
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Learning Concentric Circular Boundaries:
A Simulation Study Comparing Neural Net-
works and Random Forests

Ellinor Lindkvist

Matematiska institutionen

Kandidatuppsats 2025:13
Matematisk statistik
Juni 2025

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Bachelor Thesis 2025:13

http://www.math.su.se

Learning Concentric Circular Boundaries: A

Simulation Study Comparing Neural Networks

and Random Forests

Ellinor Lindkvist
∗

June 2025

Abstract

As the amount of data generated by individuals continues to grow,
the ability to extract information and make viable predictions from
that data is increasingly important. This thesis aims to investigate
the performance of two machine learning methods, namely random
forest and neural network. For the neural network, we try two differ-
ent activation functions, sigmoid and rectified linear unit (ReLU). The
methods are used to solve a binary classification problem with simu-
lated data, where each data point is labelled according to whether it
falls within an even or odd numbered concentric circle. We evaluate
the performances of the two methods for three different simulation
scenarios: varying the number of input variables, varying the size
of the training dataset and varying the label flipping probability. We
measure the performance in classification error and mean squared pre-
diction error (MSPE). The results show that the neural network with
the ReLU activation achieves lower classification errors and MSPEs,
overall, and that the neural network with a sigmoid activation func-
tion struggles to learn the signal in the data. This suggests that neural
networks are better suited for circular boundaries than random forests
but that the activation function has to be appropriately chosen for
achieving good model performance.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: ellinor.lindkvist@gmail.com. Supervisor: Ola Hössjer and Johannes Heiny.

Learning Concentric Circular Boundaries: A

Simulation Study Comparing Neural Networks

and Random Forests

Ellinor Lindkvist

2025

SAMMANFATTNING

Allt eftersom data samlas in, blir förmågan att extrahera mönster
och göra användbara prediktioner allt mer eftertraktad. I denna kan-
didatuppsats undersöker vi om det finns skillnad i prestanda mellan
maskininlärningsmetoderna random forest och neuralt nätverk. I det
neurala nätverket testar vi tv̊a olika aktiveringsfunktioner, sigmoid-
funktionen och ReLU-funktionen. De b̊ada metoderna används för att
lösa ett binärt klassificeringsproblem med simulerad data. Den simu-
lerade datan erh̊alls genom att varje punkt tilldelas en klass baserat
p̊a om den finns i en koncentrisk cirkel med udda eller jämnt num-
mer. Vi utvärderar prestanda för tre olika scenarier: genom att variera
dimensionen p̊a data, variera storleken p̊a träningsdatamängden och
variera sannolikheten att en punkt tillhör den andra klassen trots
att den befinner sig i ett omr̊ade för den första klassen. Vi mäter
prestanda i klassificeringsfel och genomsnittligt kvadratiskt predik-
tionsfel (MSPE). Resultaten visar att det neurala nätverket med ak-
tiveringsfunktionen ReLU generellt uppn̊ar lägst klassificeringsfel och
MSPE samt att det neurala nätverket med sigmoidfunktionen inte
lär sig det underliggande mönstret i data. Detta antyder att neurala
nätverk presterar bättre än random forest när mönstret är cirkulärt
men att val av aktiveringsfunktion är väsentligt för att uppn̊a bra
prestanda.

Acknowledgements

First and foremost, I would like to sincerely thank my supervisors, Ola Hössjer
and Johannes Heiny, for their invaluable guidance, feedback and support through-
out this thesis. I am also deeply grateful to my wonderful parents for always
believing in me and for providing moments of respite throughout the bachelor’s
programme, including during the writing of this thesis.
ChatGPT has been used to correct Python code, ensure proper formatting in
LaTeX, as well as a sounding board.

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Outline of Thesis . 1

2 Theoretical Background 2
2.1 Regression Models . 2

2.1.1 Types of Machine Learning 2
2.1.2 Supervised Learning and Binary Classification 3

2.2 Using Trees for Classification . 3
2.2.1 Deciding which Class with Binary Trees 4
2.2.2 Learning a Classification Tree 4
2.2.3 Overfitted Trees and How to Prevent it 6
2.2.4 The Bias-Variance Decomposition 6
2.2.5 Bagging to Reduce Variance 8
2.2.6 Random Forests . 10

2.3 Using Neural Networks for Classification 11
2.3.1 Choosing a Loss Function 11
2.3.2 Gradient-Based Optimizers 11
2.3.3 Neural Networks . 12

2.4 Classification Error in Binary Classification Problems 14

3 Data Generation and Simulation Scenarios 15
3.1 Generating the Data . 16
3.2 Expressing Errors with the Label Flipping Probability 16
3.3 Simulations: Increasing Input Dimension, Training Set Size and

Label Flipping Probability . 17

4 Results 18
4.1 Simulation 1: Increasing the Input Dimension 18
4.2 Simulation 2: Increasing the Training Set Size 19
4.3 Simulation 3: Increasing the Label Flipping Probability 21

5 Discussion 21
5.1 Analysing the Differences in Performance 21
5.2 How the Data is Distributed in the Rings 23
5.3 Improvements and Further Work 25

6 References 27

1 Introduction

1.1 Background and Motivation

In recent years, with the fast technological advances, almost everything we inter-
act with generates data; from social media and viewing preferences on streaming
services to financial transactions and tracking your health with apps. But data
is of little use if we cannot find the patterns hidden behind the numbers and
use those patterns to draw conclusions or make predictions.

One way to utilise data is through binary classification. Binary classification
has many applications. For instance, binary classification makes it possible to
predict if someone is a suitable blood donor from clinical data (Mostafa et al.,
2021) and predict if someone will earn more than 50 000 USD per year based on
social factors such as age, gender, education and marital status (Chen, 2021).

In this thesis, we use simulated data and implement the supervised machine
learning methods random forest and neural network to learn the underlying
pattern in the data and classify data points as belonging to either class 1 or
class 0. A point of interest in previous research has been to use algorithms in
order to apply the optimal weight to each tree in a random forest (Chen et al.,
2024). As for neural networks, a comparative study investigated how the the
choice of activation function affects performance as well as the impact of the
dataset size (Boateng et al., 2023).

When we implement random forest in this simulation study, all trees will
have equal weight. When we implement neural network, we consider the sigmoid
activation function as well as the ReLU function. The focus is then on whether
random forest or neural network perform better in terms of binary classification
error. Comparison is done for three different scenarios, varying the dimension of
the input data, varying the size of the training set and varying the probability
that a label is flipped.

