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Abstract

This thesis investigates the performance of two supervised ma-
chine learning models, XGBoost and a feedforward neural network,
to predict whether a football match will have more or fewer than
2.5 goals. Before the analysis, we present the mathematical back-
ground of the models. Using historical data from the top five Euro-
pean leagues downloaded from Football-Data.co.uk, relevant features
are engineered and used to train the two models. Their performance
is evaluated in terms of prediction accuracy as well as profitability
when simulating bets on the over/under 2.5 goals market in the cur-
rent 2024/2025 season. Although the results are not entirely satisfac-
tory in terms of classification performance, the models show signs of
profitability and should be investigated further. We propose several
directions for further improvement, with the main suggestion being
to incorporate more representative features that better capture the
different aspects of match tactics and play styles, as a model is only
as good as the data it learns from.
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1 Introduction

1.1 Background

Like many other sports, football is a source of entertainment, filled with
emotion and unexpected moments. However, as football has grown into a
massive global industry, the rise of data science and data generation has
created opportunities for all parties involved in the football industry to op-
timize their decisions based on actual data, leaving as little as possible to
chance. Teams now use data for everything from evaluating match per-
formance and analyzing opponents’ strengths and weaknesses to scouting
players (a concept popularized in the movie Moneyball). This availability
of data has also given betting companies (also called bookmakers) the abil-
ity to provide increasingly accurate odds (increasing their revenue) not only
for match results but also for a variety of in-game outcomes such as total
number of goals, corners and more.

This raises an interesting question: since data is publicly available, is it
also possible for individuals outside the professional football industry like
bettors and spectators to use it to their advantage? In this thesis, we explore
that question by employing two machine learning models: XGBoost and a
feedforward neural network. We focus on the over/under 2.5 goals market
(predicting whether a match will have more or fewer than 2.5 goals) and
frame the task as a binary classification problem. We evaluate the models
based on predictive accuracy and cumulative profit by simulating bets on
the 2024/2025 season using the models. We consider the top five European
leagues.

1.2 Disposition

We start by presenting the underlying theory behind neural networks as well
as XGBoost in Section 2. In Section 2 we also present some ideas of betting
used when evaluating our models. In Section 3 we do an exploratory analysis
of the data used as well as discuss the model design and hyperparameter
tuning done. Section 4 contains the results of the modeling and in Section
5, discussion of the results and possible improvements can be found.
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2 Background theory

This section will cover the underlying theory for the models and methods
used in this thesis. Unless stated otherwise, Sections 2.1, 2.2, 2.3 and 2.4
are based on Hastie et al. (2017) Chapter 2.

2.1 Supervised learning

In machine learning, usually we have a set of input data (also called pre-
dictors or features) and we want to make predictions based on that data.
There are two main categories in machine learning: supervised and unsu-
pervised learning. The main difference between the two categories is the
nature of the input data, where we have labeled data when applying super-
vised learning and unlabeled data for unsupervised learning. Labeled input
data is data that has a corresponding output variable (also called target
or response variable). In other words, in the unsupervised setting we are
trying to learn useful properties in the dataset and describe the relations
between the input variables, whereas in the supervised setting we are trying
to predict the outcome of the output variable, given a realization of the
input variables.

There are two categories of supervised learning: regression and classifi-
cation problems. In the regression task, the output variable is quantitative
whilst classification tasks handle qualitative output variables.

In this thesis we study a classification problem and employ two models
that will be described in Sections 2.5 and 2.8.

2.2 Loss function

At the core of supervised learning, the objective is to find the relationship
between the features and the response variable that gives us the best pre-
diction. More formally, we are trying to approximate the true regression
function f(X) in Y = f(X) + ε, where ε is a centered error term with
Var(ε|X = x) = σ2(x). Given a method of fitting our model to training
data, we obtain an estimate f̂ of the regression function f . This gives rise
to a prediction ŷ = f̂(X) of the observed value y of the outcome variable Y
for a new observation, with predictor vector X that is not part of training
data. In order to find the best approximation f̂ of f , we need a measure of
the prediction error. This error is determined by a loss function (also called
cost function) L(y, ŷ). The loss function is used when choosing a method
for fitting the model to the data and determine the optimal fit f̂ , which is
the estimate of f that minimizes the loss function. In regression problems
with a training dataset {(Xi, Yi)}Ni=1 of size N , a common loss function is
the mean squared error (MSE) 1

N

∑N
i=1 (yi − ŷi)

2, which is referred to as
the mean squared error of prediction (MSEP) if the dataset {(Xi, Yi)}Ni=1
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is a test dataset. However, MSE is not well-suited for classification tasks.
Although MSE is possible to use for classification problems, it is more often
used for regression problems. For this reason, other loss functions like rates
of misclassification can also be used. The chosen loss function for the XG-
Boost model and the neural network used in this thesis will be presented in
their respective model sections.

2.3 The bias-variance tradeoff

Before the approximated function f̂(X) is being modeled, the dataset is split
into two parts: a training and a test set. If the dataset is large enough, it can
also be split into three sets where the third set is used for validation. When
we approximate the function f(X) by f̂(X), it is done using the training
set and referred to as training the model. The test set is then used to assess
the predictive accuracy of the model.

When evaluating the performance of the model, the training and test
sets are used. The optimal model will have good performance on both sets
but if it performs well only on the training data, the model is said to be
overfitting. This happens when the model is overadapting to the patterns of
the training set and not able to generalize well to new data. In other words
the fitted model is too complex. On the other hand, if the model performs
poorly on the training and the test sets, it is said to be underfitting. This
occurs when the model fails to learn the relationship between the predictors
and the response variable sufficiently well (the fitted model is not complex
enough).

The expected prediction error, given a specific predictor vector x0, can
be decomposed as:

Err(x0) = E[(Y − f̂(x0))
2]

= (E[f̂(x0)]− f(x0))
2 + E[(f̂(x0)− E[f̂(x0)])

2] + σ2(x0)

= Bias2(x0) + Var(f̂(x0)) + σ2(x0).

There is always an irreducible error σ2(x0) present in the expected predic-
tion error but the bias and variance behave differently depending on the
fit of the model. If overfitting occurs, the expected prediction error will
be dominated by the variance since the model is too complex and will be
sensitive to changes in the data, meaning variance will be high and bias low.
On the contrary, when a model is underfitting, the expected prediction error
will be dominated by the bias since the model is not complex enough and
the difference between datasets is therefore not significant, meaning high
bias and low variance. The bias-variance tradeoff refers to the search of a
model that balances between these two scenarios and is illustrated in Fig-
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ure 1. In most cases, we are more concerned about overfitting rather than
underfitting.

Figure 1: Visual representation of the bias-variance tradeoff. The goal of fitting a
supervised machine learning model is to find the middle ground between under- and
overfitting, indicated by the vertical uppward pointing arrow. Taken from Hastie
et al. (2017).

There are different ways of preventing overfitting, using regularization
techniques. Further discussion of regularization is provided in the corre-
sponding subsection for XGBoost and neural network.

2.4 Hyperparameters

In addition to the loss function, machine learning models often include hy-
perparameters, which control various aspects of the learning process. Hyper-
parameters are not learned from the data but are set before training and can
significantly affect model performance. Common hyperparameters include
learning rate, number of hidden layers in neural networks, and maximum
tree depth in decision trees or boosting algorithms. The specific hyperpa-
rameters used for each model in this thesis will be explained in later sections.

