
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Predictive Performance of AdaBoost and
Random Forest in Binary Classi�cation Tasks

Markus Söderqvist



Matematiska institutionen

Kandidatuppsats 2024:5

Matematisk statistik

Maj 2024

www.math.su.se

Matematisk statistik

Matematiska institutionen

Stockholms universitet

106 91 Stockholm



Mathematical Statistics
Stockholm University
Bachelor Thesis 2024:5

http://www.math.su.se

Predictive Performance of AdaBoost and

Random Forest in Binary Classification Tasks

Markus Söderqvist∗
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Abstract

Binary classification is the task of classifying an observation into
one of two classes. In this thesis we compare the predictive perfor-
mance of two machine learning algorithms for binary classification,
AdaBoost and random forest. We do so on nonlinear data sets, where
nonlinearity is achieved by enclosing one class in a geometrical shape
in the predictor space. The comparisons are conducted on data sets
with (i) noise, (ii) skewed class distribution and (iii) redundant pre-
dictors. In addition, we investigate how predictor dimension affects
performance. Overall, we find that the two methods have similar
performance, although some differences emerge. Random forest has
a higher accuracy on noisy data sets, while AdaBoost has a higher
accuracy on data sets with skewed class distribution and redundant
predictors. Moreover, AdaBoost tends to outperform random forest
on data sets with higher predictor dimension. The cost of this ad-
vantage is a considerably longer runtime. These findings are in line
with previously reported findings. One unexpected finding is that the
performances of both methods improve when the class distribution is
skewed. A further analysis shows that one class is easier to classify
at the expense of the other class for skewed data sets. Therefore, one
should be careful about drawing conclusions from these results. Fi-
nally, an in-depth analysis in higher predictor dimensions shows that
random forest has superior accuracy on one class while AdaBoost has
superior accuracy on the other class. One possible explanation could
be how the algorithms are constructed, and this can have important
implications for choice of method in other classification problems.
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1 Introduction

Machine learning is an interdisciplinary field at the intersection of statistics
and computer science that is concerned with the question of how algorithms
can learn from data. (Hastie et al., 2017, pp. 1). Although inference and
prediction are important areas both in classical statistics and machine learn-
ing, the former has generally focused more on inference while the latter has
focused more on prediction (Lindholm et al., 2022, pp. 18). In this thesis,
we will focus on prediction and binary classification, i.e., prediction where
the variable to be predicted is binary.

Some of the machine learning algorithms for classification have been
around for some time. For example, the idea behind the algorithm k-nearest
neighbors dates back to around 1030, and it was described in the literature
1967 (Lindholm et al., 2022, pp. 36). Other examples of machine learn-
ing algorithms for classification that have been used for a while are neural
networks (since the 1980’s) and support vector machines (since the 1990’s)
(James et al., 2013, pp. 6).

But it has not been until the advent of more powerful computational
resources that the potential of these algorithms has started to be fully re-
alized. In the recent decades, classification algorithms have been used for a
wide variety of tasks such as detection of spam email (Hastie et al., 2017,
pp. 2), prediction of treatment outcome in psychotherapy on the basis of
brain imaging data (Månsson et al., 2015) and classification of soil based on
smartphone pictures (Pandiri et al., 2024).

Over the years, more sophisticated and effective classification algorithms
have emerged. In this thesis, we will focus on two popular classification
algorithms, AdaBoost and random forest. AdaBoost was invented in 1995
by Yoav Freund and Robert Schapire (Breiman, 1996, pp. 17; pp. 20) and
random forest in 2001 by Leo Breiman and Adele Cutler (Liaw, 2018, pp.
1). Both algorithms share similarities; both are so-called ensemble methods
that average predictions from several learners (Hastie et al., 2017, pp. 605),
but they also have important differences.

While both algorithms have been used successfully in a wide range of
problem settings, a number of limitations have been observed for both meth-
ods. AdaBoost has been shown to be sensitive to data that contains noise
(Dietterich, 2000, pp. 147; Li et al., 2017, pp. 5; Long & Servedio, 2008, pp.
1). In contrast, random forest has been shown to be more robust against
noise compared to AdaBoost (Breiman, 2001, pp. 1; Dietterich, 2000, pp.
147). However, random forest has been reported to have difficulties with
data where the distribution of classes is skewed (Dudoit & Fridlyand, 2003,
pp. 138; Zhu, 2020, pp. 3). Moreover, a reduction in performance has also
been noted on data with redundant predictors (Kubus, 2018, pp. 1; Nguyen
et al., 2015, pp. 4).
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1.1 Aims

The primary aim of this thesis is to investigate and compare the predic-
tive performance of AdaBoost and random forest on simulated data. In
light of the findings of previous studies mentioned above, we will also ex-
plore weaknesses and limitations of both methods by simulating data sets
where we have isolated specific characteristics. These characteristics are (i)
noisy data, (ii) skewed class distributions and (iii) redundant predictors.
In addition, we will also investigate how the number of predictors affects
the predictive performance of both methods. We will also describe their
theoretical underpinnings to better understand how both algorithms work.

1.2 Disposition

Section 2 provides the reader with the necessary theoretical background and
starts with a brief introduction to machine learning and related concepts.
The purpose of this section is to explain key concepts that are important to
understand before moving forward. The reader that is already familiar with
the fundamental concepts of machine learning can skip this section. The
theoretical review then continues with a review of decision trees. After that
we introduce ensemble methods, bagging, boosting and the specific bagging
and boosting algorithms that we will compare in this thesis. In Section 3
we describe the simulation study. The thesis continues with Section 4 where
we present the results. In Section 5 we discuss the results and suggest
possible improvements and further developments for future studies. The
thesis concludes with Section 6 where we summarize our main findings.

2 Theory

Unless otherwise stated, the theoretical background that we will present is
based on Hastie et al. (2017) and Lindholm et al. (2022), which also have
influenced our choice of mathematical notation to a large extent.

2.1 Learning paradigms

This section is based on chapter 1 in Hastie et al. (2017), unless otherwise
noted. Prediction problems that can be solved with machine learning al-
gorithms can be divided into supervised, unsupervised, and semi-supervised
learning problems (Lindholm et al., 2022). In the supervised learning set-
ting, we want to predict an outcome of some output variable (commonly
called response or target) given realizations of one or several input variables
(commonly called predictors or features). To put it another way, one could
say that the input data is labeled. In contrast, the unsupervised learning
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setting only provides us with a set of input variabes; the input data is un-
labeled. The goal in unsupervised learning is to find and describe patterns
and associations between the input variables. In the semi-supervised learn-
ing paradigm we have both labeled and unlabeled data (Lindholm et al.,
2022, pp. 247). From here on, we will employ the names predictor and
response for input and output variables, respectively.

Supervised learning problems can be further categorized into regression
and classification problems. Regression encompasses all problems where
the response is quantitative, while classification concerns the case where the
response is qualitative.

2.2 Supervised learning as function approximation

This section is based on section 2.6 in Hastie et al. (2017), unless otherwise
stated. From a mathematical perspective, supervised learning algorithms
can be understood as different ways of approximating a function by analyz-
ing its input and output values. Let X = (X1, ..., Xp)

T be a p-dimensional
vector of predictors and let Y be the response. Let D = {xi, yi}Ni=1 be a set
of independent data points. Furthermore, let the function

Y = f(X) + ϵ (1)

describe how X and Y are related. This function maps the i:th observation
vector xi = (xi1, ..., xip)

T in the predictor space Rp to the i:th observed
response yi. The term ϵ denotes the error in each observation introduced
due to measurement error and the fact that we restrict ourselves to the p
predictors while we ignore other variables that also have an influence on Y .
The error term does not depend on X and it is irreducible. Furthermore,
we assume that its expected value E[ϵ] = 0.

Suppose that we now are given a previously unseen and unlabeled obser-
vation x⋆ = (x⋆1, ..., x⋆p)

T and that we would like to compute a prediction
ŷ⋆ of the corresponding response y⋆. Now, the function f(X) is unknown.
In order to compute the prediction ŷ⋆, we therefore construct a function
Ŷ = f̂(X) that estimates f(X) as well as possible. Put differently, we want
the differences yi − f̂(xi) to be as small as possible.

An important distinction to make here is between parametric and non-
parametric models. Parametric models rest on an assumption about the
form of f(X); it is assumed that the function can be described by a finite
set of parameters and the function approximation amounts to estimating
these parameters. In contrast, nonparametric models do not have any such
assumption; the number of parameters can even be infinite (Held & Bové,
2014, pp. 10).
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2.3 Training and evaluating a model

Unless otherwise stated, this section is based on chapter 2 in Lindholm et al.
(2022). In order to approximate f(X), we need labeled data from which the
algorithm can learn the relation between X and Y . In the machine learning
community this is commonly called training the model.

Therefore, we assemble a training data set by randomly selecting a sub-
set of observations T = {xi, yi}ni=1 from D of size n < N . The subset of
N − n data points from D that is not in T will not be ”seen” by the al-
gorithm during training and will instead serve as test data, with which we
can evaluate the predictive performance. One can explicitly write f̂(X; T )
to make it more evident that the approximated function will depend on the
data that it has been trained on (Lindholm et al., 2022, pp. 64).

We want the algorithm to make decisions during training that lead to a
model with high predictive accuracy on training data. We also want to as-
sess the performance of the final model on new data to make sure it has not
overfit, as well as comparing its performance with other models. For this,
we need a means of measuring prediction error. This is done by evaluating a
loss function, from here on denoted L(yi, f̂(xi)). During training, the loss is
also called training error. By averaging the loss over all data points, we get
a measure of how well the model fits to the data. This way, the problem of
minimizing prediction error during training becomes a function minimiza-
tion problem. One usually prefers a loss function to be convex since this
ensures that a unique minimum can be found, but this is not always possible
(Lindholm et al., 2022, pp. 113). In regression problems, the mean squared
error (MSE)

∑n
i=1(yi − f̂(xi))

2/n is probably well known to the reader as
a common measure of prediction error, but this measure is not applica-
ble in classification problems. We will describe appropriate choices of loss
functions further below. In some cases, no closed form solution exists that
can be computed analytically. In these cases, there are several numerical
iterative optimization algorithms that can be used depending on the situa-
tion, for example gradient descent and Newton Raphson’s method to name
two (Lindholm et al., 2022, section 5.4). We will not discuss optimization
algorithms further.