In order to compare the methods, both the classification error and the mean
squared prediction error are computed. The main finding is that neural network
with ReLU achieves lower errors overall, while using the sigmoid activation
function yields a model that is essentially guessing which class a data point
belongs to. This implies that neural networks are better suited for circular
boundaries than random forests, however, selecting an appropriate activation
function is essential for achieving good model performance.

1.2 Outline of Thesis

The structure of the thesis is as follows, Section 2 provides the reader with a brief
introduction to machine learning as well as the theory behind the two methods
implemented. Section 3 covers the specifics of the simulations. Section 4 swiftly
presents the results, preceding a more thorough discussion of the results and
future work in Section 5.

1

2 Theoretical Background

Unless otherwise stated, the content of this section is based on Lindholm et al.
(2022).

2.1 Regression Models

Regression can be used to learn the relationship between input variables X and
an output variable Y. For example, X could be a p-dimensional vector sampled
from a multinormal distribution and Y a variable that is correlated with X
through an input-output relation. This can be modelled through a function f
such that,

Y = f(X;θ) + ε,

where θ are the regression parameters of the model and ε is an independent error
that cannot be explained by the model. Furthermore, the error term is assumed
to be homoscedastic and normally distributed with mean 0 and variance σ2.
If the model is linear in its parameters θ, we have a linear regression model.
But if the model is non-linear in its parameters, we have a non-linear regression
model (Lindholm et al., 2022, pp. 37). Applying the linear operator conditional
expected value on the model yields

E[Y | X = x] = E[f(X;θ) | X = x)] + E[ε | X = x],

which implies that

f(x;θ) = E[Y | X = x],

since ε does not depend on X (Hastie et al., 2009, pp. 28). Regression models
are fairly simple but they are important for more advanced methods such as
neural networks (Lindholm et al., 2022, pp. 133).

2.1.1 Types of Machine Learning

Machine learning refers to a computer program with the ability to extract infor-
mation from data and make predictions on previously unseen data. By present-
ing the problem as a mathematical model, the program is able to use training
data to learn the parameters of the mathematical model and make accurate
predictions. Since the program learns or adapts its predictions based on the
available training data, the same program can be used for different problems.

Machine learning can be divided into three categories: reinforcement, super-
vised and unsupervised learning. In reinforcement learning, an agent interacts
with an environment and learns what actions to take based on a reward system
(Sutton et al., 2018, pp 1-2). In supervised learning, we have training data that
contains input and output variables. We say that the input is labelled (Lind-
holm et al., 2022, pp. 13). In unsupervised learning, there are no labels, only
the input is available (Lindholm et al., 2022, pp. 247). The focus of this thesis
will be on supervised learning.

2

2.1.2 Supervised Learning and Binary Classification

Supervised learning uses training data T = {(xi, yi)}ni=1, assumed to be obser-
vations of independent and identically distributed random variables with the
same distribution as (X,Y), for the purpose of learning the regression function
f(x;θ) = E[Y | X = x]. Supervised machine learning problems are further cat-
egorised into regression and classification problems, meaning that the output Y
is numerical and categorical, respectively. The focus of this thesis will be on
binary classification problems.

Assuming that the data points (xi, yi), i = 1, . . . , n are observations of
independent random variables, and that Y belongs to class 1 or class 0, we have
that the probability that Y belongs to class 1 is equal to the expected value of
Y conditioned on X,

E[Y | X = x] = P (Y = 1 | X = x) = f(x;θ).

We can also calculate the probability that Y is in class 0 conditioned on X,

P (Y = 0 | X = x) = 1− f(x;θ).

Since the probabilities sum to one, we note that Y conditioned on X is a
Bernoulli distributed variable. Furthermore, while the expected value of ε is
still 0, ε is not homoscedastic in the binary classification case, which we will
now show. We have that the variance of Y conditioned on X = x is

Var(Y | X = x) = Var(f(X;θ) + ε | X = x).

Since the variance of f(X;θ) is 0 when conditioned on X = x, we can simplify
the expression to

Var(Y | X = x) = Var(ε | X = x).

Using the fact that Y conditioned on X is a Bernoulli distributed variable we
finally get

Var(Y | X = x) = Var(ε | X = x) = f(x;θ)(1− f(x;θ))

(Hastie et al., 2009, Section 2.6.1).

2.2 Using Trees for Classification

This section is based on Section 2.3 in Lindholm et al. (2022), unless otherwise
stated.
Tree-based methods aim to partition the input space into disjoint regions. In
the two-dimensional case, the regions are rectangle shaped as shown in Figure
1. The regions are then labelled as class 1 or class 0, visualised as blue circles
and red triangles in the figure.

3

Figure 1: Cropped figure from Müller (2020). Partition of the input space for a
binary classification tree with two input variables.

2.2.1 Deciding which Class with Binary Trees

A binary tree is a tree structure in which every inner node has at most two
children. Decision trees can then be described as binary trees with a splitting
criterion on each inner node. The condition is of the form x⋆j < sk, where x⋆j is
one of the input variables from previously unseen input x⋆ = [x⋆1, . . . , x⋆p]

⊤ and
sk is the numeric threshold on inner node k, with the root node being labelled
as k = 0. If the inequality is true, the rule is to traverse down the left branch.
In the false case, we instead traverse down the right branch. Repeating this
procedure, we eventually end up in a leaf node. During training, the leaf node
is assigned with a class and thus all data points that end up in a given leaf node
belong to that class. Ending up in a leaf node with label y corresponds to a
prediction f̂(x⋆) = y for all input vectors x⋆ that belong to this leaf node.

The decision tree partitions the input space into disjoint regionsR1, R2, ..., RL

with the number of regions corresponding to the number of leaf nodes. In the
case where x⋆ = [x⋆1, x⋆2]

⊤, the boundaries in the region partition are parallel
with the x1-axis or the x2-axis and thus the regions are rectangles. For higher
dimensions we have p-dimensional rectangles where p is the number of input
variables.

2.2.2 Learning a Classification Tree

The prediction f̂(x⋆) is a piecewise constant function that can be written as

f̂(x⋆) =

L∑
l=1

f̂lI{x⋆ ∈ Rl}, (1)

where L is the total number of leaf nodes, Rl is the lth region and f̂l is the
constant prediction in said region. The indicator function I takes the value 1 if
x⋆ ∈ Rl, 0 otherwise. During learning, the aim is that the tree ends up with
satisfactory values for the parameters in Equation (1). Firstly, the tree has to

4

have optimal splits which ultimately define the regions Rl. Secondly, it has to
decide f̂l for each region. In the binary classification case, it is typically decided
by majority vote of the training data i.e., the most frequent class of each region
decides the outcome. Lastly, the algorithm has to learn the size of the tree,
defined through L, as opposed to the total number of nodes. This can also be
interpreted as the algorithm having to learn when to stop splitting. Allowing a
tree to continue splitting, until there are no data points left on which to base
a new split, can result in the classifier overfitting to the training data which in
turn leads to it not being able to generalise to new unseen data. However, we
still want the regions to be selected so that the tree fits the training data to
some extent.

