
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

A Comparative Study of Predictive
Power in Football Match Outcomes
Gabriel Lindqvist

Matematiska institutionen

Kandidatuppsats 2025:12
Matematisk statistik
Juni 2025

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Bachelor Thesis 2025:12

http://www.math.su.se

A Comparative Study of Predictive Power in

Football Match Outcomes

Gabriel Lindqvist∗

June 2025

Abstract

This thesis investigates the use of machine learning methods to
predict outcomes of football matches in the English Premier League.
Specifically, the study compares the performance of multinomial logis-
tic regression and random forest classifiers on a three-class prediction
task, where the outcomes are either home win, draw or away win. The
analysis is based on data that includes prior seasons starting from
the 2016/2017 season up to the current 2024/2025 season. Predic-
tive performance is evaluated using accuracy, class-specific F1 scores,
and macro-averaged F1. To ensure robust results, each classifier was
trained and tested across 10 independently stratified train/test splits.
The results show that both classifiers performed similarly on the ma-
jority classes, but struggled to accurately classify draws. Further anal-
ysis of feature importance and predicted class probability distributions
highlights challenges associated with class imbalance and limited sep-
aration in the feature space. The findings underline the importance
of feature engineering for this particular prediction task.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: gali8113@student.su.se. Supervisor: Johannes Heiny, Ola Hössjer.

Acknowledgements

I would like like to start off with expressing my sincerest gratitude
to my supervisors, Ola Hössjer and Johannes Heiny, for their guidance
and continuous encouragement throughout this thesis project. Even
when I fell behind my original timeplan, their positive attitude helped
me stay motivated.

I would also like to acknowledge the use of ChatGPT by Open AI.
The tool was used mostly for code debugging, but also for proofreading.

2

Contents

1 Introduction 4

2 Theory 4
2.1 Supervised Learning . 4
2.2 Multinomial Logistic Regression 5
2.3 Regularization and the LASSO 6
2.4 Decision Trees . 7

2.4.1 Recursive Binary Splitting 8
2.5 Ensemble Tree Methods . 9

2.5.1 Bagging . 9
2.5.2 Random Forests: Reducing Correlation through Fea-

ture Randomization 10
2.5.3 Final Prediction in Random Forests 11

2.6 Dealing with Class Imbalance 12
2.7 Evaluation Metrics . 12

3 Data 14
3.1 Feature Engineering . 15
3.2 Data Overview . 16

4 Methods 17

5 Results 18
5.1 Performance and Evaluation Metrics 18
5.2 Comparison of Predicted Probability Distributions 20
5.3 Confusion Matrix Analysis . 22
5.4 Feature Importance . 23

6 Discussion 24
6.1 Most Challenging Prediction Task 24
6.2 Method Comparison and Evaluation 25
6.3 Reflection and Looking Forward 25

7 Conclusion 26

Appendix 28

A Appendix 28
A.1 Performance Comparison in Random Forest 28
A.2 Performance Comparison Using Weights Versus No Weights . 29

B Appendix 30

3

1 Introduction

Predictions in sports is a common phenomenon that many people have either
encountered or engaged in. This can be anything from informal guessing,
participation in fantasy leagues, or placing online sport bets. Today, most
competitive sports are inherently data-driven, generating large volumes of
information, and is often widely accessible for anyone who wants to under-
stand certain outcomes in sports. In the case of football, the supply and
demand of data has been extensive. For example, professional football clubs
utilize data to gain an edge against its competitors [4].

This study uses data from the English Premier League (abbr., EPL),
spanning from the 2016/17 season to the current 2024/2025 season. One
season consists of 20 competing teams, where each team plays all other
teams twice (home and away). This means that each team will play 19
home games and 19 away games (38 games in total) in a season. A single
match has three possible outcomes: home win, draw, or away win.

A known concept used in football is home advantage, which refers to
the team playing at home has an advantage over its opponent. This was
evident when looking at the data set used, with outcomes resulting in home
wins being dominant and with draws being the most uncommon outcomes.
The nature of this imbalance in the data is one of the biggest challenges
for machine learning methods when trying to predict match outcomes, as
reported in Choi [3]. There are methods that can be used to try and mit-
igate imbalance. Two common techniques involve sampling techniques or
assigning class weights [11].

The main focus in this thesis is to compare the performance of two
machine learning methods when predicting football match outcomes: multi-
nomial logistic regression and random forest. Both of these methods can
handle multiclass classification problems, which are well-suited when trying
to predict among three possible outcomes. Multinomial logistic regression
is a generalization of the linear classification model logistic regression [9].
Random Forest, introduced by Breiman [2], is an ensemble method which
uses multiple non-linear decision trees.

2 Theory

This section serves to present the theoretical background of the methods
used in this thesis. Unless otherwise stated, the theory presented is based
on Hastie [7] and Lindholm [9].

2.1 Supervised Learning

This section is based on Supervised learning, a category of machine learning
that focuses on learning a function from labeled data. The goal is to model

4

the relationship between input x and output y from training data, such that
the model generalizes well to new unseen data.

Supervised learning problems are typically divided into two categories,
depending on the type of y. When y is continuous, we call this a regression
problem. On the contrary, when y is categorical, this is commonly known
as a classification problem. This thesis focuses on multiclass classification
problems, where the response variable can take on more than two unordered
categories. Consequently, the theoretical background presented below will
primarily cover the classification case.

Let T = {(xi, yi)}ni=1 denote the training data set, consisting of n ob-
servations. Each pair of observations (xi, yi) ∈ T includes a feature vector
xi ∈ Rp of dimension p (also called predictors), and a known label (or class)
yi ∈ Y , where Y denotes the set of possible class labels. These observations
are then used to learn a function f : Rp → Y . This function is known as a
classifier, which maps input vectors to class labels.