It is important to note that the choice of loss function to minimize during
training and choice of loss function when evaluating the model do not have to
be the same. Sometimes it is even preferable to have different loss functions
as this can lead to smaller prediction error on new data (Lindholm et al.,
2022, pp. 65).

2.4 The bias-variance tradeoff

This section is based on section 4.4 in Lindholm et al., 2022), unless other-
wise noted. In (1) the error term ϵ is considered random noise specific to
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the training data that can not be measured, and as such it should not be
modeled as systematic covariation between X and Y . This phenomenon is
known as overfitting and happens when the model fits the training data too
closely. Such a model will perform poorly on unseen data. On the contrary,
a model that generates large prediction errors on training data is said to
underfit to training data, i.e. it misses systematic covaration that is present
between X and Y . Related to overfitting and underfitting is the term model
complexity. A model that overfits to training data is said to have too high
model complexity whereas a model that underfits to training data has too
low model complexity. The term model flexibility is sometimes also used to
describe this property.

Thus, an optimal level of model complexity should lead to a model that
to a large extent neither overfits nor underfits to training data. The reader
might be familiar with the decomposition of the MSE of an estimator into
its variance and squared bias (Held & Sabanés Bové, 2014, pp. 55). It turns
out that this decomposition is possible for a machine learning model as well.
We will in the following restrict ourselves to the case of regression with MSE
as loss function, as this particular case is illustrative. Let E[(f̂(x⋆) − y⋆)

2]
denote the expected MSE for the new observation x⋆, i.e. the error that we
would arrive at if we repeatedly retrained our model on a large number of
different training data sets, computed the MSE for each training data set
and then computed the average MSE over all training data sets. It can be
shown that the expected MSE for a new observation x⋆ can be expressed as
follows (James et al., 2013, pp. 34):

E[(f̂(x⋆)− y⋆)
2] = E[(f̂(x⋆)− f(x⋆)− ϵ)2]

= Var(f̂(x⋆)) + [Bias(f̂(x⋆)]
2 +Var(ϵ). (2)

Formula (2) illustrates the bias-variance tradeoff. A model with low
model complexity will generally lead to an estimator of f(x⋆) with low vari-
ance, meaning that if we computed estimates f̂(x⋆) several times by training
the model on different data sets {Tt, t = 1, 2, ...}, the predictions f̂(x⋆; Tt)
would not vary that much. Moreover, a model with low model complexity
will lead to an estimator of f(x⋆) with high bias, meaning that the differ-
ence between the true mean f(x⋆) and the expected value of the prediction
E[(f̂(x⋆)] is high. This leads to systematic errors in the predictions (James
et al., 2013, pp. 34); the model underfits. In contrast, high model com-
plexity is generally associated with high variance and low bias. Thus, an
increase in model complexity leads to a decrease in bias and increase in
variance, increasing the risk of overfitting. This is illustrated in Figure 1,
taken from Hastie et al., 2017, pp. 38. Therefore, finding the optimal level
of model complexity is a central task in training a machine learning model.
This also illustrates why one can not evaluate and compare models based
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on their performance on training data, as this approach likely would lead to
choosing an overfit model that would perform poorly on new data.

Figure 1: The bias-variance tradeoff. Underfitting occurs for low model complexity; the prediction
error for the training sample and test sample is high. Overfitting occurs for high model complexity;
prediction error is low on training sample and high on test sample. The optimal model complexity
achieves the lowest prediction error for the test sample.

2.5 Hyperparameters

An important step in finding the optimal model complexity is optimizing,
or tuning, one or several hyperparameters, also called tuning parameters.
A hyperparameter is a parameter whose value is not learnt by the model
itself but instead left to the user to choose (Lindholm et al., 2022, pp. 22).
Hyperparameters control the complexity of the model and thus the tendency
of the model to underfit or overfit to the training data (Hastie et al., 2017, pp.
222). The optimal value can be chosen by training the model on the training
data set with different hyperparameter values and compute the prediction
error on a validation data set for each model. The hyperparameter value
that leads to the model with the smallest validation error is then chosen
(Lindholm et al., 2022, pp. 129-130).

2.6 Learning setting in the present study

In this thesis, we will confine ourselves to supervised nonparametric bi-
nary classification where the predictors are continuous. Consequently, all
components of X will henceforth be considered continuous and Y will be
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considered a binary variable. Depending on the context, Y will either take
on the values −1 or 1 (Section 2.9), or 0 or 1 (Section 2.10), for ease of
presentation. In the latter case, f(X) is particularly easy to interpret. In
this case, f(X) is the conditional probability density function p(Y |X), with
E[Y |X] = p(X) (Hastie et al., 2017, pp. 29). Furthermore, we have that
p(Y = 0|X = x) = 1 − p(Y = 1|X = x). If p̂(Y = 1|X = x⋆) > 0.5, we
consequently predict ŷ⋆ = 1, and ŷ⋆ = 0 otherwise (Hastie et al., 2017, pp.
11).

2.7 Decision trees

This section is based on section 9.2 in Hastie et al. (2017), unless stated
otherwise. Decision trees subdivide the predictor space into a set of disjoint
subregions each having a hyperrectangular shape with boundaries parallel
to the coordinate axes. The rules for splitting the predictor space can be
visualized in a binary tree, hence the name decision tree. Decision trees are
nonparametric since there is no underlying assumption about the form of
f(X). In this thesis we will look at a specific type of decision tree algorithm
called CART (acronym for Classification And Regression Trees). Since this
thesis covers classification, we will treat the classification case.

Before we describe how to grow a decision tree for classification, it is
informative to look at a trained decision tree. Assume that we have a sub-
division of the predictor space in K regions R1, ..., RK . In each region (also
called leaf node or terminal node) RK , we will predict the class ck. The
function approximation can be expressed as

t(X) =
K∑
k=1

ckI(x ∈ Rk),

where I is the indicator function. The best prediction ĉk in each region Rk

is the most frequently occurring class among the training observations in
that region; a majority vote. In a region Rk containing nk observations, the
proportion of observations having observed class m = 1, . . . ,M is

p̂km =
1

nk

∑
i:xi∈Rk

I(yi = m),

where binary classification corresponds to M = 2. The predicted class ŷ in
region Rk is thus

ŷ = arg max
1≤m≤M

p̂km. (3)

2.7.1 Recursive binary splitting

Determining the best partition, or split, of the predictor space by testing all
possible partitions is generally not computationally attainable as the number
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of possible partitions is simply too large. We therefore resort to a greedy
algorithm called recursive binary splitting when choosing how to split the
predictor space. This algorithm is recursive and greedy since the tree is
grown one split at a time and the algorithm chooses the split that results
in the lowest training error after that one split, without taking influence of
future splits into account (Lindholm et al., 2022, pp. 28). Let the integer
l represent the index of predictor Xl and the real number ξ a value such
that a split is performed at Xl = ξ. We have now created a node where the
predictor space is split into the two regions

R1(l, ξ) = {X|Xl ≤ ξ} and R2(l, ξ) = {X|Xl > ξ}.

To find the optimal split, we want to identify the pair (l, ξ) that minimizes
the loss, measured by some loss function L(yi, f̂(xi)):

arg min
l,ξ

( ∑
j:xj∈R1

L(yj , t(xj)) +
∑

h:xh∈R2

L(yh, t(xh))

)
.

After this split, the splitting process is repeated in the two regions R1 and
R2.

The partitioning of the predictor space in disjoint regions is illustrated in
Figure 2, taken from Hastie et al., 2017, pp. 306. For illustrative purposes,
we restrict our ourselves to a 2-dimensional predictor space consisting of the
predictors X1 and X2.
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Figure 2: Illustration of a decision tree in the multiclass classification case for two predictors
X1 and X2. In the upper left corner a binary tree is shown and in the upper right corner its
corresponding partitioning of the predictor space. The bottom figure shows a perspective of the
predictor space where different levels on the vertical axis represent different predicted classes.

2.7.2 Loss functions

We will now present some of the common loss functions when training deci-
sion trees. Perhaps the most intuitive loss function is the misclassification
loss:

LM = 1− 1

n

n∑
i=1

I(yi = ŷi) =
1

n

n∑
i=1

I(yi ̸= ŷi)

For a classification tree, minimization of LM leads to a majority classifier
(3) within each region of the tree. When we introduce AdaBoost we will
show that the decision trees in this algorithm are trained by minimizing the
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weighted misclassification loss:

LW =

∑n
i=1wiI(yi ̸= ŷi)∑n

i=1wi
, (4)

where wi > 0 is a weight that is applied to observation i, reflecting how
much influence that particular observation has on the loss. However, one
of the downsides with these measures is that they are not sensitive to node
purity ; whether a majority of the observations in a certain leaf node belong
to the same class. In general, choosing a loss function that is sensitive to
node purity is an advantage when growing the tree with recursive binary
splitting, since this tends to lead to fewer splits (Lindholm et al., 2022, pp.
33). Furthermore, the misclassification and weighted misclassification loss
functions are not differentiable and can therefore not be minimized with
common numerical optimization methods.

When training random forests we will instead use the Gini index, a loss
function sensitive to node purity that also is differentiable. It is defined as

LG =
M∑

m=1

p̂km(1− p̂km)

within region k. Another widely used loss function that also has these
properties is entropy : LE = −

∑M
m=1 p̂km ln p̂km, where ln is the natural

logarithm (Lindholm et al., 2022, pp. 34).

2.7.3 Hyperparameters

This section is based on section 2.3 in Lindholm et al. (2022). A common
way to avoid growing the tree too deep, i.e. avoid making it overfit to
training data, is to decide on a stopping criterion beforehand. There are
several approaches to this. One approach is to decide on a maximum number
of terminal nodes. Another approach is to decide on a minimum number
of training observations in each terminal node. Fewer training observations
in each terminal node leads to higher model complexity, the extreme case
being when there is one training observation in each terminal node, leading
to a perfect fit to training data and thus overfitting.

