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Abstract

This thesis investigates the construction of an optimal portfolio
using Lasso, Ridge and Elastic net regularization methods. Contrary
to expections, portfolios constructed with Ridge regression underper-
forms across all evaluation metrics when compared to the market, de-
spite their complexity involving the whole sample of assets while also
including negative asset weights. In contrast, portfolios constructed
using Lasso and Elastic net regularization show a different pattern.
These portfolios are characterized by their sparsity, sometimes con-
taining only a single asset. Notably, there exists a clear inverse re-
lationship between the number of assets and the evaluation metrics,
with larger portfolios yielding inferior results. While the allure of these
sparse portfolios is evident, they also come with a significantly higher
risk, both in the terms of volatility, measured by standard deviation,
and the lack of diversification. These findings shed light on the nu-
anced trade-offs inherent in portfolio construction and underscore the
importance of risk management in investment strategies.
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1 Introduction

Constructing an optimal portfolio has, and still is, the persuit of investors
seeking to maximizing portfolio returns while managing the risk. The en-
deavor, however, is full of challenges. Traditional approaches such as the
modern portfolio thoery (MPT), pioneered by Harry Markowitz [1], provides
valuable insight into portfolio construction by focusing on mean-variance
optimization and the concept of the efficient frontier. Markowitz laid the
foundation for finding the portfolio with the highest expected return for a
given level of risk and introduced the notion of the tangency portfolio, the
portfolio on the efficient frontier with the highest Sharpe ratio.

The Sharpe ratio developed by William F. Sharpe [2] serves as a fun-
damental way to measure the risk-adjusted return, helping investors in as-
sessing their portfolios relative to the risk suffered. The financial markets
evolve and complexities arise however, and traditional methods often face
limitations in capturing the intricate dynamics of asset returns.

To address these challenges Britten-Jones introduced a regression-based
framework for portfolio construction [7]. By utilizing the ordinary least
squares (OLS) regression with a constant vector of ones as the response
variable, Britten-Jones showed a link between the regression estimation of
the coefficients and the tangency portfolio, offering a practical way of con-
structing optimal portfolios.

Building on Britten-Jones foundation, this thesis explores the applica-
tion of regularization methods to build optimal portfolios, namely the Least
absolute shrinkage and selection operator (Lasso), Ridge and Elastic net
regression. Regularization methods, originating from the field of statistical
learning [8], offer a systematic approach to address overfitting, deal with
highly correlated parameters and increase model interpretability by adding
penalties to the regression coefficients.

The primary focus of this thesis is to investigate the application of Lasso
regression in the context of portfolio optimization, but expanded to include
both Ridge and Elastic net regression as well. By adding regularization to
Britten-Jones framework the aim is to enhance the robustness and efficiency
of the constructed portfolios.

Evaluation metrics play an important role in assessing the performance
of constructed portfolios. In addition to the Sharpe ratio, this thesis also
considers key metrics such as the Alpha, Beta and Return of Investment
(ROI) of portfolios, as well as the expected return and the risk to provide a
holistic evaluation of portfolio strategies. The constructed portfolios will be
compared to the Standard and Poor’s 500 market index.

This thesis begins with a quick rundown of the data used in chapter 2
alongside the methods of acquiring it. This is followed by chapter 3 where
some background to the portfolio optimization problem is given. In chapter
3 we also cover the evaluation metrics we will use to test the constructed
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portfolios. In chapter 4 we present the Britten-Jones regression setup aswell
as regularization methods and cross-validation. In chapter 5 we step by
step go through the implementation of the methods used followed by the
results in chapter 6. We end this thesis with a discussion about the results
in chapter 7.

2 Data

The data used in this thesis consist of stock prices over the period from
January 2014 to March 2024. Instead of using the daily stock price at
closing or opening time, the adjusted stock prices are used. The reason for
this is that the adjusted stock price take dividends, stock splits and new
stock offerings into account, so the adjusted price give a more accurate price
of the stock. The adjusted stock prices have been aggregated into simple
weekly return denoted Rw and is calculated as

Rw =
Pw − Pw−1

Pw−1

where Pw is the adjusted stock price at the end of week w and Pw−1 is the
the adjusted stock price at the end of week w − 1.

The stocks chosen for the dataset consist of the stocks that make up
the Standard & Poor’s 500 (SP500) index. Some stocks have been ex-
cluded since they did not have data during the previously mentioned period.
The adjusted stock price data were acquired from Yahoo Finance1 via the
tidyquant2 package in R.

By choosing weekly returns over daily returns we remove some of the
noise of the stock market and instead aim to better capture trends in the
market over daily fluctuations.

One could then argue monthly data would be even better, the reason for
weekly over monthly is simply that using monthly data would require us to
stretch out the testing period, which would lead to the exclusion of more
stocks due to missing values.