The great number of possible ways to partition the input space makes ex-
ploration of all possible splits and construction of the resulting binary trees
computationally impossible. Instead, we use the heuristic algorithm called re-
cursive binary splitting. This algorithm is greedy; it will determine a splitting
rule with the objective to obtain a model that explains the training data as well
as possible while only taking the current split into consideration.

The split at any internal node is computed by solving an optimisation prob-
lem of the form

min
j,s

(n1Q1 + n2Q2) , (2)

with n1 and n2 denoting the number of training data points in the left and
right child of the current split, whereas Q1 and Q2 are the costs associated with
the respective child node. Variables j and s denote, as previously mentioned,
the index of the splitting variable, xj (the jth component of x), and the numeric
threshold of an inner node. The variables in Equation (2) all depend on j and s,
but this explicit dependence is not necessary for explaining how the algorithm
works, and therefore they are dropped from our notation for cleaner expressions.

The proportion of training observations in region Rl that belong to class m
is defined as

π̂lm =
1

nl

∑
i:xi∈Rl

I{yi = m}, (3)

with nl the number of data points in Rl. For simplicity, we set π̂l1 = r in future
expressions. In a binary classification problem where we have classes 0 and 1,
Equation (3) then gives us

π̂l1 =
1

nl

∑
i:xi∈Rl

I{yi = 1} = r

π̂l0 =
1

nl

∑
i:xi∈Rl

I{yi = 0} = 1− r.

If r = 0 or r = 1, we have node purity in leaf node l, meaning that all data
points belong to the same class.

5

We now define three different splitting criteria, Q, called the misclassification
rate (Eq. (4a)), Gini index (Eq. (4b)) and the entropy criterion (Eq. (4c)),

QM,l = 1−max{r, 1− r}, (4a)

QG,l = 2r(1− r), (4b)

QE,l = −r ln r − (1− r) ln(1− r). (4c)

As illustrated in Figure 2, all three criteria provide zero loss if all data points
belong to the same class, r ∈ {0, 1}, and maximal loss if the points are equally
divided between the two classes, that is, r = 1

2 . For other values of r, the Gini
index and the entropy both have higher loss than the misclassification rate.
This means that they prioritize node purity and by extension, work well with
the recursive binary splitting algorithm, that seeks to minimize loss. All three
criteria can be used in binary splitting.

Figure 2: Figure from Lindholm et al. (2022). The three splitting criteria
as functions of r. (The entropy criterion has been scaled such that it passes
through (0.5, 0.5).)

2.2.3 Overfitted Trees and How to Prevent it

If a tree model’s depth is not restricted, it will continue to grow until each leaf
node is pure, a so called fully grown tree. A fully grown tree will correctly
classify all training data points, as per its definition, but it will not achieve
optimal performance when presented with new, unseen data. Such a tree is said
to be overfitted. To prevent overfitting, one can set a stopping criterion to stop
splitting if the number of data points in a leaf node is less than some integer.
Another way is to limit the depth of the tree. Lastly, one can grow the full
tree and then prune it until a satisfactory depth is achieved - this method is
appropriately named pruning.

2.2.4 The Bias-Variance Decomposition

This section is based on Section 4.4 in Lindholm et al. (2022).
Consider z0 being the bullseye on an archery target. We then have an arrow, the
random variable Z, which represents attempts to estimate z0. Then a grouping

6

off-centre represents the systematic bias, while a scattering all over the target
represents the variance. Mathematically, we define bias as

E[Z]− z0,

and variance as
E[(Z − E[Z])2] = E[Z2]− E[Z]2.

In order to measure how good of an estimator Z is, we introduce the expected
squared error between z0 and Z, which can be defined in terms of squared bias
and variance as

E[(Z − z0)
2] = E[((Z − E[Z]) + (E[Z]− z0))

2]

= E
[
(Z − E[Z])2

]
+ 2 (E[Z]− E[Z])︸ ︷︷ ︸

0

(E[Z]− z0) + (E[Z]− z0)
2

= E
[
(Z − E[Z])2

]︸ ︷︷ ︸
Variance

+(E[Z]− z0)
2︸ ︷︷ ︸

Bias2

.

Noting that the expected squared error can be decomposed into the sum of
squared bias and variance, we realise that in order to minimize the error, one
has to consider both bias and variance; this is what is known as the bias-variance
trade-off.

In the supervised learning setting, if expectation is conditional on X, z0
would be E[Y | X] = f(X;θ), while Z corresponds to predictions made from the

fitted model f̂(X,θ) = f(X; θ̂(T)), learned from training data T . This implies
that the mean squared estimation error E[(Z−z0)

2] corresponds to the expected
squared estimation error for estimating f(X;θ) for a fixedX. Furthermore, E[Z]

would be the so called average training model E[f(X; θ̂(T))] = f̄(X), averaged
over training data. The average training model is more of a concept rather
than an actual model, as it would require re-training the model using an infinite
amount of training sets of the same size and then computing the average. As
previously mentioned, Z are predictions made by the learned model, but one
can also view Z = f̂(X;θ) as a prediction of a future observation f(X;θ) + ε
with a fixed response vector X and error term ε. In analogy to the estimation
error case, one can then derive the mean squared prediction error in terms of
variance and squared bias,

7

MSPE(X)

=E[(f(X;θ) + ε− f̂(X;θ))2 | X]

=E[(ε+ f(X;θ)− f̂(X;θ))2 | X]

=E[ε2 + 2ε(f(X;θ)− f̂(X;θ)) + (f(X;θ)− f̂(X;θ))2 | X]

=E[ε2 | X] + E[(f(X;θ)− f̂(X;θ))2 | X] (5)

=Var(ε | X) + E[(f(X;θ)− f̄(X) + f̄(X)− f̂(X;θ))2 | X]

=Var(ε | X) + E[(f(X;θ)− f̄(X))2 | X] + E[(f̄(X)− f̂(X;θ))2 | X]

=Var(ε | X) + (f(X;θ)− f̄(X))2︸ ︷︷ ︸
Bias2

+E[(f̄(X)− f̂(X;θ))2 | X]︸ ︷︷ ︸
Variance

.

In Equation (5), the expectation is over ε and T but this nested expectation
is summarised in E for cleaner notation. We have also used that the expected
value of ε is 0 in the third equality and the fact that the cross-term vanishes (as

E[f̄(X)− f̂(X;θ) | X] = 0) in the fifth equality.