2.8 Ensemble methods

This section is based on section 16.1 in Hastie et al. (2017), unless stated
otherwise. Single decision trees have a high variance and therefore run
the risk of overfitting; even small changes in training data can result in a
drastically different tree structure. One way to deal with this problem is to
make sure not to grow the tree too deep. One can also use pruning, where
sections of the fully grown tree are removed (Lindholm et al., 2022, pp. 36).
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We will not use pruning in this thesis and will therefore not explore it further
here. Nevertheless, even with optimization of hyperparameters and the use
of pruning, the predictive performance of individual decision trees fall short
compared to some of the other frequently used machine learning algoritms
(James et al., 2013, pp. 340). This motivates the use of ensemble methods;
train several base learners and choose the most frequently predicted class
among the base learners as the prediction. As we shall see, in some ensemble
methods this choice is weighted so that some base learners have a stronger
influence on the prediction than others. Decision trees are common base
learners in ensemble methods. In the following two subsections we will look
at two popular types of ensemble methods and introduce the algorithms that
will be used in the simulation study.

2.9 Boosting

This section is based on section 7.3 in Lindholm et al. (2022), unless stated
otherwise. The idea behind boosting has at least historically been to use
base learners with high bias and low variance, also called weak learners,
that individually are only marginally better than chance. In the context of
decisison trees, this means a shallow tree. Sometimes the decision tree is
just a decision stump; a tree having depth one, which is what we will use
as base learner in this thesis. The base learners are trained in sequence in
which each learner aims to reduce the error of the previous learner. This is
done by re-weighting the data so that more weight is given to the training
observations that were misclassified by the previous learner. The manner
in which this re-weighting is done differs between boosting algorithms. The
prediction is then made by a weighted majority vote; the predictions from
each learner are given a weight in such a way that more accurate learners
have a stronger influence on the final prediction. Combining several weak
learners in this manner leads to bias reduction. It should be noted that
lately, the requirement of using a base learner with low model complexity
has been disputed (Wyner et al., 2017).

2.9.1 Forward stagewise additive modeling

Unless stated otherwise, this section is based on section 10.3 in Hastie et al.
(2017). For ease of presentation when reviewing the theory behind boosting
and AdaBoost, the response Y will take on the values −1 or 1. Let B
denote a hyperparameter describing the total number of decision trees to
be trained by the boosting algorithm and let βb, βb > 0, denote the weight
coefficient that assigns the weight to decision tree b according to its accuracy.
Furthermore, let γb denote the set of pairs (l, ξ) that define the nodes as well
as predicted classes in each terminal node in decision tree b. The function
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approximation for boosting can then be expressed as:

g(X) =
B∑
b=1

βbt(X; γb). (5)

Boosting can thus be thought of as a special case of an additive model where
the basis functions are machine learning models (Lindholm et al., 2022, pp.
184). If we let tb(X) denote the b:th decision tree in the training sequence,
the final prediction is given by:

Ŷ = sign

[
B∑
b=1

βbtb(X)

]
.

An additive model like (5) is usually fitted by minimizing some loss
function L(y, g(x)) averaged over training data:

arg min
{βb,γb}Bb=1

n∑
i=1

L

(
yi,

B∑
b=1

βbt(xi; γb)

)
. (6)

This type of optimization problem is often computationally demanding. For-
ward Stagewise Additive Modeling is a greedy approach that approximates
the solution to (6) by iteratively computing and adding one basis function
at a time without modifying the previous terms in the expansion. In our
setting, this means that in each iteration b, a shallow decision tree t(X; γb)
and its corresponding weight coefficient βb are trained and chosen as to min-
imize the loss. The pseudo code for the algorithm is shown in Algorithm 1.

Algorithm 1 Forward stagewise additive modeling.

g0(X)← 0
for b = 1 to B do

(βb, γb) = arg min
β,γ

∑n
i=1 L(yi, gb−1(xi) + βt(xi; γ))

gb(X)← gb−1(X) + βbt(X; γb)
end for

2.9.2 AdaBoost

This section is based on section 10.4 in Hastie et al. (2017), unless stated
otherwise. If we use the exponential loss function L(y, g(x)) = e−yg(x) in
Algorithm 1, we end up with the Adaboost (Adaptive Boosting) algorithm.
The product yg(x) is known as the margin. Correct classifications leads
to positive margins, while misclassifiations leads to negative margins, since
Y ∈ {−1, 1}. We will now show how the individual base learners tb(xi)
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are trained and how their corresponding weight coefficients βb are computed
by the algorithm. As we will see below, working with the exponential loss
function will prove convenient as it leads to a closed form expression that
does not require numerical optimization. In each iteration b, the decision
tree tb(X) is trained first and then the optimal value for βb is computed.
We therefore start with tb(X). In each iteration we need to solve

(βb, tb) = arg min
β,t

n∑
i=1

exp{−yi(gb−1(xi) + βt(xi))}. (7)

Now we make use of the fact that eu+v = euev and let w
(b)
i = exp{−yigb−1(xi)}.

Expression (7) can then be rewritten as

(βb, tb) = arg min
β,t

n∑
i=1

w
(b)
i exp{(−βyit(xi))}. (8)

Since w
(b)
i does not depend on β or t(xi), it can be interpreted as a weight

applied to training data point xi that we can treat as a constant. Expression
(8) can now be rewritten as

(βb, tb) = arg min
β,t

(
e−β ·

∑
i:yi=t(xi)

w
(b)
i + eβ ·

∑
i:yi ̸=t(xi)

w
(b)
i

)
, (9)

since correct classifications are associated with positive margins, leading to
the factor e−β in the first term, while misclassifications lead to negative
margins, giving rise to the factor eβ in the second term. Expression (9) can
furthermore be rewritten as

(βb, tb) = arg min
β,t

(
(eβ− e−β) ·

n∑
i=1

w
(b)
i I(yi ̸= t(xi))+ e−β ·

n∑
i=1

w
(b)
i

)
. (10)

Since βb > 0, we have that eβ − e−β > 0. Hence, the solution for tb(X) in
each iteration b is

tb(X) = arg min
t

n∑
i=1

w
(b)
i I(yi ̸= t(xi)).

Thus, in AdaBoost we train the individual decision trees using the weighted
misclassification loss LW (4) as loss function.

Now, it remains to show how to compute β in each iteration. This
derivation is based on section 7.3 in Lindholm et al. (2022). In order to find
the optimal value of β, we differentiate the expression in (10) with respect
to β, set this derivate to zero and solve for β:

0 =
∂

∂β

(
(eβ − e−β) ·

n∑
i=1

w
(b)
i I(yi ̸= t(xi)) + e−β ·

n∑
i=1

w
(b)
i

)
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⇐⇒ 0 = (eβ + e−β) ·
n∑

i=1

w
(b)
i I(yi ̸= t(xi))− e−β ·

n∑
i=1

w
(b)
i

⇐⇒
n∑

i=1

w
(b)
i =

(eβ + e−β) ·
∑n

i=1w
(b)
i I(yi ̸= t(xi))

e−β

⇐⇒
n∑

i=1

w
(b)
i = (e2β + 1) ·

n∑
i=1

w
(b)
i I(yi ̸= t(xi))

⇐⇒ e2β =

∑n
i=1w

(b)
i∑n

i=1w
(b)
i I(yi ̸= t(xi))

− 1

⇐⇒ β =
1

2
ln

( ∑n
i=1w

(b)
i∑n

i=1w
(b)
i I(yi ̸= t(xi))

− 1

)
,

or equivalently,

β =
1

2
ln

(
1− LW

LW

)
.

We conclude this section by presenting the AdaBoost algorithm as pseudo
code in Algorithm 2 (taken from Hastie et al., 2017, pp. 339).

Algorithm 2 AdaBoost for classification.

for i = 1 to n do ▷ Initialize the weights.
wi ← 1

n
end for
for b = 1 to B do

Train a decision tree tb(X) using weights wi.
Compute

L
(b)
W =

∑n
i=1 wiI(yi ̸=tb(xi))∑n

i=1 wi
.

Compute

βb =
1
2 ln

(
1−L

(b)
W

L
(b)
W

)
.

for i = 1 to n do
wi ← wi · exp{βb[2 · I(yi ̸= tb(xi))]}.

end for
end for
Output g(X) = sign

[∑B
b=1 βbtb(X)

]
.

2.10 Bagging

This section follows section 7.1 in Lindholm et al. (2022). Another popular
ensemble method is bootstrap aggregating, also called bagging. Like boost-
ing, it can be implemented with different types of base learners. In contrast,
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the base learners in bagging have low bias and high variance, i.e. high model
complexity. In the context of decision trees, this means trees that are grown
deep. Such models can individually easily overfit to training data. The idea
behind bagging is to reduce the variance of the model without increasing its
bias. This is achieved by training the base learners on different but overlap-
ping bootstrapped samples of the training data set T , where each sample
has the same size as the training data set. A bootstrapped sample is ob-
tained by randomly drawing observations from the training data set with
replacement, a procedure known as nonparametric bootstrapping (Held &
Bové, 2014, pp. 66). Some observations will occur more than once in a
given bootstrapped sample and will thus have more impact during train-
ing, whereas some observations will not occur at all. The final prediction is
given by the unweighted majority vote of the base learner predictions. In
summary, both boosting and bagging achieve improved accuracy but do so
in different ways; boosting reduces bias while bagging reduces variance.

We will now show how bagging reduces variance and end with a motiva-
tion behind the second algorithm in this thesis. Let z1, ..., zS be identically
distributed random variables with mean µ and variance Var(zs) = σ2 for
s = 1, ..., S. Moreover, let ρ be the average correlation coefficient between
any pair of these variables:

ρ =

1
S(S−1)

∑
e ̸=d E[(ze − µ)(zd − µ)]

σ2
.

We have that E
[
1
S

∑
s=1 zs

]
= µ, so the mean is unchanged by the averaging.