The next step is to evaluate how well the classifier generalizes this rela-
tionship. This is commonly done using a validation set. A validation set is
a set of observations that the classifier has not seen. Let V = {(x∗

i , y
∗
i)}mi=1

denote the validation set, consisting of m observations. For each unseen
input x∗

i , denote the classifier’s predictions as f̂(x∗
i) = ŷi. Each prediction

is then compared to the true value y∗i , which is used to assess the predictive
power of the classifier.

In summary, the classifier attempts to capture the relationship between
the features and the output class, such that it can predict the class label for
a new observation x∗ with a high accuracy.

2.2 Multinomial Logistic Regression

Multinomial logistic regression is a generalization of binary logistic regres-
sion. It belongs to the class of generalized linear models (GLMs) and is
widely used in multi-class classification problems. The model assumes a lin-
ear relationship between input variables and the log-odds of each outcome
class relative to a reference class [7].

Let x ∈ Rp denote a vector of p input features. For each class k ≤ K,
the model defines a linear predictor

ηk = β0k + βT
k x, (1)

where βT
k ∈ Rp is the coefficient vector for class k and β0k ∈ R is the

corresponding intercept. The predicted class probabilities are obtained by
applying the softmax function to the linear predictors

P (Y = k | x) = eηk∑K
i=1 e

ηi
, k = 1, . . . ,K. (2)

5

This formulation ensures that all class probabilities are non-negative and
sum to one [9].

To avoid over parametrization, one class is assigned as the reference
class. Most commonly, the last class K is set as the reference class. This
is done by setting its coefficients and intercept to zero (i.e., βK = 0 and
β0K = 0). The remaining parameters are estimated by the MLE (abbr. for
maximum likelihood estimation). Given a training set T = {(xi, yi)}ni=i, the
log-likelihood is given by

ℓ({β0k,βk}) =
n∑

i=1

K∑
k=1

I(yi = k) logP (Y = k | xi), (3)

where I(yi = k) is the indicator function. Maximizing the log-likelihood is
equivalent to minimizing the negative log-likelihood, which is often referred
to as the loss function

L({β0k,βk}) = −
n∑

i=1

K∑
k=1

I(yi = k) logP (Y = k | xi). (4)

Since there is no closed-form solution for maximizing the likelihood, numeri-
cal optimization methods such as iteratively reweighted least squares (IRLS)
or coordinate descent are typically used, depending on the implementation
[7].

Once the model is trained, predictions is typically done using the decision
rule

ŷ(x∗) = argmax
k

P (Y = k | x∗),

which selects the class with the highest predicted probability [9].
Multinomial logistic regression serves as a baseline model in this thesis.

Its interpretability and simplicity makes it attractive for prediction, though
it may require extensions such as regularization to perform well in practice.
The next section introduces LASSO regularization, which can be applied to
mitigate overfitting and improve generalization.

2.3 Regularization and the LASSO

Regularization is a technique used to improve the generalization performance
of models by preventing overfitting the training data. In particular, LASSO
(abbreviated Least Absolute Shrinkage and Selection Operator) introduces
a penalty that encourages sparsity in the model coefficients. This leads to
simpler models and automatic variable selection [7].

In contrast to the formulation used in Section 2.2, where K is chosen as a
reference class, the glmnet implementation of multinomial logistic regression
excludes this constraint. Instead, the method estimates the complete set of

6

parameters for each class k = 1, . . .K. This means that the number of
parameters across all K classes are K(p+ 1) [5].

Let ℓ({β0k,βk}) denote the log-likelihood defined in Equation 3. Then,
we maximize penalized log-likelihood as

max
{β0k,βk}Kk=1∈RK(p+1)

[
1

n
ℓ({β0k,βk})− λ

K∑
k=1

p∑
j=1

|βjk|

]
, (5)

where λ ≥ 0 is a regularization parameter and βjk, the jth coordinate of
βk, denotes the coefficient for feature j in class k.

Since this parametrization models all K classes, it is not identifiable
without constraints. This is due to the invariance of the softmax function to
additive shifts across all ηk (i.e., {β0k,βk}K1 , {β0k−c0,βk−c}K1 give identical
probabilities P (Y = k | x)). However, as shown in [5], explicit constraints
are not required for fitting the model and the penalized likelihood still has
a unique solution.

2.4 Decision Trees

Decision trees are rule-based prediction models used for both classification
and regression problems. For classification, the goal is to partition the fea-
ture space into disjoint regions, each assigned to one of the possible class
labels. The model takes the form of a tree structure, where each internal
node represents a decision based on the value of a single feature, and each
terminal node (or leaf) represents a predicted class.

More formally, let x ∈ Rp denote the input feature vector. A decision
tree partitions the input space Rp into M disjoint regions {R1, . . . , RM}
such that

Rp =
M⋃

m=1

Rm, Ri ∩Rj = ∅ for i ̸= j.

For each region Rm, the tree assigns a class label cm ∈ {1, . . . ,K}. The
classifier is given by

f(x) =

M∑
m=1

cmI(x ∈ Rm),

where I(·) is the indicator function. To assign a class label to region Rm,
the algorithm considers the subset of training observations that fall into this
region. Let Tm = {(xi, yi) ∈ T : xi ∈ Rm} be the subset of training data in
the region Rm. For each class k ∈ Y , define the proportion of observations
in Tm that belong to class k as

p̂mk =
1

|Tm|
∑

(xi,yi)∈Tm

I(yi = k).

7

Then the predicted class for region Rm is given by

ŷm = argmax
k∈Y

p̂mk.

That is, the model assigns the class that appears most frequently among the
training observations in that region. This is often referred to as majority
vote. Additionally, the estimated probabilities p̂mk are often retained for
each class k, which enables probabilistic predictions. These are especially
useful when combining trees in ensemble methods, such as soft voting in
Random Forests.

2.4.1 Recursive Binary Splitting

The structure of a decision tree is built using a greedy algorithm called
recursive binary splitting. At each internal node of the tree, the algorithm
selects a feature xj and a threshold θ to divide the observations into two
disjoint regions

Rleft = {x : xj ≤ θ}, Rright = {x : xj > θ}.