2.5 Neural network

In this section, we will present the theoretical background of the neural net-
work used in this thesis. Unless stated otherwise, the content is based on
Goodfellow et al. (2016). Exceptions include Sections 2.5.3 Batch Normal-
ization and 2.5.5 Regularization, which are based on Ioffe & Szegedy (2015)
and Srivastava et al. (2014), respectively.
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Some readers might be familiar with the term neural network but now we will
take a closer look at one of the simpler neural networks called feedforward
neural network. The name comes from the fact that the information flows
explicitly forward through the network from one layer to the next. Each
layer consists of a set of neurons or units that are connected to the units in
the previous and next layer. When the units are connected to all units in
the previous and next layer the network is said to be fully connected (see the
left plot of Figure 2 for a simple illustration). Neural networks are composed
of three types of layers: input, hidden, and output layers. The input layer
is the first layer in the network and contains the same number of units as
there are features in the input data. Following the input layer are one or
more hidden layers, whose number and size (number of units per layer) are
not fixed and must be chosen prior to training. The last layer of the network
is called output layer and the number of units depends on the problem at
hand. For multiclass classification with K classes, the output layer consists
of K units where each unit outputs the estimated conditional probability of
the input vector of features belonging to its respective class.

Nonlinear functions called activation functions (described in more detail
in Section 2.5.4) are applied to the output of each layer. The activation
function applied to each layer does not have to be the same, however, the
activation function for the output layer is related to the loss function used
and needs some deliberation. The most common loss function used in neural
networks is the cross-entropy

L(θ̂) = −
K∑
k=1

yk log ŷk(θ̂), (1)

where θ̂ are the model parameters, K is the total number of classes, yk
is the indicator of the target being of class k and ŷk(θ̂) is the estimated
conditional probability of Y = (Y1, . . . , YK) being of class k given x, i.e.
ŷk = P (Yk = 1|x; θ̂). In the case of binary classification, we have a single
target y that is either one or zero. The target variable is then Bernoulli
distributed and has the estimated conditional probability

P̂ (Y = y | x) = ŷy(1− ŷ)1−y. (2)

By substituting ŷk in equation (1) with equation (2) and setting the number
of classes K to two, the cross-entropy for binary classification can then be
written as

L(θ̂) = −(y log ŷ + (1− y) log(1− ŷ)). (3)

When we are looking at a training set with multiple independent observa-
tions, the total cross-entropy loss on the training set is then
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L(θ̂) = −
N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] , (4)

where N is the total number of observations in the training data. This is
what we are trying to minimize when training the neural network.

We now turn our attention to the parameters θ, which are optimized
during the minimization of the cross-entropy loss function L(θ). The con-
nections between the units in a layer and the outputs of the previous layer
have an attached weight w to them. Each unit in the layer then gets a linear
combination of the previous layer’s output. There is also a bias b added to
each unit. If we are looking at layer l with nl units and nl−1 units in the
previous layer, this operation can be written as a matrix multiplication in
the following form

Z(l) = W (l)X(l−1) + b(l), (5)

where X(l−1) is the input vector to layer l, Z(l) is the resulting transformed
matrix by the layer l, W (l) is a nl×nl−1 matrix with all the layer l weights
w(l) in the following configuration

W (l) =


w

(l)
1,1 w

(l)
1,2 · · · w

(l)
1,nl−1

w
(l)
2,1 w

(l)
2,2 · · · w

(l)
2,nl−1

...
...

. . .
...

w
(l)
nl,1

w
(l)
nl,2

· · · w
(l)
nl,nl−1


and b(l) is the nl × 1 bias vector containing the biases b added to each unit
transformation. The activation function g(z) is applied element-wise to the
vector Z(l) before being passed to the next layer, so that the input to layer
l + 1 is X(l) = g(Z(l)). This process of propagating data from the input
layer to the output layer is known as forward propagation. During training,
information from the loss function L(θ) is propagated backward through the
network in order to update the estimates of the model parameters θ.

2.5.1 Stochastic gradient descent

When it comes to training a neural network and minimizing the loss function,
the most common algorithm is stochastic gradient descent (SGD). It takes
advantage of the properties of gradients and iteratively minimizes the loss
function by moving in the negative direction of the gradient which we know
from calculus is the direction along which a function decreases the most.
The gradient g is computed with respect to all model parameters θ and has
the form

10



g =
1

m

m∑
i=1

∇θL(x
(i), y(i);θ) (6)

where ∇θL(x
(i), y(i);θ) is the gradient of the loss function for a single data

point with index i and m is the size of the dataset.
In many machine learning applications, datasets are large, making it

computationally unfeasible to use all data points for each update in the
gradient descent. This is where the stochastic nature of SGD comes into play.
Because the loss function is additive over the data points, the gradient can
be interpreted as an expectation over the dataset. This expectation can be
approximated using a small randomly sampled subset of the dataset known
as a minibatch of size m′. The size of the minibatch is a hyperparameter that
needs to be set before training and is usually chosen to be quite small since
it is also offers regularization by introducing noise to the gradient updates
(page 272 of Goodfellow et al. (2016)). The gradient in the SGD algorithm
has the form described in equation (6) with m′ replacing m,

g =
1

m′

m′∑
i=1

∇θL(x
(i), y(i);θ), (7)

where {(x(i), y(i)); i = 1, . . . ,m′} is a randomly selected subset of data of
size m′. The model parameters θ (the weights w and biases b) are then
updated by subtracting a fraction of the gradient in the form

θ ← θ − ηg,

where η is the learning rate and it will be decribed in the next subsection.
If we look at the updates for weights w and biases b separately they have
the form

wnew
jk ← wold

jk −
η

m′

m′∑
i=1

∂L(x(i), y(i);θ)

∂wjk
,

bnewj ← boldj −
η

m′

m′∑
i=1

∂L(x(i), y(i);θ)

∂bj
.

2.5.2 Learning rate

In the case of neural networks, the learning rate η is a hyperparameter that
scales the gradient when updating the weights in the gradient descent al-
gorithm. In other words, it dictates how far along the surface of the loss
function we move in each update. The gradient only tells us the direction
the optimizer should take but not necessarily the step size. Adjusting the
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learning rate can help with convergence and make sure we do not miss any
potential local minima of the loss function as well as preventing slow learn-
ing and the neural network getting stuck in a suboptimal solution. It is
usually set to a small value (around 0.01) but can be adjusted depending on
the convergence speed and stability of the training process.

2.5.3 Batch normalization

This section is based on Ioffe & Szegedy (2015) unless stated otherwise.

Although SGD is an effective algorithm, it complicates training because the
input to each layer depends on the parameters of all the preceding layers,
decreasing stability during training. As the network depth increases, even
small changes in earlier layers can be amplified, making optimization more
difficult. Batch Normalizing transform (BNγ,β) is a way of reparameterizing
the layers by normalizing, scaling and shifting the distribution of the layer
outputs in order to achieve faster convergence. It has the following form:

BNγ,β(X) = γ · X− µB√
σ2
B + ϵ

+ β, (8)

where X is the output of a layer, γ and β are trainable parameters, µB

and σB are the mean and standard deviation of the minibatch B and ϵ is a
constant added for numerical stability. Faster convergence can be achieved
by simply normalizing the output but it may affect the representational
power of the layer in the network. The trainable parameters γ and β are
added to scale and shift the normalized outputs and mitigate that problem.

