
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Tail Estimation: a Comparative Simulation
Study of Extreme Value Theory and
Importance Sampling

Betty Frankl



Matematiska institutionen

Kandidatuppsats 2024:8

Matematisk statistik

Maj 2024

www.math.su.se

Matematisk statistik

Matematiska institutionen

Stockholms universitet

106 91 Stockholm



Mathematical Statistics
Stockholm University
Bachelor Thesis 2024:8

http://www.math.su.se

Tail Estimation: a Comparative Simulation Study

of Extreme Value Theory and Importance Sampling

Betty Frankl∗

May 2024

Abstract

Extreme value theory was developed specifically for analysing extreme
events that failed to be analysed by conventional methods. It is difficult
to find alternative methods that could be used in practice. However, in
a simulation study where the underlying distribution is known, there
are alternative methods that could be used. Importance sampling is
a Monte Carlo variance reduction technique, that can be used to han-
dle rare events. In this simulation study we will compare these two
methods in order to highlight differences and gain deeper knowledge.

We focus on tail estimation and place particular emphasis on the ex-
treme right tails. In these cases there are typically very few, or no,
observations in the area of interest. The methodology we use from
extreme value theory is the peak over threshold model and the gen-
eralized Pareto distribution (GPD) method. For importance sampling
we use an extreme order biasing technique.

The comparison of the methods reveals key differences in their ap-
proaches and performance. Importance sampling proves both effec-
tiveness, compared to Monte Carlo, and reliability, due to its ability
to generate unbiased estimates. However, both importance sampling
and Monte Carlo show their limitations for small sample sizes, often
resulting in zero estimates. The GPD method exhibits variability in
performance across distributions and sample sizes. The deviation from
the true values are high in many cases. Importantly, though, the GPD
method has the capacity to produce non-zero estimates which is sig-
nificant for real-world applications where zero probability assumptions
may not be valid.
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1 Introduction

Analysing extreme events holds significant importance across various fields,
such as insurance and finance. In practice, these events are of great impor-
tance since they are hard to predict and can cause serious consequences. The
challenge of analysing these events, though, is the limited data available for
analysis, making conventional methods unsuitable. To address this issue, re-
searchers have developed extreme value theory and specific methods to anal-
yse these events. Within this theory there are different approaches, for ex-
ample the peak over threshold (POT) model and block maxima model.

There are multiple ways to analyse and questions to address when dealing
with extreme values. In this study, however, we will specifically concentrate
on tail estimation, placing emphasis on the extreme right cases, meaning
tails such that the tail probability is very small. Additionally, we examine
distributions with different tail behaviours, or in differentmaximum domains
of attraction (MDA), to investigate potential variations.

In practical applications, it is difficult to find alternatives to extreme value
theory when estimating these extreme right tails. On the other hand, in
a simulation study where we know the underlying distribution, there are
some alternative methods that could be used. One of these is importance
sampling, a Monte Carlo method that can be used to handle the challenges
posed by rare events. The idea is to sample from another distribution and
thereby reduce the variance of the regular Monte Carlo estimator. This
enables us to achieve the same results as Monte Carlo with less data.

In this thesis we will compare extreme value theory, or more specifically the
POT model and the generalised Pareto distribution (GPD) method, and
important sampling for tail estimation. We will include Monte Carlo as well.
It should be mentioned that the comparison of these methods is a bit tricky
since they are based on different assumptions. Importance sampling requires
knowledge about the underlying distribution since it is a simulation based
technique used to estimate statistical properties of a particular distribution.
In the GPD method we will not assume the underlying distribution. Despite
this disparity, comparing these methods is valuable from a theoretical point
of view, since this can offer crucial insights and deepen our understanding
of both the GPD method and importance sampling.

The primary references for this thesis is Embrechts et al. [3] for extreme
value theory, and Srinivasan [11] for importance sampling.
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2 Extreme Value Theory

In this section, we will first introduce two central results; the Fisher-Tippet
theorem and the Pickands–Balkema–de Haan theorem. If not explicitly
stated otherwise, the reference for the first two subsections is Chapter 3.1-4
in [3], while Chapter 6.5 from the same source serves as the reference for the
remaining parts of this section.

2.1 Fisher-Tippet Theorem

We begin by examining the sample maxima. Let X,X1, X2, ... denote a
sequence of independent and identically distributed non-degenerate random
variables with distribution function F . Non-degenerate means that there
is no value x0 for which P(X = x0) = 1. The sample maxima are given
by

Mn = max (X1, ..., Xn) , n ∈ N.

Since the random variables are independent and identically distributed we
can easily obtain the distribution function of Mn as follows

P(Mn ≤ x) = P(X1 ≤ x, ...,Xn ≤ x) = Fn(x). (1)

As we are interested in extremes, we want to focus on the right tail of the
distribution function (the left tail can be addressed analogously). The right
endpoint of F is defined by

xF = sup(x ∈ R : F (x) < 1).

If we now consider the behavior of Mn it can be shown that, for xF ≤ ∞,
the following applies:

P(Mn ≤ x) = Fn(x) →
®
0 if x < xF

1 if x ≥ xF
as n → ∞.

Thus Mn converges in probability to xF as n → ∞. We know that the
sequenceMn is non-decreasing, thusMn converges almost surely to xF under
the same conditions.

However, this fact does not provide a lot of information. As Coles writes,
knowledge about F is usually missing in practice and small discrepancies in
an estimate of F can lead to substantial discrepancies for Fn [2, p. 45-46].
Even if we knew the exact distribution F , we could not draw any signifi-
cant conclusions from this, since Mn converges to a degenerate distribution.
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Hence we cannot say anything about quantiles, confidence intervals or other
interesting statistical properties.

An alternative strategy is to accept that F is unknown and instead look
for limit distributions for a transformation of Mn. This approach closely
resembles the approach in the central limit theorem.

Theorem 2.1.1 (Central limit theorem)
Let Sn = X1 + X2 + ... + Xn be a sum of independent and identically dis-
tributed random variables with finite expected value µ and variance σ. Then
the following holds

Sn − nµ

σ
√
n

d→ N(0, 1), as n → ∞,

where
d→ refers to convergence in distribution [5, p. 162].

