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Abstract

Fourier series and transforms have proved useful in many applica-
tions to statistics like Fourier regression and frequency domain analysis
among others. One inherit limitation of them is their loss of localiza-
tion. Wavelet transforms do not have this limitation and can give us
information in both the time and frequency domain. We present the
theory behind Fourier series- and transforms as well as for wavelets
and wavelet transforms, as described in among others [11, 10]. This
theory is used to cover two approaches to nonparametric regression,
Fourier smoothing as proposed in [2], and wavelet thresholding us-
ing one method of global thresholding and two methods for level-
dependent thresholding. We conclude by applying the theory in a
simulation study of a selection of test functions. We found that both
methods show promising results, but also that Fourier smoothing was
overall outperformed by the wavelet thresholding method.
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Abstract

Fourier series and transforms have proved useful in many applications to stat-
istics like Fourier regression and frequency domain analysis among others. One
inherit limitation of them is their loss of localization. Wavelet transforms do not
have this limitation and can give us information in both the time and frequency
domain. We present the theory behind Fourier series- and transforms as well as
for wavelets and wavelet transforms, as described in among others [11, 10]. This
theory is used to cover two approaches to nonparametric regression, Fourier
smoothing as proposed in [2], and wavelet thresholding using one method of
global thresholding and two methods for level-dependent thresholding. We
conclude by applying the theory in a simulation study of a selection of test
functions. We found that both methods show promising results, but also that
Fourier smoothing was overall outperformed by the wavelet thresholding method.

Sammanfattning

Fourier serier och transformer har visat sig användbara i m̊anga tillämpningar
inom statistiken, bland annat i form av Fourier regression och analys i frekvens-
domänen. En av metodernas begränsningar är deras förlust av lokalisering.
Wavelet transformer har inte denna begränsning och kan ge oss information i
b̊ade tids-och frekvensdomänerna. Vi presenterar teorin bakom Fourier serier-
och transformer samt wavelets och wavelet transformer, som bland andra beskrivs
i [11, 10]. Denna teori används för att täcka tv̊a sorters icke-parametrisk
regression, Fourier smoothing som tagits fram i [2], och wavelet thresholding där
en metod av global thresholding och tv̊a metoder för niv̊a-beroende thresholding
använts. Vi avslutar med att tillämpa teorin i en simuleringsstudie för ett urval
av testfunktioner. Vi fann att b̊ada metoderna visade lovande resultat, men att
Fourier smoothing generellt överträffades av wavelet thresholding.
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1 Introduction

Fourier methods have been used in many fields for a long time and are a very
useful tool when analyzing data containing periodicity as well as for function
approximation. A newer method is that of wavelet transforms and wavelet
analysis, which is rigorously derived in [3]. Both Fourier and wavelet methods
are powerful statistical tools, which is why we will try to introduce them from
the ground up to an audience who might be unfamiliar with them. As well as
introduce applications of the theory to nonparametric regression using Fourier
smoothing and wavelet thresholding. We will conclude by a simulation study
were we apply the methods to a selection of test functions in order to compare
them and investigate their practical use and limitations.

2 Fourier and Wavelet Transform

In this section, we introduce the theory needed in order to apply these methods
to nonparametric regression. Starting with Fourier series and working up to the
wavelet transform.

2.1 Preliminaries

Here we present some necessary definitions that will be used in the theory for
Fourier series- and transforms as well as for wavelets and wavelet transforms,
all of them can be found in [6]

Definition 2.1 (Linear Vector Space). A linear vector space over the field F ,
consists of a space X on which the two mappings (x, y) → x + y,(λ, x) → λx
called vector addition and scalar multiplication are defined. These mappings
are defined on X ×X → X and F ×X → X respectively, and such that they
satisfy the conditions

i) The group (X,+) is commutative,

ii) The associative law λ(µx) = (λµ)x holds,

iii) The distributive law (λ+ µ)x = λx+ µx, λ(x+ y) = λ, x+ λy hold

iv) 1x = x.

We shall denote by X(F ) the linear vector space X over the field F . If a vector
space X is said to be real or complex it should be understood that the vector
space is X(R) or X(C) respectively.

Definition 2.2 (Inner Product). An inner product on a linear vector space X
over the field F . Is a mapping ⟨·, ·⟩ : X ×X → F , satisfying the conditions

i) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 iff. x = 0 (Positive-definite)
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ii) ⟨λx+ µy, z⟩ = λ⟨x, z⟩ + µ⟨y, z⟩ ∀x, y, z ∈ X and ∀λ, µ ∈ F (Linear in the
first argument)

iii) ⟨x, y⟩ = ⟨y, x⟩ (Conjugate Symmetry)

Definition 2.3 (Inner Product Space). An inner product space is a linear vector
space X over the field F , equipped with an inner product ⟨·, ·⟩ : X ×X → F

Definition 2.4 (Hilbert Space). A nonempty set H is called a Hilbert space
if H is a complete inner product space over the complex numbers. That is for
every {xn} ⊂ H such that limn,m→∞⟨xn − xm, xn − xm⟩ → 0 there exists an
element x ∈ H such that limn→∞⟨xn − x, xn − x⟩ = 0.

We define the norm ||·|| associated with the inner product ⟨·, ·⟩ as ||x|| =
⟨x, x⟩1/2.

Definition 2.5 (Orthonormal Set). A set M in a Hilbert space H is said to
be orthonormal if the conditions

i) ||x|| = 1,

ii) ⟨x, y⟩ = 0 if x ̸= y,

hold for all x, y in M .

Definition 2.6 (Orthonormal Basis). A set M in a Hilbert space H is said to
be an orthonormal basis of H if M is an orthonormal set and if for any x ∈ H

x =
∑
y∈Mx

⟨x, y⟩y, where Mx := {y ∈M |⟨x, y⟩ ≠ 0}.

2.2 Fourier series

Denote by E the linear space of complex-valued piecewise continuous functions
defined on the interval [−π, π]. To turn E into a inner product space we need
to equip it with an inner product ⟨·, ·⟩ : E → C. For each f, g ∈ E define ⟨·, ·⟩
by

⟨f, g⟩ =
1

2π

∫ π

−π
f(x)g(x) dx.

Where g(x) denotes the complex conjugate of g(x). Since f · g is piecewise
continuous, we can write the integral as a sum of integrals between the discontinuities
of f · g on which the function is continuous which guarantees the existence of
the integral.

Every function f in a Hilbert space H can be decomposed into a projection
of an orthonormal basis β of H. This follows from the Definition 2.6 of an
orthonormal basis. Let f be a periodic function on L2[a, b],−∞ < a < b < ∞
with the inner product ⟨f, g⟩ = 1

b−a
∫ b
a
fg dx. One orthonormal basis for L2[a, b]
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is β = {en = e
2inπx
b−a | n ∈ Z}, where i =

√
−1 is the imaginary unit. Which

means we can express f as a projection onto β as

f =

∞∑
n=−∞

⟨f, en⟩en = ⟨f, e0⟩e0 +

∞∑
n=1

(⟨f, en⟩en + ⟨f, e−n⟩e−n) . (1)

The coefficients ⟨f, en⟩ are called the Fourier Coefficients of f . We will begin by

finding a nicer expression for the Fourier Coefficients. As e0 = e
2i0πx
b−a = 1 the

zeroth coefficient becomes

⟨f, e0⟩ =
1

b− a

∫ b

a

f(x) dx. (2)

The nth coefficient can be expressed as

⟨f, en⟩ =
1

b− a

∫ b

a

f(x)e
2inπx
b−a dx =

1

b− a

∫ b

a

f(x)

(
cos

(
2nπx

b− a

)
+ i sin

(
2nπx

b− a

))
dx

=
1

b− a

∫ b

a

f(x)

(
cos

(
2nπx

b− a

)
− i sin

(
2nπx

b− a

))
dx

=
1

b− a

∫ b

a

f(x) cos

(
2nπx

b− a

)
dx− i

1

b− a

∫ b

a

f(x) sin

(
2nπx

b− a

)
dx, (3)

and the −nth coefficient can be written as

⟨f, e−n⟩ =
1

b− a

∫ b

a

fe−
2inπx
b−a dx

=
1

b− a

∫ b

a

f

(
cos

(
2nπx

b− a

)
+ i sin

(
2nπx

b− a

))
dx

=
1

b− a

∫ b

a

f cos

(
2nπx

b− a

)
dx+ i

1

b− a

∫ b

a

f sin

(
2nπx

b− a

)
dx. (4)
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Substituting the expressions (2),(3) and (4) into (1) gives us

f =
1

b− a

∫ b

a

f(x) dx+

∞∑
n=1

[
e

2inπx
b−a

b− a

∫ b

a

f(x) cos

(
2nπx

b− a

)
dx− i

e
2inπx
b−a

b− a

∫ b

a

f(x) sin

(
2nπx

b− a

)
dx+ . . .

e−
2inπx
b−a

b− a

∫ b

a

f(x) cos

(
2nπx

b− a

)
dx+ i

e−
2inπx
b−a

b− a

∫ b

a

f(x) sin

(
2nπx

b− a

)
dx

]

=
1

b− a

∫ b

a

f(x) dx+

∞∑
n=1

[
e

2inπx
b−a + e−

2inπx
b−a

b− a

∫ b

a

f(x) cos

(
2nπx

b− a

)
dx+ . . .

i
−e

2inπx
b−a + e−

2inπx
b−a

b− a

∫ b

a

f(x) sin

(
2nπx

b− a

)
dx

]

=
1

b− a

∫ b

a

f(x) dx+

∞∑
n=1

2 cos
(

2nπx
b−a

)
b− a

∫ b

a

f(x) cos

(
2nπx

b− a

)
dx+

2 sin
(

2nπx
b−a

)
b− a

∫ b

a

f(x) sin

(
2nπx

b− a

)
dx

 .
(5)

For simplicity of notation, we introduce the coefficients a0, an and bn, defined
as

a0 =
2

b− a

∫ b

a

f(x) dx (6)

an =
2

b− a

∫ b

a

f(x) cos

(
2nπx

b− a

)
dx

bn =
2

b− a

∫ b

a

f(x) sin

(
2nπx

b− a

)
dx. (7)

Using this notation (5) turns into

f =
a0
2

+

∞∑
n=1

[
an cos

(
2nπx

b− a

)
+ bn sin

(
2nπx

b− a

)]
. (8)

From (8) it becomes much easier to see that the Fourier Series of f is a sum
of sinusoids. As the function f was chosen as an arbitrary periodic function
in L2[a, b] −∞ < a < b < ∞, (8) shows how to decompose any such periodic
function into a sum of sinusoids.

This series expansion is very useful and appears frequently in engineering
subjects such as electrical engineering and signal processing, but we will focus
on using it as a tool for approximating functions. The series (8) can be shown to
converge pointwise to f on [a, b], but this requires an infinite number of terms.
Luckily the coefficients an, bn are decreasing which means that we can sum
a finite number of terms and still end up with an accurate approximation. If
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f, f ′ ∈ E then the Fourier series of f converges uniformly to f on any subinterval
that does not contain any discontinuity point of f .

Although one problem arises as most if not all of the time series that we
observe are in the form of discrete observations {xt}, so equation (8) can not be
applied directly. This is not that hard of a task if we make the assumption that
the sequence {xt} has length N and is periodic, that is xt+N = et,∀t. Then we
can define the Fourier coefficients of {xt} using either complex exponentials or
using sines and cosines as in (6)-(7). As most time series are real-valued we will
be defining them using sines and cosines, which do not include the imaginary
identity i. So assume we have a sequence {xt | t = 0, . . . , N − 1} and assume
further that it’s periodic so that xt+N = xt,∀N . Then the discrete Fourier
coefficients of the sequence are given by

an = 2

N−1∑
k=0

xk cos

(
2πkn

N

)

bn = 2

N−1∑
k=1

xk sin

(
2πkn

N

)
.

The frequencies {−π < ωk = 2πk
N ≤ π, k = 0, . . . , N − 1} are called the

Fourier frequencies of {xt | t = 0, . . . , N − 1}. The original sequence can then
be reconstructed using the discrete Fourier series as

xn =
1

N

N−1∑
k=0

ak cos

(
2πkn

N

)
+ bk sin

(
2πkn

N

)
.

2.3 Fourier transform

As many signals are non-periodic the Fourier series expansion is not always the
obvious choice, we can then instead use the Fourier transform, as defined in [11].

Definition 2.7 (Fourier transform). The Fourier transform F [·] of a function
f : R → C is defined as,

F [f ](ω) =
1

2π

∫ ∞

−∞
f(x)e−iωxdx, ω ∈ R (9)

when the integral exists. When it exists we will denote the Fourier transform
of the function f(x) by f̂(ω).

The Fourier transform has many applications in signal processing or for
solving differential equations. We can view the transform as a transformation
from the time domain into the frequency domain. More specifically, if f(t) is

a function of time in seconds then the Fourier transform f̂(ω) of f(t) can be
seen as a function of frequency in Hz(1/s). Which maps the frequency ω to its

(complex) amplitude. In other words f̂(ω) gives us the amplitude with which
the complex exponential e−iωt is ”present” in f(t). The Fourier transform has
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many useful properties which make it so powerful. To this end let G(R) be the
space of all functions f that are piecewise continous on all of R and that are
absolutely integrable. The the functions f ∈ G(R) have some nice properties,
most of which will be stated without proof. The next result is Theorem 3.1 of
[11].