Furthermore, we have that

Var
( 1
S

∑
s=1

zs

)
=

1− ρ

S
σ2 + ρσ2. (11)

In other words, if ρ < 1, the variance is reduced. As mentioned in Section
2.4, predictions from a machine learning model can be seen as random vari-
ables themselves. Since all base learner predictions are based on the same
data T (through nonparametric bootstrapping), they are identically dis-
tributed but not independent, since they are correlated. When we average
their predictions we decrease the variance of the prediction in accordance
with (11). Since the mean is not altered, the bias remains low. We note that
the first term in (11) can be made smaller by increasing S, but the second
term equals ρσ2, independently of S. Thus, the size of the reduced variance
obtained by bagging is bounded from below by the correlation between the
base learner predictions. Therefore, a valid question is if it is possible to
lower this correlation in order to get further variance reduction. The answer
to this question leads us to our second machine learning algorithm.

19



2.10.1 Random forest

This section is based on section 7.2 in Lindholm et al. (2022) unless stated
otherwise. A random forest is a modification of bagging that applies to
CART decision trees. It turns out that decision trees in general are suit-
able for bagging since they have high variance. It has even been noted that
having a base learner with high variance is essential in order for bagging
to improve accuracy (Breiman, 1996, pp. 3). The purpose of the random
forest algorithm is to get further variance reduction by decorrelating the
bagged decision trees. This is achieved by putting a restraint on the num-
ber of predictors that are available as splitting variables in each split, rather
than having the recursive binary splitting algorithm choose from all pre-
dictors. In each split, q predictors are selected at random after which the
algorithm determines the optimal splitting variable and splitting criterion
among these q predictors. Since q is not chosen by the algorithm itself, it is
a hyperparameter. A recommended choice for the classification setting is to
set q =

√
p (rounded down to the nearest integer), which also is the default

value that we will leave unchanged when training random forest models in
this thesis.

We will now give an intuition as to why inducing randomness in the se-
lection of splitting variables decorrelates the trees. As described in Section
2.7.1, the splitting is done greedily in a recursive manner. Imagine a scenario
where one predictor explains the majority of the variation in the response.
Even if we use bagging, it is very probable that all decision trees will select
this predictor as the first splitting variable so that all decision trees end up
with similar first splits, making them highly correlated. Random forest thus
circumvents this problem by forcing some of the decision trees to use other
predictors as splitting variables, making the decision trees less similar and
thus less correlated. One could argue that this approach would degrade the
performance of the individual decision trees, but since we are averaging a
large number of decision trees, this is not a problem. As mentioned pre-
viously, we will use the Gini index LG as loss function when growing the
decision trees. Regarding stopping criteria for each tree there are several
options. We will use the hyperparameter minimum node size nmin. The
random forest algorithm is illustrated as pseudo code (taken from Hastie et
al., 2017, pp. 588) in Algorithm 3 below.
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Algorithm 3 Random forest for classification.

for a = 1 to A do
1. Draw a bootstrap sample Ta = {(Xai, Yai)}ni=1 of size n from T .
2. Grow a random forest decision tree Ta(Xai) to the bootstrapped

data by repeating the following steps recursively for each node
until minimum node size nmin is reached for each terminal node:
(a). Select q predictors at random from the p predictors.
(b). Select a predictor l and value ξ where the split will be

performed such that the total loss LG within the node is
minimized.

(c). Split the node into two child nodes.
end for
Output majority vote

(
{Ta(X)}Aa=1

)
at each X.

3 Simulation and modeling

In order to compare the predictive performance of AdaBoost and random
forest, a simulation study will be conducted. We will in the following de-
scribe the simulation and modeling procedure.

3.1 Simulation of the predictors X

The first step in the simulation process is to simulate the predictor val-
ues. For each observation i = 1, ..., n, a sample of predictor values xi =
(xi1, ..., xip)

T is simulated from the p-dimensional multivariate normal dis-
tribution with mean vector µ = (0, ..., 0)T and covariance matrix Λ equal
to the p-dimensional identity matrix (Gut, 2009, pp. 125):

fX(x) =
( 1

2π

)p/2
exp
{
− 1

2x
Tx
}
, x ∈ Rp.

In the data sets described below, we will vary the number of predictors from
2 to 300.

3.2 Simulation of the response Y

The next step is to simulate the values of the response Y . Since both meth-
ods are highly flexible and able to capture complex and nonlinear relation-
ships, the aim is to simulate data sets with nonlinear relationships between
the predictors X and response Y . Our approach to obtain nonlinearity is
to define geometrical shapes in the predictor space and assign observations
lying inside and outside of the shapes to different classes. Observations
that are enclosed by the shapes are assigned to the class y = 0 while the
remaining observations lying outside the shapes are assigned to the class
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y = 1. The idea of using geometrical shapes is inspired by a previous thesis
(Basetti, 2019).

In all data sets, we will work with either equilateral triangles or circles
when the data consists of two predictors and more generally, equilateral
pyramids and n-spheres as the number of predictors grows. We will either
have one shape or two smaller shapes in the data to assess how this affects the
predictive performance of the methods. When the number of nonredundant
predictors is greater than three, we will only have single n-spheres due to the
challenges associated with programming n-simplexes (i.e. triangles in higher
dimensions). In all data sets, the coordinates of the shape centroids are kept
equal to ensure that all shapes are located in regions with similar density.
In data sets with two triangles or pyramids, the second shape is rotated
180◦ to limit the extent of overlap between the two shapes. Moreover, the
default sizes of the shapes are adjusted to ensure equal class distributions.
In Figure 3 and 4 data sets with one and two shapes are illustrated with
two predictors.

Figure 3: Simulated training data sets with two predictors where observations from one class (red)
are enclosed in one shape.

Figure 4: Simulated training data sets with two predictors where observations from one class (red)
are enclosed in two shapes.
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3.3 Noisy data

Noise in the data is obtained by specifying a probability ϵ that the regions
contain the other class when assigning the classes. Thus, for observations
enclosed by the shape we have that P (Y = 1) = ϵ and for observations
outside the shape we have that P (Y = 0) = ϵ. Data sets that have no noise
correspond to setting ϵ = 0. Throughout the simulation study, the data
sets with noise will have ϵ = 0.2. The effect of noise is illustrated with two
predictors in Figure 5.

Figure 5: Simulated training data set with two predictors and noise where observations from one
class (red) are enclosed in a triangle.

3.4 Skewed class distribution

Class distribution is controlled by varying the size of the shapes. An equal
class distribution means that the data is evenly distributed between the two
classes, i.e. 50 % of the observations belong to one class and the other 50
% belong to the other class. In the simulated data sets with skewed class
distribution, about 20 % of the observations belong to class y = 0 while the
remaining 80 % belong to class y = 1. The class distributions are allowed
to differ 2 % from the intended class distribution, meaning that a training
data set with 1000 observations and skewed class distribution has at least
180 observations and at the most 220 observations belonging to class y = 0.
Skewed class distribution is illustrated in the case of a triangle with two
predictors in Figure 6.
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Figure 6: Simulated training data set with two predictors and skewed class distribution where
observations from one class (red) are enclosed in a triangle.

3.5 Redundant predictors

Redundant predictors will only be present in data sets with more than three
predictors. They are obtained by letting a smaller subset of predictors de-
fine the shapes that determine the classes. If we let pn denote the number
of predictors in this subset and pr the remaining predictors, we have that
p = pn+pr. The pr predictors that do not define the shapes will be indepen-
dent with respect to the response y and thus redundant. If the dimension
of the predictor space is equal to the dimension of the shape, the number
of redundant predictors is zero. In order to assess different proportions of
nonredundant predictors, we will simulate several different scenarios. We
will simulate an additional seven redundant predictors when the number
of nonredundant predictors is three as well as five and ten when the num-
ber of nonredundant predictors is five. When the number of nonredundant
predictors is 50, we will simulate an additional 50 and 100 redundant pre-
dictors. When the number of nonredundant predictors is 100, we simulate
an additional 50, 100 and 200 redundant predictors.

3.6 Generation of data sets

To summarize, data sets with different characteristics are obtained by vary-
ing the number of nonredundant predictors (2, 3, 5, 10, 50, 100), number
of shapes (one or two), type of shape (n-simplex or n-sphere), noise (ϵ = 0
or ϵ = 0.2), class distribution (50/50 or 20/80) and number of redundant
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predictors (0, 5, 7, 10, 50, 100 and 200). Noise, skewed class distribution
and redundant predictors are mutually exclusive characteristics so that we
can study the effect of each characteristic in isolation.

3.7 Modeling

For each type of data set described above, the models will be trained on
training data sets each consisting of 1000 observations. While both meth-
ods (AdaBoost and random forest) are known to perform well without any
hyperparameter tuning (Hastie et al., 2017, pp. 340, 590), we will try to
do some elementary tuning for both methods. For optimization of hyper-
parameters, a separate validation data set of 250 observations will be used.
When optimizing hyperparameters, we will limit ourselves to the number
of weak learners B for AdaBoost and minimum node size nmin for random
forest and we will start with the default values. For random forest, this
corresponds to setting the node size nmin to 1, which corresponds to a fully
grown tree. We will thus leave the number of trees A at the default value of
500. We will also leave the hyperparameter q that controls the number of
available predictors in each split at its default value q =

√
p. For AdaBoost,

we will use decision stumps (i.e., trees with depth one or put differently, two
nodes) and we will start with the default number of weak learners B = 50.
We will then try different values for B and nmin for Adaboost and random
forest respectively and select the values that produce the highest accuracies
on the validation data sets.

Due to time restraints and the vast number of data sets, we will not
optimize the hyperparameters for each data set individually. However, we
will tune the hyperparameters for data sets with greater than three and three
or fewer nonredundant predictors separately, as we will see that the number
of predictors will have a profound impact on the model fit. In addition, we
will also increase the node size for random forest on the data sets with noise,
as this will prove to improve the performance on these data sets. After the
hyperparameters have been optimized, the models are tested repeatedly on
50 test data sets each consisting of 250 observations. The average accuracy
is then computed for each method and type of data set.