3 Background

3.1 Modern portfolio theory

Modern portfolio theory (MPT) is also known as mean-variance optimiza-
tion or Markowitz optimization and is the foundation for modern invest-
ment strategies. The theory was developt my Markowitz, H (1952)[1] and
it focuses on optimizing the trade-off between the risk and return. In his

1https://finance.yahoo.com/
2https://cran.r-project.org/web/packages/tidyquant/index.html
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paper Markowitz makes the assumption that an investor is rational and
risk-averse, meaning the investor seeks high return while keeping the risk
low. Markowitz also stresses the importance of diversification by spreading
investments across assets with various risk-return characteristics.

3.1.1 Mean-variance optimization

The mean-variance optimization, or Markowitz optimization aims to find
the optimal set of weights for a portfolio so that it maximizes the expected
return for a chosen level of risk, or minimize the risk for a chosen level of
return. The optimal weights for a portfolio is found by estimating the weight
vector w so that

ŵ = argminw{wTCw}

where C is the covariance matrix and wT the transposed weight vector.
The portfolios return can then be calculated as µp = wTµ where µ is the
asset return vector. This optimization assumes that

∑
iwi = 1, meaning

that an investor is assumed to invest all of his/her wealth. There is also
the restriction that wi ≥ 0 restricting an investor from short-selling assets.
Repeating this process for a range of different values of µp will lead to a set
of optimal portfolios that represent the efficient frontier.

3.1.2 Optimal portfolios, the efficient frontier and the tangency
portfolio

A set of portfolios with a certain level of expected return may have vary-
ing risk, the optimal portfolio is defined as the portfolio with that level of
expected return that has the lowest risk. Repeating this processes for dif-
ferent levels of expected return results in a set of optimal portfolios, these
portfolios create the efficient frontier. In the efficient frontier the tangency
portfolio stands out as the portfolio with the highest risk-adjusted return
calculated by the Sharpe ratio.

3.1.3 Sharpe ratio

The Sharpe ratio was introduced by William Sharpe (1966)[2] and in Sharpe
(1994)[3] he officially accepted the name Sharpe ratio for his ratio.

The Sharpe ratio is a way to measure the risk-adjused return for a port-
folio, calculating the Sharpe ratio for a portfolio is done as

SR =
E[Rp]−Rf√

V ar(Rp)

where SR is the Sharpe ratio for the portfolio, Rp is the return for portfolio
and Rf is the risk-free rate.
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The expected return of the portfolio, E[Rp] is estimated as the mean of
the historical returns, so that

R̄p =
1

N

∑
t

Rt

where Rt is the return of the portfolio at time t and N is the total number
of assets. The variance V ar(Rp) of the portfolio is estimated as∑

t

1

N − 1
(Rt − R̄p)

2.

3.1.4 Evaluation metrics

To be able to effectively evaluate the performance of a constructed portfolio
we need some evaluation metrics. In this thesis we will evaluate a portfolio by
the portfolios Alpha and Beta, its Sharpe ratio and the return of investment
(ROI). We will also look at the portfolios expected return and risk, which
we define as the mean and standard deviation of the portfolio return.

The Alpha of the portfolio compares the portfolios performance against a
market index Elton, Gruber, Brown & Goetzmann (2014)[5], it is essentially
the portfolios ability to beat the market. When calculating a portfolios α,
both the market return, the risk-free rate and the portfolios β needs to be
considered as follows:

α = Rp − (Rf + β(Rm −Rf ))

where Rp is the portoflio return and Rm is the market index, Rf is the risk-
free rate and β is the beta of the portfolio defined below.

The β of the portfolio instead compares the portfolios volatility against
a market index. We define the β of the portfolio as

β =
Cov(Rp, Rm)

Var(Rm)

where Rp is the return of the portfolio and Rm is the return of the market
index. For the covariance, Cov(Rp, Rm), of the portfolio and the market we
simply calculate

1

N − 1

∑
t

(
(Rp,t − R̄p) · (Rm,t − R̄m)

)
.

If a portfolio have a β value larger than 1 it is to be interpreted that
the portfolio is more volatile than the market, while a value lower means
less volatile. The market index of choice for both α and β is naturally the
SP500.
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The return of investment or ROI of a portfolio speaks for itself, it is the
percentage return of an investment. For a portfolio this will be calculated
as

ROI =
VN − V0

V0
· 100

where VN is the ending value of the portfolio and V0 is the initial value of the
portfolio. Multiplying by a factor of 100 leads to the ROI being expressed
in percentages.

4 Methods

4.1 Britten-Jones regression

This thesis takes inspiration of the regression setup from Britten-Jones(1999)[7]
where he sets up a regression with a constant vector of ones as response vari-
able and does not include an intercept, so that

1 = Xθ + u

where X is the design matrix and contain the asset returns, θ the coefficient
vector and u the error term. He goes on to show that if the coefficient vector
θ is estimated with ordinary least squares so that

θ̂ = (XTX)−1XT 1,

it is the unscaled tangency portfolio. Britten-Jones shows this by using the
updating formula3 for inverse matrices and showing that

θ̂

1T θ̂
=

Σ̄−1x̄

1T Σ̄−1x̄

where the right side is the estimated tangency portfolio with Σ̄ being the
sample covariance matrix and x̄ is the sample mean vector.