2.5.4 Activation function

One of the neural network’s main advantages is its ability to model nonlinear
functions. This nonlinearity is introduced through activation functions. The
most commonly used activation function today is the Rectified Linear Unit
(ReLU), defined as g(z) = max{0, z} where z is the output of a layer before
activation. ReLU is widely used because it enables faster computations due
to its piecewise linear nature, which allows for quick gradient calculations.
However, since the function is not bounded, the gradient might grow very
large in a deeper network and cause unstable learning. This can be solved
by Batch Normalization. Another activation function that can be used is
tanh and has the form g(z) = ez−e−z

ez+e−z . In the output layer, the activation
function (also called output function) is tied, as mentioned in Section 2.5,
to the loss function. When performing binary classification, the sigmoid
function is commonly used. It can be viewed as a special case of the softmax
function

12



softmax(Z)i =
eZi∑K
j=1 e

Zj
,

where K is the number of classes, Z = (Z1, . . . , ZK) are the outputs of
all K units of the output layer, before activation. In this thesis, we use the
softmax function with two classes, i.e. K = 2, although the sigmoid function
is also a valid choice for binary classification.

2.5.5 Regularization

This section is based on Srivastava et al. (2014) unless stated otherwise.

To reduce overfitting in neural networks, several regularization techniques
can be applied. Common examples include L1 and L2 regularization on the
network weights, as well as early stopping when the validation/test error
begins to increase. Another widely used technique, particularly in deep
networks, is dropout. The idea is to improve model performance on test
data by averaging the outputs of several models. This technique is also
used in other supervised learning methods (for example, in random forests)
and is most effective when the individual models differ from each other. In
the context of neural networks, however, training multiple models is often
computationally expensive and finding optimal hyperparameters for each
model can be tedious. Dropout offers a way to prevent overfitting without
these drawbacks. The term dropout refers to the temporary deactivation
of a unit within the network. During training the decision of which units
should be dropped is random and can be done in the simplest case with a
Bernouli(p) distributed random variable where the parameter p is set to a
fixed value before training.

Figure 2: Effect of dropout in a neural network. Taken from Srivastava et al. (2014).

The forward propagation in equation (5) is slightly changed when dropout
is applied. The input vector X(l−1) is replaced with

13



X̃(l−1) = r(l−1) ·X(l−1), (9)

where r(l−1) is a binary vector of size nl−1 consisting of independent Bernouli
random variables that indicate the probability of the units in that layer not
being dropped out.

2.5.6 Optimizer

The SGD with a static learning rate is a solid optimization algorithm but it
can be slow. There are a number of strategies for speeding up the learning
and model performance by introducing momentum and adaptive learning
rate. A popular and robust adaptive learning rate optimization algorithm is
Adam, the name derived from adaptive moments. More information about
the Adam optimizer can be found in Goodfellow et al. (2016) Chapter 8.5.

2.6 Decision trees

In Section 2.6 and 2.7 we will present the theoretical background of decision
and boosting trees before introducing XGBoost. Unless stated otherwise,
the content is based on Hastie et al. (2017), Chapter 9 and 10.

There are several different tree-based methods, but a popular approach used
for both regression and classification, and the one we will focus on, is clas-
sification and regression trees (also called CART ).

Tree-based methods work by dividing the feature space into disjoint re-
gions and assigning a simple model to each region. This partitioning is
achieved by recursively splitting the feature space into two subregions based
on whether a predefined criterion is satisfied or not, a process known as
binary splitting. This is a greedy algorithm meaning each split minimizes
the criterion the most in the current node, even though a different split
might produce a better final model. This recursive splitting continues un-
til a stopping rule is applied, creating M regions called terminal nodes or
leaves. Figure 3 illustrates a very simple tree model with two features. The
splits made between the initial split and the terminal nodes are called in-
ternal nodes, and their number is a hyperparameter that can be set prior to
training.

The tree-based model can be expressed as

f(X) =
M∑

m=1

cmI(X ∈ Rm), (10)

where X = (X1 . . . Xp) is an input vector of the features, cm is the simple
model attached to region m and M is the number of regions the feature
space is partitioned into. For classification, cm will be the predicted class
label for all observations in node m.

14



Figure 3: Simple illustration of a tree model with two features X1 and X2. The
regression tree has M = 5 terminal nodes and depth T = 3. The left plot shows the
terminal nodes created by the tree algorithm and the right plot shows the splitting
done in each node of the tree algorithm. Taken from Hastie et al. (2017).

In each binary split, the two subregions R1 and R2 created are defined
as:

R1(j, s) = {X | Xj ≤ s} and R2(j, s) = {X | Xj > s},

where j is the splitting variable and s is the splitting criterion. In order to
optimize this split we seek to find the splitting variable j and split point s
that minimize

min
c1

∑
Xi∈R1(j,s)

L(yi, f(Xi)) + min
c2

∑
Xi∈R2(j,s)

L(yi, f(Xi)),

where L(yi, f(Xi)) is some loss function or in this context also described as
splitting criterion.

2.6.1 Splitting criterion

When it comes to classification, there are two main splitting criteria:

Gini index :
K∑
k=1

p̂mk(1− p̂mk),

Cross-entropy/deviance : −
K∑
k=1

p̂mk log(p̂mk),
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where K is the number of classes and p̂mk denotes the proportion of obser-
vations belonging to class k in node m. The term p̂mk is defined as:

p̂mk =
1

Nm

∑
Xi∈Rm

I(yi = k),

where Nm is the number of observations in node m and Rm is the region
represented by node m. We classify the observations in node m to the
majority class of node m, in mathematical terms k(m) = argmaxk(p̂mk).
Gini index and cross-entropy are favoured because they are differentiable, a
desired property for numerical optimization which XGBoost utilizes. Cross-
entropy is the loss function used in our neural network and also serves as
the splitting criterion in our tree-based model. For binary classification this
can be formulated as

−p̂m log p̂m − (1− p̂m) log(1− p̂m)

for region Rm of the tree, where p̂m is the proportion of observations in class
one in Rm.

2.7 Boosting trees

From now on we will consider the binary classification problem where we
have the conditional probabilities cm = (cm1 , cm2) for class 1 and class 2 in
region m. Using the fact that the sum of the conditional probabilities is
equal to 1, we can rewrite cm2 as 1− cm1 and therefore the value cm of f in
region Rm is a scalar.

A powerful learning idea that combines multiple decision trees in order
to produce a better model is called boosting. By sequentially fitting a ”weak”
classifier (classifiers that are only slightly better than the naive approach)
to modified versions of the original data, an ensemble of models is created
that produce a final combined weighted prediction. For each new ”weak”
classifier, the data is modified by adding increased weights to previously
incorrectly classifed observations that force the next classifier to focus on
those observations. A boosted tree model with T additive tree models can
be expressed as

ŷi = f̂T (Xi) =

T∑
t=1

ft(Xi),

where ŷi is the predicted class of observation i with predictor vector Xi,
ft is the t-th tree model added and it has the form of equation (10). The
boosted tree is grown in a greedy way, meaning in each iteration t the tree
model ft is added that minimizes
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L(t) =
N∑
i=1

l(yi, ŷ
(t−1)
i + ft(Xi)), (11)

where l is some loss function, yi is the true class of observation i, ŷ
(t−1)
i is

the boosted tree prediction of yi from the previous iteration and N is the
number of observations in the training data.

2.8 XGBoost

In this section we present the XGBoost algorithm. Unless stated otherwise,
the content is based on Chen & Guestrin (2016), the creators of XGBoost.
The notation is also inspired from the same paper.

