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Abstract

In this thesis we study the generalisation of the Metropolis Ad-
justed Langevin Algorithm to the Riemannian manifold of symmetric
positive definite matrices P(n). Specifically, an application to hier-
archical models that involve the Wishart distribution are considered.
A concrete example is given for modelling the rates of synonymous
and non-synonymous substitution in a phylogeny. It is proven that a
large class of uniformly log-concave posterior densities attain -bounded
Wasserstein distance from their invariant measures in O(2) iterations
of the Riemannian Metropolis-adjusted Langevin Algorithm. It is also
shown that common generalisations of the LKJ-distribution never sat-
isfy a set of sufficient conditions for this bound. Lastly, it is conjec-
tured that certain conditions for attaining the iteration complexity
bound may be weakened to hold probabilistically only.
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Chapter 1

Motivating Problem in
Phylogenetics

Natural selection is a mechanism for generating an
exceedingly high degree of improbability.

— Sir R. A. Fisher

The problem of studying the evolutionary history of a set of organisms that may or may not
have evolved from a common ancestor is known as phylogenetic inference. The motivating practi-
cal problem for the results presented in this thesis specifically relates to performing phylogenetic
inference at the molecular (more specifically codon) level. Before introducing the problem at hand,
a brief introduction to (codon) molecular evolution will follow.

1.1 Codon Molecular Evolution Models
The human genome is encoded as DNA, which is a macromolecule consisting of two strands coiled
together. These strands in turn consist of nucleotides. The exact chemical structure of nucleotides
is largely immaterial to phylogenetic statistical models, so for simplicities sake we (erroneously)
identify nucleotides only with their corresponding nitrogenous base. There are four nitrogenous
bases present in DNA: Adenine [A], Cytosine [C], Guanine [G] and Thymine [T]. Triplets of these
nitrogenous base pairs are called codons, which encode information about what amino acid should
be produced by ribosomes during translation. Ultimately, these amino acids bind together to
form proteins. There are 43 = 64 possible triplets of nitrogeneous bases (codons) but only 20
proteinogenic amino acids. Some codons are what are known as stop codons, which tell the ribosome
to stop transcription, but there are also duplicate codons, that is several different codons that code
for the same amino acid (see Figure 1.1)

1



2 CHAPTER 1. MOTIVATING PROBLEM IN PHYLOGENETICS

Figure 1.1: Transcription wheel mRNA → amino acids [10]
.

One can study the evolutionary history of a set of organisms by studying how their DNA
differs. More specifically one can consider what codons are present at specific sites in their genetic
code. By studying the (dis)similarity of organisms at various sites in their DNA one can build a
phylogenetic tree. An example of a phylogenetic tree organising Darwin’s finches is given in Figure
1.2. This tree is what is known as a ethological phylogenetic tree, where species are grouped by
their behavioural characteristics (ethological traits). In the example provided, these ethological
traits are the hunting patterns exhibited by the different subspecies.

Figure 1.2: A phylogenetic tree of Darwin’s finches, [4] 1

Trees such as the one shown in Figure 1.2 provide a pedagogic example, but molecular evolution
1Reproduced under the Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/


1.1. CODON MOLECULAR EVOLUTION MODELS 3

based methods for inferring phylogenetic trees instead construct the tree topology by maximum
likelihood2 under some model of molecular evolution. More formally let τ denote the topology of a
phylogenetic tree, let θ be parameters of some model of molecular evolution and let D be the DNA
sequences of the organisms we wish to construct a phylogenetic tree over. Then the tree topology
τ̂ that satisfies

(τ̂ , θ̂) := arg max
τ,θ

P(D|τ, θ)

is called the maximum likelihood estimated tree for the data D.

