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Abstract

We compare three one-day-ahead VaR forecast methods, Delta-
Normal, GARCH(1,1) with Student-t residuals, and EGARCH(1,1),
on an equally weighted portfolio of SEB-A and Swedbank-A using
daily data from 2010 to 2025. Forecasts are generated in a rolling
500-day window and evaluated by RMSE, tick loss, and VaR backtests
(Kupiec’s POF and Christoffersen’s conditional coverage). Results
show that GARCH and EGARCH both deliver violation rates close to
the target of 10%, whereas Delta-Normal produces only around 7%.
Moreover, EGARCH yields the lowest RMSE and tick loss, demon-
strating its superior ability to capture time-varying and asymmetric
volatility.
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1 Introduction

Value at Risk (VaR) is one of the most common measures for quantifying
financial risk. It forecast the maximum loss a portfolio can suffer over a given
time horizon at a specified confidence level. This makes VaR an important
tool for investors and risk managers to monitor their exposure to market
fluctuations. In particular, a to conservative VaR forecast can lead to missed
investment opportunities, whereas a too aggressive forecast may expose the
portfolio to excessive risk.

The aim of this bachelor thesis is to compare three different one-day-
ahead VaR Forecast methods: the Delta Normal method, a GARCH(1,1)
model with Student-t residuals and an EGARCH(1,1) model that captures
asymmetric volatility on an equally weighted portfolio of SEB-A and Swedbank-
A.

Forecast accuracy is evaluated using Root Mean Square Error, tick loss
and standard backtesting procedures such as Kupiec test and conditional
coverage.

This study is limited to daily data for a two-stock portfolio and does
not consider larger or more diversified portfolios. However, the theoretical
framework could be easily extended to larger portfolios.

Data covering 2010 to 2025 are sourced from Yahoo Finance. We apply
a rolling window with 500 trading days per window. All computations are
performed in R using tidyquant for data handling and rugarch for the
GARCH family models.

This is the following structure of the thesis: Chapter 2 reviews the the-
oretical background: time series models, key concepts, and diagnostic tests.
Chapter 3 describes the data and our in-sample/out-of-sample split. Chap-
ter 4 details the empirical modeling steps. Chapter 5 presents the results.
Chapter 6 discusses findings, limitations, and potential improvements. Fi-
nally, Chapter 7 offers an extension, introducing a copula-based method for
VaR forecasting.

2 Theoretical Background

In this section we review the necessary theoretical background, including
important notions, concepts, and time series theory that will serve as the
foundation for our analysis.

We begin with basic definitions and properties of time series data, such as
stationarity, autocorrelation, and volatility. We then introduce the concepts
behind ARCH and GARCH models, and discuss the extended EGARCH
variants used in volatility forecasting.

This theoretical framework provides the context for the empirical meth-
ods discussed in later sections.
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2.1 Notations and Concepts

Here we will describe some fundamental concepts that will be used through-
out the study.

2.1.1 Returns

Let Pt denote the daily closing price of a stock at time t. The simple return
is defined in (Tsay, 2005, p. 3) as

Rt =
Pt

Pt−1
− 1.

While simple returns are intuitive, it is common in financial modeling to
work with log returns, which are scale-free and additive over time. The log
return at time t is therefore defined by (Tsay, 2005, p. 5)

rt = ln
( Pt

Pt−1

)
.

Throughout this thesis we will use log returns rt as our primary return series.

2.1.2 Value at Risk (VaR)

Value at Risk (VaR) is a widely used risk measure in financial analysis. As
Jorion (2007, p. 17) states, “Value at Risk summarizes the worst loss over a
target horizon that won’t be exceeded with a given level of confidence”.

We formally define VaR, in line with Jorion (2007, p. 107), at a confidence
level 1− α as the level V aR1−α such that

P (rt ≤ VaR1−α) = α,

where rt is the log return at time t. Thus, for α = 0.1 (a 90% confidence
level), VaR0.90 is the 10th percentile of the distribution rt, see Figure 1.

Figure 1: Illustration of return distribution with marking for VaR0.90.
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Sometimes the risk-free rate is also included in the calculation of the
future portfolio value. However, in this analysis, the risk-free rate is omitted
since we are going to compute VaR for a one-day horizon. Over such a short
period, the effect of the risk-free rate is negligible and does not significantly
impact the results.

2.1.3 Volatility

Following Tsay (2013, p. 177-178), we define volatility as the conditional
standard deviation of the daily return:

σt =
√
Var(rt | Ft−1),

where Ft−1 is all the information available at time t−1 (formally a σ-algebra,
but we use the informal “information set” notion following Tsay).

Furthermore, volatility exhibits some well-known characteristics (see Tsay
(2005, p. 97-98)). One such feature is clustering: large market fluctuations
tend to be followed by high-volatility days.

Moreover, stock return volatility responds asymmetrically to shocks: neg-
ative movements typically leads to a larger increase in volatility than positive
shocks, Tsay refer to this as the leverage effect. This asymmetry will be an-
alyzed further in the EGARCH section.

2.2 Time Series Analysis

In this section, we review some basic concepts of time series analysis, such
as autocovariance and autocorrelation. We then proceed with simpler time
series models, leading up to volatility models such as ARCH, GARCH, and
EGARCH. Finally, we conclude with diagnostic tests for time series and
methods for model validation. This theory will provide the groundwork for
our Value at Risk modeling.

2.2.1 What is a Time Series?

In Brockwell and Davis (1991, p. 1), a time series is a set of observations
ordered in time. An example of a time serie is stock data, where the daily
closing prices are observations from a set of random variables {rt}.

2.2.2 Stationarity

Following Tsay (2005, p. 25), a time series {rt} is weakly stationary if its
mean is constant,

E[rt] = µ,

and the covariance between ri and rj depends only on the lag:

Cov(ri, rj) = γ|i−j|.
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In practice, this means that the process fluctuates around a constant
value µ, and deviations from µ occur with constant magnitude.

For simplicity, we will refer to a weakly stationary time serie simply as
stationary.

2.2.3 Autocovariance- & Autocorrelation Functions

Further, for a stationary time series {rt}, the autocovariance function at lag
l is defined as

γl = Cov(rt, rt+l).

Moreover, the autocorrelation function (ACF) at lag l is

ρ(l) =
Cov(rt, rt+l)√
Var(rt)Var(rt+l)

.

If the series is stationary, this simplifies to

ρ(l) =
γl
γ0

,

since √
Var(rt)Var(rt+l) =

√
Var(rt)Var(rt) = γ0.

The autocorrelation function will play a particularly important role in
later applications (Tsay, 2005, p. 25-26).

2.2.4 White Noise Process

A basic time series is the white noise process, where {ϵt} is i.i.d. with finite
mean and variance. In a white noise process there are no correlations for
lags greater than one, meaning that the series has no systematic structure
(Tsay, 2005, p. 31).

One example of a white noise process is a standardized Student-t white
noise process. Let

ϵt ∼
√

ν − 2

ν
tν ,

where tν is a standard Student-t random variable with ν degrees of freedom,
mean zero and variance ν

ν−2 . The scaling factor
√

ν−2
ν ensures that ϵt has

unit variance.
Note that a white noise process does not necessarily have unit variance.

However, when modeling volatility with ARCH-family models, we assume
the residuals are standardized to have unit variance, more on this in Section
2.2.8-2.2.11.
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2.2.5 The ARMA model

Next we briefly consider the generalized ARMA model. We will show in
Section 4 that our implementation does not require fitting an ARMA model
to the financial time series. Therefore, we will not discuss the details here.
Interested readers are referred to Tsay (2005, p. 58), upon which this section
is based.

An ARMA(p, q) model decomposes the series rt into a mean equation µt

and a residual part at:
rt = µt + at,

where at is a white noise process, and the mean equation is

µt = ϕ0 +

p∑
i=1

ϕi rt−i −
q∑

j=1

θj at−j .

We can interpret each ϕi parameter as a measures of how much of the
past value rt−i the process remembers, and each θj parameter as how much
the process remembers from past shock terms.

One can also show that an ARMA process is stationary only if all the
roots of the characteristic equation

ϕ(z) = 1− ϕ1z − ϕ2z
2 − · · · − ϕpz

p

lie outside the unit circle, that is, |z| > 1.

2.2.6 Time Series Model Building for the Log Returns

We assume that the log returns follows the form

rt = µt + at,

where at is white noise with E[at] = 0 and Var(at) = σ2.
For the mean equation µt, Tsay (2005, p. 101) recommends using an

ARMA(p, q) model. Empirically, daily stock log returns exhibit low serial
correlation, so it is sometimes sufficient to use the simplest case, ARMA(0, 0),
which yields

µt = r̄,

where r̄ is the sample mean of the log returns.
It is often the case that r̄ is very close to zero. Therefore, we can set

rt = at.

To justify this assumption, we conduct a one-sample t-test on r̄ (see details
of the t-test procedure in Appendix A). As shown in Section 4.2.2, the test
confirms r̄ ≈ 0. Thus, we proceed with rt = at.

Hence, our primary focus is on the white noise process at, which captures
the volatility dynamics of the log returns. In the following sections, we model
the conditional variance (σ2

t = Var(at | Ft−1)) using ARCH, GARCH and
EGARCH models to account for time-varying and asymmetric volatility.
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2.2.7 Conditional Variance

To capture the time-varying volatility in stock returns, we need to broaden
our modeling approach beyond the ARMA model.

The conditional variance of rt is defined as

σ2
t = Var(rt | Ft−1),

where Ft−1 represents the information set available up to time t, for us this
means all the observations rt−1, ..., r1 up until time t (Tsay, 2005, p. 100).

For a time series, the unconditional variance, Var(rt), can be constant
for all t, but the conditional variance is still allowed to change over time,
capturing periods of both high and low volatility.

To account for this dynamic, we extend the model (see Tsay (2005,
p. 103)) for the return series as

rt = µt + at,

with
at = σtϵt,

where µt is the mean equation and σtϵt denotes a scaled white noise process.
In this formulation, σt captures the conditional volatility at time t, while ϵt
is a white noise process with zero mean and unit variance. This setup forms
the basis for ARCH, GARCH, and EGARCH models.

2.2.8 Auto Regressive Conditional Heteroskedasticity Modeling

In the follow section, we go through three different volatility models, that
is often used on financial time series data. First, we discuss the standard
ARCH/GARCH model, which models the conditional variance as a function
of past squared shocks and past variances. Then we cover the EGARCH
model, which extends the GARCH model by allowing for asymmetric re-
sponses to positive and negative movements.