2.2.5 Bagging to Reduce Variance

This section is based on Section 7.1 in Lindholm et al. (2022). Bootstrap aggre-
gation, or bagging for short, is an ensemble method. Ensemble methods reflect
the saying ”There is strength in numbers.”, as they learn multiple models and
then transform their individual outputs into one aggregated prediction. When
bagging, we train the different models with independent samples T̃1, ..., T̃B , boot-
strapped from the original training set T . The bootstrapped samples are of the
same size as the original training set. After training, we end up with B models,
whose predictions f̂b(x) are averaged to obtain one prediction,

f̂bag(x) =
1

B

B∑
b=1

f̂b(x). (6)

In the binary classification problem, the average can be seen as an estimate
of the conditional probability of class 1 given x, or one can define a threshold
function where class 1 is chosen if this conditional probability exceeds 0.5 and
class 0 otherwise. The latter is equivalent to using the majority vote.

8

We can now use Equation (6) to derive the bias of the prediction,

Bias(f̂bag(x)) = E[f̂bag(x)]− f(x;θ)

= E

[
1

B

B∑
b=1

f̂b(x)

]
− f(x;θ)

=
1

B
E

[
B∑

b=1

f̂b(x)

]
− f(x;θ)

=
[
E[f̂b(x)] ≈ E[f(x; θ̂(T))] = f̄(x)

]
≈ 1

B
Bf̄(x)− f(x;θ)

= f̄(x)− f(x;θ).

So, bagging neither reduces nor increases the bias! We now derive the variance,

Var(f̂bag(x)) =
1

B2
Var

(
B∑

b=1

f̂b(x)

)

=
1

B2

 B∑
b=1

Var
(
f̂b(x)

)
+

B∑
b ̸=b′

Cov
(
f̂b(x), f̂b′(x)

)
=

Var(f̂b(x))

B
+

1

B2

B∑
b ̸=b′

Cov
(
f̂b(x), f̂b′(x)

)
︸ ︷︷ ︸

(∗)

. (7)

Before continuing, we remind ourselves that the predictions f̂b(x) are identically
distributed. We also note that the total number of covariance terms is B(B−1)
and that correlation ρ is defined as

ρ =
Cov

(
f̂b(x), f̂b′(x)

)
Var(f̂b(x))

since all resampled estimates f̂b(x) have the same variance. We can then rewrite
(∗) as

(∗) = B(B − 1) · Cov
(
f̂b(x), f̂

′
b(x)

)
= B(B − 1) · ρ ·Var

(
f̂b(x)

)
.

Substituting (∗) back into Equation (7) gives us

Var
(
f̂bag(x)

)
=

Var(f̂b(x))

B
+

1

B2
B(B − 1) · ρ ·Var

(
f̂b(x)

)
=

Var(f̂b(x))

B
+

(
1− 1

B

)
· ρ ·Var

(
f̂b(x)

)
.

(8)

9

If the estimates f̂b(x) are independent, the correlation term vanishes and we
would get

Var(f̂bag(x)) = Var

(
1

B

B∑
b=1

f̂b(x)

)

=
1

B2
B ·Var(f̂b(x))

=
Var(f̂b(x))

B
.

(9)

From Equation (9) we see that the variance of f̂bag(x) will decrease as B ap-
proaches infinity. From Equation (8) we also see that when B approaches in-

finity, the variance can only decrease to a certain point, namely ρ ·Var
(
f̂b(x)

)
,

where ρ is the correlation. In summary, bagging is a method that reduces vari-
ance without increasing bias. To further reduce variance, one can consider a
method called random forests, which aims at decorrelating the involved trees.

2.2.6 Random Forests

In this section, although random forests can be used for both regression and
classification, random forests will be presented as a method to solve binary
classification problems. This section is based on Section 7.2 in Lindholm et al.
(2022).

Random forests is a modification of bagging and it involves building a large
collection of de-correlated trees and then making a prediction by majority vote.
Similar to bagging, the first step is to bootstrap independent samples T̃1, ..., T̃B
from the training set T . We then grow the trees, but at each node we uniformly
at random selectm variables from the total of p variables. Then the optimisation
problem, presented in Section 2.2.2, is solved but only while considering the m
variables chosen as possible splits. This is repeated until the stopping criterion
is reached. For random forests, we stop splitting if the number of data points in
a node is less than nmin. The result is again B estimates of f , who all cast their
vote. The final prediction is the majority vote of the ensemble’s votes (Hastie
et al., 2009, Section 15).

It is the act of randomly selecting which variables be considered for splits
that de-correlates the trees. If one input variable is particularly favourable
for the greedy recursive binary splitting, chances are high that all the trees
will have that split. But by randomly selecting which splitting variables are
possible, we force the greedy algorithm to choose another split, resulting in
weaker correlation between trees. It is worth noting that this also results in
higher variance of the estimate f̂b(x), computed from each individual tree, since
none of these trees have access to the full dataset. However, experience has
shown that the decrease in correlation outweighs the increase in variance and
the net effect is often a reduction in the averaged prediction variance.

10

2.3 Using Neural Networks for Classification

Neural networks aim to learn the weights w in the network, which are then
used to parametrize a function that takes input x and predicts the output y
(Lindholm et al,. 2022, pp. 133).

2.3.1 Choosing a Loss Function

A loss function L(f̂(xi), yi) measures how close a model’s prediction f̂(xi) is to
the observed response variable yi. If the model fits the data well, the value of
the loss function is small.

When considering binary classification problems, one might intuitively reach
for the misclassification loss:

L(f̂(xi), yi) = I{f̂(xi) ̸= yi} =

{
0 if f̂(xi) = yi

1 if f̂(xi) ̸= yi.
(10)

However, this loss function is sparsely used in actual model training since it
is discrete and as a consequence, not differentiable with respect to the parameter
vector θ. This vector θ contains the elements of all weight matrices and offset
vectors of the neural network, introduced in Section 2.3.3. Instead, we consider
the cross-entropy loss for neural networks:

L(f̂(xi), yi) =

{
ln f̂(xi) if yi = 1

ln(1− f̂(xi)) if yi = 0
(11)

(Lindholm et al., 2022, pp. 98-99). The loss function for the whole training
dataset can then be written as

J(θ) = L
({

f̂(xi)
}n

i=1
, {yi}ni=1

)
=

1

n

n∑
i=1

[
yi ln f̂(xi) + (1− yi) ln(1− f̂(xi))

]
(12)

which is quite similar to the splitting criterion in Equation (4c). However, the
difference is that the loss function in Equation (12) is averaging over the size of
the dataset and has both the estimated label and the true label as parameters.