Theorem 2.3.1 (Properties of functions in G(R)). For each f ∈ G(R)

1. f̂(ω) is defined for all ω ∈ R,

2. f̂(ω) ∈ C0(R),

3. limω→±∞ f̂(ω) = 0.

Knowing that for all f ∈ G(R) the Fourier transform exists and is continuous,
we can begin to state some properties of the transform

Property 2.3.2 (Linearity of Fourier transform). For each f, g ∈ G(R) and
∀a, b ∈ C, af + bg ∈ G(R) and F [af + bg](ω) = aF [f ](ω) + bF [g](ω).

The linearity of the transform is a direct consequence of the linearity of the
integral.

Property 2.3.3 (Shift formula for Fourier transform). Let f ∈ G(R) then
∀a, b ∈ R, a ̸= 0, f(ax + b) ∈ G(R) and the Fourier transform of the shifted

function f(ax+ b) is F [f(ax+ b)](ω) = 1
|a|e

iωb
a F [f ](ωa ).

There are also many useful theorems regarding the transform but only a
handful will be mentioned here, once again without proof which can be found
in [11].

Before stating the first theorem we will define the concept of convolution,
which has many applications. Two of which are calculating the Probability
Density Function (PDF) of sums of random variables and defining the notion of
a filter. Let f and g be two functions defined on all of R. Then the convolution
f ∗ g is defined as (f ∗ g)(x) =

∫∞
−∞ f(x − t)g(t) dt =

∫∞
−∞ f(t)g(x − t) dt. It is

shown in [11] that if f, g ∈ G(R) then f ∗ g exists and is absolutely integrable,
which leads us to Theorem 3.5 of [11]:

Theorem 2.3.4 (Convolution Theorem). Let f, g ∈ G(R) and f̂ , ĝ denote their
respective Fourier transforms. Then

F [(f ∗ g)](ω) = 2πf̂(ω) · ĝ(ω).

In some situations we want to return from the frequency domain to the time
domain, in other words we are interested in going from the Fourier transform f̂
to the underlying function f . Formally the inverse Fourier transform is defined
as f(x) = F−1[F [f ]] =

∫∞
−∞ f̂(ω)eiωx dω. The inverse transform is very similar

to the Fourier transform with the difference that there is no constant in front
of the integral and that we have eiωx inside the integral.

But when does this inverse transform exist and what does it evaluate to at
discontinuity points? This is covered in Theorem 3.3 of [11]:
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Theorem 2.3.5 (Inverse Fourier transform). If f ∈ G(R), then for every point
x ∈ R where the one sided derivatives of f exist

f(x+) − f(x−)

2
= lim
M→∞

∫ M

−M
f̂(ω)eiωx dω.

As in the case of Fourier series a problem arises when using the Fourier
transform on real data, as most if not all of the time series we observe are not
in the form of a function f , but instead as a sequence {xn} of observations at
discrete times. So how can we modify the definition (9) to be applicable to series
instead of functions? We will be defining the Discrete Fourier transform (DFT)
and the Discrete Time Fourier transform (DTFT) similarly to how they are
defined in [10].

Definition 2.8 (Discrete Time Fourier Transform). Let {at|t = . . . ,−1, 0, 1, . . . }
denote some real or complex valued sequence that satisfies

∑∞
−∞|at|2 < ∞.

Then the DTFT â(ω) of {at} is defined as

â(ω) = FDTFT [{at}] =

∞∑
t=−∞

ate
−iωt. (10)

From (10) we can see that the DTFT maps an infinite sequence in discrete
time to a complex valued function of frequency ω. This is reflected in the name
as only the time and not the frequency is discrete.

The DTFT is periodic with period 2π so that â(ω + 2πn) = â(ω) for any
frequency ω and any integer n.

The definition (10) is easily extended to finite sequences. Say we have a
finite sequence {bt|t = 0, . . . , N − 1} of length N . We can then define the
infinite sequence {at|at = bt if 0 ≤ t ≤ N − 1, at = 0 otherwise}. Then the

DTFT becomes â(ω) = FDTFT [{at}] =
∑∞
t=−∞ ate

−iωt =
∑N−1
t=0 ate

−iωt.
But once again we are presented with an issue, as even for finite sequences

the frequency in the DTFT is a continuous variable. As we would like to be able
to calculate and analyze the transform using computers. It would be beneficial if
the transform of our sequence mapped onto another finite sequence. To handle
this we define the DFT.

Definition 2.9 (Discrete Fourier transform). Let {at}N−1
t=0 be a real or complex

sequence of length N . Then the DFT of {at}N−1
t=0 is the sequence {âk}N−1

k=0 .
Where the kth element is defined as

âk =

N−1∑
t=0

ate
−itkω0 .

Note that âk corresponds to the frequency ωk = kω0, where ω0 is the fundamental
frequency ω0 = 2π

N . We will write the DFT of the entire sequence as

{âk} = FDFT [{at}] .

8



In order to keep the periodic property we define for t > N − 1 or t < 0 at
by periodic extension, so that a−i = aN−i, and aN−1+i = ai for integers i ≥ 1.
We can denote this is as at mod N .

As for the Continuous Fourier transform (CFT) we can easily define the
convolution of two DFT’s. But first we will need to define the concept of
circular convolution. Let {at} and {bt} be two sequences of length N , then

the convolution or circular convolution can be defined as a ∗ bt =
∑N−1
u=0 aubt−u,

which with the notation for periodic extension becomes a∗bt =
∑N−1
u=0 aubt−u mod N .

We can now state the Convolution Theorem for the DFT, as stated in [10].

Theorem 2.3.6. Discrete Convolution Theorem Let {at} and {bt} be two sequences
of length N . Then the DFT of a ∗ bt is

FDFT [{a ∗ bt}](k) =

N−1∑
t=0

a ∗ bte−itkω0 = âk b̂k

Having defined how we can calculate the DFT of convolutions, we will define
the notion of a filter similarly to how it is defined in [10].

Let {at} and {bt} be two arbitrary real or complex valued sequences and

let{ât}, {b̂t} be their respective DFT. If we regard {at} as our input and
{bt} as the filter we want to use. The operation of filtering {at} with {bt} is
equivalent to convolving the two. Using Theorem 2.3.6 we know that in the
frequency domain this is equivalent to multiplication of {ât} and {b̂t}. Let us
also introduce the notion of width for a filter, assume that the filter {bt}N−1

t=0

is such that bK ̸= 0, bK+L ̸= 0 for some positive integers L and K. Assume
further that bt = 0 for all t < K and t > K+L, then as the filter bt is identically
zero for all but L adjacent terms. We say that the filter has width L.

2.4 Wavelets

Fourier transforms only contain information about the global frequency contents
of a function or signal. This of course means a total loss of time dependent
information. That is, the transform gives us information about all frequencies
present in the signal or function, but no information about when they are
present.

An alternative to the Fourier transform is the so called wavelet transform,
which contains information about both frequency and time. The main difference
between Fourier and Wavelet transforms is that the former uses a basis of
complex exponential functions. Which are periodic and repeat infinitely in
time, whereas the latter uses a wavelet basis which is localized in time.

We will begin by introducing the notion of a wavelet in more depth, as with
much of the theory in this section we will be using the definition of [10].

Definition 2.10 (Wavelet). A real valued function ψ defined on the extended
real numbers and satisfying the properties

(i) The integral of ψ is zero:
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∫ ∞

−∞
ψ(x) dx = 0

(ii) The square of ψ integrates to one:∫ ∞

−∞
ψ2(x) dx = 1

Is called a wavelet.

To get a basic understanding of what a wavelet function is and how they can
look we will introduce three examples . One of the simplest and oldest examples
of a wavelet is the Haar wavelet, defined as:

ψH(x) :=


−1/

√
2, −1 < x < 0

1/
√

2, 0 < x < 1

0, otherwise

We will continue by defining two wavelets based on the PDF of the normal
distribution N (0, σ2) which we here denote by f(x). Taking the first and second
derivatives of f(x) w.r.t x we obtain

f ′(x) = − x

σ3
√

2π
e−x

2/2σ2

, and f ′′(x) =

(
x2 − σ2

)
e−x

2/2σ2

σ5
√

2π
.

Multiplying the two derivatives and normalizing them with the constants a1,a2
in order to satisfy (ii), results in (cf. [10])

ψFDG(x) =
f ′(x)

a1
= −

√
2x

σ3/2π1/4
e−x

2/2σ2

, and

ψR(x) =
f ′′(x)

a2
=

2
(

1 − x2

σ2

)
e−x

2/2σ2

√
3σπ1/4

.

We will call the second wavelet, ψR, the Ricker wavelet but its also commonly
referred to as the Marr wavelet or Mexican hat wavelet.
The three wavelets introduced so far, can be seen in figure 1. From the figure
we can clearly see that these wavelets are nonzero only on a small region around
the origin.

10



-2 0 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
H

(x)

-2 0 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
FDG

(x)

-2 0 2
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
R

(x)

Figure 1: The three example wavelets ψH(x), ψFDG(x) and ψR(x) plotted
around the origin.

Before defining the wavelet transform we will mention a common additional
condition for wavelets, as defined in [4].

Definition 2.11 (Admissibility Condition). A wavelet function ψ is said to be
admissible, if the number Cψ defined by

Cψ = 2π

∫
|ω|−1|ψ̂(ω)|2 dω, (11)

where ψ̂ is the Fourier transform of ψ, satisfies Cψ <∞.

2.4.1 Wavelet transform

Denote by ψa,b the wavelet function with parameters a, b defined by

ψa,b(x) =
1√
a
ψ

(
x− b

a

)
(12)

Recall that the three example wavelets in figure 1 were localized around the
origin. If we vary the parameter b in (12) we can translate the wavelet to
instead be centered around b. If we instead vary the parameter a in (12) we can
scale the wavelet to be either more or less spread out around b.
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It was shown that the scaled and translated wavelet (12) still satisfies the
conditions of Definition 2.10 , in [10]. Using the notation (12) we can now define
the Continuous Wavelet Transform (CWT).

Definition 2.12 (Continuous wavelet transform). The CWT W (a, b) of a signal
x(t) using the wavelet ψa,b(x) is given by

W (a, b) =

∫ ∞

−∞
ψa,b(u)x(u) du.

If the wavelet ψa,b(x) additionally satisfies the admissibility condition, and
the signal x(t) is square integrable, that is x(t) satisfies∫ ∞

−∞
x(t)2 dt <∞.

Then the CWT preserves all information about the signal, we can then define
the inverse continuous wavelet transform as in [10].

Definition 2.13 (Inverse continuous wavelet transform). If the wavelet ψa,b(x)
is admissible, and the signal x(t) is square integrable. We can define the Inverse
Continuous Wavelet Transform (ICWT) of the CWT W (a, b) as the integral

x(t) =
1

Cψ

∫ ∞

0

[∫ ∞

−∞
W (a, b)ψa,b(u) du

]
da

a2
,

where Cψ is defined in (11).

2.4.2 Orthonormal transforms

An N×N matrix O is said to be orthonormal if O⊤O = IN l, where IN is the N×
N identity matrix. We can then decompose a time series {Xt : t = 0, 1, ..., N−1}
represented as the N × 1 dimensional vector X =

[
X0, X1, ..., XN−1

]⊤
using O

by left multiplication of X with O. Denote the decomposition of X using O by
O, that is O = OX which is also a N × 1 dimensional vector.

Given O we can use the orthonormal property of O to reconstruct or synthesize
the original time series X. This is done by left multiplication of O with O⊤

O⊤O = O⊤OX = INX = X. (13)

Notice that we can write the ith element oi of O as ⟨X,Oi,•⟩ where Oi,• is the
transpose of row i in O, i.e a N × 1 dimensional vector. The synthesis (13) can
then be rexpressed as

X =

N−1∑
i=0

⟨X,Oi,•⟩Oi,•. (14)

As the vectors Oi,• form a basis of RN , (14) holds for an arbitrary choice
of X. An important fact about orthonormal transforms is that they preserve
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energy in that the squared norm of the coefficients O equals that of the original
time series X, this fact can be seen from

||O||2 = O⊤O = (OX)⊤(OX) = X⊤O⊤OX = X⊤INX = X⊤X = ||X||2.

One prominent example of an orthonormal transform is the Orthonormal Discrete
Fourier transform (ODFT) which differs from the DFT only by a factor 1√

N
.

Let O = F be the transformation matrix of the ODFT then the (k, t)th element
(row k, column t) of F is 1√

N
e−itkω0 . This element is associated with the value

Xt at time t and with the frequency ωk = kω0. For the regular DFT which
is an orthogonal transform the (k, t)th element of it’s transformation matrix is
e−itkω0 .

Using each row we can group the transform by frequency and split the
synthesis of X into a low pass part SF,k called the kth order Fourier smooth
and a high pass part RF,k called the kth order Fourier rough. Using these parts
we can express the synthesis of X as X = SF,k + RF,k. We can also define the
detail DF,k of order k, which is the difference between smooths or roughs of
adjacent orders, that is DF,k = SF,k − SF,k−1 = RF,k−1 −RF,k. We will not
go into how the smooth, rough or detail are calculated yet.

2.4.3 Discrete wavelet transform

Let X be the vector representation of a time series {Xt : t = 0, 1, . . . , N −
1}, where N is a multiple of some integer 2J0 . The partial Discrete Wavelet
Transform (DWT) of X is an orthonormal transform given by W = WX, where
W is an N dimensional vector of DWT coefficients and W is a real N×N matrix
defining the transform. The vector W and matrix W can be partitioned as

W =


W1

W2

...
WJ0

VJ0

 , W =


W1

W2

...
WJ0

VJ0

 ,

so that the ith element Wi = WiX and VJ0 = VJ0X. Here Wi is an Ni = N/2i

dimensional vector of wavelet coefficients associated with changes on the scale
2i−1, Wi is an Ni×N dimensional matrix and VJ0 is an NJ0 dimensional vector
of scaling coefficients associated with averages on the scale 2J0 . If moreover
N = 2J for some integer J we can similarly define the full wavelet transform by
setting J0 = J .