To understand how such likelihood calculations are performed we need to understand codon substi-
tution models. A codon substitution model is a model of molecular evolution that describes changes
in nitrogenous base pairs at a site as the realisation of a continuos time Markov chain (CTMC).
One such model is the generalised time reversible (GTR) model. If we let (πA, πC , πG, πT ) denote
the equilibrium frequencies of the nitrogenous bases A, C, G, T . Under the GTR model we estimate
exchangeability parameters rAC , rAG, rAT , rCG, rCT , rGT . From this the transition rate matrix of
the continuos time Markov chain can be constructed as

Q :=


∗ πCrAC πGrAG πT rAT

πArAC ∗ πGrCG πT rCT

πArAG πCrCG ∗ πT rGT

πArAT πCrCT πGrGT ∗


where the diagonal elements are chosen so that the row-sums are 0, as required for a transition
rate matrix.
To calculate the likelihood of a tree we also need some specification of the transition rates between
codons, not just nucleotide bases. While several such models exist we will choose to describe the
MG94 model [12] to provide conceptual understanding. The MG94 model defines a 61 × 61 matrix
for transitions between the 61 non-stopping codons as

Mij,i ̸=j =


0, if codons i and j differ by more than one nitrogeneous base
α × qorigin codon, target codon if the substitution is synonymous
β × qorigin codon, target codon if the substitution is non-synonymous

where qij are entries of the GTR rate matrix. Once again the diagonal entries are chosen so that
the rows sum to zero. In this model α and β denote the rates of synonymous and non-synonymous
substitution, which are parameters of our codon model. By standard theory for stochastic processes
this means that we can compute a transition probability of a transition happening over some
evolutionary distance t as

Pij(t) = etM
ij .

Here the evolutionary distance t is given by the branch length of the tree, which is an inferred
parameter of our model.

Under the models described the likelihood of a combination of tree parameters and codon model
parameters can be computed as

p(D|T , Q, θ) =
∏

k

∫
R2

p(Dk|α, β, T )p(α, β|θ)dαdβ

by simple marginalisation argument. Here Dk denotes the sequence data for the genetic site k
(assumed to be conditionally independent) and p(α, β|θ) denotes a parametrised bivariate distri-
bution over synonymous and non-synonymous substitution rates. It should not come as a surprise
that the integral is intractable. We will therefore proceed by discretising the underlying continuos
bivariate distribution. One such method of discretisation is provided by the FUBAR method,
which is described in the next section

2There are other methods, such as maximum a posteriori estimation under a Bayesian model or maximum
parsimony methods, but our focus will be on maximum likelihood inferred trees
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1.1.1 FUBAR
The FUBAR method [11] discretises the α, β-distribution by choosing p(α, β|θ) to be the general
bivariate distribution over a finite set of synonymous and non-synonymous rates. θ is therefore
simply a probability vector, yielding a model with minimal parametric assumptions. The likelihood
function therefore simplifies significantly to

p(D|T , Q, θ) =
∏

k

∑
α,β

p(Dk|α, β, T )p(α, β|θ)

(refer to equation (2) in [11]). In the original FUBAR paper θ is inferred under the Bayesian
framework where the prior distribution over θ is chosen to be the Dirichlet distribution, which is
supported on the set of probability vectors, that is the set defined as {x ∈ Rn : xi ≥ 0,

∑
i xi = 1}.

One can conceptually think of the Dirichlet distribution as a multivariate generalisation of the
Beta distribution. Just as the Beta distribution is the conjugate prior for a binomial likelihood,
the Dirichlet distribution is the conjugate prior for a multinomial likelihood. When data is sparse,
this prior distribution can yield high posterior probability estimates to nonsensical discretisations
of an underlying continuos distribution. A method currently under development by the author
is SKBDI (Smooth Kernel Based Density Inference). The problems associated with FUBAR and
their resolution by SKBDI will be described below

1.1.2 SKBDI
The core problem with the Dirichlet prior used in FUBAR is that it does not assign a low prior
probability to "spiky" distributions, that is distributions where neighbouring points on a grid of
synonymous and non-synonymous substitution have vastly different probabilities. Intuitively since
θ represents a discretisation of an underlying distribution that is assumed to be continous it should
a priori be very unlikely to see such sharp differences in probability assigned to neighbouring points.
It is, of course, theoretically possible that the posterior probability of such a discretisation is high,
but this should require strong evidence from the likelihood function. When the data is weakly
informative, we wish to avoid such spikiness. To better illustrate how this problem arises, consider
the following coin tossing example:

We have a sample of n coins, and denote the probability of tails for coin i by pi. We assume these
probabilities were drawn from a common continuos distribution supported on [0, 1], which we wish
to infer from our data D. Here our data is a record of the amount of times each coin yielded tails, af-
ter being tossed 100 times. Applying a FUBAR-like method would mean that we discretise our dis-
tribution to be some amount of categories of probabilities, perhaps [0, 0.01), [0.01, 0.02) · · · [0.99, 1]
and use a Multinomial-Dirichlet model to find a posterior distribution over these categories. Figure
1.3 shows the aforementioned spikiness artifact when this discretisation is applied to approximate
a "true" Beta(5, 5) distribution. As one can see the problem is negligible when data (amount of
tosses) is abundant, but can cause significant problems when data is sparse.
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Figure 1.3: Discretisation error caused by Dirichlet-Multinomial approximation

This problem motivates us to somehow encode in our prior an enforcement of smoothness (which
can be overruled by the likelihood function the data supports a discontinuity). SKBDI does this
by defining a hierarchical model in the following way3

log c ∼ N (0, σ0),
log θ ∼ N (0, Σ(c)).

where we define
Σ(c)ij := ke

−d(i,j)2
ec

that is, we generate Σ(c) using a Gaussian kernel function. Furthermore, θ is sampled in ambient
Euclidean space and transformed by the softmax operation4 to be a probability vector. We choose
to parametrise the covariance matrix with c since the problem of inferring the full covariance matrix
would be severely underdetermined for only one alignment. To allow us to perform inference on
the full covariance matrix without this strong parametric assumption we need several different
alignments. Intuitively, this is similar to what one learns in an introductory statistics course: It is
not possible to estimate the variance from a single sample. We therefore introduce the following
model:

Σ ∼ D,

log θi ∼ N (0, Σ).

where θ1, θ2 · · · θn are grid estimates for different alignments and D is some arbitrary distribution
supported on P(n). In Chapter 4 it is shown that the Riemannian Gaussian distribution is the
most theoretically sound prior, but practical results show that the Wishart distribution also works
well.

3The current implementation uses parametric kernel matrices and does not sample over the full space of symmetric
positive definite matrices.

4An interesting reflection is that we are using a non translation invariant prior for a translation invariant problem,
which is suboptimal.
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Chapter 2

Background in Differential
Geometry

Geometry is the art of correct reasoning from incorrectly
drawn figures.

— Henri Poincaré

Here we will give the reader a gentle repetition of differential geometry required to understand
a theoretical result given in chapter 4. Readers wishing to fill in gaps left by the repetition given
here are encouraged to refer to [9].

2.1 Basic definitions
Definition 2.1.1. (Chart)
A chart (U, φ) on a topological space M is an open subset U ⊂ M together with a homeomorphism
φ : U → S ⊂ Rn such that S is open.

Definition 2.1.2. (Atlas)
An atlas for a topological space M is an indexed family {(Uα, ϕα) : α ∈ I} of charts on M such
that the charts cover M (

⋃
α∈I Uα = M). An atlas A is said to be maximal if there does not exist

any atlas B such that A ⊂ B

Definition 2.1.3. (Transition map)
Let A be an atlas and let (Uα, φα), (Uβ , φβ) ∈ A be charts such that Uα ∩ Uβ ̸= ∅. The transition
map τα,β : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) is the map defined by τα,β = φβ ◦ φ−1

α

Definition 2.1.4. (Differentiable atlas)
A differentiable atlas is an atlas where all transition maps are differentiable functions.