2.8.1 Tree learning algorithm

XGBoost is a tree boosting algorithm that builds upon the principle of gra-
dient boosting and at each step approximates the loss function l using a
second-order Taylor approximation. This allows more traditional optimiza-
tion methods to be used. Given a differentiable convex loss function l, equa-
tion (11) can be approximated with a second-order Taylor approximation

around ŷ
(t−1)
i as:

N∑
i=1

[
l(yi, ŷ

(t−1)
i ) + gift(Xi) +

1

2
hif

2
t (Xi)

]
, (12)

where gi is the first-order derivative
∂l(yi,ŷ

(t−1)
i )

∂ŷ
(t−1)
i

and hi is the second-order

derivative
∂2l(yi,ŷ

(t−1)
i )

∂2ŷ
(t−1)
i

, both evaluated at ŷ
(t−1)
i . Since the loss from previous

iteration l(yi, ŷ
(t−1)
i ) is constant, it does not affect the optimization in step

t and can therefore be removed from equation (12). Therefore, in step t we
seek to minimize

L(t) =
N∑
i=1

[
gift(Xi) +

1

2
hif

2
t (Xi)

]
. (13)

Using the definition of trees in equation (10) and the fact that the regions
in a tree are disjoint, we can rewrite equation (13) as

L(t) =

N∑
i=1

[
gi

Mt∑
m=1

cmI(Xi ∈ Rm) +
1

2
hi

Mt∑
m=1

c2mI(Xi ∈ Rm)

]
. (14)
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XGBoost adds an additional regularization term Ω(ft) to the above objective
function to help with overfitting and smooth the weights of the final model.
Ω(ft) is defined as

Ω(ft) = ΓMt +
1

2
λ

Mt∑
m=1

c2m, (15)

where Γ and λ are regularization hyperparmeters that control the size of the
trees (discussed further in the next section), Mt is the number of terminal
nodes in the tree and cm is the weight of the corresponding node. Adding
Ω(ft) for step t to equation (14) we get

L(t) +Ω(ft) =
N∑
i=1

[
gi

Mt∑
m=1

cmI(Xi ∈ Rm) +
1

2
hi

Mt∑
m=1

c2mI(Xi ∈ Rm)

]

+ΓMt +
1

2
λ

Mt∑
m=1

c2m

=

Mt∑
m=1

cm ∑
Xi∈Rm

gi +
1

2
c2m

∑
Xi∈Rm

hi

+ ΓMt +
1

2
λ

Mt∑
m=1

c2m, (16)

where Xi ∈ Rm denotes the predictor vector of observation i in region Rm.
By moving the last term of the expression into the parenthesis we get

Mt∑
m=1

cm ∑
Xi∈Rm

gi +
1

2
c2m(λ+

∑
Xi∈Rm

hi)

+ ΓMt. (17)

To simplify notation let Gm =
∑

Xi∈Rm
gi and Hm =

∑
Xi∈Rm

hi. In other
words let Gm be the sum of the first-order derivatives of the observations in
region Rm for boosting iteration t and Hm the corresponding sum of second
order derivatives. Equation (17) can then be expressed as

Mt∑
m=1

[
Gmcm +

1

2
(Hm + λ)c2m

]
+ ΓMt. (18)

Since the objective function is a convex differentiable function, the optimal
terminal node weights cm can be calculated by computing the derivative of
expression (18) w.r.t. cm, set it equal to zero and solve for cm. We then get
the optimal terminal node weights

c∗m = − Gm

Hm + λ
.

Given c∗m, we can compute the best possible loss reduction in a given boost-
ing iteration t by substituting cm in equation (18) with c∗m:
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−1

2

Mt∑
m=1

(Gm)2

Hm + λ
+ ΓMt. (19)

This score (expression (19)) is used as a measure of performance and is help-
ful when calculating potential splits at each iteration. In a greedy process,
from one single node, new nodes are added based on the best possible loss
reduction (expression (19)) of each split, also called gain. In each split into
the left L and right R node, the gain can be expressed as

gain =
1

2

[
G2

L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

HL +HR + λ

]
− Γ, (20)

where the first term is the gain from the left node, the second term is the
gain from the right node and the last term is the gain from not splitting the
node. From equation (20), we see that if the gain from splitting into the left
and right node is not higher than the gain of not splitting, the tree does not
grow (given that Γ is set to zero). The splitting of nodes for each tree ft of
the XGBoost algorithm continues as long as the gain for the best proposed
split is positive.

2.8.2 Approximate tree learning

When the split points are proposed in the boosting algorithm, it is usually
done in a greedy manner, meaning each split point is visited in order to
find the optimal split; a powerful but very computationally expensive algo-
rithm. XGBoost uses an approximate algorithm that proposes split points
first based on percentilies of the feature distributions. It then discretizes
the continuous features into buckets defined by these candidates, aggregates
statistics within each bucket, and selects the best split based on the aggre-
gated data (Chen & Guestrin, (2016) Section 3.2).

2.8.3 Sparsity aware splitting

XGBoost also includes a default direction for each split to be taken for
sparse data inputs. Sparsity can be caused by missing values in the data or
other structural properties of the data such as one-hot encoding. By adding
a default direction for the algorithm to take when there are missing values
the model is made aware of the sparsity structure in the data. The default
direction is chosen by calculating the gain of the left and right direction
based on the available data, given that all missing values are assigned to the
left and right direction. The direction that has the highest gain is chosen
as the default direction.
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2.8.4 Hyperparameters for growing trees and regularization

Number of trees, T

The number of trees or number of boosting rounds is one of the main regu-
larization techniques for tree methods. With each iteration a tree is added
and the model complexity is increased, achieving a better fit of the data.
However after some number of trees the variance increases (bias-variance
tradeoff, Section 2.3) with each subsequent iteration and reduces the perfor-
mance on unseen data. By choosing an appropriate value for T , overfitting
can be avoided.

Learning rate, η

The learning rate is used in the neural network and discussed in Section
2.5.2. In the tree model it has a similar purpose, to regulate the influence
and magnitude of the tree added in each boosting iteration.

Maximum depth, Tmax

Maximum depth is a hyperparameter that controls the maximum depth
of all trees in the boosted tree. The value of Tmax will be individual for
each dataset but according to Hastie et al. (2017) values between 4 and 8
work well in the context of boosting and adding more depth rarely shows
significant improvement.

Gamma, Γ

Γ is a regularization parameter that controls the size of the tree by penalizing
the gain of a potential node split. In equation (20), Γ acts as a threshold
where a split will occur only if the resulting gain exceeds this value. This
helps to limit the tree’s complexity and reduce overfitting.

L2 regularization, λ

The regularization term Ω(ft) (equation (15)) consists of two terms where
the first includes Γ and the second includes λ. λ is also a regularization pa-
rameter that controls the size of the weights of the terminal nodes

∑Mt
m=1 c

2
m.

In equation (20) we also see that an increase in λ influences the gain of a
split and therefore affects the structure and complexity of the tree.

L1 regularization, α

In the paper by Chen & Guestrin (2016) that this section is based on, there
is no mention of L1 regularization, α. However, in the documentation of
the XGBoost library for python there is a parameter reg alpha that allows
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for L1 regularization. It is similar to L2 regularization, with the difference
that the weights may be reduced to zero. The L1 regularization term has
the form α

∑Mt
m=1 |cm|.

Subsampling

The model performance can be improved by only using a subset of the
available data. In each boosting iteration, a fraction of the data is chosen
and used to fit the added tree. The subsample can be chosen by only using
a fraction of the features and/or a fraction of the samples in the dataset.
Using a subsample to grow each tree reduces the correlation between each
tree which helps to reduce overfitting (Hastie et al. (2017)).

2.9 Betting

In this section we will shortly discuss some concepts of betting that are used
in the modeling and the betting strategy when evaluating the models.

2.9.1 Odds

In the world of betting, the likelihood of an outcome is expressed using
odds. According to Cortis (2015), there are three main ways of presenting
these odds: European, English and American odds. These odds describe the
return of a wager should you win and are calculated with the probabilities
that the bookmakers believe the outcome has. We will be using European
odds (decimal odds) and they are defined as the inverse of the probability,

odds =
1

probability
.