In practice the vector W of wavelet coefficients is calculated using the
pyramid algorithm introduced in [9]. Unlike matrix multiplication which for
multiplication of a N ×N matrix and N × 1 vector requires N2 multiplications,
this algorithm allows X to be calculated using only O(N) multiplications. This
makes calculation of the DWT using the pyramid algorithm more efficient than
calculation of the DFT using the Fast Fourier transform (FFT) algorithm which
requires O(N log2N) multiplications.

13



The pyramid algorithm requires two filters h, g called the wavelet and scaling
filters respectively. Let h be a filter of width L where we define h0 ̸= 0, hL−1 ̸= 0
and hl = 0 for l < 0 and l ≥ L. In order for h to be a wavelet filter L must be
even and the filter needs to satisfy the three following properties, as explained
in [10].

L−1∑
l=0

hl = 0

L−1∑
l=0

h2l = 1,

and

L−1∑
l=0

hlhl+2n =

∞∑
l=−∞

hlhl+2n = 0.

Two commonly used examples of wavelet filters are the Haar and Daubechies

filters defined by {h0 = 1√
2
, h1 = − 1√

2
}, and {h0 = 1−

√
3

4
√
2
, h1 = −3+

√
3

4
√
2
, h2 =

3+
√
3

4
√
2
, h3 = −1−

√
3

4
√
2

} respectively. As this specific example of a Daubechies

filter has width 4 it is usually denoted by D(4), but note that there are several
others. The scaling filter g cannot be chosen freely and corresponds to the choice
of wavelet filter through the relation

gl = (−1)l+1hL−1−l.

To explain the pyramid algorithm is beyond the scope of this thesis but an in
depth explanation can be found in [9], or a somewhat less in depth one in [10].
Similiar to what we did with the ODFT we can also define the ith level wavelet
smooth, rough and detail denoted Si,Ri and Di respectively. We can calculate
the J0th level wavelet smooth as SJ0 = V⊤

J0
VJ0 which is associated with the

scale 2J0 and the ith level wavelet detail as Di = W⊤
i Wi which is associated

with the scale 2i−1.We can then use the J0th level smooth and the ith level
detail to succesively calculate the ith level wavelet smooth and rough as

Si = SJ0 +

J0∑
k=i+1

Dk and Ri =

i∑
k=1

Dk.

As the DWT is an orthonormal transform we can synthesize X with (13), using
W and W. This can be rewritten using SJ0 and the Di’s as

X = W⊤W =

J0∑
i=1

W⊤
i Wi + V⊤

J0VJ0 =

J0∑
i=1

Di + SJ0 . (15)

We call the rightmost expression in (15) a Multi Resolution Analysis (MRA)
of X, or in other words an additive decomposition of X using components
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associated with different scales. Another consequence of the DFT being ortho-
normal is that it preserves the energy of X. Using the MRA we can write the
energy decomposition as

||X||2 =

J0∑
i=1

||Di||2 + ||SJ0 ||2 (16)

Since the sample variance σ̂2
X of X can be expressed using the squared norm

and sample mean X̄ as σ̂2
X = 1

N ||X||2 − X̄2. We can then use the MRA energy
decomposition (16) to decompose the sample variance as

σ̂2
X =

1

N
||X||2 − X̄2 =

1

N

(
J0∑
i=1

||Di||2 + ||SJ0 ||2
)

− X̄2

=
1

N

J0∑
i=1

||Di||2 +
||SJ0 ||2

N
− X̄2.

3 Methods

3.1 Non-Parametric Regression

In simple linear regression we use the model

Yi = α+ βXi + εi, εi ∼ N (0, σ2)

to describe the relationship between the response variable Y and the regressor
X ∈ [0, π]. Where the points X1, ..., XN are assumed to be non-random, and
the noise εi is independent. This model is useful to describe many different
phenomena or to find a trend in noisy data. The simple linear regression model
together with multiple linear regression and other models, where we make an
assumption on the relationship between response and regressor variables, are
called parametric models or parametric regression. Parametric regression is a
very useful technique when the relationship between response and regressor is
known, or when it is reasonable to make assumptions about the nature of the
relation.

But what if the relationship between response variable Y and the regressors
are unknown, and no meaningful assumptions can be made? This is a quite
common situation when trying to understand different phenomena. Mathematically
this can be formulated as

Yi = g(ti) + εi, εi ∼ N (0, σ2) i = 1, . . . , N, (17)

where ti = Xi ∈ [0, π] and εi are independent, and σ2 is finite. The function
g is a bounded and continuous function. It describes the unknown relationship
between X and Y , and is what we intend to estimate. In this situation a
technique called nonparametric regression can be used, where the goal is to
estimate the unknown function g.
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This problem is a hard one as there are infinitely many families of functions
that g could belong to. As mentioned in [2], when the errors are normal the
log-likelihood function for (σ2, g) is

l(σ2, g) = C − 1

2σ2

N∑
i=1

(yi − g(ti))
2, (18)

where C is some constant. Clearly the g that maximizes (18) is any function
that interpolates the points yi, that is g(ti) = yi. So some further restrictions
are needed.
We will cover two approaches to nonparametric regression, Fourier Smoothing
as proposed in [2], and wavelet thresholding covered in [1].

3.1.1 Fourier Smoothing

As proposed in [2] one restriction on the set of possible g is using Grenander’s
method of sieves. Loosely speaking the method of sieves involves restricting the
maximization of the likelihood to a subset of the parameter space, where the
subset is chosen increasingly dense with increasing sample size. As mentioned in
[8] using this method leads to consistent nonparametric estimators, the sequence
of subsets is what is called the sieve. Different choices of sieve leads to different
estimators. The sieve proposed in [2] was

Sµ =

{
T | ||T (2)||L2[0,π] ≤

1

µ

}
, (19)

where T is defined for a fixed K and some constants a = (b, 12a0, a1, ..., aK)⊤as

T (t) = bt+
1

2
a0 +

K∑
k=1

ak cos(kt).

We can see that T is a the sum of a linear function and a cosine expansion.
Using the sieve (19), the problem was reduced in [2], for some µ0 > µ to

Minimize
a∈RK+2

1

N

N∑
i=1

(yi − T (ti))
2 + λP (a), (20)

where P (a) :=
∑K
k=1 k

4a2k and λ is a Lagrange multiplier. As λ → ∞ the
function T will converge to the least squares line and as λ→ 0 T will interpolate
all yi for large enough K.

For fixed λ the normal equations to (20) become Mλa = b where Mλ and
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b are defined as

Mλ =

(
1

N
X⊤X + λD̃

)
, b =

1

N
X⊤y

where

X =

 t1 1 cos(t1) cos(2t1) . . . cos(Kt1)
...

...
...

...
. . .

...
tN 1 cos(tN ) cos(2tN ) . . . cos(KtN )


and

D̃ =



0 0 0 0 0 . . . 0
0 0 0 0 0 . . . 0
0 0 14 0 0 . . . 0
0 0 0 24 0 . . . 0
0 0 0 0 34 . . . 0
...

...
...

...
...

. . . 0
0 0 0 0 0 . . . K4


,

so that the coefficients a can be obtained by solving the system as a(λ) = M−1
λ b.

With a(λ) obtained we can finally estimate g at time t ∈ (0, π) as

g̃λ(t) = x(t)a(λ) = b(λ)t+
1

2
a0(λ) +

K∑
k=1

ak(λ) cos(kt), (21)

where x(t) = (t, 1, cos(t), cos(2t), . . . , cos(Kt))⊤. So that the estimate at each
point ti can be obtained as the vector g̃λ = Xa(λ). For a fixed value of
λ and some linear smoother Sλ with smoothing parameter λ the estimate
g̃λ satisfies g̃λ = Sλy. The matrix Sλ can easily be expressed as Sλ =
1
NXMλX

⊤y. It was shown in [2] that the nonzero eigenvalues of Sλ are{
1, 1, (1 + λγk)−1 | k = 1, . . . ,K

}
where the γk’s are the inverses to the eigenvalues

of the matrix D−1/2(C − BA−1B⊤)D−1/2. Here A is a 2 × 2 matrix, B is a
K × 2 matrix and C is a K ×K matrix all given by the relation

1

n
X⊤X =

(
A B⊤

B C

)
.

The matrix D is simply obtained by partitioning D̃ as

D̃ =

(
02×2 02×K
0K×2 D

)
.

The nonzero eigenvalues where then used to show that for a fixed λ > 0, the
spectral radius ρ of Sλ (maximum absolute value of the eigenvalues of Sλ)

satisfies ρ(Sλ) ≤ 1. But also that tr Sλ = 2+
∑K
k=1

1
1+λγk

is a strictly decreasing
convex function of λ bounded above by K + 2. With these relations a method
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of choosing an ”optimal” smoothing level was proposed in [2], i.e choosing λ by
minimizing the Mean Squared Error of Cross Validation (MSECV) denoted by
CV (λ). This quantity CV (λ) is defined as

CV (λ) =
1

N

n∑
i=1

(yi − g̃λ,i)
2,

where g̃λ,i denotes the smoother (21) fitted to the data with (ti, yi) removed.
In order to not have to refit the model N times Theorem 4.2.1 of [12] was used
to evaluate CV (λ) with complexity O(N) as

CV (λ) =
1

N

N∑
i=1

(
yi − g̃(ti)

1 − Sλ(i, i)

)2

,

where Sλ(i, i) is the element on the ith row and ith column of Sλ. Finally the
value of λ was calculated iteratively with the scheme

λ0 = 0

λi+1 = λi +
2(tr Sλ − 2) − dfi∑K
k=1 γk(1 + λiγk)−2

,

where dfi = 2 + i, i = 0, 1, .... . The scheme was terminated when there was no
further decrease in CV (λi), leading to a smoothing parameterλ = λ(y) that is
a function of the response variable y.

3.1.2 Wavelet Thresholding

A different approach to nonparametric regression of the model (17) is the
method called wavelet shrinkage or wavelet thresholding. It is based on the
sparseness of the DWT which allows for the assumption that only a few large
wavelet coefficients Wi,k will contain information about g, while small Wi,k

are attributed to noise. This assumption comes from the fact that the DWT
of white noise is a new independent white noise variable, as mentioned in [1].
The DWT of y results in the so called empirical scaling and wavelet coefficients
ṼJ0,k and W̃i,k respectively. We will assume that the length of y is N = 2J for
some positive integer J . The empirical coefficients are then given by

ṼJ0,k = VJ0,k + σεJ0,k, k = 0, 1, . . . 2J0 − 1

W̃i,k = Wi,k + σεi,k, i = 1, . . . , J0, k = 0, 1, . . . , 2J−i, (22)

where εJ0,k and εi,k are independent N (0, 1) random variables. The wavelet
thresholding method then revolves around finding a way to classify and discard
the wavelet coefficients Wi,k attributed to noise.

The two main thresholding methods are called soft and hard thresholding
respectively, where they differ in how the thresholding of the coefficients is done.
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The hard and soft thresholding functions with thresholding level λ are defined
as

δHλ (W̃i,k) =

{
0 if |W̃i,k| ≤ λ,

W̃i,k if |W̃i,k| > λ,

δSλ (W̃i,k) =


0 if |W̃i,k| ≤ λ,

W̃i,k − λ if W̃i,k > λ,

W̃i,k + λ if W̃i,k < −λ.

The reason for using only the wavelet coefficient W̃i,k in the definition is that

it is proposed in [1] that the scaling coefficients ṼJ0,k are left intact. It is
mentioned in [1] that hard thresholding results in larger variance for the same
threshold level while soft thresholding creates unnecessary bias when the true
coefficients are large as it shifts the coefficients by λ even if they contain no
noise.
To account for these drawbacks a firm thresholding was proposed in [7] , the
firm thresholding function is defined as

δFλ1,λ2
(W̃i,k) =


0 if |W̃i,k| ≤ λ1,

sign
(
W̃i,k

)
λ2(|W̃i,k|−λ1)

λ2−λ1
if λ1 < |W̃i,k| ≤ λ2,

W̃i,k if |W̃i,k| > λ2,

with the lower and upper thresholding levels λ1 and λ2 respectively.
The drawback of firm thresholding is that two thresholding levels need to be

estimated instead of just one.
In order to use these thresholding methods it remains to estimate the thresholding
level(s) λ. But before we can estimate λ we have to decide if the thresholding will
be global or level-dependent. Or in other words if the same threshold level λ will
be used for all wavelet coefficients W̃i,k or if a possibly separate threshold level
λj will be used for each resolution level j = J0, . . . , J − 1 of wavelet coefficients.