4.2 Regularization methods

In this thesis three regularization methods will be introduced and tested.
The ℓ2 regularization called Ridge regularization, the ℓ1 regularization called
Lasso regularization and a combination between the two called Elastic net.
The regularization methods modify the objective function in the optimiza-
tion problem so that they include a penalty term that encourages a simpler
model. In the context of linear regression where the objective is to estimate
the coefficient vector θ so that it minimizes the sum of squared residuals,
represented as

||y −Xθ||22.
3For the full proof, see Britten-Jones (1999)[7] pp. 658.
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Here y is the response variable, X the design matrix and θ the coefficient vec-
tor to be estimated. The regularization methods add a penalty term, λP (θ),
to the objective function. The λ is a hyperparameter that determines the
strength of the regularization and is often estimated with cross-validation,
as seen in section 4.3, and the function P (θ) is determined by the different
regularization methods. The goal of regularization regression is hence to
estimate

θ̂ = argminθ

{
||y −Xθ||22 + λP (θ)

}
.

4.2.1 Least absolute shrinkage and selection operator, the Lasso

The least absolute shrinkage and selection operator, or the Lasso for short,
was introduced by Robert Tibshirani[9] 1996 in his paper Regression Shrink-
age and Selection via the Lasso. The Lasso is a ℓ1 regularization method
that adds the the penalizing function

∑
i |θi| to the objective function. The

Lasso seeks to estimate the coefficient vector so that

θ̂ = argminθ

{
||y −Xθ||22 + λ||θ||1

}
.

The penalty term added to the objective function penalizes the absolute
value of the coefficients. This often leads to sparse models since penalizing
term drives the coefficients of the less relevent parameters to zero, effectively
performing parameter selection Hastie, Tibshirani & Wainwright (2015)[11].

4.2.2 Ridge regularization

Ridge regularization, or Tikhonov regularization is an ℓ2 regularization. it is
a method to prevent overfitting in statistical models James, Witten, Hastie
& Tibshirani (2013)[12], especially in regression analysis and portfolio op-
timization. With the use of an added penalty term in form of the ℓ2-norm
Ridge will shrink coefficients toward zero, but not to zero as Lasso does with
its ℓ1-norm. With the ℓ2-norm added as penalty, the Ridge regularization
seeks estimate the coefficients so that:

θ̂ = argminθ

{
||y −Xθ||22 + λ||θ||22

}
.

4.2.3 Elastic net

The Elastic net is a regularization method that combines both Ridge- and
Lasso regularization Zou & Hastie (2005)[4]. The Lasso regularization tends
to only select a small subset of variables, particualary in cases of multi-
collinearity. Consequently, the Elastic Net was developed to address this
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limitation and other drawback of the Lasso regularization. The Elastic net
seeks to estimate the coefficients so that:

θ̂ = argminθ

{
||y −Xθ||22 + λ1||θ||22 + λ2||θ||1

}
.

Just like the Lasso the Elastic net performs variable selection by setting
some coefficients to zero. Due to its combination between the ℓ1 and ℓ2
regularization it is also more flexible when handling highly correlated pre-
dictor variables. With the combined penalty the Elastic net have better
predictive performance when compared to either Lasso or Ridge alone, es-
pecially when the predictor variables are highly correlated Friedman, Hastie,
Tibshirani (2010)[13].

4.3 K-fold cross-validation

Cross-validation is a widely used validation method for estimating perfor-
mance of a model. K-fold cross-validation splits the data into K approxi-
mately equally sized sets. The model is then trained on K − 1 of the sets
and evaluated on the one remaining set. The K − 1 sets that the model
is trained upon are called the training sets and the remaining set that the
model is evaluated upon is called the validation set. This process is repeated
K times, so that every set is left out once. Some evaluation metric, such as
the mean square error, is calculated for each validation set.

Cross-validation can be used to select a value for the hyperparameter
λ in the previously mentioned regularization methods. During this process
a range of λ values are tested to select the best suited one. The range is
determined by λmax which is chosen large enough so that all parameters are
set to zero, resulting in the null model Tibshirani et. al. (2010)[13]. The
λmin is chosen based on the λmax, so that λmin = ϵ · λmax where ϵ is some
small value Tibshirani, et. al. (2010) [13].

For every λ in the range, cross-validation is performed and the averaged
mean square error is calculated for the λ. The value for λ deemed most
suitable for the regularization method is the λ value that resulted in the
lowest average mean square error.