In a similar way we now want to examine the centred and normalised Mn.
Let us consider probabilities of the form

P
Å
Mn − dn

cn
≤ x

ã
= P (Mn ≤ cnx+ dn) ,

where dn ∈ R are the centering constants and cn > 0 are the normalising
constants.

Theorem 2.1.2 (Fisher-Tippet theorem)
Let {Xi}ni=1 be a sequence of independent and identically distributed random
variables, with distribution F . If there exist norming constants cn > 0,
dn ∈ R, and a non-degenerate distribution function H, such that

Mn − dn
cn

d→ H, as n → ∞.

Then it follows that H belongs to one of the following three distribution
functions

Fréchet : Φα(x) =

®
0, x ≤ 0

exp(−x−α), x > 0
α > 0.

Weibull : Ψα(x) =

®
exp(−(−x)α), x ≤ 0

1, x > 0
α > 0.

Gumbel : Λ(x) = exp(−e−x), x ∈ R.

See [3, p. 121] for a statement of this result, and [9, p. 9-11] for a proof.

The three types of distributions, Φα, Ψα, and Λ, presented in Theorem 2.1.2,
are referred to as extreme value distributions.
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For a distribution F , if it satisfies the conditions outlined in Theorem 2.1.2,
we say that F belongs to the maximum domain of attraction (MDA) of the
corresponding extreme value distribution. We write this, in for example the
Gumbel case, as F ∈ MDA(Λ).

It turns out that it is convenient to use a one-parameter representation of
the standard extreme value distributions.

Definition 2.1.1 (The generalised extreme value distribution (GEV))
Let Hξ be the distribution function defined by

Hξ(x) =

{
exp(−(1 + ξx)

− 1
ξ ) if ξ ̸= 0,

exp(−e−x) if ξ = 0,

where 1 + ξx > 0.

The parameter ξ is referred to as the shape parameter and it corresponds
to α by 

Fréchet(Φα) : ξ = α−1 > 0,

Gumbel(Λ) : ξ = 0,

Weibull(Ψα) : ξ = −α−1 < 0.

(2)

2.2 POT & Pickands–Balkema–de Haan Theorem

Before we can present our next central result, the Pickands–Balkema–de
Haan theorem, we will introduce some necessary theoretical framework.

In extreme value theory there are two main models used to model extremes;
the block maxima model and the POT model. In the block maxima model,
the data is divided into blocks and the maximum within each block is se-
lected for analysis. The POT model selects all values above a certain thresh-
old. This model is often regarded as more efficient in utilizing data [4] and
the associated theory is also very appealing when dealing with tail estima-
tion. As a consequence, we will focus on the POT model in this thesis.

Letting Nu =
∑n

i=1 1(Xi ≥ u), we denote the excesses over a threshold u
by Y1, Y2, ...YNu . Accordingly we have that Yi = Xi − u for all i such that
Xi > u. In Figure 1 we can see an illustration of the POT model, which is
based on excesses over the threshold u.
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The Peak Over Threshold Model (POT)

Figure 1: Independent and identically distributed variables X1, X2, ..., Xn

and excesses Y1, Y2, ..., YNu over the threshold u.

Definition 2.2.1 (Excess distribution function)
The excess distribution function Fu of X, or analogously F , given the thresh-
old u < xF is given by

Fu(x) = P(X − u ≤ x|X > u), x ≥ u.

Definition 2.2.2 (Generalised Pareto distribution (GPD))
The distribution function Gξ,β of the GPD, where ξ ∈ R and β > 0 is given
by

Gξ,β(x) =

{
1− (1 + ξx

β )
−1
ξ if ξ ̸= 0,

1− e
−x
β if ξ = 0,

x ∈ D(ξ, β),

where

D(ξ, β) =

{
[0,∞[ if ξ ≥ 0,

[0, −β
ξ ] if ξ < 0.

The parameters ξ and β are known as the shape and scale parameters, re-
spectively [8, p. 275].

Now that we have all the necessary tools at our disposal, we are ready to
introduce the next theorem.

Theorem 2.2.1 (Pickands–Balkema–de Haan theorem)
Let ξ ∈ R. We can find a positive function β such that

lim
u→xF

Ç
sup

0≤x<xF−u

∣∣Fu(x)−Gξ,β(u)(x)
∣∣å = 0
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if and only if F ∈ MDA(Hξ).

See [8, p. 277] for a statement of this result, and the proof can be found in
[7].

What Theorem 2.2.1 essentially tells us is that we can approximate Fu with
the GPD. However, it is important to note that this approximation requires
a sufficiently large threshold u, and the estimation of β depends on the
choice of u. Therefore, careful consideration is needed when selecting the
threshold.

2.3 Estimation Excess Over Threshold

First, let us denote F (x) = 1 − F (x), which is the right tail of F . We
want to estimate F̄ (x) = δ, where δ is a small positive number, for example
0.0001.

Theorem 2.2.1 tells us how we can approximate the exceedance over some
high threshold u. Now we will show how to use this to find the tails of
interest. From Definition 2.2.1 we get that, for y > 0

Fu(y) = P(X ≤ y + u|X > u)

=
P(X ≤ y + u,X > u)

P(X > u)

=
F (y + u)− F (u)

1− F (u)
. (3)

We can see this illustrated in Figure 2.

Figure 2: An example of a density function f(x) and its relation between
the threshold u, excess y and the corresponding distribution function F (x).

Our main focus will now be on F (y + u). From (3) we get that

Fu(y) =
F (u)− F (y + u)

F (u)
⇐⇒ F (y + u) = F (u)F u(y).

Now we have a nice expression for F (y + u) from which we will be able to
proceed. For the remainder of this section, we employ the same method as
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described in [3, p. 352-358]. Following this approach, we proceed by estimate
F (u) and F u(y) separately to achieve an approximation of F (y + u).

It comes natural to use the empirical distribution function to estimate F (u).
Hence, we get that ’F (u) =

1

n

n∑
i=1

1(Xi ≥ u) =
Nu

n
.

Theorem 2.2.1 tells us that Fu(y) ≈ Gξ,β(u)(y) which is equivalent to F u(y) ≈
Gξ,β(u)(y). We can approximate Gξ,β(u) by estimating the parameters ξ and

β and insert them into G. In section 2.5 we will describe this in more
detail.