The objective is to choose the split that results in the purest possible child
nodes. That is, regions where observations tend to belong to the same class.
This is measured using an impurity criterion, with three common choices
being the misclassification error, Gini index and entropy.

Let p̂mk denote the proportion of observations belonging to class k in
region Rm. Then, for region Rm, the three impurity measures are defined
as

Misclassification(Rm) = 1−max
k

p̂mk,

Gini(Rm) =
K∑
k=1

p̂mk(1− p̂mk),

Entropy(Rm) = −
K∑
k=1

p̂mk log p̂mk.

For a proposed split that produces the child nodes Rleft and Rright, the total
impurity computed as the weighted sum of the impurity in each child

Isplit =
nleft

n
I(Rleft) +

nright

n
I(Rright),

where n = nleft+nright is the number of observations in the parent node, and
I(·) denotes the impurity measure. The algorithm searches over all features
and split points, selecting the one that minimizes Isplit. This process is
repeated recursively to each resulting child node, growing the tree top-down

8

until a stopping criterion is met. Some common stopping rules include a
minimum number of observations in a node, maximum tree depth, or a
threshold on impurity reduction.

One issue with the misclassification rate is that it is less sensitive to
changes in the class proportions within a node. In contrast, the Gini index
and entropy are more responsive to such changes and typically yield better
splits.

As mentioned in the beginning, this algorithm is greedy, meaning it
selects the best split at each step without considering the impact of future
splits. As such, the final tree is not guaranteed to be globally optimal. In
other words, the structure that minimizes total misclassification or impurity
over the entire tree is not necessarily achieved. Moreover, fully grown trees
tend to overfit and are highly sensitive to small changes in training data.
These limitations motivate the use of ensemble methods like bagging and
Random Forests, which will be presented later.

2.5 Ensemble Tree Methods

Ensemble methods refer to the design where multiple machine learning mod-
els, known as base models, are constructed and combined to produce a final
prediction. One common approach is bootstrap aggregation, which is pre-
sented in the following.

2.5.1 Bagging

Bootstrap aggregating, also known as bagging, is one ensemble method con-
sidered for models prone to high variance, such as decision trees. Bagging
aims to reduce this variance without increasing its bias. The method works
by constructing an ensemble of similar base models, each trained on slightly
varied versions of the original training set.

Bagging begins by generating multiple bootstrap samples from the train-
ing dataset T , where each sample has the same size as T and is drawn with
replacement. As a result, it is likely that each sample contains duplicates
and excludes some original observations. For each bootstrap sample, a base
model is trained independently. Due to resampling, each model is exposed
to a different subset of the training data, introducing variability into the
learned models. For prediction, the final output is determined by aggre-
gating the predictions from all base models. In the classification setting,
this aggregation is often performed using either hard voting (majority vote
of class labels) or soft voting, where one averages the predicted class prob-
abilities from each model and selects the class with the highest average
probability.

We now present how bagging reduces variance. Specifically, how av-
eraging reduces variance in general and how this relates to bagging. Let

9

{Zb}Bb=1 be a sequence of identically distributed random variables with mean
E[Zb] = µ and variance Var(Zb) = σ2. Furthermore, let ρ denote the average
correlation between any pair of random variables in the sequence:

ρ =

1
B(B−1)

∑
b ̸=c E[(Zb − µ)(Zc − µ)]

σ2
.

Then, the mean and variance when averaging these random variables

E

[
1

B

B∑
b=1

Zb

]
= µ, (6)

Var

(
1

B

B∑
b=1

Zb

)
=

1− ρ

B
σ2 + ρσ2. (7)

From Equation 6, we see that the mean does not change when averaging.
This means that averaging does not increase the bias. Equation 7 shows that
the variance is reduced as B increases, assuming the random variables are
not perfectly correlated (i.e., ρ < 1). Then variance is reduced by averaging.
In fact, the variance approaches ρσ2 as B → ∞, and hence bagging leads to
variance reduction if ρ < 1. That is, the variance has a lower bound which
is dependent on ρ.

This theory applies directly to bagging. Suppose we generate B boot-
strap samples from our training data T and train a separate base model,
respectively on each. Let {g(b)(x)}Bb=1 denote the ensemble of trained mod-
els, each outputting a vector of predicted class probabilities for a new input
x∗. Then the final ensemble prediction using soft voting is given by

gbag(x
∗) =

1

B

B∑
b=1

g(b)(x∗). (8)

Although each model is trained on a different bootstrap sample, they are
all derived from the same dataset T , which means their predictions are
identically distributed, but likely correlated. Consequently, the ensemble
prediction achieves lower variance compared to a single model.

2.5.2 Random Forests: Reducing Correlation through Feature
Randomization

As seen in the previous section, the effectiveness of bagging is limited by
the correlation between the base models. When the base learners are highly
correlated, the variance reduction achieved through averaging is less substan-
tial. The Random Forest algorithm improves on this by actively reducing
correlation between trees.

10

Random Forests achieve this decorrelation by introducing additional ran-
domness when growing each tree. Specifically, at each node of each tree, the
algorithm randomly selects a subset of the features (of size q ≤ p) and re-
stricts the split to be chosen only from this subset. This feature subsetting
is performed independently at every split and for every tree in the ensem-
ble. By combining bagging with randomized feature selection, the algorithm
generates more diverse trees that are less likely to make similar errors.

To give an intuitive understanding as to why feature subsetting reduces
the correlation between the trees, recall Section 2.4.1. There, we showed that
the variance reduction achieved through bagging is limited by the correlation
ρ between the base models. If many trees in the ensemble are trained on
similar dominant features, they tend to produce similar splits, leading to
high correlation. Instead, by forcing each tree to consider only a random
subset of features at each split, Random Forests encourage diversity among
trees. As a result, even if one feature dominates the data, not all trees
will rely on it at every split. This randomness leads to more variation in
tree structure and decisions, reducing ρ and improving the effectiveness of
averaging.