2.3.2 Gradient-Based Optimizers

Stochastic Gradient Descent From a differentiable loss function, one can
calculate its gradient,

∇θJ(θ) =
1

n

n∑
i=1

∇θL(f̂(xi), yi),

However, this proves to be computationally disadvantageous as summing takes
time and using all the data points takes up a lot of memory. Instead, we

11

approximate the gradient by using a mini-batch, a subset of the entire dataset,
of size ñ < n, so that

∇θJ(θ) ≈
1

ñ

ñ∑
i=1

∇θL(f̂(xi), yi).

This is called a stochastic gradient since the data points chosen for the mini-
batch are random. The descent part simply refers to the fact that we update
parameters in the negative direction of the gradient (Lindholm et al., 2022, pp.
124). The updating rule is as follows,

θ = θ − γ∇θJ(θ),

where γ is the learning rate. The learning rate tells us how much in the direction
of the negative gradient we should update and its choice can be an optimisation
problem in itself (Lindholm et al., 2022, pp. 117). However, in this thesis we
use a constant learning rate.

Adaptive Moment Estimation An extension of stochastic gradient de-
scents (SGD) is adaptive moment estimation (Adam) which is preferable when
the loss function has many saddle points. Stochastic gradient descent risks get-
ting stuck in saddle points since the gradients are zero there. Adam avoids this
by calculating learning rates γt and search directions dt. The updating rule is
then

θ = θ − γtdt,

where t is the iteration number and γt and dt are outputs from functions
γ (∇θJt, . . . ,∇θJ0) and d (∇θJt, . . . ,∇θJ0). The Adam optimizer updates the
learning rates according to

γt =
η√
t

(
(1− β1)diag

(
t∑

i=1

βt−i
1 ∥∇θJi∥2

)) 1
2

and the search direction according to

dt = (1− β2)

t∑
i=1

βt−i
1 ∇θJi.

The parameters β1 and β2 are typically set to β1 = 0.999 and β2 = 0.9 while η
is the initial learning rate (Lindholm et al., 2022, pp. 128).

2.3.3 Neural Networks

Artificial neural networks, or simply neural networks, are networks of intercon-
nected units divided into input-, output- and hidden layers. Figure 3 illustrates
a feedforward neural network with four input units (input layer), two hidden

12

layers and two output units (output layer). In a feedforward neural network,
there are no loops, meaning that no unit can affect its own input. Each con-
nection (represented by arrows between nodes in Figure 3) is associated with a
real-valued weight that decides how much a unit will be affected by each unit of
the previous layer. The unit is semi-linear as it computes the weighted sum of
its input (a linear operation) and then applies a non-linear activation function
to the result. If the activation function was linear, we would simply have a
linear transformation of the input over and over again, which we can summarize
as a single linear function, resulting in a neural network equivalent to a network
without hidden layers.

A neural network typically learns through a combination of backpropaga-
tion and optimization. The backpropagation algorithm is used after a forward
pass. While making a backward pass, the partial derivative for each weight is
computed as,

∂L
∂w

=
∂L
∂h

∂h

∂z

∂z

∂w
,

where L is the loss function, z is the value of a node and h(z) is the activation
function. The loss can then be minimized by using stochastic gradient descent
for example (Sutton et al., 2018, Section 9.7).

Figure 3: Figure from Sutton et al. (2018). A feedforward neural network with
one input layer, two hidden layers and one ouput layer.

Suppose we have a neural network for a binary classification problem, with
L = 4 layers: one input layer, two hidden layers and one output unit. We can
then define the output of the input layer as

q1 = x.

In layer two and three, the input is the output of the previous layer and we get

q2 = h(w1q1 + b1)

q3 = h(w2q2 + b2),

13

where h is the sigmoid activation function defined as

h(z) =
1

1 + e−z
,

and bl is the offset vector of layer l+ 1. The matrix wl contains the weights of
the connections between layer l and layer l + 1, l ∈ {1, ..., L− 1}.

Another choice for the activation function is the rectified linear unit (ReLU)
defined as

h(z) = max(0, z).

For the final layer, the output is a scalar which represents the probability
that a data point belongs to class 1,

q4 = h(w3q3 + b3) ∈ [0, 1].

So, in a neural network with a total of L layers, the final output qL is not
a prediction, but the probability that the output variable Y belongs to class 1.
The threshold to decide the prediction is set to 0.5 and we get

f̂(x) =

{
0, if qL ≤ 0.5

1, otherwise

(Lindholm et al., 2022, Section 6.1).

2.4 Classification Error in Binary Classification Problems

In Equation (5) of Section 2.2.4, we defined the expected squared prediction
error MSPE(X) conditioned on X. In the simulation study however, we should
use the integrated expected mean squared prediction error (MSPE) which can
be decomposed into a variance term and a mean squared estimation error term
(MSE) as

MSPE = E[MSPE(X)]

= E[(f(X;θ) + ε− f̂(X;θ))2]

= Var(ε) + E[(f(X;θ)− f̄(X))2︸ ︷︷ ︸
Bias2

] + E[(f̄(X)− f̂(X;θ))2]︸ ︷︷ ︸
Variance

= Var(ε) +MSE, (13)

since X will vary. At this point, the reader has noticed that MSPE can be used
both when Y is a continuous variable and when it is a discrete, binary variable.
This of course begs the question: is there a more adequate error for the binary
classification problem?

To find such an error, we first introduce the Bayes classifier,

Ŷ = 1(f̂(x) > 0.5), (14)

14

which is a prediction of the response variable Y for an input vector x. The
classification error is then the probability that the prediction is wrong. In the
ideal case, when the regression function is known, i.e. f̂(x) = f(x), we would
get the classification error

Err(x) = P (Y ̸= Ŷ | X = x)

= 1−max(1− f(x;θ), f(x;θ)).

We then have the unconditioned error

Err = E[Err(X)]

= 1− E[max(1− f(X;θ), f(X;θ))],

(James et al., 2023, Section 2.2).

In reality, we rarely, if ever, have training data such that f̂(x) = f(x) so we
condition on the training data and get

Err(x | T) =

{
1−Y, if f̂(x) > 0.5

Y, if f̂(x) < 0.5.

Taking the expectation with respect to Y and the training data T , and using
the law of total expectation, yields

Err(x) = E[Err(x | T)]

= (1− f(x))P (f̂(x) > 0.5) + f(x)P (f̂(x) < 0.5). (15)

Taking the expectation of Equation (15) with respect to X gives us

Err = E[Err(X)]

= E[(1− f(X))P (f̂(X) > 0.5 | X)] + E[f(X)P (f̂(X) < 0.5 | X)]. (16)

We have by now introduced four different ways to quantify errors, MSPE(x),
MSPE, Err(x) and Err (Equation (5), (13), (15) and (16) respectively).

