
Xn

]
=

√
λ− 1

8n
√
λ
+O(n−2),

from which we can tell that for small n, λ this second-order bias term is certainly not
negligible.

Suppose Tn = Tn(X1:n) is an estimate of an unknown parameter θ, where X1:n is an iid
sample of random variables. If we can then find an expansion

E[g(Tn)] = g(θ) +
1

n

(
g′(θ)b(θ) +

1

2
g′′(θ)σ2(θ)

)
+O(n−2),

where σ2(θ) is the variance of Tn and g is our variance-stabilizing transformation - then,
under “various conditions”, we can construct a second-order bias-corrected VST as

h(Tn) = g(Tn) +
σ′(Tn)

2
− b(Tn)

σ(Tn)

(see DasGupta 2008, p. 55). Apparently, this second-order bias-correction of the VST
usually leads to better inference than using the regular VST (see Remark DasGupta 2008,
p. 57). There appear to exist similar methods for second-order variance-stabilization but
we have not been able to find them following the references in the literature (see DasGupta
2008, p. 55 for such a reference), and like we stated in the last section - we do not know
if second-order bias-correction and variance-stabilization is achievable simultaneously.

4.2.3. Some comments about Poisson and exponential VST

Were we to speculate as to why the VST performed much better in the exponential case
than in the Poisson - we would point to the fact that the log-transformation transforms
the support of the statistic from the positive real line to the entire real line, whereas the
square-root transformation does not. This means that the log-transformed statistic al-
ready shares the same support as the normal distribution, whereas the square-root does
not.

Furthermore, the square-root transformation “squishes” the relative distance to the mean.
Say we have a Po(100) variable and we have one observation from it: 144. The standard-
ized observation would now be 44/10 = 4.4 - a pretty extreme observation. Now applying
the square-root (and multiplying by 2 as in (3.2)), we get (assuming the mean is roughly√
100 after transformation) 2(12− 10) = 4 - not as extreme as before transformation. In

this sense, by applying the square-root transformation we are making extreme observa-
tions less extreme - we are increasing kurtosis, which is precisely what we see from Table
3.2. Hence, the VST interacts somewhat poorly with the actual distribution of the data in
the Poisson case. We should take this as a lesson that one should probably not (as we have
done in this thesis) mindlessly rely on the notion that a VST is always suitable. We should
instead examine it critically before applying it and form an idea of what to expect. If the
transformation seems to increase any of the lower order (1 to 4) cumulants, there may
exist other, more appropriate transformations that one could use instead. For example,
it would be interesting to see how the log-transform would perform on the Poisson data -
with re-standardization applied.
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4.2.4. Concluding words on the VST

Although we haven’t really tried out the variance-stabilizing transformation that thor-
oughly (only two distributions) in this thesis, the literature and our results tell us that
applying the VST in its most simple form, as in (2.3), usually does not perform very well,
due to the introduction of a bias and the variance (ironically enough) not really being
a constant for finite samples - “a bias correction is the least one should do” (DasGupta
2008, p. 59).

It should be noted that for the area close to the centre of the distribution we have seen
some evidence in favor of the simple VST. However, these improvements are only note-
worthy for very small sample sizes - n = 5, 10 in the Poisson case and n = 10 in the
exponential. Surely, in both of these cases, using the exact distribution in order to infer
about the unknown parameter is entirely possible - hence there might be no need to apply
the central limit theorem.

Regarding the third and fourth cumulants (skewness and kurtosis correction factors) we
have seen mixed results. Disregarding the very small sample size of n = 5 in the Poisson
case, the skewness saw pretty significant improvements in both the Poisson and exponen-
tial distribution cases. On the fourth cumulant, however, we are back to mixed results.
In the exponential case the improvement after variance-stabilization was significant for all
tested sample sizes, while in the Poisson case the opposite was true. At the very least,
we can say that the VST effect on the kurtosis correction term seems to be very much
dependent on the properties of the actual transformation and how it interacts with the
distribution data. The same might be true for the skewness. One should not expect the
variance-stabilizing transformation to always produce good results on skewness and kurto-
sis. Simply because a transformation stabilizes the variance for some distribution, it does
not mean that it has a beneficial impact on the rest of the cumulants.

Standardizing the mean and variance for the VST, however, seems to produce some positive
results - very positive in the exponential distribution case. From this we have gathered
that lower order cumulants are of greater importance than higher and one should be
aware of this when applying transformations. If re-standardization is possible one could
then focus on finding transformations that lower skewness and kurtosis. All in all, we
believe that the standardized VST is a viable choice of transformation if the underlying
sampling distribution is exponential, and in the Poisson case, we believe that one should
probably look to other transformations.

4.3. Further work

For further work in a more general sense we suggest going down the route of simula-
tion or using real data as a means of studying how transformations affect convergence.
Having seen how great of an effect standard expectation and variance seem to have on
convergence we would advise to always re-standardize after transforming the data. When
starting from data, this should be rather straightforward in the sense that you would just
apply the transformation, estimate mean and variance (or calculate exactly if possible),
and re-standardize.