In practice, the number of features q considered at each split is often set
to q = ⌊√p⌋ for classification problems. A more systematic way is by using
the out-of-bag (OOB) error to find an optimal value of q [?].

2.5.3 Final Prediction in Random Forests

Once all trees in the Random Forest have been trained, predictions for new
observations are made by aggregating the outputs from each tree in the
ensemble. In Section 2.5.1, we briefly mentioned the two alternatives:

1. Hard voting (majority vote): Each tree predicts a class label for the
new observation, and the final prediction is the class that receives the
most votes.

2. Soft voting (probability averaging): Each tree outputs a probability
distribution across all classes, and the final prediction is the class with
the highest average probability across all trees.

In this thesis, soft voting will be implemented.
Let g(b)(x∗) denote the predicted class probabilities from tree b for an

input x∗, and |g(b)(x∗)| =
∑K

k=1[g
(b)(x∗)]k = 1. Then, the aggregated (soft)

prediction from the Random Forest is given by

gRF(x
∗) =

1

B

B∑
b=1

g(b)(x∗). (9)

The final predicted class is then obtained via

ŷ(x∗) = argmax
k

[gRF(x
∗)]k . (10)

11

2.6 Dealing with Class Imbalance

Class imbalance refers to a setting where one or more classes are significantly
underrepresented in the training data. This can bias a classifier toward
predicting the majority class and lead to misleading performance metrics.
Lindholm [9] highlight that in such cases, accuracy becomes an unreliable
evaluation criterion and recommend using more discriminative metrics such
as precision, recall, and the F1 score.

A widely used technique for handling class imbalance is inverse class fre-
quency weighting. This approach adjusts the influence of each observation
during training by assigning class-specific weights inversely proportional to
their frequencies in the data. Therefore, it reduces the impact of majority
class and increases the penalty for misclassification of minority class exam-
ples [11].

Formally, if nk denotes the number of training observations belonging to
class k = 1, . . .K and n the total number of observations, the class weight
for class k is given by

wk =
n

K · nk
,

[10]. This weighting ensures that each class contributes equally to the loss
function during model training. In practice, this technique can improve
model robustness in imbalanced settings [11].

2.7 Evaluation Metrics

Confusion Matrix

The confusion matrix summarizes the performance of a classification model
by showing the counts of true and predicted class labels. In a multiclass
setting with K classes, the confusion matrix takes the form of a K ×K ta-
ble, where each row corresponds to the predicted class and each column to
the actual class. For example, a confusion matrix for a three-class problem
labeled A,B and C would correspond to Table 1 The diagonal elements nkk

indicate correct predictions, while off-diagonal elements represent misclassi-
fications.

Table 1: Example of a confusion matrix for a three-class classification prob-
lem

Predicted \ Actual A B C

A nAA nAB nAC

B nBA nBB nBC

C nCA nCB nCC

12

Accuracy

Accuracy is the most commonly used evaluation metric and measures the
proportion of correctly classified observation

Accuracy =
Number of correct predictions

Total number of predictions
.

This corresponds to the sum of the diagonal elements of the confusion matrix
divided by the total number of observations. Naturally, this can be extended
to class-specific accuracy. In this thesis, we define this as

Class Acc(k) =
Number of correctly predicted class k

Total number of true class k
.

This corresponds to the diagonal value in the confusion matrix for class k,
divided by the sum of all values in column k.

As mentioned in Section 2.6, relying on accuracy alone can be mislead-
ing, especially dealing with class imbalances. Therefore, we present some
alternative evaluation metrics that will be used during evaluation.

Precision, Recall and F1 Score

In the multiclass setting, the F1 score for each class is computed using an
approach, where the class of interest is treated as the positive class and all
others as negative. To illustrate this further recall Table 1, and say we treat
A as the the positive class. Then, Table 2 represents the corresponding
confusion matrix. TPA (true positives) denotes the number of observations
correctly predicted as class A, FPA (false positives) refers to observations
from classes B or C that were incorrectly predicted as class A, and FNA

(false negatives) represents the number of actual class A observations that
were misclassified as either class B or C [6].

Table 2: Illustration of TP, FP, and FN for class A under a one-versus-rest
approach.

Predicted \ Actual A B C

A TPA FPA FPA

B FNA – –
C FNA – –

Before presenting the F1 score, we define two related evaluation metrics
known as: precision and recall. Precision describes the proportion of pre-
dicted observations for a class that are actually correct. That is, it measures
how many of the predicted positives are true positives. Recall describes the
proportion of actual observations from a class that the classifier correctly

13

identifies. In other words, precision tells us how many of the predicted pos-
itives are true positives, and recall measures how many of the true positives
the classifier successfully captures [6].

Following the definitions implemented in scikit-learn [10], the precision
and recall for a specific class k is given by:

Precisionk =
TPk

TPk + FPk
, Recallk =

TPk

TPk + FNk
.

Then, the corresponding class-specific F1 score is then given by the harmonic
mean of precision and recall:

F1k =
2 · Precisionk · Recallk
Precisionk +Recallk

.

To summarize overall performance across all classes, the macro-averaged F1
score is computed as the unweighted mean of the class-specific F1 scores:

F1macro =
1

K

K∑
k=1

F1k.

OOB Error Rate

For random forest, model performance can also be assessed using the out-
of-bag (OOB) error rate. Since each decision tree is trained on a bootstrap
sample, about one-third of the training data is left out for each tree. These
excluded observations are referred to as out-of-bag samples.

The OOB error is computed by predicting the class of each training
observation using only the trees that did not include it in their training
sample. This results in an unbiased estimate of the generalization error,
avoiding the need for a separate validation set [9].

3 Data

The data used in this study consist of match results from the English Premier
League (abbr. EPL) for the seasons 2016/2017 to 2024/2025. This was
obtained from DataHub (sourced from Football Data UK) [1]. Each season
was stored in a separate CSV file, where each row corresponds to a single
match and columns represent various match-specific information.