3 Data Generation and Simulation Scenarios

In this thesis we conduct three different simulations in order to compare the
performances of the chosen methods with respect to different aspects of binary
classification. In the first simulation we vary the dimension of the input data
while in the second simulation we vary the size of the training data. Lastly,
in the third simulation we compare the methods’ performances by varying the
probability that a data point has a flipped label. The measurements for perfor-
mance are both MSPE and Err.

The simulations are done in Python with packages Numpy and Sklearn while
Matplotlib.pyplot was used for visualization. The technique for achieving a
non-linear relationship between X and Y was inspired by Markus Söderqvist’s
bachelor’s thesis (Söderqvist, 2024).

15

3.1 Generating the Data

We introduce δ as the probability that a label is flipped. For some 0 ≤ δ < 0.5,
it means that a perfect classifier, an oracle with knowledge of f(x) for all x, will
still misclassify a fraction δ of the data.

We start by generating X from the multivariate normal distribution with
mean vector 0 (dim p) and the covariance matrix being the identity matrix
(dim p×p). To achieve a non-linear relationship between X and Y we define an
”archery target” which is a shape with concentric circles. We classify observa-
tions in even numbered rings as class 0 and observations in the odd numbered
rings as class 1. We then flip the label of each observation with probability δ to
obtain Y. See Figure 4 for an example of how Y is generated from X = (x1, x2)
with ten concentric circles. For X with dimension p > 2, the archery rings
become p-dimensional spheres.

Figure 4: Simulated data with 1000 data points, p = 2, δ = 0 and the radius
increasing by 0.5 per ring (the innermost ring has radius 0.5).

3.2 Expressing Errors with the Label Flipping Probability

In simulations with hyperparameter δ, both Err and MSPE have explicit expres-
sions. Let us call the entire archery target Ω where the even rings make up the
region Ωeven and the odd rings make up the region Ωodd, i.e. Ωeven ∪Ωodd = Ω.
Then after flipping labels with probability δ, the conditional probability that
Y = 1 for an input vector x is

f(x;θ) =

{
1− δ, if x ∈ Ωodd

δ, if x /∈ Ωodd.

From the training data, we get Ω̂odd = {x; f̂(x) > 0.5} and Ω̂even = {x; f̂(x) <
0.5}.

16

We then define the region D = Ω △ Ω̂, which is the symmetric difference
between sets Ω and Ω̂. We can then show that Err(x) is

Err(x) =

{
δ, if x /∈ D

1− δ, if x ∈ D.

Taking the expectation of Err(x) gives us

Err = E[Err(X)]

= δ(1− P (X ∈ D)) + (1− δ)P (X ∈ D)

= δ + (1− 2δ)P (X ∈ D).

We note that an oracle (with D = ∅) will never be able to achieve an Err
smaller than δ.

For the MSPE, we first calculate the variance of ε,

Var(ε) = E[Var(ε | X)]

= E[Var(Y − f(X;θ)) | X]

= E[Var(Y | X)]

= E[f(X;θ)(1− f(X;θ))]

= E

[{
δ(1− δ), if X /∈ D

(1− δ)(1− (1− δ)), if X ∈ D

]
= E[δ(1− δ)]

= δ(1− δ).

We then get the following expression for MSPE from Equation (13),

MSPE = δ(1− δ) +MSE.

As such, the smallest possible MSPE will be equal to δ(1−δ). For example, if δ is
set to 0.05, the smallest errors achievable are Erroracle = 0.05 and MSPEoracle =
0.0475.

3.3 Simulations: Increasing Input Dimension, Training
Set Size and Label Flipping Probability

In the first simulation, we simulate 100 samples of size 1000 with dimension
of the input data p = 2, 3, 5, where p thus denotes the number of parameters.
Each sample of size 1000 is divided into 80% training data (800 observations)
and 20% test data (200 observations). We also have a radius increase of 0.5 per
ring, ten rings and label flipping probability δ = 0.05.

For random forest, we have 200 trees, a max depth of seven, the minimum
number of samples required for a split is four and the number of features taken
into consideration before a split is m = ⌊√p⌋ (Hastie et al., 2009, pp. 592).

17

For neural network, we have nine hidden layers, the first seven are of size
64 and the last two are of size 32. The batch size is set to 32. For activation
function we use the sigmoid function and ReLU function paired with stochastic
gradient descent and Adam, respectively.

In the second simulation, we use one dataset from the first simulation as well
as the same hyperparameter values. What we vary is the size of the training
dataset. First, we randomly split the set into subsets containing 80% training
data and 20% test data. This is done 50 times. Then we train the models using
different proportions of the training data, the lowest being 10%, 80 data points
and the highest being 100%, 800 data points. The classification error is then
calculated by averaging over 50 splits.

For the third simulation we simplify the boundaries by reducing the number
of rings from ten to four by changing the radius increase to 1 per ring. We
are interested in comparing the models’ performances for different values of the
label flipping probability δ and only consider the 2-dimensional input data.

The simulations were conducted using functions from an existing package,
with all unspecified hyperparameters set to their default values. The classifica-
tion error and mean squared prediction error were calculated for each sample.

4 Results

4.1 Simulation 1: Increasing the Input Dimension

In Figure 5 we see that for p = 2 input variables, the neural network with ReLU
and Adam has the smallest classification error and mean squared prediction
error. It also achieves the lowest errors out of the three methods with p = 3
input variables, as shown in Figure 6. For p = 5 input variables, visualised
in Figure 7, it performs only slightly better when looking at the classification
error but much worse than the other two methods if comparing their MSPEs.
It is also the method with the highest MSPE variance throughout the different
number of input variables.

Figure 5: Classification errors and mean square prediction errors for 100 samples
with p = 2 input variables and ten concentric circles to define the two classes.

18

Figure 6: Classification errors and mean square prediction errors for 100 samples
with p = 3 input variables and ten concentric spheres to define the two classes.

Figure 7: Classification errors and mean square prediction errors for 100 samples
with p = 5 input variables and ten concentric five-dimensional spheres to define
the two classes.

4.2 Simulation 2: Increasing the Training Set Size

In Figure 8 we see that the neural network with sigmoid activation function
and stochastic gradient descent is not learning anything for this problem. Both
random forest and neural network with ReLU and Adam are generalising to
some degree as the blue curves are non-zero and the orange curves are not at
0.5. In Figure 9 we observe that when presented with a higher dimensional
problem, the neural network with ReLU and Adam performs better than the
other methods as seen in the decrease of the test score as the training set gets
larger. While the test score for random forest is also decreasing, the incline is
not as steep. In Figure 10, all methods fail to generalise as all three test score
curves have flatlined at 0.5.