For further work within the framework that we have presented we recommend studying a
wider range of transformations. Staying on the VST it would be interesting to study more
heavy-tailed distributions, possibly ones with infinite moments and see what the effects
of variance-stabilization would be in those cases. Furthermore, we could leave the VST
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entirely and study a wide range of transformations and distributions in general. As long
as the inferential problem is univariate and the asymptotic distribution of the statistic is
normal, the framework in this thesis would allow us to study its convergence.
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A. Appendix

A.1. Coefficients of the generalized Edgeworth expansion

The three-term Maclaurin expansion
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First expanding the squared term and gathering as coefficients of t we get
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Now adding 1 + x we get
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Denoting the coefficient in front of tr by Ar this now yields

A1 = κ1, A2 =
1

2
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which we can see match the coefficients of (2.11).
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A.2. R code

A.2.1. The generalized Edgeworth expansion

Below is the function used to evaluate the generalized version, (2.14), of the Edgeworth
expansion of the cumulative distribution function

# Tn cums a vec to r o f the f i r s t four cumulants o f Tn
# x i s va lue to be eva lua t ed
ee gen <− function (Tn cumulants , x ) {

cd f <− pnorm( x ) − dnorm( x )∗ (
# A 1 ∗ H 0
(Tn cums [ [ 1 ] ] ) ∗ 1 +
# A 2 ∗ H 1
( (Tn cums [ [ 1 ] ] ∗∗2 + Tn cums [ [ 2 ] ] − 1) / 2) ∗ x +
# A 3 ∗ H 2
( (Tn cums [ [ 3 ] ] /6) + ( (Tn cums [ [ 2 ] ] − 1)∗Tn cums [ [ 1 ] ] ) /2) ∗

( x∗∗2 − 1) +
# A 4 ∗ H 3
( ( (Tn cums [ [ 2 ] ] − 1 )∗∗2)/8 + (Tn cums [ [ 1 ] ] ∗Tn cums [ [ 3 ] ] ) /6 +

Tn cums [ [ 4 ] ] /24)∗ ( x∗∗3 − 3∗x ) +
# A 5 ∗ H 4
( (Tn cums [ [ 1 ] ] ∗Tn cums [ [ 4 ] ] ) /24 + ( (Tn cums [ [ 2 ] ] − 1) ∗

Tn cums [ [ 3 ] ] ) /12) ∗ ( x∗∗4 − 6∗x∗∗2 + 3) +
# A 6 ∗ H 5
( (Tn cums [ [ 3 ] ] ∗∗2)/72 + ( (Tn cums [ [ 2 ] ] − 1)∗Tn cums [ [ 4 ] ] ) /48) ∗

( x∗∗5 − 10∗x∗∗3 + 15∗x ) +
# A 7 ∗ H 6
( (Tn cums [ [ 3 ] ] ∗Tn cums [ [ 4 ] ] ) /144) ∗ ( x∗∗6−15∗x∗∗4+45∗x∗∗2−15) +
# A 8 ∗ H 7
( (Tn cums [ [ 4 ] ] ∗∗2)/1152) ∗ ( x∗∗7 − 21∗x∗∗5 + 105∗x∗∗3 − 105∗x )

)
return ( cd f )

}

A.2.2. Example usage of the generalized Edgeworth expansion

Below is some example code showcasing how the generalized Edgeworth expansion was
used in our evaluations on the interval I = [−5, 5].

M<− 10000
k <− 5
x <− seq(−k , k , length . out = M)
# CDF of Zn
F Zn <− map dbl (x , ˜ee gen (Zn cumulants , . ) )
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A.2.3. The moments of
√
Po(nλ)

Below is the function used in order to evaluate the moments of
√
Y in (3.3). Here, we

realized that for the highest value on θ = nλ = 100, including the 150 first terms of the
sum left an error approximately of size 10−6. It was not possible to go much higher than
this since the factorial factor became too large for our computer to handle.

# re turns the r : th moment o f s q r t (Po( t h e t a=n∗ lambda ))
sq r tPo i s son moments <− function ( r , theta ) {

s = 0
# s e r i e s approximation o f raw moments o f s q r t (Po( t h e t a ) )
for ( i in seq ( 0 : 1 4 9 ) ) {

term = i ∗∗ ( r/2) ∗ ( theta )∗∗ i / f a c t o r i a l ( i )
s = s + term

}
s = s ∗ exp(− theta )
return ( s )

}

33



Bibliography

Barndorff-Nielsen, Ole E and David Roxbee Cox (1989). Asymptotic techniques for use in
statistics. Vol. 11. Springer.

DasGupta, Anirban (2008). Asymptotic theory of statistics and probability. Vol. 180. Springer.
Gut, Allan (2009). An Intermediate Course in Probability. 2nd. Springer Publishing Com-

pany, Incorporated. isbn: 1441901612.
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