3.8 Software

All data simulation and modeling is done in the programming language R.
The mvrnorm() and rbinom() functions from the MASS package are used to
simulate multivariate normally distributed predictor values and to produce
noise in the data, respectively. For data manipulation and visualization, we
use the Tidyverse package. For training and predictions of random forest and
AdaBoost models, the packages randomForest and ada are used. The caret
package is used to calculate evaluation metrics. For measuring runtimes,
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the tictoc package is used.

4 Results

Performance and results from hypothesis testing of performance differences
are presented in two tables. Metrics on data sets with two and three nonre-
dundant predictors is shown in Table 1 and metrics for more than three
nonredundant predictors is shown in Table 2. When interpreting the t-
tests, we have chosen a significance level of 0.05. Additional tables over
classification accuracies across different hyperparameter settings and classi-
fication accuracies separated by class are located in the appendix. Below we
will analyze the impact of different properties of the data sets.

4.1 Main findings

Overall, the accuracy of both methods is quite similar and observed dif-
ferences in accuracy are moderate. As additional challenges such as noise,
redundant predictors and especially, increased number of predictors are in-
troduced in the data sets, some notable discrepancies emerge. The differ-
ences get more pronounced as the number of predictors grows.

On data with two nonredundant predictors, the methods have similar
performance on data sets that do not contain noise, skewed class distribution
or redundant predictors. From here on, we will refer to these data sets
as neutral data sets. On data with three predictors, AdaBoost tends to
outperform random forest on neutral data sets. When the data contains
noise, random forest tends to outperform AdaBoost on data sets with two
and three nonredundant predictors. This is reversed for data sets with
skewed class distribution and redundant predictors.

When the number of nonredundant predictors is higher than three, Ad-
aBoost, now trained with a higher number of weak learners, starts to out-
perform random forest on most data sets. The exception is a majority of the
data sets that contain noise, where random forest still has a significantly bet-
ter performance. Overall, AdaBoost tends to perform better than random
forest on data sets with redundant predictors. However, when the predictor
dimension is large, this is not always the case.

However, a further analysis of classification accuracy for each class sep-
arately, in Table 8 of the Appendix, uncovers an interesting discrepancy.
In higher predictor dimensions, AdaBoost has notably higher classification
accuracy than random forest on observations inside the shapes. This is re-
versed for observations outside the shapes for which random forest has a
notably higher accuracy than AdaBoost. The advantage of AdaBoost in the
former case is larger than the advantage of random forest in the latter case,
making AdaBoost the best performing classifier overall in larger predictor
spaces.
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4.2 Impact of hyperparameters

After validating the performances with different values for number of weak
learners B for AdaBoost and minimum node size nmin for random forest, a
compromise was made when deciding on hyperparameter values for compar-
isons between the models, as there was no clear-cut hyperparameter value
that outperformed the others on all types of data sets. The values that
yielded good overall performance on a majority of the data sets were cho-
sen. For AdaBoost, we ended up training the models with B = 250 on all
data sets with two and three nonredundant predictors and B = 1000 on
all data sets with more than three nonredundant predictors. For random
forest, we trained the models with nmin = 1 on data sets with two and three
nonredundant predictors, except for the data sets with noise where we in-
stead ended up with nmin = 15. We trained all random forest models with
nmin = 20 on data sets with more than three nonredundant predictors.

We refer the reader to Tables 4 - 7 in the Appendix for an overview of the
accuracies of AdaBoost and random forest across different hyperparameter
settings on all types of data sets. It should be noted that some modifica-
tions of the number of redundant predictors in data sets with 50 and 100
nonredundant predictors were made after selection of hyperparameters, so
these data sets differ from the ones in Table 2 in this section.

Looking at how different number of weak learners B affect performance
of AdaBoost in Table 4 in the Appendix, we see that the performance is not
affected that much by altering B for data sets with two and three predictors.
A more dramatic impact is seen for data sets with 50 and 100 nonredundant
predictors in Table 5. We see that B = 1000 overall leads to worse perfor-
mance compared to a lower values of B on data sets where the number of
nonredundant predictors is five or less and superior performance on data sets
with 50 and 100 nonredundant predictors. When training AdaBoost with
B = 50, the performance is often worse than the other values regardless of
data set, and this discrepancy is particularly pronounced on data sets with
a higher number of predictors.

For random forest, the overall impact of altering the hyperparameter val-
ues is less pronounced, as seen in Table 6 and 7 in the Appendix, although
we observe some patterns here as well. For smaller predictor dimensions,
nmin = 1 outperforms higher values of nmin in a majority of the data sets.
For larger predictor dimensions, higher values of nmin tend to perform bet-
ter.

4.3 Impact of shape and number of shapes

In data sets with one shape containing one class, the performances are simi-
lar for spheres/circles and triangles/pyramids. When one class is enclosed by
two shapes, both methods perform worse on triangles/pyramids compared
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Figure 7: Box plots showing the effect of the number of shapes on accuracy for both methods on
data sets with two and three nonredundant predictors.

to circles/spheres. This difference is small when the number of predictors
is two and more pronounced when the number of predictors is three. The
accuracy for both methods decreases as a second shape is introduced in the
data set, the exception being when a second sphere is introduced with three
predictors. In Figure 7, we have averaged the accuracy for one and two
shapes over all data sets with two and three predictors. We see that the
accuracy of random forest decreases a little more compared to AdaBoost
when an additional shape is introduced. In Figure 8, we see that the disper-
sion of the accuracy is higher on data sets with circles/spheres compared to
triangles/pyramids for both methods.
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Figure 8: Box plots showing the effect of shape on accuracy for both methods on data sets with
two and three nonredundant predictors.

4.4 Impact of predictor dimension

In table 2, we see that as the number of predictors grows, the accuracies
drop for both methods. On these data sets, AdaBoost clearly outperforms
random forest on a majority of the data sets.

4.5 Impact of noise

Since we have chosen ϵ = 0.2, a perfect classifier would on average have an
accuracy of 0.8 on the noisy data sets. Compared to the performance on data
sets without noise, the performance drop is therefore at an expected level,
although the performance of AdaBoost is more adversely impacted than that
of random forest, with two, three and five nonredundant predictors. This
can be seen in Figure 9, where we have averaged the accuracy on neutral
and noisy data sets. Here, the advantage of random forest on noisy data
sets is evident, although it is modest. Random forest performs significantly
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better compared to AdaBoost on all data sets with noise except for one. In
higher predictor dimensions, the advantage of random forests is diminished
overall, although it still has a significantly higher accuracy on two out of
three noisy data sets, as seen in Table 2. The relative strength of random
forest to handle noise is still illustrated by the fact that AdaBoost performs
significantly better than random forest on the majority of the other data
sets with higher predictor dimension that do not contain noise. In figure
10, we display the performance of the methods on data sets with noise on
data sets with 50 and 100 nonredundant predictors. We observe that the
averaged accuracy over all noisy data sets now is similar for both methods.

Figure 9: Box plots showing the effect of noise on accuracy for both methods on data sets with
up to five nonredundant predictors.
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Figure 10: Box plots showing the effect of noise and skewed class distribution on accuracy for
both methods on data sets with 50 and 100 nonredundant predictors.

4.6 Impact of skewed class distribution

The accuracy of both methods tend to improve slightly when the data sets
have skewed compared to symmetric class distributions, regardless of type
of data set. The gains in accuracy between symmetric and skewed class
distributions vary between data sets but do not vary that much between
methods. AdaBoost has a significantly higher accuracy compared to random
forest on a majority of the skewed data sets, as illustrated in Figure 11 (low-
dimensional data) and Figure 10 (high-dimensional data).
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Figure 11: Box plots showing the effect of skewed class distribution on accuracy for both methods
on data sets with up to five nonredundant predictors.

4.7 Impact of redundant predictors

The accuracy of both methods tend to drop as more redundant predictors
are added. The performance of random forest is more sensitive to redundant
predictors on data sets with two to five nonredundant predictors, as seen
in Figure 12. Interestingly, in higher predictor dimensions this is reversed;
on these data sets, the performance of AdaBoost is more heavily impacted
by redundant predictors, as seen in figure 13. Another interesting obser-
vation is that when adding seven redundant predictors to a dataset with
three nonredundant predictors, so that most predictors are redundant, the
performance reduction is considerably larger on data sets with two pyramids
compared to two spheres for both methods.
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Figure 12: Box plots showing the effect of redundant predictors on data sets with two to five
nonredundant predictors.
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Figure 13: Box plots showing the effect of redundant predictors on data sets with 50 and 100
nonredundant predictors.
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Table 1: Mean accuracy (proportion of correct classifications) and corresponding standard deviation on data sets with up to three nonredundant predictors. The
accuracy is averaged over 50 test sets consisting of 250 observations. The number of predictors is denoted by p and number of redundant predictors pr. Noise =
Y corresponds to ϵ = 0.2. Skewed = Y corresponds to a class distribution of 20/80. The differences in accuracy are tested with two sample t-tests under the null
hypothesis that the difference is zero. AdaBoost is trained with B = 250. Random forest is trained with nmin = 1 except for data sets with noise where nmin is
set to 15. Whenever a method has significantly higher accuracy (at a 5 % significance level), the corresponding mean and standard deviations are given in bold.