Solving for the probability we get

probability =
1

odds
. (21)

There are two types of bookmakers: soft and sharp. Sharp bookmakers
are known for providing fast moving odds that are close to the true probabil-
ity of the outcome, while soft bookmakers focus on attracting casual bettors
by offering more attractive odds with a higher profit margin. In this thesis,
we utilize the odds provided by Pinnacle, a sharp bookmaker, to estimate
probabilities through equation (21), which are then added as features in our
models.

2.9.2 Value bet

The expected value (EV) of a bet is a formula that gives the value of a bet,
given the odds offered by the bookmaker and the probability of the outcome.
The EV formula is defined as
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EV = p · ob − 1, (22)

where p is the probability of the outcome and ob is the odds offered by the
bookmaker. If the EV is positive, the bet holds value and the expected
return of a bet placed on the outcome is positive. The probability p, in our
case, will be the probability predicted by our models. For a more intuitive
description of EV, we can use equation (21) to replace p in the EV formula
(22). We then get

EV =
ob
om
− 1, (23)

where ob are the odds provided by the bookmaker and om are the implied
odds of our model. We see that the EV is only positive if the odds provided
by the bookmaker are higher than the implied odds of our model. If an
outcome meets this condition and is our model’s predicted outcome, we
place a bet on it.

3 Analysis

In this section, we will present and analyze the data used in this study and
the paremeter choices for each model.

3.1 Data

When it comes to data from football matches, there are multiple sources,
such as websites with downloadable datasets containing various match statis-
tics. However, these APIs are most often not free. For this thesis we use
datasets containing stats from different seasons and leagues, downloaded
from Football-Data.co.uk and combine them in order to get a final dataset.

The downloaded datasets contain general information like date, home
and away team names as well as a collection of statistics from each match
(see Table 5 in the Appendx for the statistics available in the dataset and
their corresponding descriptions). Additionally, the datasets provide odds
from multiple bookies for several different markets such as match outcome
(home/away win or draw), totals (more or less than 2.5 goals in the match)
and etc. These odds also provide implied probabilities for the different match
outcomes, which will serve as part of the input to the models. The dataset
includes both opening and closing odds, that is, the initial odds offered by
the bookmakers and the final odds available just before the start of the
match, respectively.

In order to obtain a sufficiently large dataset, we consider data from
the 2017/2018 season up to the current 2024/2025 season (eight seasons)
for the five highest-ranked leagues in Europe: the English Premier League,
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Italian Serie A, Spanish La Liga, German Bundesliga and French Ligue 1.
The first seven seasons are used for the training and validation set and
the eighth season (current 2024/2025 season) will be used as a test set.
Since the current season is not finished during the process of writing this
thesis, we consider the matches played from August 15th to March 16th.
The final dataset consists of 13931 observations (matches) and 155 columns.
The choice of number of seasons used is purely based on the desire to use
a sufficiently large dataset when training the models and can be set to a
different number.

3.1.1 Exploratory data analysis

Before discussing the hyperparameters and architectures of the models we
aim to employ, we first examine the characteristics of the data to gain a
better understanding of its structure.

Missing values

Missing values need to be addressed before model selection. Although XG-
Boost can handle missing data internally, other models, such as the neural
network we employ, cannot. The dataset contains 810245 missing values,
most of which correspond to various bookmaker odds that are not consid-
ered in our models. However, there are 3712 observations missing values
for Pinnacle’s over/under 2.5 goals odds. Six of these observations are also
missing values for Pinnacle’s home win, away win, and draw odds, and an
additional eight observations are missing values for these odds as well. The
rest of the missing values correspond to the match referee and the start
time of matches. Importantly, all columns related to match statistics are
complete and contain no missing values. When handling missing values,
various strategies can be applied. However, because odds are highly specific
to each match, there are no straightforward or reliable methods to fill these
missing values, such as using average odds for each team or league. Addi-
tionally, when looking at these missing values we see that all 3652 matches
from seasons 2017/2018 and 2018/2019 are missing values for Pinnacle odds,
making these observations useless in our models. Therefore, we do not con-
sider these observations as well as the remaining 68 observations from the
six other seasons that are missing the Pinnacle odds. The final dataset that
is used for training and testing the models contains 10211 observations from
the current as well as the past five seasons.

Class distribution

By examining the frequency of match outcomes (more or less than 2.5 goals)
in the dataset, we obtain the empirical distribution of the two classes. As
shown in Figure 4, the dataset is fairly balanced, with around 46.8% of
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matches having fewer than 2.5 goals and around 53.2% having more than
2.5 goals. These percentages suggest that the probability of a match having
more than 2.5 goals is only slightly higher than that of having fewer than
2.5 goals.

Figure 4: Class distribution of the dataset. 4776 matches had less than 2.5 goals
and 5435 had more than 2.5 goals.

3.1.2 Feature engineering

The statistics included in the dataset are match-specific and primarily de-
scribe the performance of the two teams in a single match. While these
values can indicate how many goals might be expected in that particular
match, they provide limited information on whether the next match will
have many goals. For the purpose of future predictions, we want features
that reflect each team’s underlying performance during the season as these
metrics are more likely to indicate whether a future match will have many
goals or not. Table 1 includes all features created from the original dataset,
that will be considered for our models.

Missing values

Since some features are based on rolling averages, the first five matches of
each team in each season do not have values for those features. To avoid
losing additional data by discarding these rows, we fill the missing values
with the average value of the respective feature for each team in each season.
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Table 1: The features created and their corresponding descriptions.

Feature Description

League2.5Perc League-wide percentage of games with over 2.5 goals
HomeOver2.5Perc Home team percentage of games with over 2.5 goals
AwayOver2.5Perc Away team percentage of games with over 2.5 goals
HTHomeOver2.5Perc Home team percentage of games with over 2.5 goals

at half time
HTAwayOver2.5Perc Away team percentage of games with over 2.5 goals

at half time
AvgLast5HomeGoalsScored Avg. goals scored by home team (last 5 matches)
AvgLast5HomeGoalsConceded Avg. goals conceded by home team (last 5 matches)
AvgLast5AwayGoalsScored Avg. goals scored by away team (last 5 matches)
AvgLast5AwayGoalsConceded Avg. goals conceded by away team (last 5 matches)
AvgLast5HomeShots Avg. shots taken by home team (last 5 matches)
AvgLast5HomeShotsConceded Avg. shots conceded by home team (last 5 matches)
AvgLast5AwayShots Avg. shots taken by away team (last 5 matches)
AvgLast5AwayShotsConceded Avg. shots conceded by away team (last 5 matches)
AvgLast5HomeCorners Avg. corners by home team (last 5 matches)
AvgLast5AwayCorners Avg. corners by away team (last 5 matches)
HomeBTTS Perc Home team percentage of BTTS (both teams to score)
AwayBTTS Perc Away team percentage of BTTS (both teams to score)
Last5HomeShotsPerGoal Avg. shots per goal for home team (last 5 matches)
Last5AwayShotsPerGoal Avg. shots per goal for away team (last 5 matches)
HomeSuspensionProbability Probability of home team player suspension
AwaySuspensionProbability Probability of away team player suspension
ImpliedProbabilityOver Pinnacle’s implied probability of over 2.5 goals
ImpliedProbabilityHomeWin Pinnacle’s implied probability of home win

Correlation

Before we move on to modeling, we also want to consider the correlation
between the different features and the target variable. Strong correlation
between features can be problematic and reduce model performance. If
there is a strong correlation between features, some feature selection or
adjustments to the models need to be made. Figure 5 shows the correlations
between the features and the target variable (the traget variable is labeled
Over2.5). Some features have a notable correlation but not strong enough
to justify any actions.