The original data sets included fundamental match information such as
match date, teams, full-time results, and other match-specific details. These
variables served as the basis for computing the derived features used in the
models. It is also worth mentioning that the original data sets included
half-time results and their respective match statistics. These were excluded
in this thesis, as the objective is to predict outcomes solely on pre-match
information.

14

To prepare the data set for modeling, several pre-processing steps were
done. This included converting date strings to proper date formats, and
merging all seasonal data sets into a single data frame. Derived features,
such as recent team form, goal metrics, and leaderboard standings, were
computed based on this merged data set.

3.1 Feature Engineering

To capture relevant information about each team’s recent performance and
relative strength, multiple features were engineered from the raw match
results. These derived features were computed iteratively for each team
based on the chronological order of matches within a season. The features
can be grouped into the following categories:

• Performance-based features (e.g., Form Points, Win/Loss Streaks,
Unbeaten Records, Points per Match)

• Goal-related features (e.g., Goals per Match, Conceded Goals per
Match, Goal Differences)

• Historical Team Strength (e.g., Last Season Position, Promoted
Status)

• Relative Strength Features (i.e., differences between home and
away team metrics)

The engineered features were chosen to capture both short-term momen-
tum and long-term team strength. Performance-based metrics are designed
to reflect team momentum and form, while goal-based metrics provide in-
sight into a team’s offensive and defensive capabilities. Furthermore, differ-
ences between competing teams aim to quantify the relative strength in each
matchup. Lastly, including previous season standings and promoted status
allows the model to incorporate historical team reputation and league expe-
rience (see Table 3 for a complete list of included features).

To avoid data leakage, each engineered feature only had access to the
available information before predicting the match. For example, rolling
statistics were computed using data from matches that precede the current
fixture. This precaution prevents the model from accidentally accessing
future information, which would lead to over-optimistic performance esti-
mates. For further discussion on data leakage and its consequences, see
Kaufman et al. [8].

15

Table 3: Summary of input features. HT = Home Team and AT = Away
Team.

Features Description Type

HTLBS/ATLBS
Final league position based on previous season

(excluding newly promoted teams)
Integer

HT3WS/AT3WS Has won the previous three games Binary

HT5WS/AT5WS Has won the previous five games Binary

HT3LS/AT3LS Has lost the previous three games Binary

HT5LS/AT5LS Has lost the previous five games Binary

HT3GU/AT3GU Unbeaten the previous three games Binary

HT5GU/AT5GU Unbeaten the previous five games Binary

HTP/ATP Newly promoted team Binary

LBSD Difference in LBS between the two playing teams Integer

HTGPM/ATGPM Goals scored per match this season Numeric

GPMD Difference in GPM between the two playing teams Numeric

HTCPM/ATCPM Goals conceded per match this season Numeric

CPMD Difference in CPM between the two playing teams Numeric

HTGDPM/ATGDPM Difference between GPM and CPM this season Numeric

GDPMD Difference in GDPM between the two playing teams Numeric

HTPPM/ATPPM Points per Match this season Numeric

PPMD Difference in PPM between the two playing teams Numeric

HTFP/ATFP Sum of points gained in the previous five matches Numeric

FPD Difference in FP between the two playing teams Numeric

3.2 Data Overview

The final data set consists of match results from nine consecutive EPL sea-
sons, ranging from 2016/2017-2024/2025. Each row corresponds to a single
match and includes 34 engineered input features related to the participating
teams. Due to the design of some features, the first five matches played by
each team were filtered out. This results in a total of 2877 matches. The
data set is arranged in descending order with respect to the match date
fixture.

The response variable, Full-Time Result (abbr. FTR), is a categorical
variable with three classes: home win (H), draw D, and away win (A). Table 4

16

shows the class distribution of the entire data set. As illustrated, class
imbalance is present. Home Win H is a majority class, whereas Draw D are
notably unrepresented.

.

Table 4: Distribution of match outcomes in the final data set.

Outcome Count Proportion

Home Win (H) 1308 45.5%
Draw (D) 650 22.6%
Away Win (A) 919 31.9%

4 Methods

This section outlines the implementation and training of the two classi-
fiers discussed in this thesis. To ensure reliable and robust evaluation, each
classifier was trained and tested over 10 independently generated stratified
train/test splits, each with an 80/20 ratio. This means that for each of the
10 iterations, a new split was drawn from the full data set, while preserving
the original class distribution in both training and test sets. This approach
helps account for variability in performance due to data partitioning.

It should also be noted that the implementation was done in R. Further-
more, all non-categorical features were centered and scaled prior to training
and evaluation of the two classifiers.

LASSO-Penalized Multinomial Logistic Regression

The LASSO-penalized multinomial logistic regression classifier was imple-
mented using the glmnet package [5]. A full set of coefficients was estimated
for each class by setting type.multinomial = "ungrouped". Inverse class
frequency weights were calculated (as described in Section 2.6). Each ob-
servation in the training split were assigned corresponding weight using the
argument weights.

For each trained classifier, predictions on unseen data were obtained
using the predict() function from the same package. The penalty parame-
ter λ used was obtained by specifying s = lambda.min, which corresponds
to the minimum value of λ across the 10-fold cross-validation. Final clas-
sification was performed by selecting the class with the highest predicted
probability.

Random Forest

Random forest was implemented using the ranger package [12]. Each were
trained with the default settings of 1000 trees and the Gini index as the

17

impurity criterion. Furthermore, the argument probability = TRUE was
passed. This ensures that each tree outputs a probability distribution over
classes for each observation. These distributions are then averaged across
the ensemble, which aligns with the concept of soft voting described in
Section 2.5.3.