19

Figure 8: Learning curves with regard to the size of the training set (p = 2
input variables and ten concentric circles to define the two classes). Shaded
error bands represent ±1 standard deviation.

Figure 9: Learning curves with regard to the size of the training set (p = 3
input variables and ten concentric spheres to define the two classes). Shaded
error bands represent ±1 standard deviation.

Figure 10: Learning curves with regard to the size of the training set (p = 5
input variables and ten concentric five-dimensional spheres to define the two
classes). Shaded error bands represent ±1 standard deviation.

20

4.3 Simulation 3: Increasing the Label Flipping Probabil-
ity

In Figure 11, we see once again that neural network with sigmoid activation
function and optimizer SGD is not learning anything meaningful. As for the
random forest, its classification error is only slightly larger than the neural
network with ReLU and Adam’s, up until the flipping probability is around 0.3,
after which the two methods perform almost equally. The MSPEs are relatively
similar as well.

Figure 11: Classification error and MSPE for p = 2 input variables, four con-
centric circles to define the two classes and different values of the label flipping
probability δ, averaged over 100 simulations.

5 Discussion

5.1 Analysing the Differences in Performance

If we define the best classifier as the one achieving the smallest classification er-
rors, one could say that the neural network with ReLU activation function and
Adam optimizer is the best method for classifying data points in alternating
concentric circles since it has the lowest classification errors in Figures 5-9. For
five input variables, it has a higher MSPE than the other two methods (Fig-
ure 10), but we keep in mind that the methods all had sufficiently well-tuned
hyperparameters for two input variables so a decrease in performance in higher
dimensions is to be expected. An interesting aspect of the neural network with
ReLU and Adam, is that its MSPE has the highest variance throughout simu-
lation 1. However, this has little to do with the method itself and is probably a

21

consequence of the hyperparameter settings chosen for this task. The high vari-
ance of the MSPE in Figures 8-10 is an indicator that the neural network with
ReLU and Adam is, to some extent, overfitting. The reason for the high MSPE
variance across simulations for the neural network classifier (with ReLU and
Adam) could therefore be that many parameters are estimated for this method,
but not to the extent that a large degree of overfitting takes place. A reason for
this could be that the test data is sampled from the same distribution as the
training data.

The worst performing model is the one learned through the neural network
with sigmoid and stochastic gradient descent. In all three simulations, it fails
to achieve a classification error below 0.45, which means it is basically guessing
which class a data point belongs to. The cause for this poor performance could
be the choice of optimizer, activation function or the combination. The sigmoid
function’s derivative with regard to z is

∂h

∂z
=

e−z

(1 + e−z)2
.

The derivative takes values between 0 and 0.25 but more importantly, it is 0 for
both large negative numbers and positive numbers. This might be causing the
updates to stagnate since the gradient is 0 too often in the gradient with partial
derivatives

∂L
∂w

=
∂L
∂h

∂h

∂z

∂z

∂w
.

It is possible that Adam would perform better than SGD in combination with
the sigmoid function since it has the property of adapting the learning rate for
each weight.

In simulation 2, we focus more on which method is better at effectively using
the training data by varying the size of the training set. In Figure 8 we see that
random forest has a relatively low training score although it is slightly increasing
with the number of samples in the training set. At the same time, the error
band on the blue curve implies that the training score’s variance is decreasing
which is not that surprising since larger training set makes for a better fit. It
seems from simulation 2 that both random forest and neural network (with
ReLU and Adam) are generalising to some degree, although not very well for
small training sets. As the number of data points increase, the two curves are
closing the gap between them which is a sign of better generalisation for larger
training sets. We also interpret from the training score curves that random
forest is struggling to find a pattern when presented with more training data
points while the neural network is consistent in fitting the training data no
matter the size. This indicates that random forest has more problems with
overfitting when the size of the training data set is small.

Increasing the number of input variables from two to five rends all methods
useless; as seen in Figure 10, none of them are learning anything from the data.
As previously mentioned, this is not strange at all since the hyperparameters are
chosen to work well in the two-dimensional case. However, throughout simula-
tion 2, the training scores for random forest and neural network with ReLU and

22

Adam are behaving similarly, despite the increase in dimension. This suggests
that both random forests and neural networks are good at fitting training data,
no matter its dimension, and the difference between the methods must then
lie in the amount of overfitting on said training data. When comparing Figure
8 and Figure 9, we note that the neural network (with ReLU and Adam) has
only a slightly steeper training curve than random forest in the two-dimensional
case, while the difference in incline is more pronounced in the three-dimensional
case. As a consequence, the gap between the training and test curves closes
more quickly for the neural network (with ReLU and Adam) than for random
forest. These observations imply that not only is the neural network better at
finding patterns in smaller sets than random forest, it also generalises better to
higher dimensions.

In simulation 3, the left plot in Figure 11 implies that no method is better
than the others when the label flipping probability is higher. Perhaps even more
surprising is that none of the two models that learned (neural network with
ReLU and random forest), significantly outperformed the other when we did
not mix the classes at all (δ = 0). The neural network, represented by the green
graph, only slightly outperformed the random forest. This could be interpreted
as both methods being suitable for this task. As the label flipping probability
increases the classification errors approach 0.5. This is not surprising, as the
data points have basically lost any pattern of separation between the two classes
if there is a 50% chance of flipping class. This also explains the methods’
poor MSPEs shown on the right hand side in Figure 11. As δ increases, the
two classifiers struggle to find a pattern for the two classes, and therefore the
classifiers are essentially guessing the labels.

5.2 How the Data is Distributed in the Rings

In the simulations, we sampled vector X of dimension p from the multivariate
normal distribution N (0,1). Furthermore, the magnitude ||X|| is independent
of the direction X

||X|| due to the rotational invariance of the Gaussian distri-

bution. This rotational invariance also leads to all directions being uniformly
distributed on the p-dimensional unit sphere. It follows from the multivariate
distribution that the squared Euclidean distance ||X||2 between the data point
and the midpoint of the concentric circles, is chisquare distributed with p de-
grees of freedom. This makes it possible to calculate the probability that a data
point ends up in a specific ring as well as the probability density function of the
square root of the chisquare distribution using the Python package Scipy.stats.

23

Table 1: The probabilities of a data point in Rp lying between two concentric
p-dimensional spheres, rounded to two decimals, with a total of ten concentric
spheres. In bold is the highest probability in dimension p.