3.1.3 Test/train split

We mentioned in Section 2.3 that before modeling, the dataset is split into
two or three parts. We split our full dataset into training set, validation set
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Figure 5: Correlation between the features and the target variable. Over2.5 is the
target variable.

and test set. The validation set is used to evaluate the predictive perfor-
mance of the models while the test set is used for testing the profitability
of our models compared to the profit from following Pinnacle’s odds. By
using two sets for evaluating the models on unseen data we can check that
the performance of the model is not subject to randomness. The test set
contains the matches from the current 2024/2025 season. The previous five
seasons are used for the training set and validation set and they are divided
in the following way: each of the five seasons is randomly split into two sets
where set ai contains 80% of season i:s matches where i = 1, ..., 5 and set bi
contains the remaining 20%. All ai sets are concatenated and used as the
training set. Equally, all bi sets are concatenated and used as validation set.
The split is done in this manner in order to keep the number of observations
from each season the same in the training and validation set. This helps
eliminate any bias a single season might have on the model’s performance.
Further discussion on train/test split can be found in Section 5.

3.1.4 Standardization

Lastly, before we look at the model selection, the dataset is standardized.
For tree methods and neural networks this is not necessary due to the
structure of these models, minimizing the effect big-scale differences in the
features can have on model performance but it is good practice. Stan-
dardization can also help with convergence, since the gradient sizes are
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smaller. It is important to note that standardization should only be ap-
plied to continuous features and not categorical. All our features are in fact
continuous and therefore will be standardized, except for the four features
that represent probabilities: ’ImpliedProbabilityOver’, ’ImpliedProbability-
HomeWin’, ’HomeSuspensionProbability’ and ’AwaySuspensionProbability’
since they already only take values between 0 and 1.

3.2 Model parameters

For the practical implementation of the models, the programming language
python is used along with the libraries tensorflow and XGBoost for the
neural network and the XGBoost model respectively. We will now describe
the models used and the hyperparameter tuning done to try and improve
them.

Neural network

When it comes to neural network architecture, there are not many definitive
guiding theoretical principles, however, there are recommended guidelines
and ideas for how the layers should be placed and grown from layer to layer.

The input layer has the same number of units as the number of features
in our dataset and the output layer has two units corresponding to the two
classes but the hidden layers (the layers between the input and output layer)
can have very different sizes. Since we want to ”untangle” the datapoints,
we aim to increase the dimensionality of the original feature space in order
to get clearer separation between the observations of different classes. After
adding enough layers with increasing size, the next layers have a decreasing
number of units (reducing dimensionality) until we reach the output layer.
These increases and decreases of unit size can be done in drastic ways,
however, it is recommended to change the number of units between two
layers with no more than a factor of two when increasing and a factor of 0.5
when decreasing the number of units.

The optimal number of hidden layers depends on the dataset, and there
is no universal rule. Sufficient depth is necessary for class separation, but
too many layers can harm performance and convergence and may require
more advanced techniques, such as skip connections, that are beyond the
scope of this thesis.

We start by using a neural network with 5 hidden layers and modify
the architecture depending on the result. We use ReLU activation and add
batch normalization to all hidden layers as well as the input layer before
the activation for better performance and convergence (see Sections 2.5.3
and 2.5.4). After each hidden layer except for the last one we also add
dropout in order to combat overfitting. The percentage of neurons to drop
out after each layer is different and will be tweaked depending on the model
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performance (if the model seems to be severely overfitting, the percentage
of dropped out neurons will be increased and vice versa). The epochs and
batch size will also be tweaked depending on model performance and loss
convergence.

The initial network consists of five hidden layers l1, ..., l5 with 32, 64, 32,
16, 8 units respectively. Additional model parameters are listed in Table 2.

Table 2: Initial neural network parameters.

Parameter Value

Epochs 90
Batch size 16
Loss function Cross-entropy
Activation function ReLU
Output function Softmax
Training algorithm SGD with Adam optimizer

XGBoost

There are different strategies for hyperparameter tuning of XGBoost mod-
els (among other supervised learning models) with no universally optimal
approach. Grid search and random search are viable strategies however, we
want to monitor the learning curve (how the loss changes with each boosting
iteration) in order to see how the loss converges as well as understand how
the different hyperparameters affect model performance. Therefore we will
manually tweak the hyperparameter values in order to understand how the
performance changes when increasing and decreasing these hyperparameter
values. The hyperparameters we consider are listed in Table 3.

Table 3: XGBoost hyperparameters considered.

Hyperparameter

Number of trees (T )
Learning rate (η)
Maximum tree depth (Tmax)
Subsample ratio of training observations
Subsample ratio of columns per tree
Minimum loss reduction (Γ)
L1 regularization term (α)
L2 regularization term (λ)
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4 Results

In this section we present the results of the implemented classifiers. Further
discussion of the results can be found in Section 5.

4.1 Model optimization and hyperparameter tuning

We start by looking at model performance and the effect of hyperparameter
tuning.

4.1.1 Neural network

In Section 3.2 we define the initial neural network to be trained. Figure 11 in
the Appendix illustrates the training and validation curves of this network.
There are signs of overfitting and also very little decrease in both training
and validation loss as the epochs are increased. The model is simply not
learning much from the training data. We tried to improve performance and
the network’s ability to separate the two classes by adding two more layers,
resulting in seven hidden layers where layers l1, ..., l7 have 32, 64, 128, 64, 32,
16, 8 units, respectively. Adding more layers would require, design changes
that are outside of the scope of this thesis, like skip connections and not
necessarily improve model performance. The difference in performance was
marginal with the same simultaneous overfitting and underfitting problem
present. Further experimentation with changes in learning rate, batch size
and dropout percentages was done with no significant improvement. Finally,
a more aggressive change in units from layer to layer was tested as well as try-
ing tanh as the activation function. Again, no significant improvement was
observed although the test accuracy was marginally improved. Therefore,
we settled on a neural network with four hidden layers where layers l1, ..., l4
have 64, 128, 64, 16 hidden units, respectively. The additional parameters
included in Table 2 remain the same apart from the number of epochs and
activation function, which are changed to 70 and tanh respectively.

4.1.2 XGBoost

As we mentioned in Section 3.2 we manually tune the hyperparameters. It
is not an exhaustive search since there is a huge number of hyperparameter
combinations. However, we iteratively tweak the hyperparameters depend-
ing on how the training curve looks until the model is no longer improved
or we are satisfied with the result. The results from this hyperparameter
search are the following:
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Figure 6: Training curves for four different values of tree depth for XGBoost.

Maximum tree depth (Tmax)

One of the most important hyperparameters for model training is maximum
tree depth Tmax. When setting all other hyperparameters to their default
values and only changing Tmax, we obtain the training curves in Figure 6.
Similar plots for changes in regularization hyperparameters λ and α can be
found in the Appendix. The plots in Figure 6 show extreme overfitting in all
four cases and an increased separation between training loss and validation
loss as Tmax is increased. We also note that out of the four values tested
for Tmax, Tmax = 3 is the only one where the validation loss decreases at
all (indicating that the model training does somewhat improve performance
on unseen data). Therefore we set Tmax = 3 and focus on regularization to
reduce overfitting.