2.2.9 ARCH Model

The ARCH(p) model, first proposed by Engle (1982), is one of the simplest
models for capturing conditional heteroscedasticity in time series data. An
ARCH(1) process, at, is defined in Tsay (2005, p. 103) as

at = σtϵt,

with
σ2
t = α0 + α1 a

2
t−1,

where, ϵt is a white noise process with zero mean and unit variance, and the
parameters satisfy

α0 > 0, α1 ≥ 0, α1 < 1.
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to ensure stationarity. It is common to assume ϵt follows either a standard
normal, or a standardized Student-t distribution.

In Appendix B we derive further properties of the ARCH(1) model. In
summary, the ARCH(1) process at results in a process that has a white
noise–like structure, in terms of its unconditional mean and variance, but
since the unconditional variance is time-dependent, the ARCH model allow
us to model the time-varying volatility, and its clustering.

The ARCH model can be generalized to ARCH(p), where p is the number
of past terms in the process that should be included in the model where, that
is

at = σtϵt,

with

σ2
t = α0 +

p∑
i=1

αi a
2
i−1,

similarly as above

α0 > 0, αi ≥ 0,

p∑
i=1

αi < 1 (i = 1, .., p),

to ensure stationarity, and where ϵt is once agian a white noise process with
zero mean and unit variance.

As stated in Tsay (2005, p. 105), the general properties derived in Ap-
pendix B for ARCH(1) extends to the ARCH(p) process, although the cal-
culations becomes cumbersome. That is, both the conditional and uncon-
ditional means are zero, the conditional variance is time-dependent, given
by

σ2
t = α0 +

p∑
i=1

αia
2
t−i,

and the unconditional variance is constant and equal to

σ2 =
α0

1−
∑p

i=1 αi
.

A drawback of the ARCH(p) model is that it often requires a large num-
ber of lagged terms to sufficiently capture the volatility dynamics in financial
data (Tsay, 2005, p. 113). A solution is to extend the ARCH model to the
so-called GARCH model. This will be the topic of the next section.

2.2.10 GARCH Model

An extension of the ARCH model is the GARCH model, proposed by Boller-
slev (1986). The idea is to not only to account for past values of the process,

11



at−i, as with ARCH(p), but also to incorporate the past conditional vari-
ances, σ2

t−i. In a GARCH(1, 1) process, the model for at is defined as

at = σtϵt,

where
σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1.

Here, {ϵt} is a white noise process with zero mean and unit variance.
The model parameters must satisfy the constraints

α0 > 0, α1 ≥ 0, β1 ≥ 0, α1 + β1 < 1

to guarantee stationarity (Tsay, 2005, p. 114).
Similarly to the ARCH(1) model, we have included some properties of

the GARCH(1,1) model in Appendix B, and analogous to the ARCH(p)
extension, we can extend the GARCH(1,1) model by including additional
lagged terms.

The GARCH(p, q) model is defined similar as above:

at = σtϵt,

where instead

σ2
t = α0 +

p∑
i=1

αi a
2
t−i +

q∑
j=1

βj σ
2
t−j ,

where again {ϵt} is a white noise process. To ensure stationarity, the param-
eters should satisfy

α0 > 0, αi ≥ 0 (i = 1, . . . , p), βj ≥ 0 (j = 1, . . . , q),

and
q∑

i=1

αi +

p∑
j=1

βj < 1.

Even though GARCH(p, q) can include many lag terms, a simple GARCH(1,1)
model is often sufficient for financial data (Tsay, 2005, p. 116).

2.2.11 EGARCH Model

Since the GARCH model models the squared conditional volatility, it weighs
positive and negative shocks equally. But, as stated in Section 2.1.3, there is
often a leverage effect. This means that negative shocks tend to have a larger
impact on volatility than positive shocks of the same size. This asymmetry
motivates the use of the EGARCH model, as proposed by Nelson (1991).

A representation of the EGARCH(m,s) model is given by

at = σtϵt,
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where

ln(σ2
t ) = ω +

s∑
i=1

αi
|at−i|+ γiat−i

σt−i
+

m∑
j=1

βj ln(σ
2
t−j),

(see Tsay (2005, p. 125)). Here ϵt is a white noise process with zero mean
and unit variance. Here, ω, αi, γi, and βj are constants.

Note the term

|at−i|+ γiat−i =

{
at−i(γi + 1), if at−i > 0,

at−i(γi − 1), if at−i ≤ 0,

this shows that negative and positive movements contribute asymmetrically
to σ2

t .
Since the model uses the logarithm, the positivity constraints on the

parameters are relaxed Tsay (2005, p. 125). To ensure stationarity it is
sufficient that

∑m
j=1 βj < 1. More details of the properties of the EGARCH

model can be seen in Nelson (1991).

2.3 Statistical Tests for Time Series

Model checking is an important step in any data-fitting assesment. So, in
this section, some common statistical tests and validation methods will be
presented.

2.3.1 Augmented Dickey-Fuller test

The whole analysis will be done under the assumption that the time series
of daily log return is stationary, therefore, it is crucial to check whether this
assumption is reasonable. To test if a series {xt} is stationary, we apply the
Augmented Dickey-Fuller (ADF) test. The ADF regression can be written
as

∆xt = αt + (β − 1)xt−1 +

p−1∑
i=1

ϕi∆xt−i + ϵt, (1)

where ∆xj = xj−xj−1, ϕi are constants, αt is some function of t (constant
or some trend) and ϵt is assumed to be white noise (Tsay, 2005, p. 69).

The null hypothesis
H0 : β = 1,

i.e. the process has a unit root. In that case each shock ϵt has a permanent
effect and the series is non-stationary. Under H0, and when we set αt = 0
for our daily log return series, Equation 1 can be written as

xt = xt−1 +

p−1∑
i=1

ϕi∆xt−i + ϵt

13



This is a random walk where each ϵt is the increments (non-stationary).
Under the alternative

H1 : β < 1,

and by the same reasoning as above,

xt = β xt−1 +

p−1∑
i=1

ϕi∆xt−i + ϵt.

Since |β| < 1, each past value xt−1 is scaled down by β each period, so any
shock of ϵt gets smaller and smaller over time. In other words, the effect of ϵt
quickly fades away rather than sticking around, making the series stationary.

Moreover, the ADF test statistic is

tβ =
β̂ − 1

std(β̂)
,

where β̂ is the least square estimate and std(β̂) its standard error. When
comparing tβ to critical values from the Dickey-Fuller distribution, a suffi-
ciently negative value leads us to reject H0, and conclude that the series is
stationary.

2.3.2 Ljung-Box

An important property when working with time series data is to assess
whether there is any autocorrelation, that is whether there is evidence of
any correlation between the lags in the data.

One way of testing this is with the Ljung-box test. We begin by defining
the sample autocorrelation at lag l for a sample of returns {rt}Tt=1:

ρ̂l =

∑T
t=l+1(rt − r̄) (rt−l − r̄)∑T

t=l+1(rt − r̄)2
, 0 ≤ l < T,

where r̄ =
∑T

i=1 rt (Tsay, 2005, p. 26). Using these sample autocorrelations,
the Ljung-Box statistic for m lags in a sample of size T is defined by

Q(m) = T (T + 2)

m∑
l=1

ρ̂2l
T − l

,

see Tsay (2005, p. 27). The Q(m) statistic tests the joint null hypothesis,
that all autocorrelations up to lag m are zero. A common choice of m is
m ≈ ln(T ).

The null hypothesis is that

ρ̂1 = ... = ρ̂m = 0.
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Moreover, under the null hypothesis, Q(m) is asymptotically distributed as
a chi-squared random variable, with m degrees of freedom. Therefore, if the
p-value corresponding to Q(m) is less than a chosen significance level, often
5%, the null hypothesis is rejected, indicating that there is some evidence of
autocorrelation in the data.

When checking whether the standardized residuals, see Section 2.3.5, are
serially correlated this test will be useful. This test will also come in handy
in the next section when we examine if any time-varying volatility is present.

2.3.3 ARCH Effects

Before specifying a volatility model, we first check if any time-varying vari-
ance is present: after fitting an ARMA(p, q) to the mean equation µt, by
maximum likelihood (see Section 2.7), we form the residuals

at = rt − µt,

which in practice reduces to at = rt, since µt = 0. This assumption is
motivated in Section 4.2.2.

Even though the series {at}may behave like white noise, its squared series
{a2t } often exhibits significant serial correlation, indicating that dependence
arises in the second moment of at. To detect this, we will apply the Ljung-
Box test to {a2t } (Tsay, 2005, p. 101).

2.3.4 ACF to Detect Autocorrelation

It is shown in Brockwell and Davis (1991) that the sample autocorrelation
ρ̂l is asymptotically normal, i.e.

ρ̂l
a∼ N

(
0, 1

T

)
.

Thus, when plotting the ACF we include horizontal lines at

±1.96 1√
T
,

as illustrated in Figure 6. Any sample autocorrelation ρ̂l for l > 0 that
crosses these bounds is significant at the 5% level.

By examining the sample autocorrelation function (ACF) of {at}, we can
detect whether any lags exhibit significant autocorrelation.

2.3.5 Standardized Residuals & Model Checking

For the ARCH, GARCH and EGARCH models we consider

at = σtϵt,
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with {ϵt} being a white noise process with zero mean and unit variance.
Recall that we assumed a distribution for ϵt, usually normal or Student-t.
As seen in Tsay (2005, p. 109), we form the standardized residuals for our
data as

ãt =
at
σ̂t

,

where σ̂t is the estimated conditional standard deviation obtained from the
fitted model (see Section 2.7). The series {ãt} is of interest when assessing
whether the model is appropriate. If the model is correctly specified, it
should hold that ãt ≈ ϵt, i.e., {ãt} should only exhibit white noise behavior.
To see if this holds for the data, we create a QQ-plot of {ãt} against the
theoretical quantiles of the chosen distribution. In particular, if ϵt is assumed
to follow a standardized Student-t distribution with ν degrees of freedom,
the theoretical quantiles are

qα =

√
ν − 2

ν
tν,α,

where tν,α denotes the α quantile of the standard Student-t distribution with
ν degrees of freedom. See Section 4.2.5 for an illustration of such a QQ-plot.

Furthermore, to verify that {ãt} contains no remaining autocorrelation,
we conduct the Ljung-Box test on {ãt} and {ã2t }, see Section 4.2.5. If there
is evident of any serial correlation, this would mean that the standardized
residuals at different time points are related, i.e., it remains some structure
or “memory” in the residuals that the model has not captured. Finding such
dependence suggests that the volatility model is mispecified.

2.4 Model Selection

When selecting a model, one can use the Akaike Information Criterion (AIC)
and the Bayesian Information Criterion (BIC). Both criteria balance the
model’s fit against its complexity (the number of parameters), but they apply
different weightings:

AIC: The Akaike Information Criterion is defined as

AIC = −2 ln(L) + 2k.