Assuming that we have obtained the estimates ξ̂ and β̂, we get the approx-
imation ÷F u(y) = Gξ̂,β̂(y).

Recalling the relationship Gξ,β(x) = 1−Gξ,β(x) we finally get thatÿ�F (y + u) =

Nu
n

(
1 + ξ̂y

β̂

)−1

ξ̂ , ξ̂ ̸= 0,

Nu
n e

−y

β̂ , ξ̂ = 0.

2.4 Threshold Selection

The selection of u involves a trade-off between high variance and high bias
of the GPD parameter estimates ξ̂ and β̂. A low threshold value tends to
result in high bias, whereas a high threshold value leads to high variance.
While theoretically, achieving an optimal bias-variance trade-off is possible,
Embrechts et al. [3, p. 355-356] argue that, in practice, we need a different
approach. They recommend a graphical approach, involving the study of
plots of the empirical mean excess function and parameter estimates for
various threshold values. Coles [2] also recommend a similar method.

Definition 2.4.1 (Mean excess function)
The mean excess function e(u) of X, or analogously F , given the threshold
u < xF is given by

e(u) = E(X − u|X > u).

For a random variable X with a GPD and parameters ξ < 1 and β > 0 the
following holds for u < xF

e(u) =
ξu+ β

1− ξ
=

ξ

1− ξ
u+

β

1− ξ
, ξu+ β > 0.
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Thus the mean excess function is linear in this case.

ConsiderX,X1, ..., Xn with any distribution that belongs to some MDA with
ξ < 1. Note that X − u = Y for X > u. Given the sample Y1, Y2, ..., YNu

the empirical mean excess function is given by

en(u) =
1

Nu

Nu∑
i=1

Yi, u > 0.

With Theorem 2.2.1 in mind, the graphical approach to selecting u will
involve choosing a sufficiently large value for u such that en(x) exhibits
approximately linear behavior for x ≥ u. However, this is not an easy
task, and one should not expect to find a unique choice of u. Hence, this
method should be combined with other graphical techniques. We will see
these techniques demonstrated in the simulation study (Section 4).

2.5 GPD Parameter Estimation

There are multiple ways to estimate the parameters. Unfortunately, there
is no single method to obtain a reliable result. As Embrechts et al. [3]
write, it is necessary to consider multiple approaches. There are several
simple methods that can be applied. The most common one is probably
the maximum likelihood estimator (MLE), which is mostly considered re-
liable. It is important to note, though, that this method is only suitable
for ξ > −0.5. Two other common methods are probability weighted mo-
ments (PWM) and method of moments. However, these methods are only
suitable for ξ ≥ 0, which means that they are not appropriate to use for a
distribution in MDA(Ψ). For cases where ξ < 0, alternative methods like
generalized PWM exist, but they are more difficult to implement [1].

The choice of method for estimation is indeed important for the final result.
However, due to the scope of this thesis, which focuses on comparing two
different methods for high quantile estimation across distributions within
each MDA, we will limit ourselves to one estimation method. The most
neutral choice here appears to be the MLE, given its widespread use and
relatively reliable performance across all three types of MDAs.

The following result on the MLE is taken from [2, p. 80-81]. We obtain the
MLEs ξ̂ and β̂ of the GPD by maximizing the log-likelihood function with
respect to ξ and β, given the sample y = {y1, y2, . . . , yNu}. For ξ ̸= 0 the
log-likelihood function is given by

ℓ(ξ, β;y) = −Nu ln(β)−
Å
1

ξ
+ 1

ã Nu∑
i=1

ln

Å
1 +

ξ

β
yi

ã
11



assuming that 1 + ξ
β yi > 0 for all i ∈ {1, 2, ..., Nu}. If ξ = 0 we obtain the

following log-likelihood function

ℓ(β;y) = −Nu ln(β)−
1

β

Nu∑
i=1

yi.

Unfortunately it will not be possible to maximize these log-likelihood func-
tions analytically, but as we will see later in the simulation study (Section
4), we can do this numerically using R.

Another advantage of using the MLE is its asymptotic normality. This
enables us to construct confidence intervals, which we will use for the plots
in the simulation study (Section 4).

3 Importance Sampling

Importance sampling is a Monte Carlo based simulation method that hastens
the occurrences of rare events and thereby improves the Monte Carlo method
in these cases. Srinivasan [11] demonstrates how both Monte Carlo and
importance sampling can be used for tail estimation. The results in this
section are mainly taken from this reference. We start by investigating
how the Monte Carlo method can be used for high quantile estimation.
After that, we will try to improve the method by importance sampling.
Note that we use the same notation as previously and all random variables
X,X1, X2, ... remain independent and identically distributed.

3.1 Monte Carlo Tail Estimation

Our goal is to estimate F (t) = 1 − F (t) = P(X ≥ t) = δ where t is the
threshold value such that the event x > t is rare. Srinivasan [11, p. 1-2]
describes how the the Monte Carlo method can be used in these cases.

The Monte Carlo method is based on conducting multiple independent iden-
tically distributed Bernoulli trials. In the tail estimation case, the Bernoulli
variable corresponds to the indicator function 1(X ≥ t), which returns 1 if
the the observation is above t and 0 otherwise. Say that we use n trials,
this gives us a sequence {Xi}ni=1 where each one of the random variables
has the same success probability δ. Let Nt denote the number of n trials
that lie above t. Then Nt has a binomial distribution with the same success
probability δ. The corresponding density is given by

P(Nt = k) =

Ç
n

k

å
δk(1− δ)n−k, k ∈ {0, 1, ..., n}. (4)

The MLE δ̂MC is obtained by maximizing the probability function (4) with
respect to δ. We find the maximum by determining the value of δ for which
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the first derivative of the log-likelihood is zero, indicating a critical point.
Additionally, to ensure that this critical point corresponds to a maximum,
we verify that the second derivative is negative. This gives us the following
result:

δ̂MC =
Nt

n
=

1

n

n∑
i=1

1(Xi ≥ t).

This estimate is unbiased, meaning that its expected value is equal to the
true value of the parameter. This can be shown by standard calculations
for expected values. Using the variance formula for a binomial distribution
and standard calculations for variances we get that

Var(δ̂MC) = Var

Å
Nt

n

ã
=

1

n
(δ − δ2). (5)

When δ is close to zero we get that

Var(δ̂MC) ≈
δ

n
.