Like in the multinomial logistic regression modeling, inverse class fre-
quency weights were computed and applied to each observation. These
weights specified in the case.weights argument, which adjusts the prob-
ability of each observation being selected in the bootstrap samples used
to train individual trees. However, it should be noted that this alone
does not directly impose penalties during tree growing. There is also the
class.weights argument that does directly influence the splitting rule.
Both the case.weights and the class.weights argument were initially
considered for handling class imbalance. The final implementation presented
only uses the former. A table comparing performance metrics can be found
in Appendix A.

5 Results

This section presents and compares the predictive performance of the two
classifiers in focus. Results are reported as averages across the 10 random
train/test splits with an 80/20 ratio. For each split, evaluation metrics such
as accuracy, macro F1 score, and class-specific performance were computed
to asses both overall and per-class predictive performance.

5.1 Performance and Evaluation Metrics

Multinomial Logistic Regression

Table 5 displays the performance metrics for the multinomial logistic regres-
sion classifier. The classifier achieved an average accuracy of 0.480, and a
macro-averaged F1 score was 0.447. Furthermore, the classifier performed
moderate on the Home Win and Away Win classes, achieving F1 scores of
0.573 and 0.515, respectively. However, performance on the Draw class was
noticeably lower, reporting a F1 score of 0.267 and a class-specific accuracy
of just 0.252.

18

Table 5: Performance metrics for the multinomial logistic regression classifier

Metric Mean Standard Deviation

Overall Performance

Accuracy 0.480 0.021
F1 Macro 0.447 0.021

Class-Specific Performance

Class Acc (Home Win) 0.539 0.025
Class Acc (Draw) 0.252 0.037
Class Acc (Away Win) 0.556 0.026
F1 (Home Win) 0.573 0.023
F1 (Draw) 0.267 0.038
F1 (Away Win) 0.515 0.002

Random Forest

Table 6 shows the corresponding performance for the random forest classifier
trained using inverse class frequency weights via case.weights. The clas-
sifier reports similar results in both overall and class-specific performance
metrics. As with the logistic regression classifier, the random forest per-
formed better on the Home Win and Away Win classes, while performance
on the Draw class remained the weakest.

Table 6: Performance metrics for the Random Forest classifier

Metric Mean Standard Deviation

Overall Performance

Accuracy 0.497 0.013
F1 Macro 0.446 0.012
OOB Error 0.385 0.002

Class-Specific Performance

Class Acc (Home Win) 0.610 0.026
Class Acc (Draw) 0.184 0.029
Class Acc (Away Win) 0.552 0.042
F1 (Home Win) 0.599 0.014
F1 (Draw) 0.219 0.027
F1 (Away Win) 0.519 0.033

19

Stability and Performance Comparison

To assess the robustness of the two classifiers, the standard deviation of each
metric were calculated. The relatively low standard deviations reported in
Tables 5 and 6 suggest that both classifiers performed consistently across
different data splits. This implies that their predictive behavior is not sensi-
tive to specific samples. Overall, while the random forest classifier displayed
slight improvements in overall accuracy and log-loss, both classifiers demon-
strated similar performance patterns. In particular, both showed relatively
strong performance on the Home Win and Away win classes, but consis-
tently struggled to correctly classify Draw outcomes, as reflected in both F1
the scores and the class-specific accuracies.

5.2 Comparison of Predicted Probability Distributions

To examine how the two classifiers assign probabilities to different outcome
classes density plots along with summary statistics, and calibration plots
are presented.

The density plots in Figure 1 illustrates how the predicted probabilities
are distributed for each outcome class, regardless of the true label. Each
curve represents the distribution of predicted probabilities assigned to a
particular class across all test folds. A supplement summary is displayed in
Table 7.

Figure 1: Density plots of predicted probabilities assigned to each class
across all test folds

20

Table 7: Summary statistics of predicted probabilities assigned to each out-
come class, regardless of the true label. The table reports the mean predicted
probability, the standard deviation (abbr. SD), and the 10th and 90th per-
centiles across all test folds.

Class Classifier Mean 10th % 90th % SD

A LogReg 0.325 0.131 0.546 0.156
A RandomForest 0.330 0.132 0.571 0.169

D LogReg 0.332 0.256 0.399 0.058
D RandomForest 0.294 0.178 0.411 0.091

H LogReg 0.343 0.154 0.564 0.154
H RandomForest 0.376 0.160 0.621 0.170

For the Draw class, both classifiers assign relatively low probabilities
overall, with most values concentrated below 0.5. This is reflected in the
reported lower means and narrow percentile ranges. In contrast, predictions
for Home Win and Away Win are more broadly distributed. Both classi-
fiers shows noticeable right tails for these classes, consistent with the higher
standard deviations and broader percentile ranges. These results indicate
that the classifiers tend to assign higher probabilities more frequently to the
more common Home and Away outcomes, while being conservative towards
the minority class.

Figure 2 shows calibration plots for each class and classifier, illustrating
the relationship between predicted probabilities and observed frequencies,
aggregated over all test folds. Predicted probabilities were binned into ten
intervals with equal widths, where for each bin, the observed frequency
equals the proportion of times the predicted class matched the true class.
Perfect calibration is indicated by the dashed diagonal line.

Figure 2: Calibration curves for each outcome class and classifier

For the Away Win class, random forest displays near-perfect calibration,

21

closely following the diagonal across the entire probability range. Logistic
regression tends to under-predict the probability of Away Wins at higher
predicted probability levels, as its calibration curve lies above the diagonal
for predicted probabilities ≤ 0.5. This indicates that the predicted probabil-
ities for Away Wins are systematically lower than the observed frequencies.
For the Home Win class, random forest comes closest to the diagonal at
higher predicted probability levels, though both classifiers tend to under-
predict Home Win outcomes across the full range.

Both classifiers display poor calibration for the Draw class. Logistic re-
gression consistently over-predicts Draw outcomes, with its calibration curve
lying below the diagonal across all probability bins. Random forest shows
slight improved calibration at lower probability levels but displays the same
overall trend of over-prediction. These patterns are consistent with earlier
findings based on the performance metrics and probability distributions,
confirming that the Draw class remains the most challenging one to classify
correctly.