5 Implementation

The data consist of the design matrix X, which consists of the explanatory
variables. As explanatory variables, the weekly return for a set of stocks
have been chosen. The stocks chosen make up the Standard and Poor’s 500
index, but only the stocks that have data during the full testing period have
been selected. The testing period begins at January 2014 and stretches to
March 2024, these dates are arbitrarliy chosen. This results in 468 stocks
which had data for the full period, and the period stretches 532 weeks.
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The response vector y is inspired from Britten-Jones (1999)[7] so that
it is a constant vector of ones. The length of the vector is 532 so that it
matches the design matrix.

The goal is not to explain the stock prices but rather to predict them,
hence we want to see how it performs out of sample. With this in mind we
split the data into a training set and a evaluation set. We have chosen to
keep 80% of the data in the training set and 20% of the data in the test set.
The model will be trained on the period 2014-2022 and evaluated upon the
period 2022-2024.

Both the Ridge- and Lasso regularization models will be trained and
tested on the data set. The Elastic net will also be trained and tested, but
since we will implement the Elastic net as

θ̂ = argminθ

{
||y −Xθ||22 + (1− α)λ||θ||22 + αλ||θ||1

}
(1)

rather than

θ̂ = argminθ

{
||y −Xθ||22 + λ1||θ||22 + λ2||θ||1

}
we will train the model with different values for α.

The implementation is done in R with the help of the glmnet4-package.
Two functions from the package are used, the function cv.glmnet that will
run the cross-validation algorithm and estimate the best values for the hy-
perparameter λ, and the function glmnet that will fit a model to the data
for the chosen λ value. The cross-validation algortihm uses ten-fold cross-
validation and will create a range of one hundred different λ values to iterate
over. While the range of values for λ can be created manually, the function
creates it as explained in chapter 4.3. In this thesis we use the range of λ
values created by cv.glmnet. The cross-validation algorithm will calculate
the average mean square error for each λ in the range and will save the one
with the lowest average mean square error to later be used when fitting the
model.

While the cross-validation algortihm itself is deterministic Tibshirani,
et. al. (2010)[13], it contains some randomness when splitting the data.
For this reason the cross-validation algorithm is arbitrarily called upon 1000
times.

When it is time to fit a model to the data, the glmnet function is called
upon to estimate the coefficient vector. The glmnet function uses the same
formula for Lasso, Ridge and Elastic net, namely formula (1). This means
that if α is set to zero or one, a Ridge- or Lasso model is fitted respectively.
Any other value for α will fit an Elastic net model. Since an α value in the
range (0, 0.5) will give the ℓ2-norm stronger influence and an α in the range

4
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(0.5, 1) will give the ℓ1-norm stronger influence we will try multiple values
for α inbetween zero and one.

Due to the fact that an intercept is not included in the model, the co-
efficients need not sum to one, but as shown by Britten-Jones (1999) [7],
scaling the coefficient vector so that it sums to one leads to the tangency
portfolio.

The estimated and scaled coefficient vector are to be interpreted as port-
folio weights and are such applied to the corresponding stocks. To evaluate
the portfolios performance we will consider the evaluation metrics presented
in chapter 3.1.4. These metrics will be compared against eachother as well
as against the SP500 index.

The cross-validation algorithm will provide a total of 11000 values for
λ, 1000 each for Ridge and Lasso and 9000 for Elastic net. But this will
not lead to 11000 different portfolios, but rather some 200 different ones as
many of the λ values will be identical.
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6 Results

The constructed portfolios are to be compared to the Britten-Jones portfolio,
the S&P 500 and the equal weighted portfolio. The weights for the equal
weighted portfolio are simply calculated as wi = 1

N where N is the total
number of assets. The weights for the S&P 500 portfolio can be obtained
using the tidyquant package. To calculate the weights for the Britten-Jones
portfolio however, we need to implement the Moore-Penrose pseudoinverse
[10] since the training data consists of only 426 data points while there are
468 parameters.

Another important consideration when examining the portfolio constructed
using the Britten-Jones formula is that it include negative weights, indicat-
ing short selling stocks. It is noteworthy that a large amount of capital is
invested in shorts. When applying the Britten-Jones formula to the train-
ing data, approximately 2900% of the portfolios value is allocated in short
positions.

The constructed portfolios built by using Ridge-, Lasso and Elastic net
regularization are somewhat disapointing. While some constructed portfo-
lios have a high risk-adjusted return they include very few parameters, often
suggesting that the portfolio only contain a single stock. The portfolios con-
structed that contains at least five or more stocks instead have a negative α
value, indicating that they perform worse than the market index. In short
the portfolios built by Ridge regularization tends to favor low risk and low
return while the portfolios built by Elastic net and Lasso favors very sparse
portfolios often resulting in few stocks and ending up with very high ROI
and expected return but also high risk.

We will now go deeper into the resulting portfolios for the different mod-
els.

6.1 Ridge

The 1000 iterations of the cross-validation algorithm for Ridge regression
resulted in 21 different values for λ. The values for λ ranges from between
around 75 to around 190. A histogram of the distribution for λ values is
shown in figure 1.
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Figure 1: Histogram over λ values for Ridge regularization.