When δ is small there is a low probability we will have observations above
t. If our sample does not provide any observations in this specific area,
δ̂MC will end up being zero, which does not tell us much. If we happen to
obtain a non-zero estimate it might still not be very informative due to a
large variance of δ̂MC . In practice we will need a very large sample size n to
achieve low variance with the Monte Carlo method (see [11, p. 2] for more
details).

3.2 Importance Sampling Tail Estimation

Importance sampling serves as an alternative approach to the regular Monte
Carlo method. Importance sampling offers a potential solution to the issue
of high variance of the estimate δ̂MC . Srinivasan [11, p. 2-3] describes the
method in the tail estimation case.

The basic idea of importance sampling is to use a biasing density f∗(x) that
allows rare events to occur more frequently. This enables us to improve our
estimate δ̂MC by lowering its variance. Note that the distribution of X is
referred to as the target distribution. Using the previous notation, we know
that δ is equal to the expected value of the Bernoulli variable. Thus the

13



following holds

δ = E
(
1(X ≥ t)

∣∣X ∼ f(x)
)

=

∫
1(x ≥ t)f(x) dx

=

∫
1(x ≥ t)

f(x)

f∗(x)
f∗(x) dx

= E

Å
1(X ≥ t)

f(X)

f∗(X)

∣∣∣∣X ∼ f∗(x)

ã
. (6)

From now on, to simplify the notation, let us denote:

E∗(X) = E(X|X ∼ f∗(x)), E(X) = E(X|X ∼ f(x))

and corresponding notation for the variances. Also, let

W (x) =
f(x)

f∗(x)
.

The new expected value (6) motivates to use the Monte Carlo method and
estimate δ in the following way

δ̂IS =
1

n

n∑
i=1

1(Xi ≥ t)W (Xi),

where X1, . . . , Xn are independent and identically distributed random vari-
ables with density f∗. As in the regular Monte Carlo case, this estimate is
also unbiased (as shown in (6)). In order to derive the variance of δ̂IS we
first use the fact that all random variables Xi are independent and identi-
cally distributed and then the property Var(X) = E(X2) − E2(X). This
gives us that

Var∗(δ̂IS) = Var∗

(
1

n

n∑
i=1

1(Xi ≥ t)W (Xi)

)

=
1

n2

n∑
i=1

Var∗ (1(X ≥ t)W (X))

=
1

n
Var∗ (1(X ≥ t)W (X))

=
1

n

Ä
E∗
(
12(X ≥ t)W 2(X)

)
− E∗ (1(X ≥ t)W (X))2

ä
. (7)

The importance sampling problem now comes down to finding a biasing
density such that Var(δ̂IS) is lower than Var(δ̂MC).
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3.3 Optimal Biasing

Srinivasan [11, p. 4-7] shows how the the optimal biasing density is derived.
By Jensens Inequality we have that

E∗
(
12(X ≥ t)W 2(X)

)
≥ E∗ (1(X ≥ t)W (X))2 . (8)

Since our aim is to lower the variance in (7) we want to reduce the left-hand
side in (8) as much ass possible. If we find a biasing density f∗ such that the
equality in (8) holds, the variance will become zero. Thus, such a biasing
density must be optimal. Since

E∗ (1(X ≥ t)W (X))2 = E (1(X ≥ t))2 = δ2

the equality in (8) holds if and only if

1(X ≥ t)W (X) = δ, for X ∼ f∗(X).

From the definition of W we get that the optimal biasing density is given
by

fopt
∗ (x) =

1

δ
1(x ≥ t)f(x). (9)

This can be verified by simply replacing f∗(X) in W (X) by fopt
∗ (X) in

(8).

The optimal biasing density concentrates all its probability mass above t,
yet remains proportional to the target density f by the factor δ. However, if
we knew δ, there would be no point of estimating it in the first place. Hence
we will assume that we do not know this proportionality constant. Hence
we need to figure out another biasing density that still reduces the variance
in (7).

3.4 Biasing Methods

There are numerous methods for selecting biasing density. Srinivasan [11,
Chapter 4] summarizes a few of the most commonly used ones, demonstrates
how these can be improved and proposes an alternative which employs ex-
treme order statistics. The author shows how adjusting the methods ap-
propriately can increase the number of observations in the tail, and thereby
substantially reduce the variance of δ̂IS .

The author also introduces the concept of blind biasing, which involves bi-
asing without knowledge of the target distribution f . In theory, this would
be the ideal method for making a fair comparison to the extreme value ap-
proach. However, blind biasing remains a subject of ongoing study, and
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current research does not provide evidence of variance improvement. There-
fore, we will proceed with biasing methods that utilize knowledge of the
target distribution.

In order to asses the performance of a method, the simulation gain, denoted
Γ, is used. It is defined as the ratio between the number of observations,
in the Monte Carlo case, required to achieve a certain level of variance, and
the corresponding number in the Importance Sampling case. In the context
of tail estimation the simulation gain [11, p. 8] can be expressed as

Γ =
δ(1− δ)

E∗ (12(X ≥ t)W 2(X))− δ2
. (10)

Note that this ratio also corresponds to the ratio between the variance of
δ̂MC and the variance of δ̂IS .

The simulation gain is not a perfect measure of the biasing density perfor-
mance. Firstly, since we do not know δ we cannot calculate its actual value.
Instead we will have to estimate it by first estimating the variances. Sec-
ondly, we cannot solely rely on the simulation gain to completely assess the
performance of the various biasing methods, as their effectiveness may vary
across different distributions and thresholds.

When selecting a biasing method for this thesis, I have examined simulation
gain in both specific examples and in more general cases for different meth-
ods. Unfortunately, there is limited literature available on the comparison
of these methods and their performance. Therefore, I have drawn conclu-
sions from [11, Chapter 4] by taking part of the authors ideas, taken optimal
biasing into consideration and analysing the simulation gain to evaluate the
different methods.

The choice of biasing density is crucial for the performance of importance
sampling. The optimal approach would naturally involve assessing several
different methods. However, this strategy would be time-consuming, espe-
cially if we were to further refine the methods to maximize their perfor-
mance. Therefore, our aim is to select one method that remains sufficiently
effective.