BIC: The Bayesian Information Criterion is defined as

BIC = −2 ln(L) + k ln(n).

Here n denotes the sample size, k the number of estimated parameters, and L
the likelihood, some details on likelihood theory are provided in Appendix D
(Held and Bové, 2020, Chapter 7). Intuitively, the likelihood quantifies how
well the model explains the observed data.
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BIC has a larger penalty for complex model when the sample sizes is
large, this leads to simpler models being preferred compared to AIC.

These criteria are used to select a model that provides a balance between
a good fit and complexity. When deciding on the order of the model for the
ARMA(p, q), GARCH(p, q) and EGARCH(m, s), these information criteria
will come in handy.

2.5 Backtesting and VAR Validation

Our primary goal is to forecast Value at Risk. Once these VaR forecasts have
been generated, it is important to validate them to assess model accuracy.

For datasets without a time index, one might use methods such as cross-
validation, where the model is trained on a subset of the data and evaluated
on the remaining observations. This is approach is not applicable for time
series data. Instead, a commonly used method is backtesting using a rolling
window. Before proceeding, we introduce terminology that will be used
throughout the following sections.

2.5.1 VaR Violations

A violation (or exception) occurs when the realized loss exceeds the fore-
casted Value at Risk threshold. For example, if we compute the 90% VaR,
denoted VaR0.90, we expect returns to fall below this threshold in approxi-
mately 10% of cases. Tracking the frequency and the distribution of these
violations is important to determine if the model is accurately capturing the
true risk of the investment, this will be discussed more in Section 2.6.

2.5.2 Rolling Window

The idea of a rolling window is that, given a window size n < T , where T
is the total sample size, to let it “roll” over the entire dataset. In each step,
the window moves forward by discarding the first data point and including
the next one.

For each window, we estimate our model on that entire dataset, and
forecast VaR one step ahead, then compare the forecasted VaR with the
actual log return to determine whether a violation occurs. This ensures
that the data used for forecasting are excluded from the estimation sample,
thereby avoiding overfitting. This procedure yields T − n rolling windows,
and consequently produces T − n one-day-ahead VaR forecasts. We will use
this approach to analyze the predictive performance of the model over time.
Figure 2 is illustrating the procedure the rolling window technique.
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Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Est. window 1 V aR1

Est. window 2 V aR2

Est. window 3 V aR3

...

Figure 2: Rolling window illustration - the model is first fitted to the data
in window i and is then use to forecast V aRi forward into the future.

2.5.3 The Root Mean Squared Error (RMSE)

Our goal is to evaluate how well our volatility models capture the true condi-
tional variance σ2

t . Since the true σ2
t is not directly observable, we replace it

with a proxy. We assume that E[rt | Ft−1] = 0 (motivated in Section 4.2.2.),
under this assumption

Var(rt | Ft−1) = E[r2t | Ft−1],

i.e., the conditional variance of rt is on average the realized value of r2t .
Hence, we define the realized variance (proxy) as

RVt := r2t ,

i.e., the squared log return at time t, which serves as an observable substitute
for the unobservable σ2

t .
Using rolling windows of length n = 500 over a total sample of size T , we

have T −n one-day-ahead forecasts. Let σ̂2
t+1 denote the model’s forecast of

the conditional variance for day t+1 based on the rolling window ending at
time t, and let RVt+1 be the realized variance proxy. Following Hansen and
Lunde (2005, Sec 3), we compute the Root Mean Squared Error as

RMSE =

√√√√ 1

T − n

T−1∑
t=n

(
σ̂2
t+1 −RVt+1

)2
.

A lower RMSE indicates that the one-day-ahead forecasts σ̂2
t+1 are on average

closer to the observed realized variances RVt+1.
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2.6 VaR Forecast Diagnostics

In this section, we outline t he theory behind some diagnostic tools used to
assess our one-day-ahead VaR forecasts: the count of violations, Kupiec’s
Proportion of Failures (POF) test, Christoffersen’s Conditional Coverage
test, and the Tick Loss function. The empirical implementation of these
tests is presented later in Chapter 5.

2.6.1 Test for Number of Violations

When forecasting VaR at level 1−α, we expect α·T violations out of T trails.
In other words, if the VaR model is correctly specified, each observation from
{rt} should have probability α of not exceeding the forecasted VaRt

1−a. Let

It =

{
1, if a violation occurs at time t,
0, otherwise.

We assume that {It} are i.i.d. Bernoulli(α). Then, the total number of
violations

X =

T∑
t=1

It

is distributed as
X ∼ Bin(T, α),

with
E[X] = αT, Var(X) = α(1− α)T.

This binomial setting leads us to the Kupiec-Test explained in the next
section.

2.6.2 Kupiec’s Proportion of Failures (POF) Test

Following Kupiec (1995, p. 79), we compare the observed violation rate with
the expected rate α for V aR1−α.

Let X ∼ Bin(T, p) be the number of violations in T number of trials, and
x denote the observed number of violations.

The two hypotheses are

H0 : p = α and H1 : p = x/T,

Under null hypothesis, the likelihood is

L0 = (1− α)T−x αx,

and under the alternative p̂ = x/T , i.e. the observed violation proportion,
gives

L1 = (1− p̂)T−x p̂x,
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The Kupiec test statistic is

LRPOF = −2 ln
(
L0

L1

)
= −2 ln

[
(1− α)T−x αx

(1− p̂)T−x p̂x

]
,

which under H0 is asymptotically χ2
1. For significantly large values of LRPOF,

we reject the null hypothesis, equivalently, if the corresponding p-value is
significantly small.

The POF test provides a useful check on the violation rate, but it does
not check whether violations are time-dependent. This is the topic of the
next section.

2.6.3 Conditional Coverage Test

The Kupiec test checks if the total number of VaR violations is in line with
the expected rate α for VaR1−α. However, as mentioned, it does not tell
us if these violations happen independently over time. If violations tend to
cluster, it might indicate that the model struggles during periods of high
volatility.

The Conditional Coverage Test (Christoffersen, 1998, Chapter 3), also
known as the Christoffersen Test, does two things: it verifies if the number
of violations is in line with our expectations, and it checks if the violations
occur independently over time.

The idea behind this test is that, if there is no clustering of the viola-
tions, the probability of transitioning from a period in which a violation has
occurred to a period with a new violation should be the same as the prob-
ability of transitioning from a period with no violation to a period with a
violation.

The Conditional Coverage Test statistic is defined as

LRCC = LRPOF + LRind,

where LRind is defined as

LRind = −2 log
(

(1− π)n00+n10πn01+n11

(1− π0)n00πn01
0 (1− π1)n10πn11

1

)
,

where LRPOF as defined above. The counts nij are as follows:

• n00: Number of days with no violation at t− 1 and no violation at t.

• n10: Number of days with a violation at t− 1 and no violation at t.

• n01: Number of days with no violation at t− 1 and a violation at t.

• n11: Number of days with a violation at t− 1 and a violation at t.
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The probabilities are defined by

π0 =
n01

n00 + n01
, π1 =

n11

n10 + n11
, π =

n01 + n11

n00 + n01 + n10 + n11
.

Under the null hypothesis of the Conditional Coverage Test, the viola-
tions form an i.i.d. Bernoulli(α) sequence, i.e., both the violation rate equals
α (tested by LRPOF ) and violations are independent over time (tested by
LRind). The combined statistic

LRCC = LRPOF + LRind

tests this joint hypothesis, and under H0 is asymptotically χ2
2. A large value

of LRCC leads us to reject H0, indicating either incorrect violation rate,
clustering of violations, or both.

A drawback of this test is that it only checks for dependence at a single
lag, when dependencies could occur at higher-order lags.

2.6.4 Tick Loss

We define the tick loss function for our forecasted VaR sequence {VaRt+1
1−α}

T−1
t=n

following Gneiting and Raftery (2007, p. 370) as

Lα

(
rt+1,VaR

t+1
1−α

)
=

(
1{rt+1 < VaRt+1

1−α} − α
) (

rt+1 −VaRt+1
1−α

)
.

The average tick loss over the sample is then

Lα =
1

T − n

T−1∑
t=n

Lα

(
rt+1,VaR

t+1
1−α

)
.

Here t = n, . . . , T −1 indexes the trading days on which we forecast VaRt+1
1−α

based on a rolling window of length n = 500, and 1{rt+1 < VaRt+1
1−α} is the

indicator that equals 1 if a violation occurs on day t+ 1, and 0 otherwise.
This loss function penalizes prediction errors asymmetrically, assigning a

higher penalty when the actual daily log return rt+1 falls below the VaRt+1
1−α

forecast. With α ∈ [0, 1], we can equivalently write

Lt+1
α =

−(1− α)|rt+1 −VaRt+1
1−α| if rt+1 ≤ VaRt+1

1−α,

−α|rt+1 −VaRt+1
1−α| if rt+1 > VaRt+1

1−α.

This reflects the higher cost of underestimating risk in financial applica-
tions.

A average tick loss closer to zero indicates that the VaR forecasts are more
in line with the observed outcomes. Unlike the Kupiec and Christoffersen
tests, which assess the frequency and independence of the violations, the
average tick loss analyze the magnitude of the forecasting errors.
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2.7 Parameter Estimation by Maximum Likelihood

Until now we have mostly covered theoretical modeling. In practice we would
like to fit our model to some data, for time series data, this can be done with
maximum likelihood. Some basic likelihood theory can be seen in Appendix
D.

In Tsay (2013, p. 189), the joint density

f(xt, xt−1, . . . , x1)

of the sequence {Xi}ti=1 can be written recursively as

f(xt, . . . , x1) = f(xt | xt−1, . . . , x1) f(xt−1, . . . , x1).

Applying this argument repeatedly we eventually obtain

f(xt, . . . , x1) = f(xt | xt−1, . . . , x1)·f(xt−1 | xt−2, . . . , x1) · · · f(x2 | x1)·f(x1),

where f(xt | xt−1, . . . , x1) is the conditional density of Xt given all past
observations, and f(x1) is the marginal density of the first observation.

The full log-likelihood for a sample of size T can then be written as

ℓ(θ) = ln f(x1 | θ) +
T∑
t=2

ln f(xt | xt−1, . . . , x1; θ).

For example: lets us assume that the process {Xt} follows a GARCH(1,1)
with Student-t residuals, then θ = (α0, α1, β1, ν). It follows that

Xt | Ft−1
d
= σt ϵt,

with

ϵt =

√
ν − 2

ν
Zt, Zt ∼ tν , σ2

t = α0 + α1a
2
t−1 + β1σ

2
t−1,

where ϵt is a standardized Student-t random variable (with zero mean
and unit variance) with density function g(u).