We will cover one method of global thresholding and two methods for level-
dependent thresholding. All of these methods require an estimate of the noise
level σ. As the signal g(Xi) is unknown and could possibly have a large standard
deviation by itself, the standard deviation of the noisy signal g(Xi)+σεi is not a
good estimator in general, unless as mentioned in [1], the signal g(Xi) in itself is
flat. But this is an assumption on g which we would like to avoid. As we saw in
equation (22), the wavelet coefficients contain independent noise with the same
noise level as the original signal (17). We also already assumed that only a few
wavelet coefficients will contain information about the original signal while the
rest are mostly noise. We could then estimate the noise level σ from the wavelet
coefficients. In [5] the absolute median deviation of the wavelet coefficients on
the finest resolution level was used. The reason for using the finest resolution
level was as mentioned in [5] that they contain with a few exceptions basically
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pure noise. The absolute median deviation noise estimator is defined as

σ̃ =
median

({
|W̃1,k|; k = 0, 1, . . . , 2J−1 − 1

})
0.6745

, (23)

the noise estimator (23) will be used in the following estimations of the threshold
level λ.
The global thresholding level was selected as the universal threshold mentioned
in [1] and proposed in [5]. The universal threshold λU for sample size N is given
by

λU = σ̃
√

2 logN,

and it is very computationally inexpensive to calculate.
The two level-dependent methods we will cover are thresholding as a multiple
hypothesis testing problem and SureShrink both described in [1]. The method
of thresholding as a hypothesis test, works by for each coefficient W̃i,k ∼
N(Wi,k, σ̂

2)testing the hypothesis

H0 : Wi,k = 0 H1 : Wi,k ̸= 0.

If H0 is rejected the coefficient Wi,k is kept, and otherwise it is dropped from
the model. If this hypothesis test is performed on an individual level the chance
of wrongly keeping a coefficient is high, but if instead the test is performed
simultaneously for all parameters the chance is low. The method for performing
the test simultaneously is based on the False Discovery Rate (FDR) as described
in [1]. The result of applying the method is a thresholding level λFDR, which
can then be used with one of the thresholding techniques described.

3.2 Simulation

To evaluate the nonparametric regression methods covered in the previous section
a small simulation study was performed for a number of test functions.

The code used for this simulation study was partially written for this thesis
and otherwise freely available. The implementation of the Fourier smoothing
method was done by the author of this thesis. The implementation of the DWT
and the SureShrink method was available from the R library waveslim. The
thresholding as a multiple hypothesis test was implemented by the author as
well.

The test functions used for the simulation study were a subset of those used
in [1] and [5]. The idea was to cover a wide variety of functions that are relevant
in this field. The test functions used were

1. Corner

g1(t) = 623.87t3(1 − 4t)I[0,0.5](t) + 187.161(0.125 − t3)t4I(0.5,0.8](t)+
3708.470441(t− 1)3I(0.8,1](t).
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2. Spikes

g2(t) = 15.6676e−500(t−0.23)2 + 2e−2000(t−0.33)2 + 4e−8000(t−0.47)2+

3e−16000(t−0.69)2 + e32000(t−0.83)2 .

3. Angles

g3(t) = (2t+ 0.5))I[0,0.15](t) + (−12(t− 0.15) + 0.8)I(0.15,0.2](t) + 0.2I(0.2,0.5](t)+
(6(t− 0.5) + 0.2)I(0.5,0.6](t) + (−10(t− 0.6) + 0.8)I(0.6,0.65](t)+
(−5(t− 0.65) + 0.3)I(0.65,0.85](t) + (2(t− 0.85) + 0.2)I(0.85,1](t).

4. Bumps

g4(t) =

11∑
j=1

hjK

(
t− tj
wj

)
, K(t) = (1 + |t|)−4

,

tj = (0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81),

hj = (4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2),

wj = (0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005, 0.008, 0.005).

5. Blocks

g5(t) =

11∑
j=1

hjK(t− tj), K(t) =
1 + sgn(t)

2
,

tj = (0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81),

hj = (4, −5, 3, −4, 5, −4.2, 2.1, 4.3, −3.1, 2.1, −4.2).

6. Heavisine

g6(t) = 4 sin(4πt) − sgn(t− 0.3) − sgn(0.72 − t).

7. Doppler

g7(t) =

[
t(1 − t)

1
2 sin

(
2π

1.05

t+ 1.05

)]
.

Where I[a,b](t) denotes the indicator function on the interval [a, b]. These test

functions were defined for t ∈ [0, 1] so the values ti ∈ [0, π] were scaled by 1
π

when used as inputs to the functions. As in [5] the functions were scaled so
that the signal to noise ratio was 7, where the signal to noise ratio is defined
as
√

Var [f ]/σ where σ is the noise level, and Var(f) = Var[f(X)], when X
is uniformly distributed on [0, π]. Plots of the test functions can be found in
Appendix A.

The wavelet filters used for the simulations were,
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1. Haar
{h0 = 0.7071068, h1 = −0.707106}

2. D(4)

{h0 = −0.129410, h1 = −0.224144, h2 = 0.836516, h3 = −0.482963}

3. D(8)

{h0 = −0.010597, h1 = −0.032883, h2 = 0.030841, h3 = 0.187035,

h4 = −0.027984, h5 = −0.630881, h6 = 0.714847, h7 = −0.230378}

4. D(16)

{h0 = −0.000117, h1 = −0.000675, h2 = −0.000392, h3 = 0.004870,

h4 = 0.008746, h5 = −0.013981, h6 = −0.044088, h7 = 0.017369,

h8 = 0.128747, h9 = −0.000472, h10 = −0.284016, h11 = 0.015829,

h12 = 0.585355, h13 = −0.675631, h14 = 0.312872, h15 = −0.054416}

5. LA(8)

{h0 = −0.075766, h1 = −0.029636, h2 = 0.497619, h3 = 0.803739,

h4 = 0.297858, h5 = −0.099220, h6 = −0.012604, h7 = 0.032223, }

6. LA(16)

{h0 = −0.003382, h1 = −0.000542, h2 = 0.031695, h3 = 0.007607,

h4 = −0.143294, h5 = −0.061273, h6 = 0.481360, h7 = 0.777186,

h8 = 0.364442, h9 = −0.051946, h10 = −0.027219, h11 = 0.049137,

h12 = 0.003809, h13 = −0.014952, h14 = −0.000303, h15 = 0.001890}

For the Fourier smoothing K = 5, 10, 15, . . . , 60, 65, 70, 72, 75, 77, 80, 82, 85,
87, 90, 92, 95, 97, 100 cosine terms were used.
For all choices of test function, threshold method and wavelet filter 100 simulations
were performed and the evaluation criterion was averaged over these runs. The
same was done for the Fourier smoothing method but instead simulations were
repeated for each choice of test function and K. .

The evaluation criteria used were

1. RMSE: Root Mean Squared Error

RMSE(y, ỹ) =

√√√√ 1

N

N∑
i=1

(yi − ỹi)
2
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2. MAE: Mean Absolute Error

MAE(y, ỹ) =
1

N

N∑
i=1

|yi − ỹi|

3. sMAPE: symmetric Mean Absolute Percentage Error

sMAPE(y, ỹ) =
1

N

N∑
i=1

|yi − ỹi|
|yi| + |ỹi|

Where ỹi = g̃(ti) is the ith value estimated from the test function with added
noise and yi = g(ti) is the ith true value of the test function without any added
noise.

4 Results

The results from the simulation study as described in Section 3.2 will be presented
in the form of figures with the evaluation criteria. In figure 2 the evaluation
criteria for the Fourier Smoothing is plotted as a function of K. From the figure
we can see that all of the evaluation criteria decrease with increasing K, except
for K = 80. For this choice of K the value of all three criteria spike for the
functions, Spikes, Heavisine, Corner, as well as a much less noticeable rise for
Blocks.

Figure 2: Evaluation criteria MAE, RMSE and sMAPE as a function of the
number of cosine terms K for Fourier Smoothing.
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In figure 3 we can see the smoothing parameters for the Fourier Smoothing
method. We can see that the spikes around K = 80 in figure 2 are not present
in the plot of CV in figure 3. This is probably due to the fact that the errors in
figure 2 were calculated against the true value of y containing no added noise,
where CV was calculated using the noisy data that the model was fitted to.

Figure 3: The parameters df,λ and CV as a function of K for Fourier Smoothing.

In figures 4-9 we can see the evaluation criterion for different wavelet filters
in the columns and different choice of thresholding parameter λ in the rows.
Figures 4,6 and 8 show the three evaluation criteria using hard thresholding,
while Figures 5,7 and 9 show the three evaluation criteria using soft thresholding.
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Figure 4: MAE as a function of Resolution Level J , for Hard Thresholding. The
first row uses the thresholding level λFDR the second uses SureShrink and the
third uses λU

Figure 5: MAE as a function of Resolution Level J , for Soft Thresholding. The
first row uses the thresholding level λFDR the second uses SureShrink and the
third uses λU .
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Figure 6: RMSE as a function of Resolution Level J , for Hard Thresholding.
The first row uses the thresholding level λFDR the second uses SureShrink and
the third uses λU .

Figure 7: RMSE as a function of Resolution Level J , for Soft Thresholding.
The first row uses the thresholding level λFDR the second uses SureShrink and
the third uses λU
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Figure 8: sMAPE as a function of Resolution Level J , for Hard Thresholding.
The first row uses the thresholding level λFDR the second uses SureShrink and
the third uses λU

Figure 9: sMAPE as a function of Resolution Level J , for Soft Thresholding.
The first row uses the thresholding level λFDR the second uses SureShrink and
the third uses λU

For the SureShrink thresholding we can see that the values of all evaluation
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criteria decrease when the resolution level of the transform increases up until
around J = 7, where there is a sharp rise. But for the universal and FDR
thresholds the evaluation criterion look more or less the same if not increasing.
Similar spikes as for SureShrink are seen, but at what resolution level varies
more. The universal threshold seems to have the sharpest increase for J ≈ 6
but it slightly varies between evaluation methods and choice of wavelet filter.
Although the evaluation criteria also seem to drop down to the value before the
spike when resolution level is increased further. For most subplots the FDR
threshold seems to have its peak at around J = 8.

These sharp peaks with subsequent drop are hard to explain, and could have
several causes. As they are present in both figure 2 and figures 4-9 it is likely
not only due to the nature of the models. We can also see in for example 2 that
the rise in MAE and RMSE is by far the largest for the function spike which
can be explained by the characteristics of the function itself, but the location of
the spike is hard to explain.

We will now present the methods that performed best for each of the test
functions with respect to the three different criterion. As well as presenting the
parameters i.e number of cosine terms K, choice of wavelet filter and resolution
level that achieved this.

1. Corner

Comparing table 1 and 2 we can see that the Fourier smoothing method
outperformed the best wavelet methods in all criteria. We can also see
that the number of cosine terms K that performed best depended on the
criterion, but the wavelet and thresholding method were the same for all
criteria.

Table 1: Best performing Fourier method with respect to the three evaluation
criterion, for the test function corner.

K RMSE MAE sMAPE
75 0.1705478 - -
55 - 0.1149294 -
40 - - 0.1559033

Table 2: Best performing wavelet method with respect to the three evaluation
criterion, for the test function corner.

Wavelet Filter Thresholding Method Resolution Level RMSE MAE sMAPE
D4 Soft SureShrink 6 0.2404435 - -
D4 Soft SureShrink 6 - 0.1574096 -
D4 Soft SureShrink 6 - - 0.1851969

2. Spikes
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Looking at table 3 and 4 we can see that the best wavelet thresholding
methods outperformed Fourier smoothing in all criteria. We can also see
that the Fourier smoothing using the maximum number of cosine terms K
performed best for each criteria. But that different resolution levels and
wavelet filters were used for the best performance on each criteria.

Table 3: Best performing Fourier method with respect to the three evaluation
criterion, for the test function spikes.

K RMSE MAE sMAPE
100 0.5969305 - -
100 - 0.3832771 -
100 - - 1.324863

Table 4: Best performing wavelet method with respect to the three evaluation
criterion, for the test function spikes.

Wavelet Filter Thresholding Method Resolution Level RMSE MAE sMAPE
LA8 Soft SureShrink 5 0.2940816 - -
LA8 Soft SureShrink 5 - 0.2148403 -
LA16 Soft SureShrink 6 - - 1.299789

3. Angles

Comparing table 5 and 6 we can see that as for the function spikes,
the wavelet thresholding method outperformed Fourier smoothing in all
criteria. The best performing Fourier method also used the maximum
number of cosine terms just as for Spikes, and the best performing wavelet
methods all used the same wavelet filter and thresholding method.

Table 5: Best performing Fourier method with respect to the three evaluation
criterion, for the test function angles.

K RMSE MAE sMAPE
100 0.6701377 - -
100 - 0.2797862 -
100 - - 0.05542024

Table 6: Best performing wavelet method with respect to the three evaluation
criterion, for the test function angles.

Wavelet Filter Thresholding Method Resolution Level RMSE MAE sMAPE
D4 Soft SureShrink 6 0.2714624 - -
D4 Soft SureShrink 6 - 0.1792679 -
D4 Soft SureShrink 6 - - 0.03626487

29



4. Bumps

From table 7 and 8 we can see that the Fourier smoothing method was
significantly outperformed w.r.t RMSE and MAE compared to wavelet
thresholding, and somewhat less w.r.t sMAPE. Once again as for the
functions spikes and angles the maximum number of cosine terms were
used for the Fourier Smoothing, whereas different wavelet filters and resolution
levels were used for the wavelet methods.

Table 7: Best performing Fourier method with respect to the three evaluation
criterion, for the test function bumps.

K RMSE MAE sMAPE
100 2.084805 - -
100 - 1.089198 -
100 - - 0.03578664

Table 8: Best performing wavelet method with respect to the three evaluation
criterion, for the test function bumps.