5.3 Confusion Matrix Analysis

To further analyze class-specific prediction patterns, Figure 3 presents the
normalized confusion matrices for both classifiers, averaged across all test
folds. Each column represents a true class label, and cell values equal the
proportion of predictions assigned to each each predicted class, normalized
by the number of instances in that true class. Rows correspond to predicted
classes.

Figure 3: Confusion matrix heat maps averaged across all folds. Each cell
represents the proportion of predictions for each true class label.

22

Both classifiers display high misclassification rates when the true class
label is Draws, with the random forest struggling the most. The distributed
proportions in the second column shows that logistic regression tends to
misclassify Draw with Away Win slightly more than with Home Win. Con-
versely, the random forest algorithm tends to misclassify with Home Win
slightly more often when the true class label is Draw.

When the true class is either Home Win or Away Win, both classi-
fiers demonstrate comparable results when predicting the correct class la-
bel. However, the distribution of the misclassification proportions shows
that random forest tends to misclassify Away Wins more often with Home
Wins, suggesting minor confusion when distinguishing the two. On the con-
trary, the misclassification proportions obtained from the logistic regression
classifier are relatively evenly distributed for each true class label.

5.4 Feature Importance

To understand which input features contributed most to the predictions, a
bar plot was made for both classifiers. Figure 4 displays the top 10 fea-
tures for each classifier, where the importance scores were standardized and
averaged across the 10 stratified train/test folds. Shared features between
the two classifiers are highlighted in color, while model-specific features are
shown in gray.

Figure 4: Bar charts illustrating the top 10 features for each classifier. High-
lighted bars means that both classifiers included these features.

Both classifiers consistently ranked the feature GPMD (Goals per Match
Difference) and GDPMD (Goal Difference per Match Difference) among the
most important. This agreement suggests that relative goal-based features

23

between teams is a strong predictor of match outcomes. However, the clas-
sifiers also reveal key differences. The classifier obtained from the logistic
regression emphasized features tied to prior season rankings and recent form
(e.g., HTP, HT5WS). This suggests that the classifier relied more on intu-
itive indicators of team strength. In contrast, the random forest prioritized
on goal-based and defensive features (e.g., CPMD, ATGPM), suggesting
that the random forest may have learned more complex patterns involving
team performance.

6 Discussion

6.1 Most Challenging Prediction Task

The results in this comparison study clearly outline the difficulty both meth-
ods had in correctly classifying draw outcomes. Across all evaluation metrics
presented, draws were associated with the weakest performance.

Random forest assigned the Draw label less frequently than logistic re-
gression, as seen in Figure 3. This tendency is further supported by the
predicted probability distributions and summary statistics presented in Sec-
tion 5.2. Although the random forest classifier showed larger variation in
predicted probabilities for Draw outcomes (i.e., wider percentile ranges),
compared to the logistic regression classifier, it generally assigned lower
probabilities to draws overall. This is reflected in its lower mean and lower
minimum percentile for the Draw class. Since soft voting only selects the
class with the highest predicted probability, these lower values likely con-
tributed to the classifier assigning Draw as the predicted class label less
frequently than logistic regression.

The confusion matrices of Figure 3 further illustrate the challenges as-
sociated with predicting Draws. Both classifiers displayed high proportions
of misclassification when the true class was Draw, with random forest per-
forming slightly worse. Logistic regression distributed its errors more evenly,
with a minor tendency to assigning Away Win. In contrast, random forest
had a tendency to misclassify Draw outcomes more often as Home Wins,
showing its bias toward the majority class.

This predictive difficulty may in part be explained by the underlying
feature distributions. The top-ranking features presented in Section 5.4 were
visualized in bar plots and box plots. These can be found in Appendix B.

The bar plots reveal that the categorical features do not provide clear
separation for Draw outcomes. Only minor shifts are observed between the
levels, and the proportion of Draws remains consistently low. Moreover, the
box plots reveal that the numeric features associated with Draw outcomes
tend to display lower variability compared to those associated with Home
and Away outcomes. There is also the issue where the Home and Away

24

classes clearly overlap the Draw class. In other words, the numeric features
also suffer from lack of separation for Draw outcomes.

In summary, the visualization of feature distributions and predicted
probabilities offers an insight as to why both methods struggle in classi-
fying Draws. The lack of separation in the top-ranking features may explain
the predicted probability distribution and the poor calibration for the Draw
class.

6.2 Method Comparison and Evaluation

The two methods displayed comparable predictive performance based on
the evaluation metrics presented. Overall accuracy and macro F1 scores
were similar, and both classifiers demonstrated moderate class-specific per-
formance for the Home and Away Win classes. However, neither method
performed well on the Draw class. Although, compared to random forest,
the logistic regression classifier displayed better results in terms of correctly
classifying Draw.

While the overall performance was similar, both classifiers showed some
differences in behavior. Random forest displayed a tendency to favor Home
Win when the true class label was either Draw or Home Win. In contrast,
logistic regression displayed a slight tendency to misclassify Draw more of-
ten as Home Win. However, when the true class label was Away Win, the
proportions of misclassifications were evenly distributed. In terms of prob-
ability estimates, the calibration plots showed that the random forest was
better aligned with observed outcomes for the Home and Away classes.

Finally, both classifiers demonstrated stable performance across the 10
stratified train/test. The standard deviations of accuracy, macro F1, and
class-specific metrics were consistently low, and the predictive behavior of
the two classifiers was not sensitive to data partitioning. This stability re-
flects the robustness of both methods, further suggesting that the limitations
lie in the data.

6.3 Reflection and Looking Forward

Feature engineering seems to play a major role for this particular classifica-
tion problem, which is also highlighted in Choi [3]. As discussed earlier, the
current feature set lacked clear separability from other outcomes. One pos-
sible improvement could be to include contextual or external data, such as
team ratings, match importance, or even betting odds. Other probabilistic
metrics such as xG (expected goals) could possibly improve performance if
included.