As expected, the portfolios constructed when fitting the different λ val-
ues to Ridge regularization contains every stock from the sample stocks in
varying degrees, resulting in diverse porfolios. Due to the fact that Ridge
does not shrink any coefficient to zero the resulting portfolios are of size 468
and are quite complex. The evaluation metrics are show in table 1.

Table 1: Ridge evaluation metrics together with SP500, Equal weights and
Britten-Jones.
”Model” ”Sharpe ratio” ”Alpha” ”Beta” ”ROI” ”Expected return” ”Risk” ”Short percentage” ”Parameters”

”Equal” 0.077112 -0.205538 0.916144 20.004844 0.002001 0.025943 0 468
”SP500” 0.132795 0 1 40.172172 0.003504 0.026384 0 468
”Britten” 0.086302 -0.109499 0.093441 128.61194 0.006996 0.081069 2914.265 468
”Ridge 12” 0.077682 -0.208042 0.918282 19.858264 0.001966 0.025314 -0.1983 468
”Ridge 11” 0.077679 -0.208534 0.917613 19.842632 0.001965 0.025299 -0.1614 468
”Ridge 13” 0.077672 -0.207557 0.918986 19.870762 0.001968 0.025331 -0.1729 468
”Ridge 10” 0.077663 -0.209029 0.916977 19.824461 0.001964 0.025286 -0.1594 468
”Ridge 14” 0.077646 -0.207084 0.919726 19.879531 0.001968 0.025349 -0.2198 468
”Ridge 9” 0.077639 -0.209523 0.916373 19.804319 0.001962 0.025273 -0.2256 468
”Ridge 8” 0.077607 -0.210013 0.915797 19.782732 0.00196 0.025261 -0.2706 468
”Ridge 15” 0.077601 -0.206625 0.920506 19.884006 0.001969 0.025369 -0.3455 468
”Ridge 7” 0.077569 -0.210496 0.915248 19.760172 0.001959 0.025251 -0.2899 468
”Ridge 16” 0.077537 -0.206185 0.921325 19.883699 0.001969 0.02539 -0.6 468
”Ridge 6” 0.077527 -0.21097 0.914724 19.737051 0.001957 0.025241 -0.3043 468
”Ridge 5” 0.077482 -0.211432 0.914225 19.713719 0.001955 0.025232 -0.2485 468
”Ridge 17” 0.077452 -0.205767 0.922185 19.878249 0.001968 0.025413 -1.0407 468
”Ridge 4” 0.077436 -0.211881 0.913747 19.690468 0.001953 0.025223 -0.2702 468
”Ridge 3” 0.077388 -0.212315 0.91329 19.667534 0.001951 0.025216 -0.6832 468
”Ridge 18” 0.077344 -0.20537 0.923087 19.867485 0.001968 0.025438 -2.246 468
”Ridge 2” 0.077341 -0.212734 0.912853 19.645101 0.00195 0.025209 -1.8222 468
”Ridge 19” 0.077215 -0.204995 0.924031 19.851491 0.001966 0.025465 -4.2596 468
”Ridge 20” 0.077065 -0.204639 0.925014 19.830684 0.001965 0.025495 -7.9767 468
”Ridge 1” 0.076911 -0.213901 0.912787 19.515023 0.001939 0.025212 -1.6856 468
”Ridge 21” 0.076898 -0.204295 0.926036 19.805884 0.001963 0.025526 -8.5659 468
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Figure 2: Histogram over λ values for Lasso regression.

In table 1 it can be seen that the different portfolios constructed by Ridge
regularization underperforms when compared to both the S&P 500 index,
the equal weighted portfolio as well as the Britten-Jones portfolio. All of
the portfolios constructed using Ridge regression are somewhat similiar, not
leaving much choice to the investor. All of the portfolios are quite close the
S&P 500 and the equal weighted portfolio in terms of risk while having a
significan lower expected return than the S&P 500. When comparing these
portfolios to the equal weighted portfolios, it is hard to spot a difference,
indicating one could just as well use a naively equal-weighed portfolio as
constructing one using Ridge regression.

6.2 Lasso

One of the main reasons for Lasso regularization when construction port-
folios are its parameter selection property. Constructing portfolios using
Lasso often leads to sparse portfolios, which we will see is also the case in
this thesis.

The 1000 iterations of the cross-validation algortihm provided 16 differ-
ent values for λ whose distribution is shown in figure 2. Comparing the
λLasso with λRidge one can see that the values in λLasso are significantly
smaller than the values in λRidge. Low values for the hyperparameter λ
would indicate weak regularization compared to large values for λ that indi-
cates strong regularization. Fitting models with these values for λ a range of
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16 different portfolios can be constructed. These portfolios are quite sparse,
including as few as only 1 parameter up to 10 parameters. The metrics for
these portfolios are shown in table 2 together with the metrics for the S&P
500, the equal weighted portfolio and the Britten-Jones portfolio.