The conditional density of Xt can be obtained using the transformation
theorem (see Gut (1995, p. 23)). Here, the pdf of ϵt is

g(u) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
π (ν − 2)

(
1 + u2

ν−2

)−ν+1
2

.

and Jacobian is 1
σt

, therefore, by the transformation theorem

fXt|Ft−1
(xt) =

1

σt
g

(
xt
σt

)
=

1

σt

Γ
(
ν+1
2

)
Γ
(
ν
2

)√
π (ν − 2)

(
1 +

x2
t

(ν−2)σ2
t

)−ν+1
2

.
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The log-likelihood for an observation at time t > 1 is therefore

ln f(xt | Ft−1; θ) = lnΓ

(
ν + 1

2

)
− ln Γ

(ν
2

)
− 1

2
ln (π(ν − 2))

− lnσt −
ν + 1

2
ln

(
1 +

x2t
(ν − 2)σ2

t

)
.

The full log-likelihood function for the data {x1, . . . , xT } is then

ℓ(θ) = ln f(x1 | θ) +
T∑
t=2

[
ln Γ

(
ν + 1

2

)
− ln Γ

(ν
2

)
− 1

2
ln (π(ν − 2))− lnσt −

ν + 1

2
ln

(
1 +

x2t
(ν − 2)σ2

t

)]
.

The maximum likelihood estimate θ̂MLE is obtained by maximizing l(θ)
with respect to θ. If the sample size T is sufficiently large, it is common
practice to omit the contribution of ln f(x1|θ) (Tsay, 2013, p. 189).

After obtaining the MLE θ̂ = (α̂0, α̂1, β̂1, ν̂), the estimated conditional
variance for the GARCH(1,1) is computed recursively as

σ̂2
t = α̂0 + α̂1 x

2
t−1 + β̂1 σ̂

2
t−1,

with the initial σ2
0 given by the sample variance of {Xt} (Tsay, 2005, p. 116).

3 Data

In this section, we briefly describe the data used in this thesis. Figure 3
shows the full log return series for SEB-A and Swedbank-A from 1 January
2010 to 1 January 2025.

3.1 Software and R packages

All data retrieval, preprocessing, and time-series handling were performed
in R. We used tidyquant to fetch daily closing prices for Swedbank-A and
SEB-A, then computed log returns as shown in Section 2.1.1. For advanced
volatility modeling (GARCH/EGARCH) and backtesting of VaR, we used
the rugarch package, for model specification, estimation, and forecasting.
Because some of the calculations are expensive and time-consuming, we used
the R package doSNOW to utilize multiple cores and increase efficiency.

3.2 In-sample & out-of-sample

To avoid bias and to assess true forecast performance, we split the full series
(2010-01-01 to 2025-01-01) into an in-sample period (2010-01-01 to 2015-01-
01) for model calibration and selection, and an out-of-sample period (2015-
01-02 to 2025-01-01) for backtesting one-day-ahead VaR forecasts. Based on
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the in-sample period, we select and validate our model, i.e., choosing ARMA
orders, GARCH specifications and residual diagnostics. The out-of-sample
results then show how well those models generalize to unseen data and the
quality of the VaR forecasts, this is further explained below.

With the returns and in-/out-of-sample split established, Chapter 4 presents
our three VaR methods.

(a) Log returns for Swedbank-A (b) Log returns for SEB-A

Figure 3: Log returns for Swedbank-A and SEB-A.

4 Modeling

In the following sections we go through, step-by-step, the three different
methods used in this thesis for forecasting Value at Risk at a 90% confidence
level for a portfolio consisting of the two stocks mentioned above, with equal
capital allocation (50% of the total portfolio value invested in each stock).
The VaR forecast is compared with the actual realized log return of that day.
A correctly specified VaR model at the 90% level (α = 0.10) should satisfy

1

T − n

T−1∑
t=n

1
(
rt+1 < VaRt+1

0.90

)
≈ 0.10,

i.e., roughly 10% of observed log returns fall below the forecasted VaRt+1
0.90

threshold. Here, T is the total number of observations and n = 500 is the
length of the rolling window.

First, we begin, in Section 4.1, with a simpler (naive) method, called
the Delta-Normal method, where the daily log returns are assumed to be
normally distributed. Under this assumption, VaR is computed analytically
using the sample mean and standard deviation of the returns.

Next, in Section 4.2, we consider a more sophisticated method by model-
ing the returns using a GARCH model with Student-t distributed residuals.
This model is designed to capture the time-varying volatility in the log re-
turns. In addition, we account for the dependency between the two stocks
by using a multivariate t-distribution, which allows for fat tails and jointly
extreme events.
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Finally, we replace the standard GARCH model with an EGARCH model
in order to capture the asymmetric reaction of the market to positive and
negative shocks.

When assessing performance for each of the three methods, we use a
rolling window of length n = 500. That is, for each forecast date t + 1 =
n+ 1, . . . , T , we:

1. Estimate the model parameters on the subsample {rt−n+1, . . . , rt}.

2. Compute the one-step-ahead VaR forecast VaRt+1
0.90.

3. Advance the window by one day (i.e. set t← t+ 1) and repeat.

This procedure produces T − n out-of-sample VaR forecasts, which we then
backtest against the realized log returns.

4.1 VaR Modeling - Delta-Normal Method

A simple, parametric (often called Delta-Normal) approach for calculating
VaR assumes that log returns are jointly normal (see Jorion 2007, Sec. 10.3).
Thus, for each rolling window, we assume the joint distribution of the daily
log returns of the two stocks follows a multivariate normal distribution:(

X
Y

)
∼ N

((
µX

µY

)
,

(
σ2
X ρ σXσY

ρ σXσY σ2
Y

))
.

For simplicity of notation, X and Y represent SEB-A and Swedbank-A,
respectively.

With equal portfolio weights of 0.5, the portfolios log return is calculated
as

rp = 0.5 rX + 0.5 rY .

Assuming normality, rp is also normally distributed with mean and variance

µp = 0.5µX + 0.5µY ,

σ2
p = (0.5)2 σ2

X + (0.5)2 σ2
Y + 2 (0.5)(0.5) ρ σXσY .

The one-day-ahead VaR at a 90% confidence level is then computed as the
10th percentile of the distribution of the portfolio’s log returns:

VaR0.90 = µp + σp z0.1,

where z0.1 is the 0.1 quantile of a standard normal distribution.
The parameters µX , µY , σ

2
X , σ2

Y and ρ are estimated by their sample
counterparts. We will use a rolling windows of size n = 500, thus, with
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{x1, ..., x500} and {y1, ..., y500} as a random samples of X and Y , the sample
mean, variance and correlation is estimated as

µ̂X =
1

n

500∑
i=1

xi, µ̂Y =
1

n

500∑
i=1

yi,

σ̂2
X =

1

n− 1

500∑
i=1

(xi − µ̂X)2, σ̂2
Y, =

1

n− 1

500∑
i=1

(yi − µ̂Y )
2,

ρ̂XY =

500∑
i=1

(xi − µ̂X)(yi − µ̂Y )√√√√ 500∑
i=1

(xi − µ̂X)2

√√√√ 500∑
i=1

(yi − µ̂Y )2

.

These will be re-estimated for each rolling window to ensures that each
VaR forecast uses only the most recent n = 500 observations.

4.1.1 Model Checking

Based on the in-sample data (i.e. 2010-01-01 to 2015-01-01), we check the
normality assumption by comparing each empirical log return distribution
to its fitted normal density. The histograms and QQ-plots in Figures 4 and 5
show clear deviations from the straight-line fit in the tails, indicating that
the empirical distributions have heavier tails than the normal, which is in
line with the discussion in Jorion (2007, p. 262). This suggests the normal
model may not fit well, which could lead to inaccurate VaR forecasts.
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Figure 4: Histograms of empirical log returns vs the theoretical normal den-
sity for Swedbank-A, SEB-A, and the 50/50 portfolio.

Figure 5: Q-Q plots of empirical log returns against the theoretical normal
distribution for Swedbank-A, SEB-A, and the 50/50 portfolio.
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4.1.2 Results from Rolling Window Backtesting

The backtesting using a rolling window resulted in approximately 7.1% vi-
olations of the VaR forecasts, indicating that the model produced fewer
violations than the expected rate of α = 0.1. In other words, the model
tends to overestimate risk. In later sections, we will conduct statistical tests
on the violation sequence to see whether the results are acceptable in terms
of both their frequency and clustering of the violations.

We now proceed by building our two more sophisticated VaR models.

4.2 VaR Modelling - GARCH & EGARCH

On the in-sample period (2010-01-01 to 2015-01-01), we first test the series
for stationarity and select orders of ARIMA(p, q). We then fit GARCH(p, q)
and EGARCH(m, s) models (with Student-t residuals), test for ARCH effects
and validate the standardized residuals using QQ-plots and Ljung-Box tests.

With the orders of the models fixed, we use a rolling window on the out-
of-sample period (2015-01-02 to 2025-01-01), re-estimating only the model
parameters at each step. The one-step-ahead VaR forecasts from each win-
dow are then backtested against the realized log returns to assess model
performance.

4.2.1 Test for Stationarity

We test for stationarity of the in-sample log return series {rt} for each stock
by applying the Augmented Dickey-Fuller (ADF) test directly to {rt}. We
obtained p-values below 0.01 for both stocks. This provide strong evidence
against the null hypothesis of a unit root, indicating that the log return series
can be seen as stationary. Stationarity is crucial for further modeling, since
both GARCH and EGARCH models assume a stationary time series.

4.2.2 Assessing the Order of the ARMA(p, q) Model

Next we assess the appropriate order of the ARMA model for the mean equa-
tion, µt. We fit multiple ARMA(p, q) models, using maximum likelihood, and
select the one with the lowest Akaike Information Criterion (AIC). For both
SEB-A and Swedbank-A, an ARMA(0,0) model provided the lowest score.
Thus, the process {rt} can be written as

rt = µt + at = µ̄+ at

where µ̄ is the constant sample mean and {at} is a white noise process. In
other words, the log returns fluctuate randomly around the constant level µ̄,
as shown in Figure 3.
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Furthermore, a t-test indicated that the sample means are not signifi-
cantly different from zero, leading us to assume µt = 0 for both stocks. The
model thus simplifies to

rt = at.

We proceed by examining the series {at}, to see it exhibits any serial depen-
dence.