Regularization

The default value of the learning rate η is 0.3; quite a high value which
decreases the number of boosting rounds needed. However, a lower learning
rate combined with a higher number of boosting iterations is usually recom-
mended for better results and therefore we decrease η to 0.05. The two main
regularization hyperparameters we use are L1 regularization α and L2 regu-
larization λ (see Section 2.8.4). Figures 12 and 13 in the Appendix, illustrate
the difference in the training curves when λ and α are changed separately.
The smallest validation loss does not seem to change much when increasing
λ from 10 to 1000 (the difference in cross-entropy loss is 0.00354) but the
boosting iterations at which these minima are attained are quite different.

The difference in validation loss when α is increased from 0.1 to 100 is
illustrated in Figure 13. Similarly to λ, the validation loss does not change
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significantly. However, when α is large, the training loss and validation loss
remain constant after 76 boosting iterations.

We experimented further by also changing the learning rate, as well as
the row sub-sampling ratio, in order to try and reduce overfitting further.
As we mentioned in previous sections, this is not an exhaustive analysis of
all possible hyperparameter combinations and there may be better hyper-
parameter configurations than what we have explored. However, this is the
best possible XGBoost classifier we obtained in this thesis.

In Table 4 we present the final XGBoost classifier that is used to test its
profitability on the test set.

Table 4: Final XGBoost model hyperparameter values.

Hyperparameter Value

Number of trees (T ) 177
Learning rate (η) 0.06
Maximum tree depth (Tmax) 3
Subsample ratio of training observations 0.55
Subsample ratio of columns per tree 0
Minimum loss reduction (Γ) 0
L2 regularization term (λ) 0
L1 regularization term (α) 30

4.2 Model performance

Given the final neural network and XGBoost classifiers, we now evaluate
their predictive performance. On the validation set, the neural network
and the XGBoost model achieve an accuracy of around 60.36% and 60.98%
respectively. These accuracies are quite poor and all other models tested
have similar performances with one to three percent lower accuracies. In
Figure 7, the confusion matrix for each classifier on the test set is illustrated.
We see that the XGBoost classifier performs better at predicting matches
with more than 2.5 goals (class 1) than it does at classifying matches with
fewer than 2.5 goals (class 0). It manages to only classify 50.4% of the class
0 observations correctly and 67.7% of the class 1 observations. The neural
network has very similar performance with only 4 more misclassifications.

When the models are evaluated on the test set, we get similar accuracies
(the neural network and XGBoost model have around 59.36% and 59.66%
accuracy respectively) indicating that the performance of the models is the
result of model training and not randomness.
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Figure 7: Confusion matrices for both classifiers. The confusion matrix of the
neural network is shown in the left plot and the confusion matrix of the XGBoost
model in the right plot.

4.3 Betting profits on test set

The original goal of this thesis was to determine whether machine learning
models can be used to achieve profitability in football betting. Figure 8
illustrates the cumulative profit on the test set, for each classifier. The
following betting strategy is applied: for every match (observation in the
test set) the expected value (EV) of a bet is calculated (see Section 2.9)
for the outcome predicted by each model (more or less than 2.5 goals). If
the EV is positive, a 1000 SEK bet is placed on that outcome, otherwise
no bets are placed on the match. In other words, we place a bet if the
odds offered by Betfair are higher than our model’s implied odds for its
predicted outcome, otherwise, no bet is placed. The XGBoost model had a
cumulative profit of 47450 SEK and collected over 50% of that cumulative
profit in the first approximately 150 matches. The neural network made a
similar cumulative profit of 41480 SEK and was very profitable in the first
300 matches, however, after 1000 matches it was quite unsuccessful.

Figure 8: Comparison of profits predicted by the two classifiers. The profits from
the neural network are shown in the left plot and the profits from the XGBoost
model in the right plot.

For comparison, the same betting strategy was applied but instead of
using our model probabilities, the implied probability from Pinnacle’s odds
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were used when calculating the (EV). The cumulative profit of this strategy
is illustrated in Figure 9. It shows that if a bettor were to consistently bet
1000 SEK on the outcome with the lowest Pinnacle odds, when Betfair’s
odds for the same outcome are higher, their cumulative profit would be
39040 SEK. Comparing the plots from Figure 8 with the plot from Figure 9
we see that both our models outperform the strategy of following Pinnacle’s
odds. Using XGBoost had a 22.3% higher profit than using Pinnacle’s odds
while the neural network only was slightly more profitable (around 6%).
Notably all strategies make a large part of the cumulative profit early in
the season and then continue to follow a positive trend, albeit with clear
fluctuations. However, only the XGBoost classifier does not see a significant
decline in profitability at the final stages of the season. Although the test
set does not cover the whole season (until mid March) it still represents the
later stages of the season.

Figure 9: Profit made by placing bets based on odds given by the sharp bookmaker
Pinnacle.

5 Discussion

In this section, we examine the work done in this thesis and discuss future
improvements.

5.1 Summary

In this thesis, we have studied a binary classification problem using two su-
pervised learning models: a fully connected feedforward neural network and
an XGBoost model. The goal was to predict whether a football match will
have more or less than 2.5 goals. To do this, we downloaded datasets from
Football-Data.co.uk, conducted an exploratory data analysis and created new
features that would improve the predictive performance of the models. After
model training and hyperparameter tuning, we evaluated their accuracy on
a validation set where the neural network achieved 60.36% accuracy and the
XGBoost classifier achieved 60.98% accuracy. The models were then used
on a test set where their profitability was examined by simulating bets on
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the over/under 2.5 goals market. Both classifiers were profitable and beat
the strategy of following the odds of the bookmaker Pinnacle, with XGBoost
making around 22% more profit and the neural network around 6%.

5.2 Model performance

As mentioned in Section 4, the predictive performance of the models is quite
poor. While they outperform the naive approach of random guessing, the
improvement is marginal. Notably, the training loss and accuracy of our two
classifiers are quite similar. For comparison, three additional models were
trained with limited hyperparameter tuning: logistic regression, random for-
est and support vector classifier (SVC). More information on these models
can be found in Hastie et al. (2017). The models achieved very similar ac-
curacies, ranging from approximately 57% to 60%, comparable to the two
classifiers used in this thesis. This suggests that we may be approachig the
limit of possible performance given the dataset and feature set at hand. The
fact that the training and validation loss curves for both models have min-
imal decrease as the epochs and boosting iterations are increased, enforces
the idea that the data does not include enough information to separate the
two classes.

Additionally, we created a synthetic dataset to determine if the issue
of limited learning of the neural network is due to its design or the nature
of the dataset at hand. The synthetic dataset had also two classes, clearly
separable with the same class distribution as the downloaded dataset, and
the same number of features (23). The data points were sampled from a
multivariate normal distribution N(0, I) and assigned to class 1 if the norm
of the input vector was between 0 and 3.5 and to class 0 if the norm was
between 3.5 and 4. On the synthetic dataset, the neural network achieved
an accuracy of 74%. This result further suggests that the feature set created
or/and the original dataset is limiting the model’s effectiveness to separate
the two classes.

In Section 4, the confusion matrices are illustrated and we noted that
both classifiers only predicted around 50% of the matches with less than 2.5
goals (class 0) correctly, while having noticeably better success at prediciting
observations of class 1. This model performance (one class having signifi-
cantly better performance) is similar to what you would expect to see when
dealing with an imbalanced dataset, which our dataset is not. However,
class 1 is majority class by a small margin. In order to try and increase the
XGBoost classifier’s performance on class 0, we added a balancing weight.
XGBoost has a parameter called scale pos weight that is used for unbal-
anced datasets and controls the balance of positive and negative weights.
We set this parameter to sum of observations of class 1

sum of observations of class 0 ≈ 1.13. The model then
places 1.13 times more importance on the negative weights (weights applied
on the minority class). The confusion matrix for this model can be seen
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in Figure 10. The model performs better on class 0 but sacrifices some
performance on class 1. The overall accuracy is very similar with 59,91%
and 59.74% on the validation set and test set respectively. However, the
profit made by this model on the test set is significantly less, 20540 SEK.
Further investigation on the difference in prediction probabilities is needed
to understand this behavior.