Shape p Noise Skewed pr AdaBoost Random Forest Difference

M (SD) M (SD) t-statistic p-value
One triangle 2 N N 0 0.9795 (0.0077) 0.9790 (0.0102) 0.31 0.76
One circle 2 N N 0 0.9814 (0.0088) 0.9802 ( 0.0080) 0.67 0.51
One triangle 2 Y N 0 0.7590 (0.0272) 0.7777 (0.0250) -3.57 <0.001
One circle 2 Y N 0 0.7550 (0.0275) 0.7678 (0.0276) -2.31 0.023
One triangle 2 N Y 0 0.9849 (0.0074) 0.9801 (0.0087) 2.96 0.00381
One circle 2 N Y 0 0.9864 (0.0080) 0.9821 (0.0074) 2.79 0.00629
Two triangles 2 N N 0 0.9692 (0.0103 0.9633 (0.0121) 2.64 0.00955
Two circles 2 N N 0 0.9724 (0.0102) 0.9690 (0.0106) 1.65 0.11
Two triangles 2 Y N 0 0.7270 (0.0269) 0.7412 (0.0297) -2.51 0.014
Two circles 2 Y N 0 0.7495 (0.0265) 0.7582 (0.0255) -1.67 0.097
Two triangles 2 N Y 0 0.9785 (0.0099) 0.9753 (0.0116) 1.49 0.14
Two circles 2 N Y 0 0.9801 (0.0092) 0.9766 (0.0089) 1.90 0.061
One pyramid 3 N N 0 0.9592 (0.0112) 0.9452 (0.0141) 5.50 <0.001
One sphere 3 N N 0 0.9406 (0.0168) 0.9397 (0.0160) 0.27 0.79
One pyramid 3 Y N 0 0.7276 (0.0247) 0.7463 (0.0265) -3.65 <0.001
One sphere 3 Y N 0 0.7322 (0.0303) 0.7552 (0.0295) -3.84 <0.001
One pyramid 3 N Y 0 0.9694 (0.0116) 0.9545 (0.0135) 5.93 <0.001
One sphere 3 N Y 0 0.9769 (0.0108) 0.9694 (0.0107) 3.45 <0.001
Two pyramids 3 N N 0 0.9370 (0.0163) 0.9279 (0.0178) 2.72 0.00770
Two spheres 3 N N 0 0.9498 (0.0108) 0.9382 (0.0134) 4.76 <0.001
Two pyramids 3 Y N 0 0.7046 (0.0304) 0.7255 (0.0279) -3.59 <0.001
Two spheres 3 Y N 0 0.7143 (0.0269) 0.7397 (0.0250) -4.88 <0.001
Two pyramids 3 N Y 0 0.9505 (0.0116) 0.9417 (0.0125) 3.65 <0.001
Two spheres 3 N Y 0 0.9728 (0.0113) 0.9665 (0.0137) 2.52 0.013
Two pyramids 6 N N 3 0.9155 (0.0150) 0.9041 (0.0169) 3.58 <0.001
Two spheres 6 N N 3 0.9504 (0.0134) 0.9333 (0.0148) 6.07 <0.001
Two pyramids 10 N N 7 0.8993 (0.0206) 0.8790 (0.0226) 4.67 <0.001
Two spheres 10 N N 7 0.9455 (0.0142) 0.9236 (0.0196) 6.42 <0.001
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Table 2: Mean accuracy (proportion of correct classifications) and corresponding standard deviation on data sets with more than three nonredundant predictors.
The accuracy is averaged over 50 test sets consisting of 250 observations. The number of predictors is denoted by p and number of redundant predictors pr. Noise
= Y corresponds to ϵ = 0.2. Skewed = Y corresponds to a class distribution of 20/80. The differences in accuracy are tested with two sample t-tests under the
null hypothesis that the difference is zero. AdaBoost is trained with B = 250 when the number of predictors is less than 50 and B = 1000 when the number of
predictors is 50 or greater. Random forest is trained with nmin = 1 when the number of predictors is less than 50 and nmin = 20 when the number of predictors
is 50 or larger. Whenever a method has significantly higher accuracy (at a 5 % significance level), the corresponding mean and standard deviations are given in
bold.

Shape p Noise Skewed pr AdaBoost Random Forest Difference

M (SD) M (SD) t-statistic p-value
One sphere 5 N N 0 0.9371 (0.0150) 0.8993 (0.0165) 12.00 <0.001
One sphere 5 Y N 0 0.7093 (0.0302) 0.7334 (0.0307) -3.97 <0.001
One sphere 5 N Y 0 0.9596 (0.0135) 0.9321 (0.0177) 8.75 <0.001
One sphere 10 N N 5 0.9416 (0.0161) 0.8880 (0.0222) 13.82 <0.001
One sphere 15 N N 10 0.9237 (0.0155) 0.8867 (0.0219) 9.73 <0.001
One sphere 50 N N 0 0.7690 (0.0316) 0.7269 (0.0325) 6.57 <0.001
One sphere 50 Y N 0 0.6247 (0.0247) 0.6101 (0.0273) 2.81 0.00603
One sphere 50 N Y 0 0.8336 (0.0247) 0.7798 (0.0277) 10.26 <0.001
One sphere 100 N N 50 0.7440 (0.0277) 0.7146 (0.0323) 4.96 <0.001
One sphere 150 N N 100 0.7302 (0.0366) 0.7042 (0.0329) 3.73 <0.001
One sphere 100 N N 0 0.7277 (0.0281) 0.7058 (0.0288) 3.84 <0.001
One sphere 100 Y N 0 0.5804 (0.0272) 0.5979 (0.0303) -3.04 0.00300
One sphere 100 N Y 0 0.8408 (0.0213) 0.8218 (0.0233) 4.25 <0.001
One sphere 150 N N 50 0.7053 (0.0263) 0.6946 (0.0327) 1.80 0.074
One sphere 200 N N 100 0.6896 (0.0286) 0.6786 (0.0324) 2.13 0.036
One sphere 300 N N 200 0.6594 (0.0315) 0.6529 (0.0324) 1.03 0.31
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4.8 Impact of class

In Table 8 of the Appendix, we can see the mean accuracy in classifying
observations inside the shapes and outside the shapes for each method, for
different types of data sets. It should be noted that with noise, there is an
overlap such that both classes are represented inside and outside the shapes
with probability ϵ. For ease of reasoning, we will nevertheless make the
distinction between classes as inside and outside the shapes for noisy data
sets as well.

When the number of predictors is small, the accuracies are similar for ob-
servations inside and outside the shapes for both methods, with two notable
exceptions. The first exception is data sets with skewed class distribution.
On these data sets, we see that both methods have a higher classification
accuracy on observations lying outside the shapes. This accuracy discrep-
ancy is the largest for random forest; 0.12 compared to 0.07 for AdaBoost.
The second exception is the data sets with redundant predictors. On these
data sets, random forest has a lower classification accuracy on observations
lying inside the shapes whereas AdaBoost has similar performance.

In higher predictor dimensions (p ≥ 50), the deterioration of classifica-
tion accuracy on observations lying inside the shapes is heavily exacerbated
for both methods on data sets with skewed class distribution. AdaBoost
has a classification accuracy of 0.22 on observations lying inside the shapes
whereas the corresponding value for random forest is 0.0017, i.e., both meth-
ods are performing worse than chance and random forest predicts the other
class on nearly all of the test observations. In contrast, the accuracies on
observations outside the shapes is 0.9882 and 1.0000 for AdaBoost and ran-
dom forest respectively. Aside from this finding on data sets with skewed
class distributions, the methods exhibit accuracy discrepancies that are each
other’s opposite; AdaBoost has higher accuracy on observations lying inside
the shapes whereas random forest has higher accuracy on observations ly-
ing outside the shapes. This discrepancy is dramatic for AdaBoost and less
pronounced for random forest.

4.9 Runtimes

Starting with one of the smallest data sets, one triangle and two predictors,
the runtime is four seconds for random forest and 49 seconds for AdaBoost.
Thus, already with the simplest data set it is evident that the training
of AdaBoost takes more time (given its hyperparameter settings, which is
B = 250 for these data sets). This discrepancy grows as the dimensionality
of the predictor space grows and AdaBoost uses more weak learners, as
shown in Table 3. For example, with 300 predictors, random forest has a
runtime of 42 seconds and AdaBoost 5166 seconds (i.e., 86 minutes) - 123
times longer.

37



Table 3: Runtimes on data sets with high predictor
dimensions. Number of predictors is denoted by p.

Runtimes (s)

p AdaBoost Random forest
100 1617 14
150 2335 20
200 3516 25
300 5166 42

5 Discussion

5.1 Main findings

In line with previous studies, random forest outperforms AdaBoost on noisy
data sets while AdaBoost outperforms random forest on data sets with re-
dundant predictors. In addition, except for the noisy data sets, AdaBoost
tends to have an advantage overall. This advantage comes at quite a high
cost computationally, as training and prediction takes vastly more time with
the AdaBoost algorithm. The finding that AdaBoost tends to have higher
accuracy while random forest is more computationally efficient has been ob-
served previously (Miao & Heaton, 2010). Other studies have found that
the methods have similar performance (Chan & Paelinckx, 2008; Tang et
al., 2021).

As the predictor dimension grows, an interesting discrepancy emerges
between the two methods. AdaBoost has superior classification accuracy
on observations inside the shapes which contrasts starkly with observations
outside the shapes, where instead random forest has superior accuracy.

The fact that AdaBoost takes longer time to run can be understood from
how the algorithms are trained. In random forest, the training of trees can
be parallelized (Tang et al., 2021), which is not possible in AdaBoost since
the trees are grown sequentially, as shown in Algorithm 1. Thus, it should
not come as a surprise that the runtime of random forest is shorter and less
affected by predictor dimension compared to AdaBoost, as seen in Table 3.

5.2 Hyperparameter settings and model fit

As mentioned above, B = 1000 leads to worse performance compared to
lower values of B for AdaBoost on data sets with two and three predictors.
The most probable reason for this is that with 1000 weak learners, AdaBoost
starts to overfit to the training data sets with two and three nonredundant
predictors (in other words, its model complexity is too high). Indeed, the
tendency of AdaBoost to overfit to low-dimensional data has been noted
in previous simulation studies (Mease & Wyner, 2008, pp. 136). However,
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with a larger predictor dimension it is reasonable that more weak learners are
needed to capture the patterns in the data. When training AdaBoost with
B = 50, the performance is often worse than the other values regardless
of type of data set, apart from a few exceptions. This is likely due to
underfitting; having just 50 weak learners is not enough to capture the
patterns in the training data even when the predictor dimension is small.

It should be noted that there has been a debate as to how AdaBoost
should be trained. Some researchers argue that AdaBoost should be trained
with early stopping for best results while others claim that AdaBoost should
be trained with a large number of weak learners without any regularization
since it has been observed that AdaBoost rarely overfits if the predictor
dimension is large enough (Wyner et al., 2017). As mentioned previously,
lately there has also been a debate as to whether a base learner needs to
be weak (i.e., of low model complexity). In the past decade, we have seen
successful implementations of AdaBoost with random forest as base learner
(El Hamdaoui et al., 2021; Nayak et al., 2016; Rohan et al., 2019), which
certainly challenges the validity of this assumption.