Although some of the methods may seem very promising, they might be very
complicated to implement. Thus, to make a trade-off between complexity
and potential for variance improvement, we conclude that the proposed bi-
asing method based on extreme order statistics, is the most suitable choice
for this study. In Figure 3, we demonstrate and compare an extreme order
biasing method with optimal biasing.
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Upper Order Biasing Compared to Optimal Biasing

Figure 3: Different biasing methods for Pareto distribution with location
parameter 1 and shape parameter 2, standard normal distribution and beta
distribution with parameters 1 and 3. These are the three distributions
we will use in the simulation study, for more details, see Section 4.1. The
threshold t is chosen such that δ = F (t) = 10−4 for each distribution. Note
that the y-axis in the Pareto plot is scaled using a square root transformation
to improve readability. Note that upper order density biasing is one of the
two useful extreme order biasing methods (see Section 3.5).

3.5 Extreme Order Density Biasing

There are essentially two useful biasing methods considering extreme order
densities; the 1st upper order density, max(X1, ..., Xn) or the 1st lower or-
der density, min(X1, ..., Xn). Since variance reduction in theses cases does
not depend on the target distribution we can easily compare the different
methods. The comparison clearly shows that the upper order density is
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the superior choice (for details, see [11, p. 43]). Hence, we now proceed to
describe the upper order biasing method.

Since the performance of the upper order biasing method is independent of
the target distribution, given a threshold value t, the result will not depend
on the tail behavior, or which MDA it belongs to. Instead, the performance
depends on the number of observations used. As we shall see there is an
optimal number of observations nopt, for which the variance of δ̂IS is reduced
maximally compared to regular Monte Carlo. The variance improvement of
this method will also subside as n → ∞. Note that nopt increases as t → xF ,
but so does the maximum simulation gain. The results in this section can be
found in [11, p. 38-46]. In Figure 4 we see how the simulation gain depends
on n for a selection of δ values.

Simulation Gain for different δ

Figure 4: Simulation gain Γ of the upper order biasing method for different
tail probabilities δ.

The upper order density of n random variables is derived the same way as
Mn (1) in Section 2.1. Remember that allXi are independent and identically
distributed. We thus get that

F∗(x) = Fn(x) =⇒ f∗(x) = nFn−1(x)f(x),

where f∗ is the derivative of F∗.
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Maximizing the simulation gain (10) is equivalent to minimizing the quan-
tity

I = E∗
(
12(X ≥ t)W 2(X)

)
.

As we shall see, I = I(n) is a function depending on the number of random
variables n used, for a given δ. We can derive the expression for I(n) in the
following way

I(n) = E∗
(
12(X ≥ t)W 2(X)

)
=

∫ ∞

−∞
12(x ≥ t)W 2(x)f∗(x) dx

=

∫ ∞

t

f2(x)

f∗(x)
dx =

1

n

∫ ∞

t
f(x)F 1−n(x) dx

=


F = F (x)

dF = f(x)dx
t → F (t)
∞ → 1

 =
1

n

∫ 1

F (t)
F 1−n dF. (11)

From standard integral calculations we conclude that

I(n) =
1

n

ï
F 2−n

2− n

ò1
F (t)

=
1

n

Å
1

2− n
− F 2−n(t)

2− n

ã
=

1− (1− δ)2−n

n(2− n)
, (12)

where we use the equality F (t) = 1− δ in the last step. Since the expression
in (12) only depends on n and δ we draw the conclusion that the simulation
gain (10) for the upper order biasing method is independent of the target
distribution given a certain tail probability δ, or analogously, threshold t.
Through simple, but tedious calculations, one can also show that I(n) is
strictly convex when n > 0 and thereby has a unique minimum.

We can also rewrite (12) to obtain an expression that does not depend on
δ. By using the fact that F (t) = 1− δ we get that

I(n) =
F (t)2−n − 1

n(n− 2)
. (13)

In Table 1 we see a selection of nopt values and the corresponding simulation
gain for different tail probabilities. Note that t in these cases corresponds
to the 1− δ quantile for the target distribution distribution.

As we see in Table 1, both the optimal number of observation and the
maximal simulation gain increases as δ → 0.
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Table 1: The maximal simulation gain for different values of δ; the proba-
bility of exceeding the threshold t.

δ nopt Γ

0.01 159 183
10−4 15 936 18 377
10−7 15 936 242 18 377 668

4 Simulation Study

4.1 Selection of Distributions for Simulation Study

We limit ourselves to continuous distributions in order to avoid challenges in-
volving discrete distributions. In many cases, the normalised sample maxima
of discrete distributions does not converge to any extreme value distribution
(see [3, Theorem 3.1.3]). Although it may be feasible to apply importance
sampling in discrete cases, most of the theory considering tail estimation is
based on a continuous distribution assumption.

In the importance sampling setting, assuming continuity, we are not re-
stricted in the choice of distributions. Therefore, our distribution selection
revolves around the limitations present in extreme value theory, or more
specifically, the limitations regarding the shape parameter ξ. As mentioned
in section 2.4 and 2.5, the parameter ξ for each distribution has to be in the
interval ]−0.5, 1[ in order for our methods to be justified.

Since we want to examine possible differences for different tail behaviours
we choose one distribution from each MDA. In the Gumbel case we know
that ξ = 0 for all distributions. Therefore we can select any distribution in
this MDA (see [3, Table 3.4.4] for examples). The most natural choice here
is the standard normal distribution, denoted N(0, 1). In the Fréchet and
Weibull cases, we need to be more careful.

We will now derive the shape parameter ξ for the remaining distributions
and conclude that these two are suitable for the comparison. The theoretical
basis for this section is taken from [3, Section 3.3].

First, let us introduce an essential concept. We say that a function f is
regularly varying with index −η for some η ≥ 0 if the following holds:

lim
x→∞

f(xt)

f(x)
= t−η, t > 0. (14)

We denote this f ∈ R−η.