Table 2: Lasso evaluation metrics together with SP500, Equal weights and
Britten-Jones.
”Model” ”Sharpe ratio” ”Alpha” ”Beta” ”ROI” ”Expected return” ”Risk” ”Short percentage” ”Parameters”

”Equal” 0.077112 -0.205538 0.916144 20.004844 0.002001 0.025943 0 468
”SP500” 0.132795 0 1 40.172172 0.003504 0.026384 0 468
”Britten” 0.086302 -0.109499 0.093441 128.61194 0.006996 0.081069 2914.265 468
”Lasso 1” 0.205182 1.747447 2.044611 264.570987 0.014631 0.071309 0 1
”Lasso 2” 0.205182 1.747447 2.044611 264.570987 0.014631 0.071309 0 1
”Lasso 3” 0.20136 1.632626 2.00097 240.020248 0.013776 0.068413 0 2
”Lasso 4” 0.186943 1.317438 1.881174 178.356614 0.011427 0.061124 0 2
”Lasso 5” 0.177646 1.153496 1.813502 150.581556 0.010232 0.057595 0 3
”Lasso 6” 0.171657 1.009964 1.736417 131.048561 0.009274 0.054027 0 3
”Lasso 7” 0.167288 0.92144 1.688874 119.523648 0.008684 0.051908 0 3
”Lasso 8” 0.162839 0.82608 1.630157 108.435596 0.008085 0.04965 0 4
”Lasso 9” 0.156476 0.68127 1.529484 93.625419 0.007233 0.046225 0 4
”Lasso 10” 0.151338 0.582105 1.460472 83.917811 0.00665 0.043942 0 4
”Lasso 12” 0.151154 0.252552 1.154962 62.321024 0.005092 0.033688 0 10
”Lasso 14” 0.148266 0.304048 1.212394 64.570194 0.005287 0.035661 0 8
”Lasso 11” 0.147053 0.508531 1.409351 76.936709 0.006217 0.042278 0 4
”Lasso 16” 0.14583 0.332824 1.247799 65.437706 0.00538 0.036891 0 8
”Lasso 13” 0.143468 0.452316 1.370291 71.731623 0.005886 0.041029 0 4
”Lasso 17” 0.143297 0.367988 1.289818 66.591409 0.005499 0.038376 0 6
”Lasso 15” 0.142241 0.406752 1.331289 68.439408 0.005655 0.039755 0 5

Table 2 is ordered by decreasing Sharpe ratio with the reference port-
folios added at the top. The observent reader can see that a low count of
parameters in the portfolio seem to correspond to a higher Sharpe ratio and
portfolio α.

While some of the portfolios constructed using Lasso regularization seem
to outperform the market index based on their positive α values and β val-
ues below 1 while also having a high ROI and Sharpe ratio it is important
to take into consideration that they have very limited diversification. These
portfolios only consist of one to four different stocks and therefor have a high
concentration. While these portfolios seem to outperform the index in the
short term they deviate from one of the main principles of the modern port-
folio theory, diversification Markowitz (1952)[1]. Investors should approach
these portfolios with the utmost care.

The relationship between the risk and return for Lasso constructed port-
folios seem almost linear, as seen in figure 3. In table 2 it would seem that
the evaluation metrics get worse as the number of parameters increase, so
we plot the relationship between the risk-adjusted return and the number
of parameters in figure 4. There seem to be a significant drop in the risk-
adjusted return from one to five parameters, but after that the risk-adjusted
return seem to increase when the number of parameters increase.
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Figure 3: Expected return vs Risk for Lasso portfolios.

Figure 4: Sharpe ratio vs the number of parameters for Lasso portfolios.
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6.3 Elastic net

Repeating the cross-validation 1000 times for each α in [0.1, 0.2, . . . , 0.9]
the Elastic net regularization gets between 16 and 19 different values for
λ depending on α. These values are shown in figure 5. Much like the
values provided for the Lasso regularization the values for λ are quite small
when compared to the ones provided for Ridge regularization, implying a
somewhat weaker regularization.

Figure 5: Histogram over λ values for Elastic net with different values for
α.