For random forest, the impact of different values of nmin is not as
straightforward to analyze and understand. For noisy data, the performance
is improved by having a larger node size in the trees, i.e. more shallow trees.
This is to be expected since if we have more noise in the data, the averaging
in each tree helps in mitigating the impact of noise. If we have just one train-
ing observation in each terminal node, the predictions get more sensitive to
noise as the training observation in question can be a noisy observation.
For data sets with a small number of predictors, nmin = 1 outperformed
higher values in a lot of cases while increasing nmin to 20 proved to be bet-
ter for data sets with a higher number of predictors. Since higher values
of nmin creates shallower trees, leading to base learners with lower model
complexity compared to a model with nmin = 1, it is somewhat surprising
that nmin = 1 leads to better performance on data sets with a small number
of predictors and nmin = 20 leads to better performance on data sets with
a large number of predictors, as one would think that the former scenario
could lead to overfitting and the latter scenario could lead to underfitting.
One possible explanation is that the default value nmin = 1 actually is the
best choice for all data sets, and it is the hyperparameter q that controls the
number of predictors available as splitting variables in each split that should
be optimized when the number of predictors is high. This can especially be
the case when the data sets contain redundant predictors, as this has been
noted in previous studies (Hastie et al., 2017, pp. 596).

5.3 Noisy data

The performance of AdaBoost is more negatively impacted by the presence of
noise in the data sets, which is expected given previous findings (Dietterich,
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2000, pp. 147; Li et al., 2017, pp. 5; Long & Servedio, 2008, pp. 1).

5.4 Class distributions

Interestingly, the accuracy on data sets with skewed class distributions are
higher compared to data sets with symmetric class distributions for both
methods. At first glance, this result is somewhat surprising. One possible
explanation is that a larger proportion of the observations are lying out-
side the shapes in data sets with skewed class distributions, and that these
observations are easy for the methods to correctly classify. To clarify our
reasoning, remember that the class distribution is controlled by altering the
size of the shape enclosing one of the classes. We can imagine that the meth-
ods could, due to the construction of regions parallel to the coordinate axes
in decision trees, easily approximate a circle/sphere or triangle/pyramid by
a square/hypercube. If the shape in question is small, it can be approx-
imated by a smaller square/hypercube which leads to a lower error, since
there are fewer observations lying between the boundary of the shape and
the boundary of the approximated square/hypercube.

We can also note that in terms of overall classification accuracy, the clas-
sification problem gets simpler as the class distribution gets more skewed if
we make a best guess solely based on knowledge about the class distribution.
Suppose that the probabilities for the classes 0 and 1 are 1 − P and P , re-
spectively. We can estimate P from the training data in advance and make
the predictions by randomly guessing Y = 1 with probability P regardless
of X. This corresponds to f(X) = P . The expected accuracy for random
guessing is

P (Y = 0)P (correct prediction|Y = 0)+P (Y = 1)P (correct prediction|Y = 1)

= (1− P )(1− P ) + P · P = 1− 2P + 2P 2 = 1− 2P (1− P ).

This expression grows as P gets closer to 0 or 1, i.e., as the class distribution
gets more skewed. If we let P = 0.2 and make the prediction by random
guessing as described above, this yields the expected accuracy

1− 2 · 0.2 · (1− 0.2) = 1− 2 · 0.2 · 0.8 = 0.68.

An even class distribution corresponds to P = 0.5. This results in a lower
expected accuracy if we use the same random guessing strategy:

1− 2 · 0.5 · (1− 0.5) = 1− 2 · 0.5 · 0.5 = 0.5.

A further analysis of classification accuracy for each class shows that
it is indeed easier to classify the observations outside the shapes on data
sets with skewed class distributions (i.e., smaller shapes). In high predictor
dimensions, the performance is worse than chance for both methods and the
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performance of random forest stands out as particularly poor. One probable
explanation for this is the ratio of the number of predictors to the number
of observations inside the shapes. For example, with 100 predictors, this
ratio is about 1:2. Thus, it is quite understandable that the methods are
not able to capture the relationships in the data as more observations are
needed to explore the predictor space. In summary, one should be cautious
about drawing conclusions about the performance of the methods on skewed
data sets due to this observation.

5.5 Redundant predictors

The performance of random forest is more adversely impacted than that
of AdaBoost by the presence of redundant predictors, which is in line with
previous findings (Kubus, 2018, pp. 1; Nguyen et al., 2015, pp. 4). Interest-
ingly, when the number of predictors is higher, the performance of random
forest seems to be more robust against the influence of redundant predictors
compared to AdaBoost. The robustness of random forest against nonredun-
dant predictors when the number of predictors is fairly high has been noted
in earlier studies (Hastie et al., 2017, pp. 596).

5.6 Predictor dimension

With a higher number of predictors and the same number of observations as
all the other data sets, the aforementioned discrepancy in classification accu-
racy appears. The observed discrepancies in classification accuracy between
the two classes for each method makes the overall classification accuracy a
somewhat misguiding evaluation metric, as it does not unveil the full picture.

One possible, albeit speculative, explanation is that the averaging of sev-
eral models in random forest makes it easier to capture cruder structures
in the data whereas the sequential step-wise error reduction in AdaBoost
makes it easier to capture finer structures. If we for a moment suppose that
this explanation is true, the finding in this thesis can have important impli-
cations for method choice in other classification settings. These implications
can be summarized as follows. If one is more concerned with capturing a
crude structure in the data, random forest could be better suited for the
problem. If one instead wants to capture finer structures in the data, Ad-
aBoost could be a wiser choice. However, it is also important to note that
it cannot be ruled out that hyperparameter settings have influenced the
observed discrepancies in this thesis.

5.7 Runtimes

For both methods, the runtime increases as the dimensionality of the predic-
tor space grows. Furthermore, the number of weak learners B has a dramatic

41



impact on runtime for AdaBoost. This is obviously a disadvantage consid-
ering the energy and time consumption as well as the computational cost.
It should be noted that runtimes depend on hardware, software as well as
implementation. All simulation and modeling is conducted on an inexpen-
sive PC laptop from 2016, which certainly contributes to the long runtimes
in this thesis.

5.8 Suggestions for improvements and further studies

To facilitate a more fair comparison between AdaBoost and random forest,
hyperparameter optimization can be made more rigorous, for instance by ex-
ploring different values for the hyperparameter q that represents the number
of predictors to consider in each split in random forest. One can attempt to
optimize q and nmin simultaneously with a grid search, where different pairs
of values for these hyperparameters are validated (Lindholm et al., 2022,
pp. 129). Further hyperparameter optimization is particularly relevant for
data sets with redundant predictors, since setting q too low leads to a low
probability of selecting relevant predictors if the number of redundant pre-
dictors is large (Hastie et al., 2017, pp. 596). Furthermore, previous findings
indicate that lower values of q tend to improve performance on noisy data
(Mentch & Zhou, 2020, pp. 16).

In order to further optimize the performance of AdaBoost, one can use
regularization techniques such as early stopping (Hastie et al., 2017, pp.
365) to find a suitable number of weak learners B.

The runtimes of both methods differ greatly. One could argue that the
comparison made in this thesis is not entirely fair if the runtimes are taken
into account. Therefore, it would be interesting to compare the methods
with hyperparameter settings that lead to similar runtimes for both meth-
ods. In particular, this would mean training AdaBoost with a fewer number
of weak learners B. However, as pointed out above, random forest training
can be parallelized in contrast to AdaBoost which makes it unlikely that the
runtime of AdaBoost could match that of random forest without making a
considerable sacrifice of accuracy for AdaBoost.

Furthermore, future studies investigating predictive performance on data
sets with skewed class distributions should ensure that the number of obser-
vations in larger predictor dimensions is large enough so that the minority
class contains a sufficient number of observations. Moreover, the class dis-
tribution could also be made more skewed than 20/80 to further elucidate
performance differences between AdaBoost and random forest.
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6 Conclusion

The aim of this thesis was to investigate and compare the predictive per-
formance of AdaBoost and random forest, two popular machine learning
algorithms for classification. Overall, we found that the two methods have
similar performance, but some differences emerged. We showed that ran-
dom forest had a higher accuracy on noisy data sets, while AdaBoost had
a higher accuracy on data sets with skewed class distribution and redun-
dant predictors. Moreover, AdaBoost tended to outperform random forest
on data sets with larger predictor dimension. AdaBoost took a consider-
ably longer time to run compared to random forest. These observations
are in line with previous studies. However, in higher predictor dimensions,
random forest had a notably higher classification accuracy than AdaBoost
on one class whereas AdaBoost had an even bigger advantage compared to
its counterpart on the other class, making AdaBoost the superior classifier
overall. While further investigation of the cause of this discrepancy was out
of scope of this thesis, we hypothesized that it could be due to how the
models are trained. We pointed out that if this hypothesis is true, it could
indicate that AdaBoost has an advantage over random forest in detecting
finer structures in data while random forest has an advantage in detection of
cruder structures. On data sets with larger predictor dimension and skewed
class distribution, both methods had poor prediction accuracy on observa-
tions of the smaller class. One probable explanation to the poor accuracies
is that the number of observations in the smaller class was too small.
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A Appendix

A.1 Hyperparameter settings

In Table 4 and 5, we display the accuracy for AdaBoost for different number
of weak learners B. In table 6 and 7, we provide corresponding results for
random forest and different values of the minimum node size nmin.
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Table 4: Mean accuracies for AdaBoost on data sets with two and three nonredundant predictors for different numbers of weak learners B. The number of
predictors is denoted by p and number of redundant predictors pr. Noise = Y corresponds to ϵ = 0.2. Skewed = Y corresponds to a class distribution of 20/80.