In the case of the Fréchet MDA the following statement holds

F ∈ MDA(Φα) ⇐⇒ F ∈ R−α. (15)
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Recall from (2) in section 2.1 that ξ = α−1 > 0 in the Fréchet case. Hence
we want to find a distribution such that F ∈ R−α where α > 1 since this
gives us ξ < 1. Consider the Pareto distribution with location parameter a
and shape parameter b. Denote the corresponding distribution function F .
Using (14) and (15) we get that, for x > a

F (x) =
(a
x

)b
∈ R−b =⇒ ξ =

1

b
.

Hence, if we choose a = 1 and b = 2 the Pareto distribution meets the re-
quirements for the simulation study. We denote this distribution as Par(location=
1, shape= 2).

For the Weibull MDA the following holds:

F ∈ MDA(Ψα) ⇐⇒ xF < ∞, F (xF − x−1) ∈ R−α.

We know that the beta distribution has bounded support with xF = 1. The
density function of a beta distribution with parameters a and b is given
by

f(x) = nxa−1(1− x)b−1, 0 < x < 1, a, b > 0

where K is a constant. We note that

lim
x→∞

f(1− (xt)−1)

f(1− x−1)
= lim

x→∞

K(1− (xt)−1)a−1(xt)1−b

K(1− x−1)a−1x1−b

= lim
x→∞

(1− (xt))a−1t1−b

(1− x−1)a−1

= t1−b,

which implies that f(1− x−1) ∈ R1−b.

By Karamatas theorem we get that

F (xF − x−1) =

∫ 1

1−x−1

f(y) dy

∼ x−1f(1− x−1),

thus

lim
x→∞

F (1− (xt)−1)

F (1− x−1)
= lim

x→∞

(xt)−1f(1− (xt)−1)

x−1f(1− x−1)
= t−1t1−b = t−b

which implies that F (1 − x−1) ∈ R−b. In the Weibull case we know from
(2) that ξ = −α−1. Hence, if we choose a beta distribution with parameters
a = 1 and b = 3 we have that ξ = −1

3 which is suitable for the simulation
study. We denote this distribution as Beta(1, 3).
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4.2 The Inverse Transformation Method

To simulate random variables we mainly use built in functions in R. There
is one case though, where we have to perform the simulations ourselves.
When we use importance sampling we have to simulate observations from
our biasing density.

The easiest and most straightforward method for continuous distributions is
the inverse transformation method, which makes use of Proposition 4.2.1.

Proposition 4.2.1
Let U ∼ U(0, 1). For any continuous distribution function F it holds that,
if we define

X = F−1(U),

then X has distribution F . [10, p. 683-685]

Hence, to simulate from the biasing density we can simply compute the
inverse of F∗. In our case F∗ is the upper order distribution function cor-
responding to each target distribution. By standard calculations we obtain
the result

X∗ = F−1(U
1
n ), (16)

where n denotes the sample size and X∗ denotes a random variable with the
upper order biasing density. Note that F in (16) refers to the inverse of the
target distribution function.

4.3 Selection of Sample Sizes and Tail Probabilities

In order to compare the GPD method and importance sampling, it is impor-
tant to choose the sample sizes and tail probabilities δ with caution.

As a start, we aim to select a small δ, such that the Monte Carlo method is
unlikely to provide reliable results. Then we want to choose various sample
sizes such that improvement can be observed for all methods. We also wish
to include at least one very small sample size value.

After some experimenting we decide to go with δ = 10−4 as a start. We
conclude that 10, 100, 1000, and 100 000 are suitable choices to observe
differences. However, we also want to include nopt, which in this case is
n = 15 936 (see Table 1).

To further investigate the extreme right tail cases, we also include δ = 10−7.
To compare the two tail probabilities, we maintain the same sample sizes as
for δ = 10−4. We also refrain from using the specific nopt value for δ = 10−7

since this value is very large, which could lead to computational challenges.
With the current sample sizes, we will still be able to observe improvement
in importance sampling compared to Monte Carlo.
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4.4 Plots for Threshold Selection

In the GPD approach, threshold selection u is crucial for the reliability of
the estimate ξ̂ (we will not address β since this is only a scale parameter).
As discussed in section 2.4, to find a suitable threshold we visually examine
two different plots for each distribution and sample size. The first plot shows
the empirical mean excess function and the second one shows ξ̂, both across
various threshold values. Showing all of these plots would be excessive, hence
we will illustrate the methods with a few examples from each distribution.
The remaining plots will be attached to the appendix.

What we are looking for in the empirical mean excess plot is a threshold
high enough, so that the points look approximately linear to the right of the
threshold. As we shall see this is not a trivial task. The plots are often hard
to asses and the there are multiple possible choices. Hence, to facilitate the
threshold selection we will use the second plot as well.

What we are looking for in the ξ̂ plot is a bias-variance trade-off. The
estimate is asymptotically unbiased for u → xF , but the larger the threshold,

the fewer observations to estimate “F (u) and the GPD parameters from.
Hence, we will try to find a threshold as high as possible without the ξ̂ plot
showing too much instability.

For the ξ̂ plot we also construct confidence intervals to facilitate the assess-
ment. To do this we use the fact that the MLE of ξ is asymptotically normal
[1]. The following method on how to construct confidence intervals is taken
from [6, p. 97-101].

Assuming the MLE ξ̂ is approximately normal we can construct a 95 %
Wald confidence interval in the following way

I =
Ä
ξ̂ ± z0.975se(ξ̂)

ä
where se denotes the standard error of ξ̂, whereas z0.975 is the 0.975-quantile
of a standard normal distribution.

It shall be mentioned that the approximate normality probably does not
hold for our smallest sample size n = 10. Despite this fact, the confidence
intervals are included in the plots for technical convenience. However, the
reader should interpret these intervals cautiously and not place too much
emphasis on them.

We start by examining the beta distribution which is in the Weibull MDA
(Ψ), in which the shape parameter ξ < 0. In Figure 5 we can see a few
illustrating examples of what one can encounter in this case since ξ̂ often

becomes negative aswell. If ξ̂ < 0 we have the restriction 0 < x − u < −β̂

ξ̂
,

which limits the options for u. Since ξ̂, β̂ and u are connected it is hard to
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Threshold Selection Beta Distribution δ = 10−4
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Figure 5: Threshold selection for Beta(1, 3) and δ = 10−4. The chosen
thresholds u, indicated by the dotted lines, are: 0.33, 0.8068136 and 0.75
aligned with increasing sample sizes n. The plots to the left illustrate the
shape parameter estimate ξ̂ across various threshold values u. The plots
to the right show the empirical mean excess function for different threshold
values.

find a simple rule to get this condition met. In general, though, if it is not
met, one should try to find a larger threshold.