This results in a total of 159 different values for λ and as such 159
different portfolios. These portfolios are quite similiar to the ones provided
by Lasso regularization and their metrics are shown in table 3 with a market
index added at the top. Table 3 does not show all of the 159 different
portfolios. Since metrics seem to follow the same structure as for the Lasso
metrics, the Elastic net metrics table has also been ordered by paramters,
then the first and last ten is shown in 3.
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Table 3: Elastic net evaluation metrics together with SP500, Equal weights
and Britten-Jones.
”Model” ”Sharpe ratio” ”Alpha” ”Beta” ”ROI” ”Expected return” ”Risk” ”Short percentage” ”Parameters”

”Equal” 0.077112 -0.205538 0.916144 20.004844 0.002001 0.025943 0 468
”SP500” 0.132795 0 1 40.172172 0.003504 0.026384 0 468
”Britten” 0.086302 -0.109499 0.093441 128.61194 0.006996 0.081069 2914.265 468
”Elastic 1” 0.205182 1.747447 2.044611 264.570987 0.014631 0.071309 0 1
”Elastic 19” 0.205182 1.747447 2.044611 264.570987 0.014631 0.071309 0 1
”Elastic 20” 0.205182 1.747447 2.044611 264.570987 0.014631 0.071309 0 1
”Elastic 21” 0.205182 1.747447 2.044611 264.570987 0.014631 0.071309 0 1
”Elastic 38” 0.205182 1.747447 2.044611 264.570987 0.014631 0.071309 0 1
”Elastic 39” 0.205182 1.747447 2.044611 264.570987 0.014631 0.071309 0 1
”Elastic 55” 0.205182 1.747447 2.044611 264.570987 0.014631 0.071309 0 1
”Elastic 71” 0.205182 1.747447 2.044611 264.570987 0.014631 0.071309 0 1
”Elastic 72” 0.205182 1.747447 2.044611 264.570987 0.014631 0.071309 0 1
”Elastic 89” 0.205182 1.747447 2.044611 264.570987 0.014631 0.071309 0 1
”Elastic 67” 0.143162 0.409987 1.335875 68.715128 0.005662 0.039551 0 6
”Elastic 124” 0.143016 0.354089 1.279765 65.494645 0.005419 0.037893 0 7
”Elastic 105” 0.142851 0.386637 1.31203 67.34861 0.005563 0.038941 0 5
”Elastic 135” 0.142826 0.443184 1.365225 70.806757 0.005826 0.040793 0 4
”Elastic 122” 0.142571 0.392958 1.318391 67.655731 0.00559 0.03921 0 5
”Elastic 138” 0.142496 0.398724 1.323608 68.006916 0.005618 0.039426 0 5
”Elastic 119” 0.142397 0.437263 1.361942 70.207308 0.005787 0.040642 0 4
”Elastic 157” 0.142356 0.403082 1.327792 68.240636 0.005638 0.039604 0 5
”Elastic 85” 0.141907 0.420426 1.349488 68.862086 0.005692 0.040111 0 5
”Elastic 102” 0.141858 0.430031 1.357934 69.475204 0.00574 0.04046 0 4

Just as for the evaluation metrics calculated for the Lasso portfolios
there are quite a few portfolios that outperform the market index, but just
as for the Lasso portfolios these are not diversified portfolios and investors
should approach them with care. Since the portfolios are quite similiar to the
ones constructed using Lasso we will plot the risk-return relationship for the
Elastic net together with the portfolios from Lasso in figure 6. We will also
do the same thing for the risk-adjusted return and parameter relationship in
figure 7. The similiarities between the portfolios constructed by Lasso and
Elastic net can clearly be seen in the figures.
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Figure 6: Expected return vs Risk for Elastic net and Lasso portfolios

Figure 7: Sharpe ratio vs the number of parameters for Elastic net and
Lasso portfolios.
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7 Discussion

While the portfolios constructed using Ridge regression underperformed
when compared to the market the portfolios constructed using Lasso and
Elastic net regularization methods demonstrate promising performance when
compared to the market index. For instance, the portfolio with the highest
Sharpe ratio has a ratio 30% higher than the market while also showing
favorable Alpha and Beta values along with nearly a 500% increase in the
expected return. Figure 8 shows the growth of capital, which adds to the
appeal of these portfolios.

Figure 8: Capital growth for different portfolios together with market index.
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It is however crucial to consider the elevated risks associated with these
portfolios. They carry a significantly higher risk profile, around 400% greater
than the market index. Additionally, their heavy reliance on single-stock
allocations challenges one of the core principles of modern portfolio theory,
diversification.

It is also of interest to take a closer look at the stock that make up
these single stock portfolios and the stock in question is NVDA. The stock
has made quite the journey during the sample period for this thesis and
these single asset portfolios are easy to understand when looking at the
development of NVDA as seen in figure 9.

Figure 9: Growth of Nvidias (NVDAs) price during the sample period. The
dashed red line indicate the percentage increase at the end of the sample
period.
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It will be seen that this stock is included in the constructed portfolios
and it is easy to understand why seeing it has increased over 23, 000% during
the sample period.

There is some middle ground to explore however, the portfolios contain-
ing 8 to 20 different stocks strike a balance between sparsity and diversifi-
cation. These portfolios still outperform the market while offering a more
varied mix of assets.

The portfolios constructed using Lasso and Elastic net only included a
range of 20 different stocks all together. In figure 10 the inclusion of these
stocks in the portfolios constructed using Lasso and Elastic net is shown. In
table 4 the companies behind the stocks are also shown.