Accuracy

Shape p Noise Skewed pr B = 50 B = 100 B = 250 B = 500 B = 1000
One triangle 2 N N 0 0.9822 0.979 0.9794 0.9795 0.9798
One circle 2 N N 0 0.9804 0.981 0.9806 0.9814 0.981
One triangle 2 Y N 0 0.7715 0.7734 0.7591 0.7514 0.7382
One circle 2 Y N 0 0.7704 0.764 0.7568 0.7402 0.728
One triangle 2 N Y 0 0.9811 0.9847 0.9856 0.9854 0.985
One circle 2 N Y 0 0.9813 0.9858 0.9854 0.9862 0.9865
Two triangles 2 N N 0 0.9532 0.963 0.9666 0.9679 0.9666
Two circles 2 N N 0 0.9681 0.9698 0.973 0.9714 0.9713
Two triangles 2 Y N 0 0.7332 0.734 0.7263 0.7158 0.7094
Two circles 2 Y N 0 0.7564 0.7564 0.751 0.741 0.7344
Two triangles 2 N Y 0 0.9778 0.9779 0.9782 0.9781 0.9766
Two circles 2 N Y 0 0.98 0.9799 0.9787 0.9801 0.9785
One pyramid 3 N N 0 0.9518 0.9593 0.96 0.9586 0.9573
One sphere 3 N N 0 0.9367 0.928 0.9316 0.9235 0.9354
One pyramid 3 Y N 0 0.7498 0.7374 0.727 0.7126 0.7071
One sphere 3 Y N 0 0.7495 0.7436 0.7367 0.7252 0.7124
One pyramid 3 N Y 0 0.9635 0.9699 0.9698 0.9692 0.9662
One sphere 3 N Y 0 0.9732 0.9776 0.9778 0.9774 0.9771
Two pyramids 3 N N 0 0.9197 0.9328 0.9389 0.9402 0.9393
Two spheres 3 N N 0 0.9454 0.9492 0.9515 0.9492 0.9485
Two pyramids 3 Y N 0 0.7161 0.7132 0.7028 0.6939 0.6829
Two spheres 3 Y N 0 0.7342 0.7336 0.723 0.7056 0.6964
Two pyramids 3 N Y 0 0.9421 0.9494 0.9518 0.9546 0.9543
Two spheres 3 N Y 0 0.9691 0.9702 0.973 0.9724 0.9715
Two pyramids 10 N N 7 0.8882 0.8981 0.9016 0.8975 0.8996
Two spheres 10 N N 7 0.9434 0.9474 0.9484 0.9439 0.9406
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Table 5: Mean accuracies for AdaBoost on data sets with more than three nonredundant predictors for different numbers of weak learners B. The number of
predictors is denoted by p and number of redundant predictors pr. Noise = Y corresponds to ϵ = 0.2. Skewed = Y corresponds to a class distribution of 20/80.

Accuracy

Shape p Noise Skewed pr B = 50 B = 100 B = 250 B = 500 B = 1000
One sphere 5 N N 0 0.9246 0.9347 0.9379 0.9386 0.9373
One sphere 5 Y N 0 0.72 0.7132 0.6968 0.6908 0.6828
One sphere 5 N Y 0 0.9509 0.954 0.957 0.9558 0.9576
One sphere 10 N N 5 0.9184 0.9322 0.9388 0.9388 0.935
One sphere 50 N N 0 0.6941 0.7164 0.7614 0.7673 0.7901
One sphere 50 Y N 0 0.5922 0.6038 0.6157 0.6278 0.6256
One sphere 50 N Y 0 0.7962 0.813 0.8324 0.8461 0.8462
One sphere 100 N N 50 0.6734 0.6969 0.7306 0.746 0.7615
One sphere 150 N N 100 0.6561 0.6791 0.7134 0.7242 0.7331
One sphere 100 N N 0 0.6351 0.6574 0.691 0.7094 0.7266
One sphere 100 Y N 0 0.5564 0.5694 0.5806 0.5903 0.5987
One sphere 100 N Y 0 0.8227 0.8255 0.8323 0.839 0.8429
One sphere 120 N N 20 0.6307 0.6574 0.6845 0.702 0.7096
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Table 6: Mean accuracies for random forest on data sets with two and three nonredundant predictors for different values of the minimum node size nmin. The
number of predictors is denoted by p and number of redundant predictors pr. Noise = Y corresponds to ϵ = 0.2. Skewed = Y corresponds to a class distribution
of 20/80.

Shape p Noise Skewed pr Accuracy

nmin = 1 nmin = 5 nmin = 10 nmin = 15 nmin = 20 nmin = 30
One triangle 2 N N 0 0.98 0.9774 0.9752 0.9742 0.9732 0.9702
One circle 2 N N 0 0.9804 0.9776 0.976 0.9712 0.961 0.9466
One triangle 2 Y N 0 0.7458 0.7591 0.7725 0.7743 0.7778 0.7742
One circle 2 Y N 0 0.7404 0.7525 0.7631 0.7663 0.7692 0.7682
One triangle 2 N Y 0 0.9794 0.9791 0.9772 0.9748 0.9728 0.9622
One circle 2 N Y 0 0.9812 0.981 0.9761 0.974 0.9722 0.969
Two triangles 2 N N 0 0.9646 0.9613 0.9578 0.9513 0.9486 0.9336
Two circles 2 N N 0 0.9682 0.9661 0.9652 0.9625 0.9578 0.9533
Two triangles 2 Y N 0 0.7178 0.7274 0.7402 0.7414 0.74 0.7343
Two circles 2 Y N 0 0.7478 0.7511 0.7575 0.7587 0.7569 0.7566
Two triangles 2 N Y 0 0.9766 0.9728 0.965 0.9623 0.9567 0.946
Two circles 2 N Y 0 0.977 0.9762 0.9735 0.9705 0.9686 0.9681
One triangle 3 N N 0 0.945 0.9411 0.9376 0.933 0.9302 0.9174
One circle 3 N N 0 0.938 0.9375 0.9344 0.9315 0.9281 0.924
One triangle 3 Y N 0 0.7334 0.741 0.7413 0.7469 0.7505 0.7482
One circle 3 Y N 0 0.7425 0.75 0.7535 0.7565 0.7547 0.7523
One triangle 3 N Y 0 0.9562 0.9526 0.9467 0.9416 0.9382 0.9315
One circle 3 N Y 0 0.9694 0.968 0.9654 0.962 0.9614 0.9589
Two triangles 3 N N 0 0.9262 0.9222 0.9132 0.909 0.9053 0.899
Two circles 3 N N 0 0.9382 0.9366 0.9353 0.9305 0.9254 0.9201
Two triangles 3 Y N 0 0.7145 0.7163 0.7219 0.7238 0.7231 0.7242
Two circles 3 Y N 0 0.7285 0.7326 0.7376 0.7402 0.7409 0.7398
Two triangles 3 N Y 0 0.9438 0.9389 0.9352 0.9322 0.9273 0.9194
Two circles 3 N Y 0 0.9664 0.9649 0.9628 0.9598 0.957 0.9503
Two triangles 10 N N 7 0.8756 0.8727 0.874 0.8694 0.8666 0.863
Two circles 10 N N 7 0.9176 0.9155 0.9154 0.911 0.9112 0.9046
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Table 7: Mean accuracies for random forest on data sets with more than three nonredundant predictors for different values of the minimum node size nmin. The
number of predictors is denoted by p and number of redundant predictors pr. Noise = Y corresponds to ϵ = 0.2. Skewed = Y corresponds to a class distribution
of 20/80.

Shape p Noise Skewed pr Accuracy

nmin = 1 nmin = 5 nmin = 10 nmin = 15 nmin = 20 nmin = 30
One sphere 5 N N 0 0.8958 0.8938 0.8885 0.8831 0.8786 0.8742
One sphere 5 Y N 0 0.7126 0.7184 0.7207 0.7278 0.7261 0.7289
One sphere 5 N Y 0 0.9253 0.9234 0.9224 0.9215 0.9193 0.9163
One sphere 10 N N 5 0.9 0.9012 0.8979 0.895 0.8884 0.8859
One sphere 50 N N 0 0.7008 0.7045 0.7264 0.7447 0.7454 0.7465
One sphere 50 Y N 0 0.6174 0.6128 0.6201 0.621 0.6189 0.6199
One sphere 50 N Y 0 0.7818 0.7821 0.7817 0.7818 0.7814 0.7815
One sphere 100 N N 50 0.7082 0.7094 0.7149 0.7236 0.7245 0.7046
One sphere 150 N N 100 0.6954 0.6892 0.7006 0.715 0.7232 0.7252
One sphere 100 N N 0 0.6702 0.6714 0.6767 0.6892 0.691 0.6894
One sphere 100 Y N 0 0.5864 0.5883 0.5863 0.6045 0.5992 0.5962
One sphere 100 N Y 0 0.8224 0.8212 0.8104 0.8341 0.8274 0.8263
One sphere 120 N N 20 0.6683 0.6631 0.679 0.6846 0.6935 0.6874
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A.2 Accuracy per class

Table 8 shows mean accuracy separated by class for each type of data set
and method.
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Table 8: Mean accuracies separated by class for different types of data sets.

Accuracy

Inside shape Outside shape
Data set type p AdaBoost Random forest AdaBoost Random forest
Neutral, triangle/pyramid 2 & 3 0.9689 0.9588 0.9699 0.9658
Neutral, circle/sphere 2 & 3 0.9615 0.9593 0.9605 0.9607
Neutral, one shape 2 & 3 0.9652 0.959 0.9652 0.9633
Neutral, Two shapes 2 & 3 0.9563 0.95 0.9576 0.9483
Neutral 2, 3 & 5 0.9571 0.9458 0.9597 0.9521
Noise 2, 3 & 5 0.7327 0.7408 0.7284 0.757
Skewed 2, 3 & 5 0.9149 0.8646 0.9874 0.9884
Redundant predictors 2, 3 & 5 0.9208 0.8737 0.929 0.9185
Neutral 50 & 100 0.8198 0.6874 0.668 0.749
Noise 50 & 100 0.6358 0.5256 0.5689 0.6873
Skewed 50 & 100 0.2228 0.0017 0.9882 1
Neutral 50 0.8399 0.7022 0.688 0.7561
Redundant predictors 50 0.8046 0.7076 0.6633 0.7116
Neutral 100 0.7998 0.6725 0.648 0.7418
Redundant predictors 100 0.7429 0.6481 0.6212 0.705
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