Wavelet Filter Thresholding Method Resolution Level RMSE MAE sMAPE
LA8 Soft SureShrink 4 0.4700393 - -
LA8 Soft SureShrink 4 - 0.3102521 -
D4 Soft SureShrink 5 - - 0.01086009

5. Blocks

Comparing table 9 and 10 we can see that wavelet thresholding performed
the best for all criteria, especially for RMSE and MAE. The Fourier
method using the maximum number of cosine terms performed the best
on all criteria. Unlike the other test functions the Haar wavelet using
resolution level 6 resulted in the best performance w.r.t all evaluation
criteria.

Table 9: Best performing Fourier method with respect to the three evaluation
criterion, for the test function blocks.

K RMSE MAE sMAPE
100 1.497180 - -
100 - 0.7563130 -
100 - - 0.6860814
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Table 10: Best performing wavelet method with respect to the three evaluation
criterion, for the test function blocks.

Wavelet Filter Thresholding Method Resolution Level RMSE MAE sMAPE
Haar Soft SureShrink 6 0.3694584 - -
Haar Soft SureShrink 6 - 0.2254934 -
Haar Soft SureShrink 6 - - 0.6089576

6. Heavisine

From table 11 and 12 we can see that Fourier smoothing was outperformed
slightly on all evaluation criteria, and that different number of cosine
terms performed the best w.r.t different evaluation criteria. The wavelet
thresholding methods all used the same resolution level of 6 but used
different wavelet filters.

Table 11: Best performing Fourier method with respect to the three evaluation
criterion, for the test function heavisine.

K RMSE MAE sMAPE
85 0.3092343 - -
70 - 0.1693416 -
70 - - 0.09396342

Table 12: Best performing wavelet method with respect to the three evaluation
criterion, for the test function heavisine.

Wavelet Filter Thresholding Method Resolution Level RMSE MAE sMAPE
D8 Soft SureShrink 6 0.2541370 - -

LA8 Soft SureShrink 6 - 0.1646360 -
LA8 Soft SureShrink 6 - - 0.08805781

7. Doppler

From table 13 and 14 we can see that the wavelet thresholding outperformed
the Fourier smoothing w.r.t all evaluation criterion, and that the maximum
or almost maximum number of cosine terms performed the best. For the
wavelet thresholding methods the same wavelet filter but slightly different
resolution levels resulted in the best performance.

Table 13: Best performing Fourier method with respect to the three evaluation
criterion, for the test function doppler.

K RMSE MAE sMAPE
97 1.180594 - -
100 - 0.5180512 -
100 - - 0.2480506
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Table 14: Best performing wavelet method with respect to the three evaluation
criterion, for the test function doppler.

Wavelet Filter Thresholding Method Resolution Level RMSE MAE sMAPE
D16 Soft SureShrink 6 0.3239850 - -
D16 Soft SureShrink 6 - 0.2166013 -
D16 Soft SureShrink 7 - - 0.1167665

5 Conclusions

Both the Fourier smoothing method and wavelet thresholding methods showed
promising results for several of the test functions. Although the Fourier methods
were outperformed for all test functions except corner where it outperformed the
wavelet methods in all evaluation criteria. This was a surprising result as some
of the test functions like heavisine and Doppler are variations of sine waves. But
them not just being superpositioned sine waves could explain why the wavelet
methods performed better on them. Another surprising result was that the best
performing wavelet methods all used soft SureShrink thresholding for all test
functions and w.r.t all three criteria. The wavelet filters that seemed to perform
best on the most test function were the D4 and LA8 filters, but it was also
the D4 wavelet filter that was outperformed by Fourier smoothing as seen in
table 1 and 2. The best performing resolution level was also quite consistent
at mostly 6 but 4, 5 or 7 also performed quite good. The Haar wavelet filter
performed the best only for the test function blocks which was not surprising
as it is ”blocky” by nature. Further work should be done on investigating the
reason for the spikes at K = 80 in figure 2, and the spikes in figures 4-9, but is
due to time limitations outside the scope of this thesis.
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Appendix A Test functions

1. Corner
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Figure 10: The test function Corner, rescaled so that the signal to noise ratio
was 7 when noise was added. On the left we see the value of the test function
with added noise, and on the right rescaled but without noise.

2. Spikes

Figure 11: The test function Spikes, rescaled so that the signal to noise ratio
was 7 when noise was added. On the left we see the value of the test function
with added noise, and on the right rescaled but without noise.
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3. Angles

Figure 12: The test function Angles, rescaled so that the signal to noise ratio
was 7 when noise was added. On the left we see the value of the test function
with added noise, and on the right rescaled but without noise.

4. Bumps
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Figure 13: The test function Bumps, rescaled so that the signal to noise ratio
was 7 when noise was added. On the left we see the value of the test function
with added noise, and on the right rescaled but without noise.

5. Blocks

Figure 14: The test function Blocks, rescaled so that the signal to noise ratio
was 7 when noise was. On the left we see the value of the test function with
added noise, and on the right rescaled but without noise.
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6. Heavisine

Figure 15: The test function Heavisine, rescaled so that the signal to noise ratio
was 7 when noise was added. On the left we see the value of the test function
with added noise, and on the right rescaled but without noise.

7. Doppler
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Figure 16: The test function Doppler, rescaled so that the signal to noise ratio
was 7 when noise was added. On the left we see the value of the test function
with added noise, and on the right rescaled but without noise.
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Appendix B Nomenclature

Table 15: Some commonly used symbols and their meaning
Symbol Description

Sets
Z the integers {0, ±1, ±2, . . . }
R the real numbers
C the complex numbers

Variables
x, y, z arbitrary variables
t time domain variable
ω, ζ frequency domain variables
m, n integer variables
X, Y random variables

Matrices
IN the N ×N identity matrix
A⊤ the transpose of the matrix A

Functions
ψ wavelet function
ψa,b wavelet with parameters a and b
f, g, h functions

f̂ , ĝ, ĥ the fourier transform of functions f, g, h

f, g, h the complex conjugates of functions f, g, h
IA(x) the indicator function on the set A

B.1 Acronyms

WFT Windowed Fourier transform

PDF Probability Density Function

DFT Discrete Fourier transform

DTFT Discrete Time Fourier transform

FFT Fast Fourier transform

DWT Discrete Wavelet Transform

ODFT Orthonormal Discrete Fourier transform

MRA Multi Resolution Analysis

CFT Continuous Fourier transform

CWT Continuous Wavelet Transform
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ICWT Inverse Continuous Wavelet Transform

MSECV Mean Squared Error of Cross Validation

FDR False Discovery Rate

Appendix C Code

functions.R

######################################################
#Test Functions
######################################################
corner =function ( x ) {

y=vector ( length=length ( x ) )
idx<−x<=0.5
y [ idx ]=623.87∗ ( x [ idx ] ) ˆ3∗(1−4∗x [ idx ] )
y [ idx ]=(0 .6/ (max( y [ idx ] )−min( y [ idx ] ) ) )∗y [ idx ]+0.6
idx=(x>0.5)&(x<=0.8)
y [ idx ]=187.161∗(0.125 −x [ idx ] ˆ 3 )∗ ( x [ idx ] ˆ 4 )
y [ idx ]=(0 .6/ (max( y [ idx ] )−min( y [ idx ] ) ) )∗y [ idx ]
idx=(x>0.8)&(x<=1)
y [ idx ]=3708.470441∗ ( x [ idx ]−1) ˆ3
y [ idx ]=(0 .6/ (max( y [ idx ] )−min( y [ idx ] ) ) )∗y [ idx ]

return ( y )
}
s p i k e s=function ( x )
{

y=15.6676∗ (exp(−500∗ (x−0.23) ˆ2)+2∗exp(−2000∗ (x−0.33) ˆ2)
+4∗exp(−8000∗ (x−0.47) ˆ2)+3∗exp(−16000∗ (x−0.69) ˆ2)+
exp(−32000∗ (x−0.83) ˆ2) )

y=(0.6/ (max( y )−min( y ) ) )∗y
return ( y )

}
ang l e s=function ( x )
{

y=vector ( length=length ( x ) )
idx<−x<=0.15
y [ idx ]=(2∗x [ idx ]+0 .5)
idx<−(x>0.15)&(x<=0.2)
y [ idx ]=(−12∗ ( x [ idx ] −0.15) +0.8)
idx<−(x>0.2)&(x<=0.5)
y [ idx ]=0.2
idx<−(x>0.5)&(x<=0.6)
y [ idx ]=(6∗ ( x [ idx ] −0.5) +0.2)
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idx<−(x>0.6)&(x<=0.65)
y [ idx ]=(−10∗ ( x [ idx ] −0.6) +0.8)
idx<−(x>0.65)&(x<=0.85)
y [ idx ]=(−5∗ ( x [ idx ] −0.65) +0.3)
idx<−(x>0.85)&(x<=1)
y [ idx ]=(2∗ ( x [ idx ] −0.85) +0.2)
return ( y )

}
bumps=function ( x )
{

h=c ( 4 , 5 , 3 , 4 , 5 , 4 . 2 , 2 . 1 , 4 . 3 , 3 . 1 , 5 . 1 , 4 . 2 )
w=c

( 0 . 0 0 5 , 0 0 0 5 , 0 . 0 0 6 , 0 . 0 1 , 0 . 0 1 , 0 . 0 3 , 0 . 0 1 , 0 . 0 1 , 0 . 0 0 5 , 0 . 0 0 8 , 0 . 0 0 5 )

t j=c
( 0 . 1 , 0 . 1 3 , 0 . 1 5 , 0 . 2 3 , 0 . 2 5 , 0 . 4 , 0 . 4 4 , 0 . 6 5 , 0 . 7 6 , 0 . 7 8 , 0 . 8 1 )

K=function ( t ) 1/((1+abs ( t ) ) ˆ4)
t mat=matrix (nrow=length ( t j ) ,ncol=length ( x ) )

y=vector ( length=length ( x ) )
for ( i in 1 : length ( t j ) )
{

y=y+h [ i ] ∗K( ( x−t j [ i ] ) /w[ i ] )
}

return ( y )
}
b locks=function ( x ) {

h=c (4 , −5 ,3 , −4 ,5 , −4.2 ,2 .1 ,4 .3 , −3.1 ,2 .1 , −4.2)

t j=c
( 0 . 1 , 0 . 1 3 , 0 . 1 5 , 0 . 2 3 , 0 . 2 5 , 0 . 4 , 0 . 4 4 , 0 . 6 5 , 0 . 7 6 , 0 . 7 8 , 0 . 8 1 )

K=function ( t ) (1+sign ( t ) )/2
t mat=matrix (nrow=length ( t j ) ,ncol=length ( x ) )
for ( i in 1 : length ( t j ) )
{

t mat [ i , ]=( x−t j [ i ] )
t mat [ i , ]= h [ i ] ∗K( t mat [ i , ] )
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}

y=colSums ( t mat)
return ( y ) }

h e a v i s i n e=function ( x ) {
y=4∗sin (4∗pi∗x )−sign (x−0.3)−sign (0.72 −x )
return ( y )

}
doppler=function (x , e p s i l o n =0.05){

y=((x∗(1−x ) ) ˆ(1/2) )∗sin (2∗pi∗(1+ e p s i l o n )/ ( x+e p s i l o n ) )
return ( y )

}

######################################################
#Helper Functions
######################################################
r e s c a l e add no i s e=function ( g func , no i s e l e v e l , s i g n a l to

no i s e ra t i o , n points , t s t a r t =0, tend=1){
t=seq ( from=t s t a r t , to=tend , length . out=n points )
ytrue=g func ( t )
no i s e=rnorm(n=n points )∗no i s e l e v e l
ytrue=ytrue∗(7∗no i s e l e v e l /sd ( ytrue ) )
y out=ytrue+no i s e
return ( l i s t ( yout=y out , points=t , ytrue=ytrue , no i s e=no i s e

) )
}
r e s c a l e x=function (x , ep s i l on , wrapstart =0,wrapend=pi ) {

start=wrapstart+e p s i l o n
end=wrapend∗(1− e p s i l o n )
s c a l e d x=start+(x−min( x ) )∗ ( (end−start )/ (max( x )−min( x ) ) )
return ( s c a l e d x )

}
######################################################
#FOURIER SMOOTHING SETUP
######################################################
create X mat=function ( t ,K) {

ang ve l vec=seq ( from=0, to=K, length . out=K+1)
X row<−function ( xi , ang ve l vec ) {return ( cos ( x i∗ang ve l

vec ) ) }
X out=matrix (nrow=length ( t ) ,ncol=K+2)
X out [ , 0 :K+2]=t (apply (X=t ,MARGIN=1,FUN=function ( x i )X

row( xi , ang ve l vec ) ) )
X out [ , 1 ]= t
return (X out ) }

create I k=function (K) {
return ( seq ( from=1, to=K, length . out=K) ˆ4)
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}

create D t i l d e=function (K) {
vec=vector ( length=K+2)
vec [ 1 :K+2]=create I k (K)
return (diag ( vec ) )

}

create M lambda=function ( t ,X,D, lambda )
{

n=length ( t )
M lambda=((1/n)∗t (X)%∗%X+lambda∗D)
return (M lambda )

}

create b vec=function (X, y )
{

return ( (1/length ( y ) )∗t (X)%∗%y )
}

create a vec=function (M, b)
{

return ( inv (M)%∗%b)
}
g e s t=function ( a , t ,X)
{

return (X%∗%a )
}
create S lambda=function (n ,X,M)
{

S lambda=(1/n)∗X%∗%solve (M)%∗%t (X)
return (S lambda )