For n = 1000 we can see one of these cases illustrated. In this case we
have to choose a much higher u than we would have preferred, from visually
examining the plots. Thus we have to choose a threshold resulting in a
seemingly high variance for ξ̂. Note that this restriction, in general, also
requires a larger u for x → xF . Consequently we had to choose partly
different thresholds for δ = 10−7 (see appendix).

For n = 100 we can see that the the empirical mean excess function seems
to turn upwards for u ≈ 4.8. According to Embrechts [3, p. 320] this could
be a sign of clustering in the data. Hence, one should not place to much
importance in this phenomenon as it likely does not accurately represent
the overall shape of the theoretical mean excess function. For n = 15936
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we can see an example where the threshold choice seems relatively clear and
straightforward.

Threshold Selection Normal Distribution δ = 10−4
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Figure 6: Threshold selection for N(0, 1) and δ = 10−4. The chosen thresh-
olds u, indicated by the dotted lines, are: 1.095477 and 1.3 aligned with
increasing sample sizes n. The plots to the left illustrate the shape parame-
ter estimate ξ̂ across various threshold values u. The plots to the right show
the empirical mean excess function for different threshold values.

In the normal distribution case, which is in the Gumbel MDA (Λ), the
shape parameter ξ = 0. But since we are using ξ̂ which in almost all cases
are non-zero we can also face the same challenges as if ξ̂ < 0.

In Figure 6 we can see this illustrated for n = 100, where a more natural
choice of threshold would be slightly lower, by visually examining the plots.
Note that, in this case we also needed to adjust some of the thresholds for
δ = 10−7 (see appendix).

For n = 1000 we see an example where the choice is more intuitive. The
empirical mean excess function seems approximately linear and the variance
of ξ̂ does not seem to be to high.
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Threshold Selection Pareto Distribution δ = 10−4 & δ = 10−7
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Figure 7: Threshold selection for Par(location = 1, shape = 2). The chosen
thresholds u, indicated by the dotted lines, consistent across both values
of δ, are: 1.37 and 6 aligned with increasing sample sizes n. The plots to
the left illustrate the shape parameter estimate ξ̂ across various threshold
values u. The plots to the right show the empirical mean excess function for
different threshold values.

In the Pareto distribution case, which is in the Fréchet MDA (Φ), the shape
parameter ξ > 0. Consequently the estimate ξ̂ will typically also be positive.
This is very helpful when selecting thresholds since our only restriction is
that x− u > 0. Consequently, we will have more possible options choosing
u.

In Figure 7 we can see this illustrated for n = 1000 where the choice of u
seems quite intuitive. The empirical mean excess function seems approxi-

mately linear and we still have a reasonable amount of data to estimate “F (u)
and the GPD parameters. For n = 10 though, we are facing the recurring
problem of selecting a threshold when dealing with very few observations.
In this case one have to review all possible threshold options, which are very
limited, and try to find one that seems reasonable.

5 Result

In Table 2 and 3 the values of the tail estimates are presented. To make the
results more intuitive, we also present the results in Figure 8 and 9. Note
the scaled y-axis which leads to small deviations being perceived as larger
and conversely for large deviations. Consequently, it is important for the
reader to be aware of this adjustment.
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Table 2: Tail estimates for δ = 10−4

n
Beta Normal Pareto

δMC IS GPD MC IS GPD MC IS GPD

10 0 0 6.4 · 10−3 0 0 2.3 · 10−3 0 0 4.8 · 10−4 10−4

100 0 1.0 · 10−4 3.5 · 10−7 0 1.0 · 10−4 1.7 · 10−11 0 0 7.3 · 10−6 10−4

1000 0 1.1 · 10−4 9.6 · 10−9 0 1.0 · 10−4 8.4 · 10−5 0 1.1 · 10−4 1.5 · 10−4 10−4

15936 1.3 · 10−4 1.0 · 10−4 7.3 · 10−5 1.3 · 10−4 9.9 · 10−5 1.2 · 10−4 6.3 · 10−5 9.9 · 10−5 8.6 · 10−5 10−4

100000 1.2 · 10−4 9.8 · 10−5 1.0 · 10−4 6.0 · 10−5 1.0 · 10−4 1.1 · 10−4 1.3 · 10−4 9.2 · 10−5 1.1 · 10−4 10−4

In Table 2 we observe that Monte Carlo returns zero for small n values.
Importance sampling produce accurate results for most n values. Note that
for n = 100 000, in both the beta and Pareto case, importance sampling
seems to lower its accuracy slightly. In Figure 8 we notice that the GPD
method deviates a lot from the true value δ = 10−4, especially for small
sample sizes in the beta and normal cases.

Tail Estimates for δ = 10−4

Figure 8: Tail estimates across the three methods compared to the true tail
probability δ = 10−4. Please note that the y-axis is scaled using a square
root transformation to improve readability.
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Table 3: Tail estimates for δ = 10−7

n
Beta Normal Pareto

δMC IS GPD MC IS GPD MC IS GPD

10 0 0 5.2 · 10−3 0 0 5.9 · 10−4 0 0 2.5 · 10−6 10−7

100 0 0 7.4 · 10−5 0 0 8.9 · 10−5 0 0 7.9 · 10−11 10−7

1000 0 1.0 · 10−6 2.2 · 10−4 0 0 2.9 · 10−8 0 0 7.7 · 10−7 10−7

15936 0 6.7 · 10−8 8.0 · 10−8 0 1.2 · 10−7 1.5 · 10−9 0 1.1 · 10−7 4.9 · 10−8 10−7

100000 0 1.0 · 10−7 2.2 · 10−7 0 1.0 · 10−7 3.7 · 10−11 0 1.0 · 10−7 5.7 · 10−8 10−7

In Table 3 we observe the changes for each method given an even smaller
value of δ. Monte Carlo returns zero for all n values. Importance sampling
also shows similar tendencies. In Figure 9 we notice that the GPD method
returns high errors, especially for small sample sizes in the beta and normal
cases. Note though, that the estimates are non-zero and in the Pareto case
it does not deviate as much from δ = 10−7.