4.2.3 Checking for ARCH Effects

Next, we examine the residual series {at} for ARCH effects. This is done by
plotting the sample autocorrelation function (ACF) of {a2t } to identify any
significant spikes, and by conducting a Ljung-Box test on {a2t }. In Figure 6,
we present the ACFs of the original series {at} and of the squared series
{a2t }. The ACFs of {a2t } show clear evidence of serial autocorrelation for
both stocks, indicating that at must be modeled using a more sophisticated
volatility model. To confirm this, we apply the Ljung-Box directly to the
series {a2t } for each stock. This yields Q(10) = 20.4 for Swedbank-A and
Q(10) = 21.03 for SEB-A. At the 5% significance level, both test statistics
exceed the threshold, and we therefore reject the null hypothesis of no serial
autocorrelation.

(a) SEB-A: ACF of daily log returns. (b) SEB-A: ACF of sqr log returns.

(c) Swedbank-A: ACF of daily log re-
turns.

(d) Swedbank-A: ACF of sqr log re-
turns.

Figure 6: Sample autocorrelation functions of the daily log returns and their
squares for SEB-A and Swedbank-A.
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4.2.4 Assessing the Orders of the GARCH & EGARCH Models

We proceed by fitting GARCH(p, q) and EGARCH(m, s) models to each
stock’s daily log return series separately using maximum likelihood, were we
assume Student-t distributed residuals. Table 1 illustrates the AIC and BIC
values for models from order (1,1) to (3,3). For both the GARCH and the
EGARCH models, the lowest AIC and BIC values were generally obtained
at order (1,1), which is in line with we discussed in Section 2.2.10. It is
worth noting that for Swedbank-A, an EGARCH(1,3) model had a lower AIC
compared to EGARCH(1,1), but the BIC was lower for the EGARCH(1,1).
We therefore choose for the simpler EGARCH(1,1) over the more complex
alternative.

As mentioned, we assume for all models that the residuals follow a t-
distribution. The validity of this assumption is checked in the next section.

Model AIC BIC

GARCH(1,1) -5.499945 -5.466228
GARCH(1,2) -5.496244 -5.454098
GARCH(1,3) -5.492926 -5.442351
GARCH(2,1) -5.497649 -5.455503
GARCH(2,2) -5.494372 -5.443796
GARCH(2,3) -5.493628 -5.434623
GARCH(3,1) -5.494094 -5.443519
GARCH(3,2) -5.490400 -5.431395
GARCH(3,3) -5.489628 -5.422194

(a) SEB-A, GARCH

Model AIC BIC

GARCH(1,1) -5.685633 -5.651916
GARCH(1,2) -5.681937 -5.639791
GARCH(1,3) -5.678258 -5.627683
GARCH(2,1) -5.682995 -5.640849
GARCH(2,2) -5.681047 -5.630472
GARCH(2,3) -5.678529 -5.619524
GARCH(3,1) -5.679207 -5.628631
GARCH(3,2) -5.677069 -5.618065
GARCH(3,3) -5.674529 -5.607095

(b) Swedbank-A, GARCH

Model AIC BIC

EGARCH(1,1) -5.518198 -5.476052
EGARCH(1,2) -5.514612 -5.464037
EGARCH(1,3) -5.511729 -5.452724
EGARCH(2,1) -5.514129 -5.455124
EGARCH(2,2) -5.510862 -5.443428
EGARCH(2,3) -5.507849 -5.431986
EGARCH(3,1) -5.508919 -5.433056
EGARCH(3,2) -5.506004 -5.421712
EGARCH(3,3) -5.503536 -5.410814

(c) SEB-A, EGARCH

Model AIC BIC

EGARCH(1,1) -5.738633 -5.696487
EGARCH(1,2) -5.737116 -5.686541
EGARCH(1,3) -5.743576 -5.684571
EGARCH(2,1) -5.736433 -5.677429
EGARCH(2,2) -5.732518 -5.665084
EGARCH(2,3) -5.736539 -5.660676
EGARCH(3,1) -5.756135 -5.680272
EGARCH(3,2) -5.755073 -5.670780
EGARCH(3,3) -5.750272 -5.657551

(d) Swedbank-A, EGARCH

Table 1: Information criteria (AIC and BIC) for GARCH and EGARCH
models with Student-t residuals for SEB-A and Swedbank-A.

4.2.5 Standardized Residual Diagnostics

Since both the GARCH(1,1) and EGARCH(1,1) models assume that the
standardized residuals {ϵt} are i.i.d. Student-t random variables with mean
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zero and unit variance, it is important to verify this assumption.
For each fitted model we extract the standardized residuals and com-

pare the empirical quantiles with the theoretical quantiles of a standardized
Student-t distribution using QQ-plots, see Figure 7. As we can see, the over-
all fit is good, except for some extreme observations in the far tails. It’s a
relatively small sample, so this result could reflect limited data rather than
a model misspecification. Also, this does not have to be a major issue, es-
pecially since we are interested in forecasting VaR at 90% confidence level.
Exploring alternative heavy-tailed distributions could be the done in further
research.

(a) SEB GARCH(1,1) (b) SEB EGARCH(1,1)

(c) SWEDBANK GARCH(1,1) (d) SWEDBANK EGARCH(1,1)

Figure 7: QQ-plots: Comparing the empirical quantiles of the standardized
residuals from the GARCH(1, 1) and EGARCH(1, 1) models to a standard-
ized Student-t distribution.

To check for any remaining ARCH effects we first plot the standardized
residual series, see Figure 8. They appear to behave like white noise, aside
from a few extreme shocks.

In Appendix E (Figure 12), we show the ACFs of both the standardized
and squared standardized residuals for each model. There are no extreme
spikes, indicating little remaining autocorrelation or volatility clustering.
Although, the Ljung-Box test at lag m = 10 resulted in low p-values for
both the standardized and squared standardized residuals for the SEB-A
EGARCH(1,1) model (see Table 2). These rejections are driven by a few
small spikes, and the ACF beyond those lags shows no meaningful auto-
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correlations. With this in mind, we treat the residuals as white noise and
proceed with our analysis under this assumption.

Model Std. Residuals Squared Residuals
(Ljung–Box p-value, lag 10) (Ljung–Box p-value, lag 10)

SEB-A GARCH 0.10697 0.06854
SEB-A EGARCH 0.01948 0.02703
Swedbank-A GARCH 0.36316 0.68059
Swedbank-A EGARCH 0.29455 0.70068

Table 2: Ljung–Box test p-values (lag 10) for standardized residuals and
their squares, by model and stock.

(a) SEB-A: Standardized residuals
(GARCH(1,1)).

(b) SEB-A: Standardized residuals
(EGARCH(1,1)).

(c) Swedbank-A: Standardized resid-
uals (GARCH(1,1)).

(d) Swedbank-A: Standardized resid-
uals (EGARCH(1,1)).

Figure 8: Standardized residuals series from the GARCH(1,1) and
EGARCH(1,1) models for SEB-A and Swedbank-A.

4.2.6 Parameter Estimates for GARCH(1,1) & EGARCH(1,1)

The parameter estimates are showcased is Table 3. Both GARCH(1,1) spec-
ifications satisfy the stationarity condition

α1 + β1 < 1
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(SEB: 0.0653 + 0.9210 = 0.9863 and Swedbank: 0.0467 + 0.9481 = 0.9948),
ensuring that volatility eventually goes back to a long-run level.

When α1 + β1 is very close to one, nearly all unconditional variance
contributions comes from the lag terms, driving α0 toward zero. As shown
in Appendix B, as long as α1 + β1 < 1, the unconditional variance

σ2 =
α0

1− α1 − β1

remains well-defined, so a α0 near zero does not compromise stationarity or
model validity.

Moreover, for the EGARCH(1,1) models, all parameters are significant,
and the estimated β values are

β̂1 = 0.988573 for SEB, β̂1 = 0.990335 for Swedbank,

both of which are below 1 and therefore ensure stationarity.
As mentioned in Section 2.1.3, negative movements usually have a larger

impact on volatility than positive shocks of the same magnitude. Recall that
for an EGARCH(1,1) the conditional volatility σt is modeled as

ln(σ2
t ) = ω + α1

|at−1|+ γ1at−1

σt−1
+ β1 ln(σ

2
t−1)

= ω + α1|ϵt−1|+ α1γ1ϵt−1 + β1 ln(σ
2
t−1),

where ϵt−1 =
at−1

σt−1
. The asymmetric effect comes from the term

α1γ1ϵt−1.

Since we obtained α1 < 0 and γ1 > 0 for both stocks, for negative shocks
(ϵt−1 < 0) it is a positive contribution to ln(σ2

t ), and for positive shocks
(ϵt−1 > 0) it contributes a negative value. Therefore, negative shocks inflate
volatility more than an equally sized positive shocks. This is in line with
what we discussed in Section 2.1.3.
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Model Parameter Estimate p-value

GARCH(1,1) SEB α0 0.000004 0.28
α1 0.065322 <0.01
β1 0.920991 <0.01

EGARCH(1,1) SEB ω -0.091900 <0.01
α1 -0.077542 <0.01
β1 0.988573 <0.01
γ1 0.077048 <0.01

GARCH(1,1) SWED α0 0.000002 0.57
α1 0.046699 0.02
β1 0.948141 <0.01

EGARCH(1,1) SWED ω -0.076927 <0.01
α1 -0.079951 <0.01
β1 0.990335 <0.01
γ1 0.106434 <0.01

Table 3: Parameter Estimates for GARCH(1,1) and EGARCH(1,1) models
for SEB-A and Swedbank-A.

4.2.7 Forecasting Volatility

Before forecasting VaR, we compute the one-step-ahead conditional variance.
In particular, for each t = n, . . . , T − 1, we re-estimate the model param-
eters by maximum likelihood using the most recent n = 500 observations
{xt−n+1, . . . , xt}: GARCH(1, 1) : θ̂t = (ω̂t, α̂1,t, β̂1,t),

EGARCH(1, 1) : θ̂t = (ω̂t, α̂1,t, β̂1,t, γ̂1,t).

Then, the one-day-ahead forecast of the conditional variance is computed as
in Tsay (2005, p. 115 & 129):

σ̂2
t+1 = α̂0,t + α̂1,t a

2
t + β̂1,t σ̂

2
t (GARCH(1,1)),

ln
(
σ̂2
t+1

)
= ω̂t + α̂1,t

|at|+ γ̂1,tat
σ̂t

+ β̂1,t ln(σ̂
2
t ) (EGARCH(1,1)).

Here, at = rt (since we assume that µt = 0) and σ̂2
t denotes the estimated

conditional variance at time t, and is calculated recursively. After obtaining
σ̂2
t+1, we roll the window forward by one day and repeat the estimation

and forecasting steps. This process yields four sequences of forecasted σ̂2
t+1,

one for each combination of stock (SEB, Swedbank) and method (GARCH,
EGARCH).