With this background we are now ready to give a central definition for this paper:

Definition 2.1.5. (Differentiable manifold)
A differentiable manifold is a topological space1 M together with a maximal differentiable atlas on
M

The notion of a differentiable manifold allows us to essentially "perform calculus" in non-traditional
settings where the set of interest can be endowed with the structure of a differentiable manifold.
We say that a function f : M → R is differentiable at p ∈ M if and only if for some differentiable
chart (U, φ) with p ∈ U f ◦ φ−1 : φ(U) ⊂ Rn → R is differentiable at φ(p) in the traditional sense

1Formally, we require the topological space to be second countable and Hausdorff. We avoid mentioning this in
the main text since it adds verbosity but not intuition, nor is it used in later sections

7



8 CHAPTER 2. BACKGROUND IN DIFFERENTIAL GEOMETRY

of differentiability in Rn. Differentiable manifolds are not necessarily vector spaces so the notion
of the directional derivative of a function needs to be defined along a differentiable curve γ on M

with γ(0) = p. The directional derivative of f at p along γ is then defined as d
dt f(γ(t))

∣∣∣
t=0

. We
are now ready to give another central definition:

Definition 2.1.6. (Tangent Vector Space)
We can define an equivalence relation on the set of curves over M as follows: If γ1 and γ2 are two
curves with γ1(0) = γ2(0) = p satisfying that d

dt φ ◦ γ1(t)
∣∣∣
t=0

= d
dt φ ◦ γ2(t)

∣∣∣
t=0

for every chart φ

then γ1Rγ2. The set of all curves passing through p at 0 modulo this equivalence relation defines
a vector space known as the tangent vector space at p, denoted by TpM .

The operations on this vector space are defined by the mapping dφp : TpM → Rn by dφp(γ′(0)) :=
d
dt φ ◦ γ(t)

∣∣∣
t=0

where γ′(0) ∈ TpM , γ is some member of the equivalence class represented by γ′(0)
and φ is some chart. The resulting vector space operations are independent of the choice of chart
and the mapping dφp turns out to be a bijection. Figure 2.1 shows the tangent space of the sphere
at a point p, "sticking out" into the ambient Euclidean space R3 If we endow the tangent space

x

y

z

p

v1

v2

Figure 2.1: The 2-sphere S2 in R3 with the tangent space TpS2 at a point p.

TpM with an inner product our differentiable manifold becomes a Riemannian manifold, which
will be the central object of study going forward. As we recall from undergraduate linear algebra
inner products induce norms.

2.2 Riemannian Manifolds
If we have an inner product ⟨·, ·⟩ : TpM × TpM → R we can define the norm of a vector v by
||v||2 := ⟨v, v⟩. This also gives rise to a notion of distance. But this holds on the tangent space
only, but one can use this definition to define the distance between two points p, q on a manifold
in the following way

Definition 2.2.1. (Distance between two points on a Riemannian manifold) Let

d(p, q) := inf
γ

∫ 1

0
||γ′(t)||dt,

where γ is a differentiable curve γ : [0, 1] → M satisfying γ(0) = p and γ(1) = q. Therefore we
define the distance between points as the minimum curve length of a differentiable curve connecting
them.
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If we take these differentiable curves to have constant speed, that is ||γ′(t)|| = c we obtain what are
called geodesics. Geodesics are the Riemannian generalisation of straight lines in Euclidean space.
The core intuition used to describe differentiable manifolds is to imagine Euclidean space, but
replacing the familiar straight lines geodesics. This is what is meant by Riemannian geometry being
curved. Before discussing curvature in more detail we will define the exponential and logarithmic
maps.

Definition 2.2.2. (The exponential map) Let v ∈ TpM be a tangent vector of the point p and
consider the geodesic γv : [0, 1] → M satisfying γv(0) = p and γ′

v(0) = v2. We define the
exponential map to be

Expp(v) := γv(1).

and call its inverse the logarithmic map.

The name "exponential map" comes from the fact that the mapping with this property on the
Riemannian manifold of positive real numbers is defined as expp(v) = pev. The tangent vector
space of this manifold is isomorphic to R. A very useful informal conceptualisation is to think of
the exponential map as saying "What if we want to perturb the point p by a small amount v".
This intuition is especially useful when defining stochastic processes on differentiable manifolds,
since we do not normally have a well-defined notion of addition of distinct points. To further
understand the theory of stochastic processes on differentiable manifolds we will dedicate the next
section to discussing the Riemannian curvature tensor, which allows measurement of the curvature
of a manifold.

2.2.1 Curvature
We will not give a formal definition of the Riemannian curvature tensor, as it would require too
much background in subjects less relevant to the core goal of this thesis. Instead, we choose an
intuitive description which will first require us to recall the definition of a vector field.