}
c a l c u l a t e CV=function (n , y , ghat , Slambda ) {

summand vec=(y−ghat )/(1−diag ( Slambda ) )
return ( (1/n)∗sum(summand vec ˆ2) )

}
c a l c u l a t e gamma=function (n ,X,K) {

ninv XtX=(1/n)∗t (X)%∗%X

A=ninv XtX [ 0 : 2 , 0 : 2 ]
B=ninv XtX[3 : (2+K) , 0 : 2 ]
C=ninv XtX[3 : (2+K) ,3:(2+K) ]
Ik=create I k (K)
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return (1/eigen ( inv ( sqrtm (diag ( Ik ) ) )%∗%(C−B%∗%inv (A)%∗%t
(B) )%∗%inv ( sqrtm (diag ( Ik ) ) ) , only . va lue s = TRUE)$
va lue s )

}
i t e r a t e lambda=function (gamma vec , df , lambdai ) {

upper sum=2∗sum(1/(1+lambdai∗gamma vec ) )−df
lower sum=sum(gamma vec/(1+lambdai∗gamma vec ) ˆ2)
return ( lambdai+upper sum/lower sum)

}
##################################################
# Thresho ld ing
##################################################
s o f t th r e sho ld=function ( x dwt , lambda ) {

wavelet names<−names( x dwt ) [ g r ep l ( ”d(\\d+)” ,names( x dwt
) ) ]

y=x dwt
for ( i in length ( wavelet names) ) {

x i<−x dwt [ [ wavelet names [ i ] ] ]

lower cut<−x i<(−lambda )
upper cut<−x i>lambda
c u t o f f<−abs ( x i )<=lambda

y [ [ wavelet names [ i ] ] ] [ upper cut ]=y [ [ wavelet names [ i
] ] ] [ upper cut ]− lambda

y [ [ wavelet names [ i ] ] ] [ lower cut ]=y [ [ wavelet names [ i
] ] ] [ lower cut ]+lambda

y [ [ wavelet names [ i ] ] ] [ c u t o f f ]=0

}
return ( y )

}
FDR thre sho ld=function ( x dwt , no i s e est imate , alpha =0.05) {

wavelet c o e f f s<−unlist ( x dwt [ g r e p l ( ”d(\\d+)” ,names( x
dwt ) ) ] )

p<−2∗(1−pnorm(abs ( as . vector ( wavelet c o e f f s ) )/no i s e
e s t imate ) )

p<−sort (p , de c r ea s ing=FALSE)

m=length (p)−1
idx=seq (1 , length (p) )
ok<−alpha∗ idx/m
ok<−(p<ok )
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idx [ ! ok ]=0
k=max( idx )
lambda fd r<−no i s e e s t imate∗qnorm(1−p [ k ] /2)

return ( lambda fd r )
}
hard thr e sho ld=function ( x dwt , lambda ) {

wavelet names<−names( x dwt ) [ g r ep l ( ”d(\\d+)” ,names( x dwt
) ) ]

y=x dwt
for ( i in length ( wavelet names) ) {

x i<−x dwt [ [ wavelet names [ i ] ] ]
c u t o f f =(abs ( x i )<=lambda )

y [ [ wavelet names [ i ] ] ] [ c u t o f f ]=0

}

return ( y )
}
MAD no i s e e s t=function ( y dwt ) {

wavelet names<−names( y dwt ) [ g r ep l ( ”d(\\d+)” ,names( y dwt
) ) ]

n c o e f f s =0
for ( i in length ( wavelet names) ) {

n c o e f f s=n c o e f f s+length ( y dwt [ [ wavelet names [ i ] ] ] )

}
y=vector ( length = n c o e f f s )
start idx=0
end idx=0
for ( i in length ( wavelet names) ) {

end idx=end idx+length ( y dwt [ [ wavelet names [ i ] ] ] )
y [ start idx +1:end idx ]=y dwt [ [ wavelet names [ i ] ] ]
start idx=end idx

}
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no i s e e s t=median(abs ( y ) )/0 .6745
return ( no i s e e s t )

}

functions.R

−−−
t i t l e : ” Evaluat ion ”
author : ”Pontus  Masip  ”
date : ” ‘ r  Sys . Date ( ) ‘ ”
output : pdf document
−−−

‘ ‘ ‘{ r setup , i n c lude=FALSE}
l ibrary ( waveslim )
l ibrary ( ggp lot2 )
l ibrary (expm)
l ibrary ( matl ib )
l ibrary ( t i d y r )
l ibrary ( dplyr )
l ibrary ( Metr ics )
l ibrary ( d o P a r a l l e l )
l ibrary ( t i b b l e )
source ( ’ f u n c t i o n s .R ’ )
‘ ‘ ‘

‘ ‘ ‘{ r message=TRUE, warning=TRUE}
f i t f o u r i e r smoother=function ( y obs , t obs ,K=20, e p s i l o n t

=0.05){
t wrapped=r e s c a l e x (as . array ( t obs ) ,

e p s i l o n=e p s i l o n t ,
wrapstart =0,
wrapend=pi )

n points=length ( t obs )

lambda old=0
df=2

X=create X mat( t wrapped ,K)
D=create D t i l d e (K)
M=create M lambda ( t wrapped ,X,D, lambda old )
b=create b vec (X, y obs )
a=create a vec (M, b)
S lambda=create S lambda (n points ,X,M)
g hat=g e s t ( a , t wrapped ,X)
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gamma=c a l c u l a t e gamma(n points ,X,K)
old c r o s s v a l=c a l c u l a t e CV(n points , y obs , g hat , S lambda

)
lambda old=i t e r a t e lambda (gamma, df , lambda old )

f i n i s h e d=FALSE

while ( ! f i n i s h e d )
{

M=create M lambda ( t wrapped ,X,D, lambda old )
a=create a vec (M, b)
S lambda=create S lambda (n points ,X,M)
g hat=g e s t ( a , t wrapped ,X)

new c r o s s v a l=c a l c u l a t e CV(n points , y obs , g hat , S
lambda )

lambda new=i t e r a t e lambda (gamma, df , lambda old )

i f (new c ro s sva l<=old c r o s s v a l ) {
df=df+1
lambda old=lambda new
old c r o s s v a l=new c r o s s v a l

}
else {

f i n i s h e d=TRUE
}

}
return ( l i s t ( lambda=lambda old , df=df , S lambda=S lambda , g

hat=g hat ,M lambda=M, old CV=old c ro s sva l ,new CV=new
c r o s s v a l ) )

}
‘ ‘ ‘

‘ ‘ ‘{ r }
f o u r i e r smoother df=t i b b l e ( Function=character ( ) ,K=numeric

( ) , I t e r a t i o n=numeric ( ) ,RMSE=numeric ( ) ,MSE=numeric ( ) ,
MAE=numeric ( ) ,R2=numeric ( ) ,

MAPE=numeric ( ) ,MASE=numeric
( ) ,sMAPE=numeric ( ) ,RAE=
numeric ( ) ,

RSE=numeric ( ) ,RRSE=numeric ( ) ,
SSE=numeric ( ) ,RMSLE=numeric
( ) ,MSLE=numeric ( ) , lambda=
numeric ( ) , f inalCV=numeric ( )
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,df=numeric ( ) )
function names=c ( ” Spikes ” , ” Blocks ” , ”Waves” , ” Doppler ” )
i=1
ytrue=t e s t $ytrue
ypred=out$g hat
K current=20
funcs=l i s t ( f u n c t i o n s=c ( sp ikes , corner , angles , bumps , b locks ,

heav i s ine , doppler ) , func names=c ( ” s p i k e s ” , ” corner ” , ”
ang l e s ” , ”bumps” , ” b locks ” , ” h e a v i s i n e ” , ” doppler ” ) )

j=1

‘ ‘ ‘

‘ ‘ ‘{ r }
f i t f o u r i e r and return df=function ( i , no i s e l e v e l , n points

, ytrue , t ,K current , e p s i l o n t , i t e r per func , cur r ent
func name) {

no i s e=no i s e l e v e l ∗rnorm(n points )
y no i sy=ytrue+no i s e
f i tted smoother=f i t f o u r i e r smoother ( y obs=y noisy , t

obs=t ,K=K current , e p s i l o n t = e p s i l o n t )
ypred=f i tted smoother$g hat
df l i s t=t i b b l e row( Function=current func name ,

I t e r a t i o n=i ,
K=K current ,
RMSE=rmse ( ac tua l=ytrue ,

p r ed i c t ed=ypred ) ,
MSE=mse ( ac tua l=ytrue ,

p r ed i c t ed=ypred ) ,
MAE=mae( ac tua l=ytrue ,

p r ed i c t ed=ypred ) ,
R2=1−sum( ( ypred − ytrue ) ˆ 2)

/sum( ( ytrue − mean( ytrue ) )
ˆ 2) ,

MAPE=mape( ac tua l=ytrue ,
p r ed i c t ed=ypred ) ,

MASE=mase ( ac tua l=ytrue ,
p r ed i c t ed=ypred ) ,

sMAPE=smape ( ac tua l=ytrue ,
p r ed i c t ed=ypred ) ,
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RAE=rae ( ac tua l=ytrue ,
p r ed i c t ed=ypred ) ,

RSE=r s e ( ac tua l=ytrue ,
p r ed i c t ed=ypred ) ,

RRSE=r r s e ( ac tua l=ytrue ,
p r ed i c t ed=ypred ) ,

SSE=s s e ( ac tua l=ytrue ,
p r ed i c t ed=ypred ) ,

RMSLE=rmsle ( ac tua l=ytrue ,
p r ed i c t ed=ypred ) ,

MSLE=msle ( ac tua l=ytrue ,
p r ed i c t ed=ypred ) ,

df=f i tted smoother$df ,
lambda=f i tted smoother$lambda ,
f inalCV=f i tted smoother$old CV)

return (df l i s t )
}
‘ ‘ ‘

‘ ‘ ‘{ r message=FALSE, warning=FALSE}
f o u r i e r smoother df=t i b b l e ( Function=character ( ) ,K=numeric

( ) , I t e r a t i o n=numeric ( ) ,RMSE=numeric ( ) ,MSE=numeric ( ) ,
MAE=numeric ( ) ,R2=numeric ( ) ,

MAPE=numeric ( ) ,MASE=numeric
( ) ,sMAPE=numeric ( ) ,RAE=
numeric ( ) ,

RSE=numeric ( ) ,RRSE=numeric ( ) ,
SSE=numeric ( ) ,RMSLE=numeric
( ) ,MSLE=numeric ( ) , lambda=
numeric ( ) , f inalCV=numeric ( )
,df=numeric ( ) )

i t e r per func=100
K current=20
data f=f o u r i e r smoother df
yactua l=t e s t $yout
t=seq ( from=0, to =1, length . out =2ˆ11)

e p s i l o n t=0.05
no i s e l e v e l =1
n points=length ( t )
K l i s t=c

(5 , 10 ,15 ,20 ,25 ,30 ,35 ,40 , 45 , 50 , 55 , 60 ,65 ,70 ,72 ,75 ,77 ,80 ,82 ,85 ,87 ,90 ,92 ,95 ,97 , 100)
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nThreads <− detectCores ( )−1

c lusterOfThreads <− makeCluster ( nThreads )

c lusterEvalQ ( c lusterOfThreads , {

l ibrary ( Metr ics )
l ibrary ( matl ib )
l ibrary (expm)
source ( ’ f u n c t i o n s .R ’ )

})
d o P a r a l l e l : : r e g i s t e r D o P a r a l l e l ( c lusterOfThreads , c o r e s=

nThreads )
set . seed (1972)
for ( i j in 1 : length (K l i s t ) ) {

K current=K l i s t [ i j ]
print ( ”K: ” )
print (K current )

for ( j in 1 : length ( funcs$ func names) ) {
cur rent func=funcs$ f u n c t i o n s [ j ] [ [ 1 ] ]
cu r r ent func name=funcs$ func names [ j ]
ytrue=current func ( t )

no i s e=rnorm(n=n points )∗no i s e l e v e l
ytrue=ytrue∗(7∗no i s e l e v e l /sd ( ytrue ) )
print ( ” Function : ” )
print ( cur r ent func name)

c lu s t e rExpor t ( c lusterOfThreads , v a r l i s t = c ( ” f i t
f o u r i e r and return df ” ,

” f i t f o u r i e r
smoother” ,

”rmse” , ”mse”
, ”mae” , ”
mape” , ”
mase” , ”
smape” ,

” rae ” , ” r s e ” ,
” r r s e ” , ”

s s e ” , ”
rmsle ” , ”
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msle ” ,
” no i s e l e v e l ”

, ” t i b b l e
row” , ”n
po in t s ” , ”
ytrue ” , ” t ”
, ”K
current ” , ”
e p s i l o n t ”
, ” i t e r per
func ” , ”

cur rent
func name”
, ” r e s c a l e
x” , ”
r e s c a l e
add no i s e ”
) )

l i s t o f df=clus te rApply ( c l=clusterOfThreads ,
x=seq ( length . out=i t e r per func

) ,
fun=function ( i ) f i t f o u r i e r

and return df ( i , no i s e l e v e l
=no i s e l e v e l , n points=n
points , ytrue=ytrue , t=t ,K
cur rent=K current , e p s i l o n t
=e p s i l o n t , i t e r per func=
i t e r per func , cur r ent func
name = current func name ) )

data f=data f%>%bind rows ( l i s t o f df )