X ∈ R2 X ∈ R3 X ∈ R5

P (0 < ||X||< 0.5) 0.12 0.03 0.00
P (0.5 < ||X||< 1) 0.28 0.17 0.04
P (1 < ||X||< 1.5) 0.28 0.28 0.15
P (1.5 < ||X||< 2) 0.19 0.26 0.26
P (2 < ||X||< 2.5) 0.09 0.16 0.27
P (2.5 < ||X||< 3) 0.03 0.07 0.17
P (3 < ||X||< 3.5) 0.01 0.02 0.08
P (3.5 < ||X||< 4) 0.00 0.01 0.02
P (4 < ||X||< 4.5) 0.00 0.00 0.01
P (4.5 < ||X||< 5) 0.00 0.00 0.00

P (5 < ||X||) 0.00 0.00 0.00

Table 2: The probabilities of a data point in Rp lying between two concentric
p-dimensional spheres, rounded to two decimals, with a total of four concentric
spheres. In bold is the highest probability in dimension p.

X ∈ R2 X ∈ R3 X ∈ R5

P (0 < ||X||< 1) 0.39 0.20 0.04
P (1 < ||X||< 2) 0.47 0.54 0.41
P (2 < ||X||< 3) 0.12 0.23 0.44
P (3 < ||X||< 4) 0.01 0.03 0.10
P (4 < ||X||) 0.00 0.00 0.01

Figure 12: Probability density function of the square root of a chisquare distri-
bution with degrees of freedom p = 2, 3, 5.

24

Intuitively, as the dimension of a vector increases, so does its distance to the
origin as we sum more components. This intuition is backed by the probabilities
in Table 1 and 2 as well as in Figure 12 that show a trend of the data points
”migrating” to the outer regions, leaving our archery target completely for a
sufficiently large dimension p. The fact that our data points behave like this
enforces the previous statement that the sigmoid function is unsuitable for this
task. As p increases, the derivative’s value approaches 0, leading to SGD being
unable to update the weights of the network.

5.3 Improvements and Further Work

In Figures 8-10, we notice a ”bump” in the training curves of the neural network
with ReLU activation and Adam optimizer. Since the classification error is fairly
low as the number of data points increases, it seems unreasonable that the bias
is causing the bump. Instead, since the neural network with ReLU has many
parameters to estimate, it is probably the variance that is the dominating factor,
which decreases as the model has more training data to go on. Nevertheless,
further investigation is required to confirm this hypothesis.

As previously mentioned in Section 5.1, the neural network (with ReLU and
Adam) achieves the lowest MSPE in simulation 2 for input dimensions p = 2
and p = 3, but the highest MSPE for p = 5. Specifically, the neural network’s
MSPE increases from approximately 0.15 to 0.48. In comparison, random forest
exhibits a slower increase, as its MSPE goes from approximately 0.22 to 0.3. As
such, it would be of interest to investigate why the MSPE of the neural network
increases faster than the MSPE of random forest as the dimension of the input
increases.

The classifiers’ performances with a label flipping probability δ = 0.05 are
underwhelming. But most likely this is not due to a fault in the methods random
forest and neural network themselves but rather in the hyperparameter tuning.
If time had allowed, a more thorough method for tuning would perhaps have
made it possible to change the hyperparameters between each scenario (i.e.
when adding more parameters and increasing the label flipping probability)
and compare the methods when at their best. One time-consuming method
for finding better hyperparameters is grid-search. Grid-search trains the model
with all different kinds of combinations of hyperparameters and returns the
best settings. However, it is not guaranteed that grid-search results in the lowest
classification errors since the set of hyperparameter combinations to choose from
are decided by the programmer.

Another aspect that could potentially improve the performance is the addi-
tion of a ”radial distance”-feature. This one-dimensional input variable would
simply be a data point’s distance to the centre point of the concentric circles
and it is enough to figure out the pattern of the concentric circles. On the other
hand, this distance makes the remaining p − 1 input variables of the original
input vector superfluous as they themselves do not provide any further infor-
mation about the location of the two classes. The simulations in this thesis do
not provide an answer to if any of the methods used in this thesis is better at

25

learning that p−1 degrees of freedom of the input vector are of no use. Another
point of analysis would then be to investigate which method is best at ignoring
unnecessary aspects of data. However, it is unlikely that the performance of
the neural network with sigmoid activation function and SGD would improve if
provided with the radial distance. As shown in Table 1, for p = 2, most input
vectors will be found around one unit of distance from the origin and the deriva-
tive of the sigmoid function assumes the rather small value h′(||x||) ≈ 0.2. As
the distance increases, the derivative then approaches zero, causing weight up-
dates to stagnate during training. Nevertheless, further investigation is needed
to substantiate this claim.

Lastly, while this thesis’ focus was on the comparison of two supervised
learning methods, it would be interesting to only focus on classifying data points
defined by the alternating concentric circle pattern and find the method best
suited for finding these boundaries. Another possibility would be to try support
vector machines. This method, much like neural networks, projects the data
points from Rp to a space of higher dimension in which the boundary between
the two classes is easier to find.

26

6 References

Boateng, A., Aidoo, E. N., Maposa, D., Odoom, C., & Owusu, S. A. (2024).
Optimizing binary classification performance in neural networks through simula-
tion: A comparative study of activation functions. Retrieved May 2, 2025, from
https://researchportal.hw.ac.uk/en/publications/optimizing-binary-classification-
performance-in-neural-networks-t.

Chen, L. (2021). Supervised learning for binary classification on US adult in-
come. Retrieved May 2, 2025, from https://www.researchgate.net/publication/357058950.

Chen, X., & Zhang, X. (2024). Optimal weighted random forests. Retrieved May
2, 2025, from https://dl-acm-org.ezp.sub.su.se/doi/10.5555/3722577.3722897.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical
learning: Data mining, inference, and prediction (2nd ed.). Springer.

James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). An intro-
duction to statistical learning: With applications in Python (1st ed.). Springer.

Lindholm, A., Wahlström, N., Lindsten, F., & Schön, T. B. (2022). Machine
learning: A first course for engineers and scientists. Cambridge University
Press.

Mostafa, F. B., & Hasan, M. E. (2021). Machine learning approaches for binary
classification to discover liver diseases using clinical data. Retrieved May 2,
2025, from https://arxiv.org/abs/2104.12055.

Müller, A. C. (2020). Random forests — Applied machine learning in Python.
Retrieved April 24, 2025, from https://amueller.github.io/aml/02-supervised-
learning/09-random-forests.html.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction
(2nd ed.). Bradford Books.

Söderqvist, M. (2024). Predictive performance of AdaBoost and random forest
in binary classification tasks [Bachelor’s thesis, Stockholm University]. File
name: 2024 5 report.pdf.
Retrieved from https://kurser.math.su.se/mod/folder/view.php?id=13969.

27