Definition 2.2.3. (Vector field on a Riemannian manifold). Assign to each point p on the manifold
M an element of the tangent vector space TpM. This is a vector field on M.

Most readers will be familiar with one type of vector field: Consider the Riemannian manifold Rd

(that is, regular Euclidean space) and let f : Rd → R be some differentiable function. Associate
with each point p ∈ Rd the gradient of the function f at the point p, that is ∇f(p). Since the
gradient of f evaluated at a point is a d-dimensional vector this means we have associated with
each point on Rd an element of the tangent space of Rd (which is just Rd again). Thus we have
defined a vector field on Rd known as the gradient vector field.

Now let us consider three vector fields X Y and Z defined on the Euclidean space. At the point
p ∈ Rd we obtain two vectors X(p) and Y (p). These two vectors span a parallelogram. If we
first transport the vector Z(p) a small distance in the direction of X(p) and then transport it a
small distance in the direction Y (p) the result is the same as if we had done this operation in the
reverse order, as shown in Figure 2.2. Furthermore, if transport Z(p) go "all the way around" the
parallelogram we get back to the same place we started

2Since the geodesics can be defined as solutions to differential equations we can use the existence and uniquness
properties of these to claim that γv is uniquely determined by these two conditions
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X(p)

Y (p)

X
th

en
Y

Y then X

X
(p)

+
Y

(p)

p

p + X(p) + Y (p) = p + Y (p) + X(p)

Figure 2.2: Parallel transport of Z(p) along X(p) and Y (p) in Rd.

We are now ready to give an intuition for what the Riemannian curvature tensor is and what it
measures. Let X(M) denote the set of all possible vector fields on M. The Riemannian curvature
tensor is a mapping R : X(M)×X(M)×X(M) → X(M) that measures the failure of this operation
to behave as it does in Euclidean space (that is, transportation along an infinitesimal parallelogram
taking us back to the point we started at). Precisely, the Riemannian curvature tensor gives us
a vector field of vectors that measure the difference between the starting point and the result of
transportation around these infinitesimal parallelograms. This failure to return to the starting
point is exactly what is meant by non-Euclidean geometries having curvature, and the Riemannian
curvature tensor measures exactly this curvature. Using it, we can define two other notions of
curvature: Sectional curvature and the Ricci curvature

Definition 2.2.4. (Sectional curvature of a Riemannian manifold) Let u, v ∈ TpM be two non-
parallel tangent vectors at a point p ∈ M and let

K(u, v) := ⟨R(u, v)v, u⟩
⟨u, u⟩⟨v, v⟩ − ⟨u, v⟩2 .

K is called the sectional curvature of M at the point p.

Since we require u, v to be non-parallel the expression in the denominator will be strictly positive
by the Cauchy-Schwartz inequality, meaning the expression is well-defined. Furthermore u, v will
span a two-dimensional subspace of the tangent space TpM. The sectional curvature can therefore
be thought as defining how curved space is along this two-dimensional plane. Lastly, we will define
the Ricci curvature

Definition 2.2.5. (Ricci curvature) The mapping Ricp : TpM × TpM → R defined as

Ricp(Y, Z) := Tr(X 7→ Rp(X, Y )Z)

is called the Ricci curvature tensor

To clarify, the mapping X 7→ Rp(X, Y )Z is a linear mapping of the tangent space TpM to itself,
since the Riemannian curvature tensor at p has the set of vector fields on M as its image, and
here we are considering Rp(X, Y )Z to be the vector field obtained from the Riemannian curvature
evaluated at p, hence it is a tangent vector in the tangent space of the point p. Since this is a linear
mapping of finite-dimensional vector spaces3 it admits a representation as a matrix, and therefore
the trace of it is well-defined. For some intuition, one can consider a collection of geodesics starting
close to the point p, initially pointing in directions close to v. Then the sign of Ricp(v, v) will
determine if these geodesics will converge, remain parallel or diverge (see Figure 2.3)

3A linear endomorphism on TpM, if one wishes
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Figure 2.3: Behaviour of geodesics under various curvatures