}}
s topClus t e r ( c lusterOfThreads )

write . csv ( dataf , ” f o u r i e r smoothing s t a t s . csv ” )
‘ ‘ ‘
‘ ‘ ‘{ r }
t e s t df=data f

t e s t df=t e s t df%>%group by( Function ,K)%>%summarise (RMSE=
mean(RMSE) ,

MSE=mean(MSE) ,
MAE=mean(MAE) ,
R2=mean(R2) ,
MAPE=mean(MAPE) ,
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MASE=mean(MASE) ,
sMAPE=mean(sMAPE) ,
RAE=mean(RAE) ,
RSE=mean(RSE) ,
RRSE=mean(RRSE) ,

SSE=mean(SSE) ,
RMSLE=mean(RMSLE) ,

MSLE=mean(MSLE) , lambda=mean(
lambda ) ,df=median(df ) ,
f inalCV=mean( f inalCV ) )

t e s t df
ggp lot (data=t e s t df , mapping=aes ( x=K, y=RMSE, c o l o r=Function

) )+geom l i n e ( )

‘ ‘ ‘

‘ ‘ ‘{ r }

f i t wavelet and return df=function ( i , cur rent func name ,
ytrue , cur rent wf , r e s o l u t i o n l e v e l , boundary ) {

no i s e=no i s e l e v e l ∗rnorm(n points )
y no i sy=ytrue+no i s e
y dwt=dwt ( y noisy , wf=cur rent wf , n . levels=r e s o l u t i o n

l e v e l , boundary=boundary )

no i s e e s t imate<−MAD no i s e e s t ( y dwt )
u n i v e r s a l th r e sho ld lambda=no i s e e s t imate∗sqrt (2∗log (n

points ) )

FDR thre sho ld lambda<−FDR thre sho ld ( y dwt , no i s e
est imate , alpha =0.01)

y s univ dwt<−s o f t th r e sho ld ( y dwt , u n i v e r s a l th r e sho ld
lambda )

y h univ dwt<−hard thr e sho ld ( y dwt , u n i v e r s a l th r e sho ld
lambda )

y s fd r dwt<−s o f t th r e sho ld ( y dwt ,FDR thre sho ld lambda )
y h fd r dwt<−hard thr e sho ld ( y dwt ,FDR thre sho ld lambda )
y s sure dwt<−sure . thresh ( y dwt ,max. l e v e l=min(

r e s o l u t i o n l e v e l , 1 2 ) , hard=FALSE)
y h sure dwt<−sure . thresh ( y dwt ,max. l e v e l=min(
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r e s o l u t i o n l e v e l , 1 2 ) , hard=TRUE)

y s univ pred=idwt ( y s univ dwt )
y h univ pred=idwt ( y h univ dwt )
y s fd r pred=idwt ( y s fd r dwt )
y h fd r pred=idwt ( y h fd r dwt )
y s sure pred=idwt ( y s sure dwt )
y h sure pred=idwt ( y h sure dwt )

ypred l i s t=l i s t ( s univ=y s univ pred , h univ=y h univ
pred , s f d r=y s fd r pred , h fd r=y h fd r pred , s sure=y
s sure pred , h sure=y h sure pred )

ypred names=c ( ” s univ ” , ”h univ ” , ” s fd r ” , ”h fd r ” , ” s sure
” , ”h sure ” )

df=t i b b l e ( )
for ( k in 1 : length ( ypred names) ) {

ypred=ypred l i s t [ [ ypred names [ k ] ] ]
df=df%>%bind rows ( t i b b l e row( Function=current func

name ,
I t e r a t i o n=i ,
Reso lut ion Leve l=r e s o l u t i o n

l e v e l ,
Wavelet F i l t e r=current wf ,
Threshold ing Method=ypred

names [ k ] ,
RMSE=rmse ( ac tua l=ytrue ,

p r ed i c t ed=ypred ) ,
MSE=mse ( ac tua l=ytrue ,

p r ed i c t ed=ypred ) ,
MAE=mae( ac tua l=ytrue ,

p r ed i c t ed=ypred ) ,
R2=1−sum( ( ypred − ytrue ) ˆ 2)

/sum( ( ytrue − mean( ytrue ) )
ˆ 2) ,

MAPE=mape( ac tua l=ytrue ,
p r ed i c t ed=ypred ) ,

MASE=mase ( ac tua l=ytrue ,
p r ed i c t ed=ypred ) ,

sMAPE=smape ( ac tua l=ytrue ,
p r ed i c t ed=ypred ) ,

RAE=rae ( ac tua l=ytrue ,
p r ed i c t ed=ypred ) ,

RSE=r s e ( ac tua l=ytrue ,
p r ed i c t ed=ypred ) ,

RRSE=r r s e ( ac tua l=ytrue ,
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pred i c t ed=ypred ) ,

SSE=s s e ( ac tua l=ytrue ,
p r ed i c t ed=ypred ) ,

) )

}
return (df )

}

‘ ‘ ‘

‘ ‘ ‘{ r }

wavelet smoother df=t i b b l e ( Function=character ( ) ,
Reso lut ion Leve l=numeric ( ) ,

Wavelet F i l t e r=character ( ) ,
I t e r a t i o n=numeric ( ) ,
Threshold ing Method=
character ( ) ,RMSE=numeric ( )
,MSE=numeric ( ) ,

MAE=numeric ( ) ,R2=numeric ( ) ,
MAPE=numeric ( ) ,MASE=numeric
( ) ,sMAPE=numeric ( ) ,RAE=
numeric ( ) ,

RSE=numeric ( ) ,RRSE=numeric ( ) ,
SSE=numeric ( ) )

i t e r per func=100

datafram=wavelet smoother df

t=seq ( from=0, to =1, length . out =2ˆ11)

no i s e l e v e l =1
n points=length ( t )
boundary=” p e r i o d i c ”
wavelet f i l t e r l i s t=c ( ” haar ” , ” l a8 ” , ” la16 ” , ”d4” , ”d8” , ”d16”

)

nThreads <− detectCores ( )−1

c lusterOfThreads <− makeCluster ( nThreads )
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c lusterEvalQ ( c lusterOfThreads , {

l ibrary ( Metr ics )
l ibrary ( matl ib )
l ibrary ( dplyr )
l ibrary ( waveslim )
l ibrary (expm)
source ( ’ f u n c t i o n s .R ’ )

})
d o P a r a l l e l : : r e g i s t e r D o P a r a l l e l ( c lusterOfThreads , c o r e s=

nThreads )

set . seed (1968)
for ( i i in 1 : 1 1 ) {

r e s o l u t i o n l e v e l=i i
print ( ” Reso lut ion  Leve l ” )
print ( r e s o l u t i o n l e v e l )

for ( j j in 1 : length ( wavelet f i l t e r l i s t ) ) {
cur rent wf=wavelet f i l t e r l i s t [ j j ]

for ( j in 1 : length ( funcs$ func names) ) {
cur rent func=funcs$ f u n c t i o n s [ j ] [ [ 1 ] ]
cu r r ent func name=funcs$ func names [ j ]
ytrue=current func ( t )

no i s e=rnorm(n=n points )∗no i s e l e v e l
ytrue=ytrue∗(7∗no i s e l e v e l /sd ( ytrue ) )

c lu s t e rExpor t ( c lusterOfThreads , v a r l i s t = c ( ” f i t
wavelet and return df ” ,

”MAD no i s e
e s t ” , ”
ytrue ” ,

” no i s e l e v e l ”
, ” t i b b l e
row” , ”n
po in t s ” , ”
i t e r per
func ” , ”
cur rent
func name”
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, ” r e s c a l e
x” , ”
r e s c a l e
add no i s e ”
, ”boundary
” , ”
r e s o l u t i o n

l e v e l ” , ”
cur rent wf
” ) )

l i s t o f df=clus te rApply ( c l=clusterOfThreads ,
x=seq ( length . out=i t e r per func

) ,
fun=function ( i ) f i t wavelet

and return df ( i=i , cur r ent
func name=current func name
, ytrue=ytrue , cur rent wf=
current wf , r e s o l u t i o n l e v e l
=r e s o l u t i o n l e v e l , boundary
=boundary ) )

datafram=datafram%>%bind rows ( l i s t o f df )

}}}
s topClus t e r ( c lusterOfThreads )
write . csv ( datafram , ” wavelet p e r i o d i c smoothing s t a t s . csv ”

)
‘ ‘ ‘

−−−
t i t l e : ” Evaluat ion Plot s ”
output : html document
date : ” ‘ r  Sys . Date ( ) ‘ ”
−−−

‘ ‘ ‘{ r setup , i n c lude=FALSE}
l ibrary ( waveslim )
l ibrary ( ggp lot2 )
l ibrary (expm)
l ibrary ( matl ib )
l ibrary ( t i d y r )
l ibrary ( dplyr )
l ibrary ( Metr ics )
l ibrary ( s t r i n g r )
source ( ’ f u n c t i o n s .R ’ )
PLOTWIDTH=25
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PLOTHEIGHT=15
LINEWIDTH=2
ERRORLINEWIDTH=1
ERRORWIDTH=0.75
FIG DPI=500
standard theme=theme ( text=element text ( s i z e =24) )
‘ ‘ ‘

‘ ‘ ‘{ r }
f o u r i e r df=read . csv ( ” f o u r i e r smoothing s t a t s 2 . csv ” )%>%

s e l e c t ( !X)

long f o u r i e r df<−f o u r i e r df%>%pivot l onge r ( c o l s=−c ( ”
Function ” , ”K” , ” I t e r a t i o n ” ) ,names to=” metr ic ” )%>%group
by( Function ,K, metr ic )%>%mutate ( sd=sd ( va lue ) , avg=mean(
va lue ) )

long f o u r i e r df=long f o u r i e r df%>%f i l t e r ( metr ic %in%c ( ”
RMSE” , ”MAE” , ”sMAPE” , ”R2” , ” df ” , ” f inalCV ” , ”lambda” ) )%>%
mutate ( Function = s t r to t i t l e ( Function ) , metr ic=recode
( metric , f inalCV=” Fina l  CV” ) )

wavelet df=read . csv ( ” wavelet p e r i o d i c smoothing s t a t s . csv
” )%>%s e l e c t ( !X)

long wavelet df<−wavelet df%>%pivot l onge r ( c o l s=−c ( ”
Function ” , ” Reso lut ion Leve l ” , ” I t e r a t i o n ” , ”Wavelet
F i l t e r ” , ” Threshold ing Method” ) ,names to=” metr ic ” )%>%
f i l t e r ( metr ic %in%c ( ”RMSE” , ”MAE” , ”sMAPE” , ”R2” ) )%>%
group by( Function , Wavelet F i l t e r , Reso lut ion Level ,
Threshold ing Method , metr ic )%>%mutate ( sd=sd ( va lue ) , avg=
mean( va lue ) )

long wavelet df=long wavelet df%>%mutate ( Function = s t r
to t i t l e ( Function ) , Wavelet F i l t e r=recode ( Wavelet
F i l t e r , d4 = ”D4” , haar = ”Haar” , d8=”D8” , d16=”D16” , l a8
=”LA8” , la16=”LA16” ) , Threshold ing Method=recode (
Threshold ing Method , s univ=” So f t  Un ive r sa l ” , s f d r=”
So f t  FDR” , s sure=” So f t  SureShrink ” ,h univ=”Hard  
Un ive r sa l ” ,h fd r=”Hard  FDR” ,h sure=”Hard  SureShrink ” ) )

long wavelet df
‘ ‘ ‘

‘ ‘ ‘{ r }

df CV lambda plot=ggplot (data=long f o u r i e r df%>%f i l t e r (
metr ic %in% c ( ” df ” , ” Fina l  CV” , ”lambda” ) ) , mapping=aes ( x
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=K, y=avg , c o l o r=Function ) )+geom l i n e ( l i n ew id th=
LINEWIDTH)+geom er ro rba r ( aes ( ymin=avg−sd , ymax=avg+sd ) ,
l i n ew id th=ERRORLINEWIDTH, width=5∗ERRORWIDTH)+f a c e t
wrap ( f a c e t s=” metr ic ” , s c a l e s=” f r e e y” )+standard theme

RMSE sMAPE MAE plot=ggplot (data=long f o u r i e r df%>%f i l t e r (
metr ic %in% c ( ”RMSE” , ”sMAPE” , ”MAE” ) ) , mapping=aes ( x=K, y
=avg , c o l o r=Function ) )+geom l i n e ( l i n ew id th=LINEWIDTH)+
geom er ro rba r ( aes ( ymin=avg−sd , ymax=avg+sd ) , l i n ew id th=
ERRORLINEWIDTH, width=5∗ERRORWIDTH)+f a c e t wrap ( f a c e t s=”
metr ic ” , s c a l e s=” f r e e y” )+standard theme

ggsave ( ” Figures/Resu l t s/df CV lambda p lo t . png” ,df CV
lambda plot , width=PLOTWIDTH, he ight=PLOTHEIGHT, dpi=FIG
DPI)

ggsave ( ” Figures/Resu l t s/RMSE sMAPE MAE plo t . png” ,RMSE
sMAPE MAE plot , width=PLOTWIDTH, he ight=PLOTHEIGHT, dpi=
FIG DPI)

‘ ‘ ‘

‘ ‘ ‘{ r }
ggp lot (data=f o u r i e r df%>%f i l t e r ( Function !=” doppler ”&

Function !=” h e a v i s i n e ” ) , mapping=aes ( x=K, y=R2 , c o l o r=
Function ) )+geom l i n e ( aes ( y=R2) )+geom er ro rba r ( aes ( ymin
=mean(R2)−sd (R2) ,ymax=mean(R2)+sd (R2) ) )