Figure 10: The twenty stocks comprising the Lasso and Elastic net portfolios
and their inclusion percentage.
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Table 4: Stock symbol with corresponding company.
”symbol” ”company”

”AAPL” ”APPLE INC”
”AVGO” ”BROADCOM INC”
”CDNS” ”CADENCE DESIGN SYS INC”
”COST” ”COSTCO WHOLESALE CORP”
”DPZ” ”DOMINO S PIZZA INC”
”EW” ”EDWARDS LIFESCIENCES CORP”
”EXR” ”EXTRA SPACE STORAGE INC”
”FTNT” ”FORTINET INC”
”KDP” ”KEURIG DR PEPPER INC”
”LLY” ”ELI LILLY + CO”
”MPWR” ”MONOLITHIC POWER SYSTEMS INC”
”MSCI” ”MSCI INC”
”MSFT” ”MICROSOFT CORP”
”NVDA” ”NVIDIA CORP”
”ODFL” ”OLD DOMINION FREIGHT LINE”
”PGR” ”PROGRESSIVE CORP”
”POOL” ”POOL CORP”
”RSG” ”REPUBLIC SERVICES INC”
”TTWO” ”TAKE TWO INTERACTIVE SOFTWRE”
”WST” ”WEST PHARMACEUTICAL SERVICES”

It is also worth noting that using other data frequencies such as daily
returns, or expanding sample period give will give significantly different
results. In table 5 we can see an example when using daily data instead
of weekly. In the table portfolios have been constructed using Lasso with
daily data and are compared to the S&P500, equal weighted and Britten-
Jones portfolio. With the daily data it can be seen that some portfolios
constructed using Lasso regression include negative weights, which none
of the one constructed using weekly data did. These portfolios are also
constructed with different assets than the ones constructed from weekly
data.

Table 5: Daily data portfolio metrics.
”Model” ”Sharpe.ratio” ”Alpha” ”Beta” ”ROI” ”Expected.return” ”Risk” ”Short.percentage”

”Britten-Jones” 0.07378 0.5371 0.54404 155.11085 0.00233 0.03159 -1818.59131
”SP500” 0.0588 0 1 41.77323 0.00076 0.01287 0
”Lasso” 0.3194 2.86403 0.57062 2922.41163 0.00684 0.0214 -128.76561
”Lasso” 0.30209 2.62664 0.60356 2245.16577 0.00634 0.02097 -104.55242
”Lasso” 0.2828 2.40266 0.64421 1733.06172 0.00585 0.02069 -82.08018
”Lasso” 0.26277 2.16251 0.68291 1309.57139 0.00534 0.02032 -60.12822
”Lasso” 0.23993 1.86678 0.71073 935.39311 0.00473 0.01971 -36.0015
”Lasso” 0.21951 1.57026 0.72553 673.92771 0.00413 0.01884 -16.56245
”Lasso” 0.19697 1.31298 0.75224 495.27125 0.0036 0.01829 0
”Lasso” 0.1931 1.43183 0.78321 551.45283 0.0038 0.01967 0
”Lasso” 0.1897 1.57082 0.82356 619.09346 0.00402 0.02121 0
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In table 6 another example is shown for an extended sample period, this
period only extend 5 years so it is from 2009 to 2024. But the results are
significantly different.

Table 6: Daily data portfolio metrics.
”Model” ”Sharpe.ratio” ”Alpha” ”Beta” ”ROI” ”Expected.return” ”Risk” ”Short.percentage”

”SP500” 0.14625 0 1 56.34725 0.00327 0.02238 0
”Britten” 0.21213 -1.07752 0.68905 972.45592 0.01909 0.08997 -2766.455
”Equal weight” 0.08569 -0.57956 0.96461 29.55971 0.00199 0.02317 0
”Lasso” 0.04638 0.59841 1.08046 32.42212 0.00134 0.02892 0
”Lasso” 0.04085 0.71771 1.09318 32.4078 0.0012 0.02944 0
”Lasso” 0.03913 0.74097 1.09583 32.50179 0.00116 0.02972 0
”Lasso” 0.0372 0.77436 1.09947 32.73091 0.00112 0.03007 0
”Lasso” 0.03488 0.83839 1.106 33.04665 0.00107 0.03056 0
”Lasso” 0.03397 1.4769 1.1624 35.7246 0.00119 0.03509 0
”Lasso” 0.03277 1.39031 1.15578 35.42787 0.0011 0.03352 0
”Lasso” 0.0326 0.99454 1.12085 33.50937 0.00102 0.03124 0
”Lasso” 0.02988 1.21189 1.14135 34.21989 0.00096 0.03228 0

The portfolios constructed with Lasso regression on the extended sam-
ple period underperforms when compared to the comparison portfolios. The
reason for these varying results extends beyond the confines of this thesis.

In conclusion, using regularization methods together with a constant re-
sponse vector shows promise in enhancing efficiency and performance. Fur-
ther testing is needed to confirm their broader applicability and reliability.
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