34



4.2.8 Forecasting VaR

Having obtained the one-day-ahead conditional variance forecasts, we are
finally ready to forecast VaR for the equally weighted portfolio of Swedbank-
A and SEB-A.

For both GARCH(1,1) and EGARCH(1,1), we model the daily log re-
turns as

rt = µt + at,

with µt = 0, so rt = at. In each rolling window the one-day-ahead log return
is

rt+1 = at+1 = ϵt+1 σ̂t+1,

where ϵt+1 is standardized Student-t distributed and σ̂t+1 is the forecasted
volatility. Hence, conditional on Ft,

rt+1 | Ft
d
= σ̂t+1

√
ν−2
ν Zt+1, Zt+1 ∼ tν ,

i.e., a Student-t random variable with ν degrees of freedom, zero mean, and
variance σ̂2

t+1. For the equally weighted portfolio, the portfolios daily log
return is written as

rp,t+1 = 0.5 rX,t+1 + 0.5 rY,t+1 = 0.5 ϵX,t+1 σ̂X,t+1 + 0.5 ϵY,t+1 σ̂Y,t+1,

here X and Y represent Swedbank-A and SEB-A, respectively.
We assume that the standardized residuals form a bivariate Student-t

distribution, i.e.

(ϵX,t+1, ϵY,t+1)
T ∼ tν

(
0,Σ

)
, Σ =

ν − 2

ν

(
1 ρ
ρ 1

)
.

with ν degrees of freedom. Under this assumption, any linear combination
of ϵX,t+1 and ϵY,t+1 is again t-distribution with ν degrees of freedoms.

For each rolling window, we pragmatically estimate the common ν by

ν̂t =
ν̂X,t + ν̂Y,t

2
,

where ν̂X,t and ν̂Y,t are the maximum likelihood estimates of the degrees
of freedom obtained from the series of the standardized residuals {ϵX,t} and
{ϵY,t}, respectively. Following the steps in Appendix C, rp,t+1 is a scaled
standard Student-t. The estimated 0.1 quantile of the one-day-ahead port-
folio can be computed as

q̂0.1(rp,t+1) =

√
ν̂ − 2

ν̂
(C2

1 + C2
2 + 2C1C2 ρ̂t) · t−1(0.1, ν̂t),

where
C1 = 0.5 σ̂X,t+1, C2 = 0.5 σ̂Y,t+1.
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Here, ρ̂t is the sample correlation of the two series of standardized residuals in
the rolling windows ending at day t and t−1(0.1, ν̂t) is the 0.1 quantile of the
standard t-distribution with ν̂t degrees of freedom. This quantile represents
the VaR forecast for each estimation period, i.e.

VaRt+1
0.90 = q̂0.1(rp,t+1).

This procedure is repeated for each of the rolling windows of length n =
500, yielding the sequence of VaR forcasts:{

VaRt+1
0.90

}T−1

i=n
= {VaR501

0.90, . . . , VaR
T
0.90},

where t + 1 is the day on which the forecast in made and T the size of the
sample. This sequence of VaR forecasts is then compared to the realized
portfolio log returns by examining the resulting sequence of violations:

It+1 = 1{rp,t+1 ≤ VaRt+1
0.9 }, t = n, . . . , T − 1.

In the following section, we analyze these backtesting results in detail.

5 Results

In this section we present the empirical performance of our three VaR meth-
ods. We begin with the accuracy of the volatility forecasts, measured by the
Root Mean Squared Error (RMSE). We then compare the VaR forecasts with
the realized log returns using the tick loss average. Finally, we present the
outcomes of our VaR backtests, including Kupiec and Christoffersen tests.
All performance metrics below are computed over T − n number of rolling
windows of length n = 500 trading days covering the out-of-sample period
2015-01-01 to 2025-01-01, yielding T − n = 2015 forecasting days.

5.1 RMSE

As stated above, we use rolling windows of length n = 500 over a total sample
of size T , yielding T − n one-day-ahead forecasts. For each window ending
at time t (t = n, . . . , T − 1), we compute the forecasted portfolio variance
σ̂2
p,t+1 in two ways:

1. Delta-Normal: Forecast the variances σ̂2
X,t+1 and σ̂2

Y,t+1 of Swedbank-
A and SEB-A log returns, as the sample variance on the windows
{rt−n+1, . . . , rt}, and their sample correlation ρ̂t. Then

σ̂2
p,t+1 = 0.25 σ̂2

X,t+1 + 0.25 σ̂2
Y,t+1 + 2 · 0.5 · 0.5 ρ̂t σ̂X,t+1 σ̂Y,t+1.

2. GARCH/EGARCH: With the one-day-ahead model-based volatil-
ity forecasts σ̂X,t+1 and σ̂Y t+1, and the sample correlations ρ̂t of the
two series of standardized residuals for each window, calculate

σ̂2
p,t+1 = 0.25 σ̂2

X,t+1 + 0.25 σ̂2
Y,t+1 + 2 · 0.5 · 0.5 ρ̂t σ̂X,t+1 σ̂Y,t+1.
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Here, X and Y represent Swedbank-A and SEB-A, respectively. We then
compare each {σ̂2

p,t+1}
T−1
t=n to the realized proxy variances {r2p,t+1}

T−1
t=n , where

rp,t+1 = 0.5 rX,t+1 + 0.5 rY,t+1.

The RMSE across all T − n windows is

RMSE =

√√√√ 1

T − n

T−1∑
t=n

(
σ̂2
p,t+1 − r2p,t+1

)2
.

The results are presented in Table 4. The EGARCH(1,1) model obtained
the lowest RMSE, indicating the best performance in capturing time-varying
volatility, while the Delta-Normal method which assumes constant volatility,
performed worst. However, the differences in RMSE are very small, making
it difficult to draw definitive conclusions about relative forecasting accuracy
from these values alone.

Method RMSE

Delta-Normal 0.0008072
GARCH(1,1) 0.0007877
EGARCH(1,1) 0.0007814

Table 4: RMSE values for the Delta-Normal, GARCH, and EGARCH model.

5.2 Tick Loss

We now proceed to evaluate model performance using the average tick loss.
Let VaRm

t+1 denote the one-day-ahead VaR forecast from method
m ∈ {Delta, GARCH, EGARCH} based on the window ending at t (for
t = n, . . . , T − 1). We compute the tick loss at each step as

Lm
t+1 =

(
1{rt+1 < VaRt+1

1−α} − α
) (

rt+1 −VaRt+1
1−α

)
, t = n, . . . , T − 1.

With the sequence {Lm
t+1}

T−1
t=n , we calculate the average tick loss for each

method as

L
m

=
1

T − n

T−1∑
t=n

Lm
t+1.

Table 5 reports the average tick loss of the one-day-ahead VaR forecasts
for each method over the backtesting period. An average tick loss closer
to zero indicates better alignment between VaR forcasts and realized log
returns.

Overall, the three methods yield very similar tick loss values, the rank-
ing is: EGARCH performs best, closely followed by GARCH, while Delta-
Normal slightly behind. The differences are small in absolute terms, but they
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confirm that modeling time-varying volatility yields more accurate VaR fore-
casts than a static, and the not as flexible, normal approach.

Metod Tick Loss
Delta-Normal -0.00307
GARCH(1,1) -0.00288
EGARCH(1,1) -0.00286

Table 5: Tick Loss for each VaR model.

5.3 Violation Rate

Each of the three methods resulted in different violation rates. Table 6
shows these rates for all three models. Figure 9 shows the evolution of the
cumulative violation rates over the rolling windows. As the figure illustrates,
the rates appears to have converged.

The EGARCH model produces a violation rate closest to the target 10%
level, indicating the most accurate risk estimation. The GARCH model had
intermediate performance, whereas the Delta-Normal method significantly
overestimates risk, resulting in a violation rate that deviates substantially
from the expected 10% target.

Figure 9: The Cumulative Violation Rate for each Model.

5.4 Evaluating Violation Sequences

We apply two tests to the VaR violation sequences, the Kupiec-test and the
conditional coverage test (or Christoffersen test). The Kupiec-test evaluates
whether the total number of violations matches the expected rate, while
the conditional coverage test jointly tests both the violation frequency and
the independence of violations over time. The p-values for each test are
presented in Table 6.
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For the Kupiec test, the GARCH and EGARCH models had p-values of
0.287 and 0.853, respectively, hence, we do not reject the null hypothesis of a
correct violation rate. The Delta-Normal model, however, fails the test with
a p-value below 0.001, indicating significant overestimation of risk.

For the conditional coverage test, both the GARCH and EGARCH mod-
els pass with p-values of 0.387 and 0.713, respectively, indicating that these
models capture both the frequency and independence of violations. The
Delta-Normal model, however, is again rejected, confirming its inability to
account for time-varying volatility. This pattern is also evident in Figure 10,
where EGARCH and GARCH adjust effectively to periods of high and low
volatility, while the Delta-Normal model struggles to do so.

(a) Delta-Normal VaR (b) GARCH(1,1) VaR

(c) EGARCH(1,1) VaR

Figure 10: One-day-ahead VaR forecasts vs actual log returns. Crosses mark
violations.

Model Violation Rate Kupiec p-value CC p-value
GARCH(1,1) 0.107 0.287 0.387
EGARCH(1,1) 0.101 0.853 0.713
Delta-Normal 0.0715 <0.001 <0.001

Table 6: Violation rate, Kupiec and Christoffersen p-values.
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6 Discussion & Conclusions

6.1 Key Findings

This thesis compare three VaR forecasting methods on a portfolio of SEB-A
and Swedbank-A over 2015–2025. Our backtests of one-day-ahead VaR fore-
casts using a rolling window reveal a clear performance ranking: EGARCH(1,1)
at the top, followed by GARCH(1,1), and lastly Delta-Normal. The Delta-
Normal method produced a 7% violation rate, less than the target of 10%.
By contrast, both GARCH and EGARCH maintained violation rates within
the acceptable boundaries in terms of the Kuipec and Christoffersen tests.
These findings demonstrate the importance of modeling time-varying and
asymmetric volatility for accurate tail-risk estimation.

6.2 Why Delta-Normal Underperform

A 7% violation rate may appear conservative, it could reflects a misfit of
the normal tail and the true log return distribution. Under the normality
assumption, the one-day-ahead 90% VaR is given by

VaR0.90 = µp + z0.10 σp, z0.10 ≈ −1.2816.

However, in Section 4.1.1 we saw that the empirical log return distributions
had fatter tails than a normal. Fat tails inflate the sample variance under
the normal assumption, pushing µp − 1.2816σp too far into the left tail and
thereby reducing the observed violation rate to only 7 %.

6.3 Limitations and Improvements

Our VaR modeling provides valuable insights, some limitations lead to po-
tential improvements, we will go through some of the here.