‘ ‘ ‘
‘ ‘ ‘{ r }
s o f t t h r e sh o ld i ng sMAPE plot=ggplot (data=long wavelet df

%>%f i l t e r ( metr ic==”sMAPE” , Function !=”bumps” ,
Threshold ing Method%in%c ( ” So f t  Un ive r sa l ” , ” So f t  FDR” , ”
So f t  SureShrink ” ) ) , mapping=aes ( x=Reso lut ion Level , y=
avg , c o l o r=Function ) )+geom l i n e ( l i n ew id th=LINEWIDTH)+
geom er ro rba r ( aes ( ymin=avg−sd , ymax=avg+sd ) , l i n ew id th=
ERRORLINEWIDTH, width=ERRORWIDTH)+f a c e t grid (
Threshold ing Method˜Wavelet F i l t e r , s c a l e s=” f r e e y” )+
labs ( x=” Reso lut ion  Level ,  J” , y=”Average  sMAPE over  100
 S imulat ions ” , t i t l e=” So f t  Threshold ing ” )+standard
theme

hard t h r e sh o ld i ng sMAPE plot=ggplot (data=long wavelet df
%>%f i l t e r ( metr ic==”sMAPE” , Function !=”bumps” ,
Threshold ing Method%in%c ( ”Hard  Un ive r sa l ” , ”Hard  FDR” , ”
Hard  SureShrink ” ) ) , mapping=aes ( x=Reso lut ion Level , y=
avg , c o l o r=Function ) )+geom l i n e ( l i n ew id th=LINEWIDTH)+
geom er ro rba r ( aes ( ymin=avg−sd , ymax=avg+sd ) , l i n ew id th=
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ERRORLINEWIDTH, width=ERRORWIDTH)+f a c e t grid (
Threshold ing Method˜Wavelet F i l t e r , s c a l e s=” f r e e y” )+
labs ( x=” Reso lut ion  Level ,  J” , y=”Average  sMAPE over  100
 S imulat ions ” , t i t l e=”Hard  Threshold ing ” )+standard
theme

sure th r e sho ld sMAPE plot=ggplot (data=long wavelet df%>%
f i l t e r ( metr ic==”sMAPE” , Function !=”bumps” , Threshold ing
Method%in%c ( ” So f t  SureShrink ” , ”Hard  SureShrink ” ) ) ,
mapping=aes ( x=Reso lut ion Level , y=avg , c o l o r=Function ) )+
geom l i n e ( l i n ew id th=LINEWIDTH)+geom er ro rba r ( aes ( ymin=
avg−sd , ymax=avg+sd ) , l i n ew id th=ERRORLINEWIDTH, width=
ERRORWIDTH)+f a c e t grid ( Threshold ing Method˜˜Wavelet
F i l t e r , s c a l e s=” f r e e y” )+labs ( x=” Reso lut ion  Level ,  J” , y
=”Average  sMAPE over  100  S imulat ions ” , t i t l e=”
SureShrink  Threshold ” )+standard theme

ggsave ( ” Figures/Resu l t s/ s o f t t h r e sh o ld i ng sMAPE p lo t . png”
,plot=s o f t t h r e sh o ld i ng sMAPE plot , width=PLOTWIDTH,
he ight=PLOTHEIGHT, dpi=FIG DPI)

ggsave ( ” Figures/Resu l t s/hard t h r e sh o ld i ng sMAPE p lo t . png”
,plot=hard t h r e sh o ld i ng sMAPE plot , width=PLOTWIDTH,
he ight=PLOTHEIGHT, dpi=FIG DPI)

ggsave ( ” Figures/Resu l t s/ sure th r e sho ld sMAPE p lo t . png” ,
plot=sure th r e sho ld sMAPE plot , width=PLOTWIDTH, he ight=
PLOTHEIGHT, dpi=FIG DPI)

‘ ‘ ‘
‘ ‘ ‘{ r }
s o f t t h r e sh o ld i ng RMSE plot=ggplot (data=long wavelet df

%>%f i l t e r ( metr ic==”RMSE” , Function !=”bumps” ,
Threshold ing Method%in%c ( ” So f t  Un ive r sa l ” , ” So f t  FDR” , ”
So f t  SureShrink ” ) ) , mapping=aes ( x=Reso lut ion Level , y=
avg , c o l o r=Function ) )+geom l i n e ( l i n ew id th=LINEWIDTH)+
geom er ro rba r ( aes ( ymin=avg−sd , ymax=avg+sd ) , l i n ew id th=
ERRORLINEWIDTH, width=ERRORWIDTH)+f a c e t grid (
Threshold ing Method˜Wavelet F i l t e r , s c a l e s=” f r e e y” )+
labs ( x=” Reso lut ion  Level ,  J” , y=”Average  RMSE over  100  
S imulat ions ” , t i t l e=” So f t  Threshold ing ” )+standard theme

hard t h r e sh o ld i ng RMSE plot=ggplot (data=long wavelet df
%>%f i l t e r ( metr ic==”RMSE” , Function !=”bumps” ,
Threshold ing Method%in%c ( ”Hard  Un ive r sa l ” , ”Hard  FDR” , ”
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Hard  SureShrink ” ) ) , mapping=aes ( x=Reso lut ion Level , y=
avg , c o l o r=Function ) )+geom l i n e ( l i n ew id th=LINEWIDTH)+
geom er ro rba r ( aes ( ymin=avg−sd , ymax=avg+sd ) , l i n ew id th=
ERRORLINEWIDTH, width=ERRORWIDTH)+f a c e t grid (
Threshold ing Method˜Wavelet F i l t e r , s c a l e s=” f r e e y” )+
labs ( x=” Reso lut ion  Level ,  J” , y=”Average  RMSE over  100  
S imulat ions ” , t i t l e=”Hard  Threshold ing ” )+standard theme

sure th r e sho ld RMSE plot=ggplot (data=long wavelet df%>%
f i l t e r ( metr ic==”RMSE” , Function !=”bumps” , Threshold ing
Method%in%c ( ” So f t  SureShrink ” , ”Hard  SureShrink ” ) ) ,
mapping=aes ( x=Reso lut ion Level , y=avg , c o l o r=Function ) )+
geom l i n e ( l i n ew id th=LINEWIDTH)+geom er ro rba r ( aes ( ymin=
avg−sd , ymax=avg+sd ) , l i n ew id th=ERRORLINEWIDTH, width=
ERRORWIDTH)+f a c e t grid ( Threshold ing Method˜˜Wavelet
F i l t e r , s c a l e s=” f r e e y” )+labs ( x=” Reso lut ion  Level ,  J” , y
=”Average  RMSE over  100  S imulat ions ” , t i t l e=” SureShrink
 Threshold ” )+standard theme

ggsave ( ” Figures/Resu l t s/ s o f t t h r e sh o ld i ng RMSE p lo t . png” ,
plot=s o f t t h r e sh o ld i ng RMSE plot , width=PLOTWIDTH,
he ight=PLOTHEIGHT, dpi=FIG DPI)

ggsave ( ” Figures/Resu l t s/hard t h r e sh o ld i ng RMSE p lo t . png” ,
plot=hard t h r e sh o ld i ng RMSE plot , width=PLOTWIDTH,
he ight=PLOTHEIGHT, dpi=FIG DPI)

ggsave ( ” Figures/Resu l t s/ sure th r e sho ld RMSE p lo t . png” ,
plot=sure th r e sho ld RMSE plot , width=PLOTWIDTH, he ight=
PLOTHEIGHT, dpi=FIG DPI)

‘ ‘ ‘

‘ ‘ ‘{ r }
s o f t t h r e sh o ld i ng MAE plot=ggplot (data=long wavelet df%>%

f i l t e r ( metr ic==”MAE” , Function !=”bumps” , Threshold ing
Method%in%c ( ” So f t  Un ive r sa l ” , ” So f t  FDR” , ” So f t  
SureShrink ” ) ) , mapping=aes ( x=Reso lut ion Level , y=avg ,
c o l o r=Function ) )+geom l i n e ( l i n ew id th=LINEWIDTH)+geom
er ro rba r ( aes ( ymin=avg−sd , ymax=avg+sd ) , l i n ew id th=
ERRORLINEWIDTH, width=ERRORWIDTH)+f a c e t grid (
Threshold ing Method˜Wavelet F i l t e r , s c a l e s=” f r e e y” )+
labs ( x=” Reso lut ion  Level ,  J” , y=”Average  MAE over  100  
S imulat ions ” , t i t l e=” So f t  Threshold ing ” )+standard theme

hard t h r e sh o ld i ng MAE plot=ggplot (data=long wavelet df%>%
f i l t e r ( metr ic==”MAE” , Function !=”bumps” , Threshold ing
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Method%in%c ( ”Hard  Un ive r sa l ” , ”Hard  FDR” , ”Hard  
SureShrink ” ) ) , mapping=aes ( x=Reso lut ion Level , y=avg ,
c o l o r=Function ) )+geom l i n e ( l i n ew id th=LINEWIDTH)+geom
er ro rba r ( aes ( ymin=avg−sd , ymax=avg+sd ) , l i n ew id th=
ERRORLINEWIDTH, width=ERRORWIDTH)+f a c e t grid (
Threshold ing Method˜Wavelet F i l t e r , s c a l e s=” f r e e y” )+
labs ( x=” Reso lut ion  Level ,  J” , y=”Average  MAE over  100  
S imulat ions ” , t i t l e=”Hard  Threshold ing ” )+standard theme

sure th r e sho ld MAE plot=ggplot (data=long wavelet df%>%
f i l t e r ( metr ic==”MAE” , Function !=”bumps” , Threshold ing
Method%in%c ( ” So f t  SureShrink ” , ”Hard  SureShrink ” ) ) ,
mapping=aes ( x=Reso lut ion Level , y=avg , c o l o r=Function ) )+
geom l i n e ( l i n ew id th=LINEWIDTH)+geom er ro rba r ( aes ( ymin=
avg−sd , ymax=avg+sd ) , l i n ew id th=ERRORLINEWIDTH, width=
ERRORWIDTH)+f a c e t grid ( Threshold ing Method˜˜Wavelet
F i l t e r , s c a l e s=” f r e e y” )+labs ( x=” Reso lut ion  Level ,  J” , y
=”Average  MAE over  100  S imulat ions ” , t i t l e=” SureShrink  
Threshold ” )+standard theme

ggsave ( ” Figures/Resu l t s/ s o f t t h r e sh o ld i ng MAE plo t . png” ,
plot=s o f t t h r e sh o ld i ng MAE plot , width=PLOTWIDTH, he ight
=PLOTHEIGHT, dpi=FIG DPI)

ggsave ( ” Figures/Resu l t s/hard t h r e sh o ld i ng MAE plo t . png” ,
plot=hard t h r e sh o ld i ng MAE plot , width=PLOTWIDTH, he ight
=PLOTHEIGHT, dpi=FIG DPI)

ggsave ( ” Figures/Resu l t s/ sure th r e sho ld MAE plo t . png” ,plot
=sure th r e sho ld MAE plot , width=PLOTWIDTH, he ight=
PLOTHEIGHT, dpi=FIG DPI)

‘ ‘ ‘

−−−
t i t l e : ” P lo t s  o f  t e s t  f u n c t i o n s ”
output : html notebook
−−−
‘ ‘ ‘{ r }
l ibrary ( t i d y v e r s e )
l ibrary ( ggp lot2 )
source ( ’ f u n c t i o n s .R ’ )
PLOTWIDTH=25
PLOTHEIGHT=15
LINEWIDTH=2
ERRORLINEWIDTH=1
ERRORWIDTH=0.75
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FIG DPI=300
standard theme=theme ( text=element text ( s i z e =24) )
‘ ‘ ‘

‘ ‘ ‘{ r }
cur rent func=funcs$ f u n c t i o n s [ j ] [ [ 1 ] ]

cu r r ent func name=funcs$ func names [ j ]
ytrue=current func ( t )
funcs=l i s t ( f u n c t i o n s=c ( sp ikes , corner , angles , bumps ,

blocks , heav i s ine , doppler ) , func names=c ( ” Spikes ” , ”
Corner” , ” Angles ” , ”Bumps” , ” Blocks ” , ” Heav i s ine ” , ”
Doppler ” ) )

t vec=seq ( from=0, to =1, length . out =2ˆ11)
for ( j in 1 : length ( funcs$ func names) ) {
cur rent func=funcs$ f u n c t i o n s [ j ] [ [ 1 ] ]
cu r r ent func name=funcs$ func names [ j ]
ytrue=current func ( t vec )

no i s e=rnorm(n=n points )∗no i s e l e v e l
ytrue=ytrue∗(7∗no i s e l e v e l /sd ( ytrue ) )
y no i sy=ytrue+no i s e
plot df=bind rows ( t i b b l e ( t=t vec , va lue=ytrue , type=”

Without  no i s e ” , func=current func name) , t i b b l e ( t=t
vec , va lue=y noisy , type=”With  added  no i s e ” , func=
current func name) )

func plot=ggplot (data=plot df , mapping=aes ( x=t , y=value ) )
+geom l i n e ( l i n ew id th=LINEWIDTH)+f a c e t wrap ( ” type ” )+
standard theme+labs ( x=” t ” , y=”y” )

f i l ename=paste ( ” Figures/ t e s t f u n c t i o n s/” ,paste ( cur r ent
func name , ” p l o t . jpg ” , sep=”” ) )

ggsave ( f i l ename , func plot , he ight = PLOTHEIGHT, width =
PLOTWIDTH, dpi=FIG DPI)

}
‘ ‘ ‘
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