Implementing inverse class frequency weighting helped to boost the pre-
dictive performance for the Draw class (see Table 9). However, exploring
different alternatives in dealing with class imbalance would be preferable.

25

Finally, an interesting take would be to compare whether the two clas-
sifiers would perform better given half-time results.

7 Conclusion

The aim of this thesis was to compare the performance of classifiers ob-
tained from multinomial logistic regression and random forest for predicting
football match outcomes based on the English Premier League. The results
showed that the two classifiers perform similarly overall, achieving compa-
rable accuracy and macro F1 scores. Both methods were relatively effective
in classifying Home and Away Wins, but consistently struggled to correctly
predict draws. Analysis of predicted probabilities, calibration, and feature
distributions suggested that the challenges lie more in the input data, rather
than in the performance of the two classifiers.

References

[1] English premier league dataset. https://datahub.io/core/

english-premier-league, 2024. Accessed: January 2024. Dataset no
longer publicly available.

[2] Leo Breiman. Random forests. Machine Learning, 45:5–32, 10 2001.

[3] Bing Choi, Lee-Kien Foo, and Sook-Ling Chua. Predicting football
match outcomes with machine learning approaches. MENDEL, 29:229–
236, 12 2023.

[4] Paolo Cintia, Fosca Giannotti, Luca Pappalardo, Dino Pedreschi, and
Marco Malvaldi. The harsh rule of the goals: Data-driven performance
indicators for football teams. In 2015 IEEE International Conference
on Data Science and Advanced Analytics (DSAA), pages 1–10, 2015.

[5] Jerome H. Friedman, Trevor Hastie, and Rob Tibshirani. Regulariza-
tion paths for generalized linear models via coordinate descent. Journal
of Statistical Software, 33(1):1â22, 2010.

[6] Margherita Grandini, Enrico Bagli, and Giorgio Visani. Metrics for
multi-class classification: an overview, 2020.

[7] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction (Vol.
12). Springer, New York, 2nd edition, 2017.

[8] Shachar Kaufman, Saharon Rosset, and Claudia Perlich. Leakage in
data mining: Formulation, detection, and avoidance. volume 6, pages
556–563, 01 2011.

26

https://datahub.io/core/english-premier-league
https://datahub.io/core/english-premier-league

[9] Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and
Thomas B. Schön. Machine Learning - A First Course for Engineers
and Scientists. Cambridge University Press, 2022.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[11] Philipp Thölke, Yorguin-Jose Mantilla-Ramos, Hamza Abdelhedi,
Charlotte Maschke, Arthur Dehgan, Yann Harel, Anirudha Kemtur,
Loubna Mekki Berrada, Myriam Sahraoui, Tammy Young, Antoine
Bellemare Pépin, Clara El Khantour, Mathieu Landry, Annalisa Pas-
carella, Vanessa Hadid, Etienne Combrisson, Jordan O’ Byrne, and
Karim Jerbi. Class imbalance should not throw you off balance: Choos-
ing the right classifiers and performance metrics for brain decoding with
imbalanced data. NeuroImage, 277:120253, 2023.

[12] Marvin N. Wright and Andreas Ziegler. ranger: A fast implementation
of random forests for high dimensional data in C++ and R. Journal of
Statistical Software, 77(1):1–17, 2017.

27

A Appendix

A.1 Performance Comparison in Random Forest

Table 8: Performance comparison of Random Forest using only
case.weights vs. both case.weights and class.weights. Results are
averaged across 10 stratified train/test splits.

Metric Only case.weights Both Weights Difference

Accuracy 0.497 (0.013) 0.493 (0.014) -0.06
OOB Error 0.385 (0.002) 0.385 (0.003) 0.00
F1 (Home) 0.599 (0.014) 0.592 (0.013) -0.070
F1 (Draw) 0.219 (0.027) 0.217 (0.032) -0.002
F1 (Away) 0.519 (0.026) 0.523 (0.033) +0.004
F1 Macro 0.443 (0.016) 0.444 (0.015) +0.001
Class Acc (Home) 0.610 (0.026) 0.595 (0.023) -0.015
Class Acc (Draw) 0.184 (0.029) 0.197 (0.034) +0.013
Class Acc (Away) 0.552 (0.042) 0.555 (0.042) +0.003

28

A.2 Performance Comparison UsingWeights Versus NoWeights

Table 9: Comparison of predictive performance with and without inverse
class frequency weighting, highlighting the impact in Draw class. Results
are averaged across 10 stratified test splits. NA is reported due to the
classifier not predicting Draw class.

M
e
tr
ic

L
o
g
is
ti
c
R
e
g
re

ss
io
n

R
a
n
d
o
m

F
o
re

st

W
it
h

W
e
ig
h
ts

N
o
W

e
ig
h
ts

W
it
h

W
e
ig
h
ts

N
o
W

e
ig
h
ts

A
cc
u
ra
cy

0
.4
80

(0
.0
21

)
0.
53

7
(0
.0
13

)
0.
49

7
(0
.0
13

)
0.
52

3
(0
.0
16

)
F
1
M
a
cr
o

0
.4
47

(0
.0
21

)
0.
56

6
(0
.0
64

)
0.
44

6
(0
.0
12

)
0.
40

0
(0
.0
16

1)
F
1
(D

ra
w
)

0.
26

7
(0
.0
3
8)

N
A

0.
21

9
(0
.0
27

)
0.
04

9
(0
.0
25

)
C
la
ss

A
cc

(D
ra
w
)

0.
25

2
(0
.0
3
7)

N
A

0.
18

4
(0
.0
29

)
0.
02

9
(0
.0
37

)

29

B Appendix

Figure 5: Box plots of scaled numeric feature distributions by match out-
comes

30

Figure 6: Bar plots of match outcome proportions by factor level for selected
dummy variables

31