The choice of a 500-day window involves a trade-off between reactivity
and stability. In particular, because the Delta-Normal method uses the sam-
ple variance within each window, this quantity updates more slowly when
the window is larger. Testing alternative lengths (e.g. 250 or 750 days)
would reveal how sensitive our results are to this parameter. Future work
should compare these alternatives.

Furthermore, our focus on two large-cap Swedish bank stocks may limits
generalizability to broader portfolios, such as small-cap or more volatile tech-
stocks. Extending the analysis, including additional asset types, would test
the generality.

In this thesis we use a 90% confidence level for VaR. If we instead applied
a 99% level, we would expect about

0.01 · 2015 ≈ 20
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number of violations, and a deviation of one or two violations could be
from sampling variation alone, making the test statistics very sensitive. By
choosing 90%, we ensure a sufficient number of violations for a more reliable
testing. For future work, extending the historical data sample (e.g. using
more years of log returns) would allow us to use of higher confidence levels
(such as 99%) without sacrificing statistical power.

Finally, our backtest uses Christoffersen’s one-day independence test.
More complex alternatives, such as duration-based tests could be included.
These go beyond Christoffersen’s test by looking at a longer dependence
patterns than one day.

7 Extension

In the previous analysis we assumed that the two standardized residuals ϵX,t

and ϵY,t from each stocks returns series shared a common degrees of freedom
parameter ν. The maximum likelihood estimates of the degrees of freedom
ν over the in-sample period (2010-01-01 to 2015-01-01) are

GARCH(1,1): ν̂Swedbank-A = 4.9, ν̂SEB-A = 7.2,

EGARCH(1,1): ν̂Swedbank-A = 5.1, ν̂SEB-A = 7.6.

These are noticeably different indicate that the assumption of a common
ν for both series based on in-sample fitting is quite strong and not fully
supported by the data. While convenient, this “common-ν” assumption is
somewhat restrictive.

We will now extend the method-framework from the previous sections,
by using a copula-based VaR method to capture joint tail dependence more
flexibly than a multivariate-t distribution (which forces both residuals to
share a common degree of freedom). This flexible approach would be to
model the joint distribution of (ϵX,t, ϵY,t) via a copula. In particular, we
could:

1. Estimate GARCH/EGARCH models for each stock and extract the
standardized residuals.

2. Apply an inverse transform to those residuals and fit a copula (e.g.
Student-t) to model their dependence structure.

3. Jointly simulate from the fitted copula, back-transform through the
marginal t-distributions, aggregate into portfolio log returns, and ex-
tract the 90 % VaR.

4. Conduct test as described in Chapter 5.

This extension trades the bivariate-t approach in Section 4.2.8 for greater
flexibility modeling. Full theoretical background is not included in this thesis,
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instead, this should be viewed as a blueprint for potential future work. We
will first provide a theoretical overview of the extension and then implement
it in practice, with empirical results presented thereafter.

7.1 Theoretical Background on Copulas

A copula is a function that “couples” together the marginal distributions
of two (or more) random variables into a joint distribution, by working on
their transformed ranks rather than their original scales. This lets us model
dependence separately from the choice of marginals.

This theoretical section is based on the lecture notes Lindskog (2025).
Let X and Y be random variables with continuous marginal CDFs FX(x)

and FY (y). Define

U = FX(X), V = FY (Y ).

By the inverse transform, U and V each uniformly distributed on [0, 1]. A
copula C is then the joint CDF of (U, V ):

C(u, v) = P
(
U ≤ u, V ≤ v

)
, (u, v) ∈ [0, 1]2.

Sklar’s theorem (Nelsen, 2006, p. 18) ensures that the original joint distri-
bution H(x, y) = P (X ≤ x, Y ≤ y) can be written uniquely as

H(x, y) = C
(
FX(x), FY (y)

)
,

if both FX and FY is continuous.

7.1.1 Proof of the inverse transform theorem (sketch)

Since FX is continuous and strictly increasing, for any u ∈ [0, 1]:

P (U ≤ u) = P
(
FX(X) ≤ u

)
= P

(
X ≤ F−1

X (u)
)
= FX

(
F−1
X (u)

)
= u.

Hence U ∼ Uniform(0, 1), and similarly V ∼ Uniform(0, 1).
This motivates using (U, V ) as the building blocks for the copula C.

7.1.2 Sampling from a Copula

Given two samples {xi}ni=1 and {yi}ni=1, transform them to “pseudo-observations”
on [0, 1] by

ui = FX(xi), vi = FY (yi),

Because the CDF transform preserves ranks, the pair (ui, vi) have the depen-
dence structure of (xi, yi) in terms of their ranks. We then fit a parametric
copula, for example a Student-t copula, to the (ui, vi) data by maximum
likelihood.

To simulate new joint pair, we
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1. sample (u∗, v∗) from the fitted copula,

2. convert back to the original scale via the inverse marginals:

x∗ = F−1
X (u∗), y∗ = F−1

Y (v∗).

This method let us sample “synthetic” (x∗, y∗) pairs that preserve the marginal
distributions and the ranked dependence captured by the copula.

With that said, we are know ready to implement this theoretical frame-
work into our VaR modeling.

7.2 VaR Modeling - GARCH/EGARCH-Copula

This method replaces the multivariate Student-t distribution used in Sec-
tion 4.2.8 while leaving all earlier model steps unchanged. For each rolling
window, we first fit a standardized Student-t distribution to each stock’s se-
ries of standardized residuals, estimating each series degrees of freedom by
maximum likelihood.

Next, we transform each residual series into pseudo-observations with its
fitted Student-t CDF, as described in the previous section, and then fit a
copula to these pseudo-observations to capture the dependence structure.

This procedure is done on the in-sample data (2010-01-01 to 2015-01-
01). In Figure 11, we see the scatterplot of the pseudo-observation. During
normal periods, when fluctuations are small, the two stocks has only weak
dependence. However, in more turbulent market conditions they tend to
move together. This behavior is intuitive, on an average day each stock
follows its own drivers, but when a major shock occurs it impacts both stocks
simultaneously. This explains the clustering in the corners, and sparsity in
the middle section.

(a) GARCH(1,1) (b) EGARCH(1,1)

Figure 11: Copula pseudo-observations for in-sample standardized residuals
of the two volatility models. Each point (u, v) represents the uniform trans-
formed residuals of SEB-A and Swedbank-A.
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7.2.1 Model Selection - Copula

Based on the in-sample data (2010-01-01 to 2015-01-01) we fit four dif-
ferent copulas by maximum likelihood, Student-t, Gaussian, Frank, and
Gumbel, and select the one with the lowest AIC. This resulted in select-
ing the t-copula, since it yield the lowest AIC for both GARCH(1,1) and
EGARCH(1,1), see Table 7.

Copula GARCH AIC EGARCH AIC

Normal -1209.265 -1192.387
Student-t -1278.090 -1256.807
Frank -1159.567 -1148.934
Gumbel -1200.708 -1183.636

Table 7: AIC values for copulas fitted to GARCH(1,1) and EGARCH(1,1)
standardized residuals.

7.2.2 Forecasting VaR - GARCH/EGARCH-Copula

The one-day-ahead VaR forecast for each rolling window is obtained as fol-
lows:

1. Fit the t-copula to the pseudo-observations of ϵX,t and ϵY,t.

2. Simulate N = 10 000 pairs (ϵX,i, ϵY,i) from this copula and convert
back to the original scale.

3. Forecast one-day-ahead volatilities σ̂X,t+1 and σ̂Y,t+1 from
the GARCH/EGARCH model.

4. Generate simulated returns:

r
(i)
X,t+1 = σ̂X,t+1 ϵX,i, r

(i)
Y,t+1 = σ̂Y,t+1 ϵY,i, i = 1, . . . , 10 000.

5. Compute portfolio returns with equal weights:

r
(i)
p,t+1 = 0.5 r

(i)
X,t+1 + 0.5 r

(i)
Y,t+1, i = 1, . . . , 10 000.

6. Estimate the 0.1 quantile of {r(i)p,t+1} as the V aRt+1
0.90 forecast, and com-

pare to the realized rp,t+1 to keep track of the violations.

This procedure yields a violation sequence just as before, allowing us to
apply the same diagnostic tests (Kupeic and Christoffersen’s test) to assess
the VaR forecasts.
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7.3 Results - Extension

In Table 8, we summarize the diagnostic results for the violation sequences
when using the EGARCH(1,1) and GARCH(1,1)-copula model. Overall,
both models perform well, with significant p-values for both the Kupiec and
Christoffersen tests and the violation rates are very close to the target level
of 10%.

The GARCH(1,1)-copula model outperforms the GARCH(1,1)-t (we de-
note EGARCH/GARCH-t to mean EGARCH/GARCH(1,1) with Student-t
residuals) model from the previous chapters, its Kupiec p-value increases
from 0.287 to 0.484, and its Christoffersen p-value increases from 0.387 to
0.622, indicating more significant violation rate and less clustering in the
violations. The EGARCH(1,1)-copula model shows similar results as for the
EGARCH(1,1)-t model, its Kupiec p-value remains virtually unchanged, as
does its Christoffersen p-value.

We also compared RMSE (computed by replacing the one-day-ahead
conditional variance σ̂2

p,t+1 with the sample variance of each set of simulated
portfolio returns), and average tick loss for the copula-based models against
their GARCH(1,1)-t and EGARCH(1,1)-t counterparts. We obtained

GARCH(1,1)-copula: tick loss = 0.0028861, RMSE = 0.0007917,

EGARCH(1,1)-copula: tick loss = 0.0028596, RMSE = 0.0007815.

These results are almost identical to those from the GARCH(1,1)-t and
EGARCH(1,1)-t models. This shows that adding a copula for the stan-
dardized residuals has a minor impact on both volatility and VaR forecast
accuracy.

Model Violation rate Kupiec p-value Christoffersen p-value

GARCH(1,1)-t 0.107 0.287 0.387
EGARCH(1,1)-t 0.101 0.853 0.713
GARCH(1,1)-Copula 0.105 0.484 0.622
EGARCH(1,1)-Copula 0.0988 0.853 0.704

Table 8: Violation rate and Kupiec and Christoffersen p-values for each VaR
model.

As shown in Table 9, the observed number of VaR violations (out of 2015
trails) for the GARCH(1,1)-t, EGARCH(1,1)-t, GARCH(1,1)-copula, and
EGARCH(1,1)-copula models are 216, 204, 212, and 199, respectively. These
numbers lie relatively close to the expected value of 201.5, indicating that
switching from the t-model to a copula-based approach has only a marginal
impact on the violation rate. Because each test is sensitive to even a single
additional exception, these small differences do not justify strong conclusions
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about one model’s superiority over the others. A more rubost analysis would
be to include more data, do reduce the sensitivity in these tests.