Figure 10: Confusion matrix for XGBoost classifier with scale pos weight set to
1.13 in order to improve model performance on class 0.

No detailed analysis of feature importance was done but the average gain
(equation (20) in Section 2.8.1) of each feature when used was investigated.
The feature that had the highest average gain was the implied probability
from Pinnacle’s odds for the outcome of more than 2.5 goals. It was signif-
icantly higher than all other features with an average gain of around 9.78
while all other features had values in the range of 1-3. This means that it
has a big impact when used for splitting, during the growing of the trees.
However, when removed from the feature set, the accuracy for the XGBoost
classifier on the validation set did not change significantly but on the test
set the accuracy dropped to 55% - 56%. This suggests that the implied
probability from Pinnacle’s odds for over 2.5 goals is more important for the
2024/2025 season (which is the test set).

Betting Profitability

During experimentation and hyperparameter tuning, we saw that the model
accuracy did not change drastically with each try. However, for the XGBoost
classifier, the profitability varied significantly from model to model. Small
changes in for example the regularization parameter α had profit decreases of
60% compared to the profit from our final XGBoost classifier (if not more in
some cases). Notably, we found an XGBoost classifier with higher validation
accuracy (around 0.3% higher) than our final XGBoost classifier but it had
around 40% less profit. The neural network showed similar problems with
fluctuating profits when changing the architecture, which is to be expected,
though not as severe when making minor parameter changes like batch size.
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Due to time constraints, no further analysis was done on the bets that made
these differences or how the model probabilities differed between models.

5.3 Possible improvements

Intuitively, predicting any outcome of a football match is difficult. Even
if you have tactical knowledge or a model to help you make predictions,
there are uncontrollable factors that can change the direction of a match in
a heartbeat, such as a red card, a penalty or a last minute winner. This
notion has been partly reinforced by the results of this thesis, although the
results indicate that our models have learned from data to some extent.
Throughout the thesis, various efforts were made to improve model perfor-
mance, however, there are still several changes that could be explored in
order to try and improve the results even further.

Data and features

The main improvement would be to obtain data or features that better rep-
resent the classes. The features created in this thesis should be thoroughly
investigated in terms of feature importance and modified or changed accord-
ingly. Since the methodology of feature engineering is not a one-size-fits-all
process, further experimentation and consideration into what features could
help explain the difference between high- and low-scoring matches should
lead to better results. Additional features that describe the different play
styles, along with more detailed data of in-game actions such as defensive
actions in own third, number of different types of passes and the distances
covered by these passes, distance covered by each team and etc, could pro-
vide valuable insights. Such data could help identify whether a team is play-
ing more defensively or whether high-scoring matches, for example, have a
high number of crosses. Unfortunately, this kind of data was found too late
to be included in this thesis.

It is also worth investigating whether certain features are more important
in the earlier stages of the season and other features important for the later
stages of the season. It is not uncommon to see performances drop towards
the end of the season as teams get fatigued and injuries increase. This could
cause some changes in feature importance.

Additionally, the models in this thesis have been trained on five leagues
combined. This approach does not account for any possible league-specific
patterns that could be important for model performance within individual
leagues. The goal was to create models that could generalize beyond a
single league. However, training separate models on each league could yield
better results on that specific league but at the cost of a significantly reduced
dataset. Further analysis could be done on our models’ performance on each
separate league to determine whether the prediction accuracy or betting
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profitability is higher in certain leagues.

Training/validation split

Another thing that could improve performance or indicate whether the train-
ing set, validation set and test set come from slightly different feature dis-
tributions, is training the models on multiple different splits. In this thesis,
the same training/validation split was used in all model attempts and no
cross-validation or changes in splits was done.

Alternatively, using a smaller window (fewer seasons) for the training set
and using a separate season for the validation set might result in different
model performance. It is worth investigating the following split: using fewer
seasons in the training set (for example one, two or three) and assigning the
next season to the validation set. For example using season 2017/2018 and
2018/2019 for the training set and 2019/2020 for the validation set. When
the models have been trained on this configuration, iteratively apply the
same split for the next seasons. This approach would return multiple model
accuracies on unseen data, giving us a better understanding of whether the
models are learning but also if the features are equally important in all
seasons.

Model tuning and other models

Additionally, further hyperparameter tuning could be done to try and im-
prove model performance, using for example Bayesian optimization for the
XGBoost classifier or weight decay for the neural network in order to further
combat overfitting.

Another alternative would be to explore other more complex models
such as a Bayesian neural network or an LSTM model. A Bayesian network
might be able to handle overfitting better and give an understanding of
predictive uncertainty of the model since the model parameters θ̂ are not
point estimates but rather posterior distributions. An LSTM model could
possibly help capture the long-term trend of goals in a match as well as
the short-term fluctuations. However, if the data is still not representative
of the classes, the model performance might still not be good. Interested
readers can find more information about these models in Bishop (2006) and
in Goodfellow et al. (2016), respectively.

Combining multiple models is also a suggestion for future improvement
that could produce better results and reduce any biases the individual mod-
els might have while the variation between the models could indicate the
confidence level of the predictions.
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Betting strategy

The betting strategy used in this thesis is not extensive and could be changed
or combined with more complex strategies. In this thesis, we only placed
bets on our model’s predicted outcomes, however, a different strategy where,
for example, bets are placed on the outcomes that have the highest value
according to the EV formula described in Section 2.9 might yield better
returns, even though bets are not exclusively placed on the most probable
outcome according to our models.

It is also worth investigating whether restricting the size of change in
odds from the opening odds to the closing odds can improve model per-
formance and/or profitability from the models. Significant changes in odds
may reflect the change in perceived match outcome probabilities due to fac-
tors not related to team performance such as weather conditions, injuries,
suspensions, etc.

It is also worth investigating whether the models would yield higher
profits in other leagues. This thesis focused on the top five European leagues,
which are highly popular and generate significant betting activity. As a
result, there is more data available that bookmakers use when calculating
their odds and therefore can offer more accurate odds. Lower-tier leagues
that are less popular may offer more favourable odds that could be exploited
by our models.

In summary, there is a lot of work that can still be done in order to gain
a better understanding of the relationship between betting odds, match
outcomes and machine learning in the context of football.
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6 Appendix

Table 5: Description of the statistics for each game included in the dataset.

Variable Description

Div League Division
Date Match Date (dd/mm/yy)
Time Time of match kick-off
HomeTeam Home Team
AwayTeam Away Team
FTHG Full Time Home Team Goals
FTAG Full Time Away Team Goals
FTR Full Time Result
HTHG Half Time Home Team Goals
HTAG Half Time Away Team Goals
HTR Half Time Result
Referee Match Referee
HS Home Team Shots
AS Away Team Shots
HST Home Team Shots on Target
AST Away Team Shots on Target
HC Home Team Corners
AC Away Team Corners
HF Home Team Fouls Committed
AF Away Team Fouls Committed
HY Home Team Yellow Cards
AY Away Team Yellow Cards
HR Home Team Red Cards
AR Away Team Red Cards
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Figure 11: Loss curves as well as missclassification error curves for the training set
and validation set.

Figure 12: Loss curves on training and validation sets for two different values of
the regularization parameter lambda λ for XGBoost.

Figure 13: Loss curves on training and validation sets for two different values of
the regularization parameter alpha α for XGBoost.
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