Tail Estimates for δ = 10−7

Figure 9: Tail estimates across the three methods compared to the true tail
probability δ = 10−7. Please note that the y-axis is scaled using a square
root transformation to improve readability.
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6 Discussion

The simulation study shows that importance sampling with upper order
biasing is a very convenient method that demonstrates reliable results since
the estimator is unbiased. As expected it clearly requires fewer observations
compared to Monte Carlo given the same accuracy. A problem though, is
that for small sample sizes, both importance sampling and Monte Carlo
returns zero. This is a consequence of having no observations in the area
of interest. We also note that, in some cases, importance sampling seems
to slightly lower its performance for very large sample sizes (see Table 2 in
the Pareto and beta case). This could be due to numerical problems, since
the biasing density involves division by a probability to the power of many
thousands. However, note that the upper order biasing method is expected
to result in equal performance compared to Monte Carlo as n becomes very
large. As a consequence, this might not be a huge problem since Monte
Carlo improves as n increases.

The GPD method manages to perform better than Monte Carlo in many
cases and sometimes even importance sampling. However, the GPD method
also seems to have some problems, especially concerning the variety of per-
formance. The deviation from the true value δ is very high for small sample
sizes, especially in the Weibull (beta distribution) and Gumbel (normal dis-
tribution) cases. This could be a consequence of the challenges posed in the
threshold selection (see Section 4.4). In the Pareto case though, it actually
seems to perform quite well, even compared to importance sampling. This
becomes even more clear when lowering δ to 10−7 for small sample sizes.
Here the GPD method really shows its strength.

Extreme value theory was developed to solve real world problems, were one
does not know the underlying distribution. If the sample size is small and we
consider some extreme right tail, it would be hard to achieve any information
from a method that requires observations in the actual tail. With this in
mind, despite large errors in some cases, the GPD method has an advantage
since we do not have to rely on data in the tail region of interest. This way
extreme value theory gives us the possibility to estimate very rare events of
great importance, based on very limited data.

It is valuable that the GPD method can return non-zero estimates. The
alternative would might be to guess or assume that the probability is zero,
which we often know in advance, is not the case. However, there are of
course downsides, and it only works under the assumption of independent
and identical distributed random variables (which in many important appli-
cations do not apply).

A disadvantage of the GPD method used in this study is that we have to
manually examine all the plots. This is time consuming and also leaves a
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lot to decide for the person analysing the plots. This can also affect the
reliability of the results since the true ξ values were known beforehand,
leading to potential bias. There might be automated procedures though,
which would be interesting to examine as well.

7 Conclusion

Despite the different prior knowledge required for the GPD method and
importance sampling we are able to draw some important conclusions from
this simulation study.

In the importance sampling case, upper order biasing is a very convenient
and effective method. It is easy to use and the performance does not depend
on the target distribution. It performs very well compared to Monte Carlo.
Both methods return zero estimates though, if the sample size is too small.
There could also potentially be numerical challenges for the upper order
biasing method. However, this needs further investigation in order to draw
any definite conclusions.

The performance of the GPD method varies widely and it shows high errors
in many cases. We observe some differences between the MDAs by studying
the different distributions. The challenges arising from ξ ≤ 0 becomes clear
when selecting thresholds. Since ξ̂ is negative in most of these cases, the
options for threshold selection is clearly limited, both in the Weibull (beta
distribution) and the Gumbel (normal distribution) domains of attraction.
This can potentially be an explanation to why the GPD method in these
cases shows large errors. In the in Fréchet (Pareto distribution) case this
method seems to perform quite well, even for very small sample sizes.

Another aspect that should be mentioned is that the GPD method almost
never returns zero estimates. As we argue in the discussion (Section 6), this
is an advantage considering real world problems where we know that the
probability is not zero.

Since the GPD method we use in this thesis involves manually examination
of plots, the results might be slightly biased due to prior knowledge about
the shape parameter ξ.
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Appendix

Threshold Selection Beta Distribution δ = 10−4
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Figure 10: Threshold selection for Beta(1, 3) and δ = 10−4. The chosen
thresholds u, indicated by the dotted lines, are: 0.130653266 and 0.8, aligned
with increasing sample sizes n. The plots to the left illustrate the shape
parameter estimate ξ̂ across various threshold values u. The plots to the
right show the empirical mean excess function for different threshold values.
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Threshold Selection Normal Distribution δ = 10−4
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Figure 11: Threshold selection for Beta(1, 3) and δ = 10−4. The chosen
thresholds u, indicated by the dotted lines, are: 0, 1.6 and 2.5, aligned
with increasing sample sizes n. The plots to the left illustrate the shape
parameter estimate ξ̂ across various threshold values u. The plots to the
right show the empirical mean excess function for different threshold values.
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Threshold Selection Pareto Distribution δ = 10−4 & δ = 10−7
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Figure 12: Threshold selection for Par(location = 1, shape = 3). The chosen
thresholds u, indicated by the dotted lines, consistent across both δ are:
1.7, 20 and 37, aligned with increasing sample sizes n. The plots to the left
illustrate the shape parameter estimate ξ̂ across various threshold values u.
The plots to the right show the empirical mean excess function for different
threshold values.
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Threshold Selection Beta Distribution δ = 10−7
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Figure 13: Threshold selection for Beta(1, 3) and δ = 10−7. The chosen
thresholds u, indicated by the dotted lines, are: 0.4 and 0.83988, aligned
with increasing sample sizes n. Note that the selected thresholds for the
remaining values of n is the same as for δ = 10−4. The plots to the left
illustrate the shape parameter estimate ξ̂ across various threshold values u.
The plots to the right show the empirical mean excess function for different
threshold values.
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Threshold Selection Normal Distribution δ = 10−7
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Figure 14: Threshold selection for N(0, 1) and δ = 10−7. The chosen thresh-
olds u, indicated by the dotted lines, are: 1.2 and 1.65, aligned with in-
creasing sample sizes n. Note that the selected thresholds for the remaining
values of n is the same as for δ = 10−4. The plots to the left illustrate the
shape parameter estimate ξ̂ across various threshold values u. The plots
to the right show the empirical mean excess function for different threshold
values.
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