In conclusion, the simpler EGARCH(1,1)-t models with bivariate Student-
t residuals works just as well, for this data, as the more complex models and
is easier to implement. If we extend this to a portfolio with more stocks, the
copula model becomes more flexible, since it does not require assuming the
same degrees of freedom for each standardized residual series.

Model Observed Violations
(expected = 201.5)

Delta-Normal 144
GARCH(1,1)-t 216
EGARCH(1,1)-t 204
GARCH(1,1)-copula 202
EGARCH(1,1)-copula 199

Table 9: Observed number of violations (out of 2015 observations) for each
VaR models, where the expected number is 2015 · 0.1 = 201.5.
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A One-Sample t-Test

Let X1, . . . , Xn be an independent and identically distributed sample from
the random variable X, with true mean E[X] and variance Var(X). A
one-sample t-test can be used to assess whether the sample mean differs
significantly from a specified value (e.g. zero), as discussed in Section 2.2.6.
Following Britton and Alm (2014, p. 334), we compute the test statistic

T =
x̄− µ0

s/
√
n
,

which under the null hypothesis

H0 : E[X] = µ0

follows a Student’s t-distribution with n− 1 degrees of freedom. The alter-
native hypothesis is two-sided:

H1 : E[X] ̸= µ0.

Here, x̄ is the sample mean, n denotes the sample size and s the sample
standard deviation.

B Properties of ARCH(1) and GARCH(1,1)

Here we outline some basic properties for the ARCH(1) and GARCH(1,1)
models. Similar calculations can be seen in Tsay (2005, p. 105).

Properties of the ARCH(1)

Recall that in the ARCH(1) model we have

at = σt ϵt, σ2
t = α0 + α1 a

2
t−1,

where {ϵt} is an i.i.d. sequence with E[ϵt] = 0, E[ϵ2t ] = 1, and parameters
satisfy α0 > 0, α1 ≥ 0 and α1 < 1 for stationarity. We will now explore
some of its properties.

Unconditional Mean:

E[at] = E

[
ϵt

√
α0 + α1a2t−1

]
=

√
α0 + α1a2t−1 · E[ϵt] = 0,

since E[ϵt] = 0.
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Conditional Mean:

E[at | Ft−1] = E

[
ϵt

√
α0 + α1a2t−1 | Ft−1

]
=

√
α0 + α1a2t−1 ·E[ϵt | Ft−1] = 0,

where Ft−1 represents all the observations up to time t − 1, and the last
equality follows from the independence of ϵt from Ft−1.

Conditional Variance:

The conditional variance is defined as

σ2
t = Var[at | Ft−1] = E

[
(at − E[at | Ft−1])

2 | Ft−1

]
.

Given that E[at | Ft−1] = 0, we have

σ2
t = E[a2t | Ft−1] = E

[
ϵ2t (α0 + α1a

2
t−1) | Ft−1

]
= (α0+α1a

2
t−1)·E

[
ϵ2t | Ft−1

]
.

Since E
[
ϵ2t | Ft−1

]
= 1, it follows that

σ2
t = α0 + α1a

2
t−1.

This shows that the conditional variance is time-varying.

Unconditional Variance:

Taking expectations on both sides of the equation for σ2
t , we get

E[σ2
t ] = E[α0 + α1a

2
t−1] = α0 + α1 E[a

2
t−1].

Since the process is stationary, E[a2t−1] = E[σ2
t−1] = σ2. We have

σ2 = α0 + α1σ
2.

Solving for σ2:
σ2 =

α0

1− α1
.

While the conditional variance σ2
t changes over time, the unconditional vari-

ance is constant.

Properties of the GARCH(1,1)

Recall that in the GARCH(1,1) model we write

at = σt ϵt, σ2
t = α0 + α1 a

2
t−1 + β1 σ

2
t−1,

where {ϵt} is i.i.d. with E[ϵt] = 0, E[ϵ2t ] = 1, and α0 > 0, α1, β1 ≥ 0 are such
that α1 + β1 < 1 for stationarity. Similar for the ARCH(1), we will explore
some of its properties.
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Unconditional Mean:

E[at] = E [σtϵt] = E[σt] · E[ϵt] = E[σt] · 0 = 0,

since E[ϵt] = 0.

Conditional Mean:

E[at | Ft−1] = E [σtϵt | Ft−1] = σt · E[ϵt | Ft−1] = σt · 0 = 0,

Conditional Variance

The variance of at given the information, Ft−1, is defined as

Var[at | Ft−1] = E
[
(at − E[at | Ft−1])

2 | Ft−1

]
.

Since E[at | Ft−1] = 0, we have

Var[at | Ft−1] = E
[
a2t | Ft−1

]
.

Substituting at = σtϵt, and noting that σt is known given Ft−1 since

α0 + α1a
2
t−1 + β1σ

2
t−1

only depends on the values at time t− 1, thus, we obtain

Var[at | Ft−1] = E
[
σ2
t ϵ

2
t | Ft−1

]
= σ2

t E
[
ϵ2t | Ft−1

]
.

Since E
[
ϵ2t | Ft−1

]
= 1, it follows that

Var[at | Ft−1] = σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1.

This proves that the conditional variance of the GARCH(1,1) is time depen-
dent.

Unconditional Variance

We begin by noting that the unconditional variance of at is defined as

Var(at) = E[a2t ].

we have
E[a2t ] = E[σ2

t ϵ
2
t ] = E[σ2

t ].

Taking expectations on both sides of the conditional variance equation
yields:

E[σ2
t ] = α0 + α1 E[a2t−1] + β1 E[σ2

t−1].
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Under the stationarity assumption, we have:

E[a2t−1] = E[a2t ] and E[σ2
t−1] = E[σ2

t ].

Noting that E[a2t ] = E[σ2
t ], since

E[σ2
t ] = E[E[a2t |Ft-1]] = E[a2t ],

setting Var(at) = σ2 this yields:

σ2 = α0 + (α1 + β1)σ
2.

Solving for σ2 gives:

σ2(1− α1 − β1) = α0 =⇒ σ2 =
α0

1− α1 − β1
.

Thus, the unconditional variance is:

Var(at) =
α0

1− α1 − β1
,

which is not dependent of time.

C Multivariate t-Distribution

In this section, we review the theory of the multivariate Student-t distri-
bution, present its probability density function, and discuss some of its key
properties. This section follows Joarder and Kibria (2006, p. 59-72).

Probability Density Function

The pdf of the multivariate t-distribution for a p-dimensional random vector
X can be written as

f(x) =
Γ
(ν+p

2

)
Γ
(
ν
2

) 1

(νπ)
p
2

1√
det(Σ)

(
1 +

1

ν
(x− µ)⊤Σ−1(x− µ)

)− ν+p
2

,

where µ ∈ Rp is the location vector, Σ is a positive definite p×p scale matrix,
and ν > 0 denotes the degrees of freedom.

Marginal Distributions

An important property of the multivariate t-distribution is that its marginal
distributions are also t-distributed. That is, if X follows a multivariate t-
distribution, then each component of X is univariate t-distributed (with the
same degrees of freedom, but with adjusted location and scale parameters).
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Linear combination of a bivariate Student-t

Another useful property of the multivariate Student-t distribution is that
any linear combination of its components is again Student-t with the same
degrees of freedom. In particular, let

(X,Y )T ∼ tν
(
0, Σ

)
be a bivariate Student-t random vector with ν degrees of freedom. We choose

Σ =
ν − 2

ν

(
1 ρ
ρ 1

)
,

so that each marginal has mean zero and Var(X) = Var(Y ) = 1 and
Cov(X,Y ) = ρ.

For any constants C1 and C2, define

L = C1X + C2Y.

Then L is tν-distributed with variance

Var(L) = C2
1 Var(X)+C2

2 Var(Y )+2C1C2Cov(X,Y ) = C2
1 +C2

2 +2C1C2 ρ.

Thus, we can write

L
d
=

√
ν − 2

ν

(
C2
1 + C2

2 + 2C1C2 ρ
)
Z, Z ∼ tν .

Therefore, the quantiles of L follow by scaling the standard tν quantiles by√
ν−2
ν (C2

1 + C2
2 + 2C1C2ρ).

D Maximum Likelihood Estimation

Our primary goal is to fit some models to data. A standard approach is
maximum likelihood estimation (MLE), which seeks for the parameter vector
θ that maximizes the probability of the observed data under the assumed
model. The theory in this section is from Held and Bové (2020, Chapter. 2).

Likelihood Function

Let X = (X1, . . . , Xn) be a random sample with joint density f(x1, . . . , xn; θ),
where θ is the vector of parameters. The likelihood function is then defined
as

L(θ|x1, . . . , xn) = f(x1, . . . , xn; θ).

In the special case of independent observations Xi ∼ f(xi; θ), this factorizes
to

L(θ|x1, . . . , xn) =
n∏

i=1

f(xi; θ).
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Equivalently, one may write the contribution of a single observation xi as

Li(θ|xi) = f(xi; θ),

so that L(θ|x1, . . . , xn) =
∏n

i=1 Li(θ|xi).

Maximum Likelihood Estimation

The maximum likelihood estimator (MLE) of θ is the parameter value that
maximizes the likelihood function:

θ̂MLE = argmax
θ

L(θ | x1, . . . , xn).

This estimator is the choice of θ that makes the observed data most probable
under the assumed model.

Since the logarithm is strictly increasing, maximizing the likelihood is
equivalent to maximizing the log-likelihood

ℓ(θ|x1, . . . , xn) = logL(θ | x1, . . . , xn).

Therefore, the MLE can be defined as

θ̂MLE = argmax
θ

L(θ|x1, . . . , xn) = argmax
θ

ℓ(θ|x1, . . . , xn).
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E Residual Diagnostics - ACF Plots

(a) SEB-A: Std. Residuals
(GARCH(1,1))

(b) Swedbank-A: Std. Residuals
(GARCH(1,1))

(c) SEB-A: Std. Residuals
(EGARCH(1,1))

(d) Swedbank-A: Std. Residuals
(EGARCH(1,1))

(e) SEB-A: Sq. Residuals
(GARCH(1,1))

(f) Swedbank-A: Sq. Residuals
(GARCH(1,1))

(g) SEB-A: Sq. Residuals
(EGARCH(1,1))

(h) Swedbank-A: Sq. Residuals
(EGARCH(1,1))

Figure 12: ACF plots for standardized and squared standardized residuals
from GARCH(1,1) and EGARCH(1,1) on SEB-A and Swedbank-A.
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