Relevance to stochastic processes

So far, a lot of mathematical objects relating to the curvature of Riemannian manifolds have been
defined, but it is not immediately clear why they are relevant to understanding the behaviour
of stochastic processes on manifolds. Recall that the Metropolis-adjusted Langevin Algorithm
is based on a Wiener process, which is a type of diffusion process. One intuition for stochastic
processes on manifolds is to think of a probability distribution as a source of heat, and to think
of stochastic processes governed by this probability distribution as analogous to heat diffusion
along the manifold. If geodesics tend to naturally converge (as happens when the Ricci curvature
is positive) then the distribution of heat on the manifold will be more "peaked" and stochastic
processes governed by this "heat source" will have a naturally contractive behaviour, staying in
regions of high probability. In the case of negative curvature however this natural contraction
property is not present, and the heat distribution will be more diffuse.

2.2.2 The Manifold P(n) with Affine-Invariant Metric
We will now proceed to give some definitions specifically relating to the manifold P(n) when its
tangent space is endowed with the Affine Invariant Riemannian Metric. Recall that P(n) is the set
of all symmetric positive definite matrices, that is P(n) := {X ∈ Mn(R) : utXu ≥ 0 ∀u ∈ Rn \{0}}

Definition 2.2.6. (Tangent Space of P(n)). The tangent space of P(n) is simply the set of
symmetric matrices, that is all matricies X with the property X = XT

Definition 2.2.7. (The Affine Invariant Riemannian Metric on P(n)) Let ⟨·, ·⟩p : TpP(n) ×
TpP(n) → R be defined as

⟨A, B⟩p := Tr(p−1Ap−1B).

This defines the Affine Invariant Riemannian Metric on the tangent space of P(n) [14]. Affine
invariance in this context means that the metric is invariant under the action of the orthogonal
group on P(n) by conjugation.

We will now recall the geodesics, exponential map and logarithmic map as well as the parallel
transport maps, all being central to understanding the material that will follow

Definition 2.2.8. (The Exponential map on P(n)). The mapping ExpX(Y ) : TXP(n) → P(n)
given by

ExpX(Y ) = X
1
2 exp

(
X− 1

2 Y X− 1
2

)
X

1
2

is the exponential map on P(n)

Definition 2.2.9. (The geodesics on P(n)). The geodesics on P(n) are given by

γ(t) = X
1
2 exp

(
t log

(
X− 1

2 Y X− 1
2

))
X

1
2
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Curvature on P(n)

The Riemannian manifold P(n) is what is known as a Cartan-Hadamard manifold. The exact
definition is somewhat involved and not relevant, but a very central property is that such a manifold
has everywhere negative sectional curvature. This gives rise to complications for diffusion processes
defined on P(n) since we do not get contractivity "for free" from the geometry. This gives rise to
what in [3] is called a "harder but more general setting". It is more involved to prove useful
properties of certain diffusion properties when we have negative curvature, which aligns with our
earlier intuition that the divergence of almost parallel geodesics starting close to each other is an
undesirable property for stochastic processes.



Chapter 3

Markov Chain Monte Carlo

The past is but the beginning of a beginning, and all that
is or has been is but the twilight of the dawn.

—H.G. Wells

3.1 Statistical problem
We will focus on the following statistical problem: We wish to know the probability distribution
of a set of parameters θ, Σ where we believe a-priori that θ ∼ N(µ0, Σ), Σ ∼ Wk(Σ0, n0) with
Wk(Σ0, n0) denoting the matrix-variate Wishart distribution, which is supported on P(k). We will
denote our data by x, our likelihood by L(x|θ, Σ) and our prior density by π(θ, Σ). By Bayes
theorem this gives us the posterior distribution for our parameters

π(θ, Σ|x) = L(x|θ, Σ)π(θ, Σ)∫
Θ L(x|θ, Σ)π(θ, Σ)dΘ

= L(x|θ, Σ)π(θ, Σ)
π(x) ∝ π(x|θ, Σ)π(θ, Σ).

where Θ denotes our parameter space. For some problems, the integral in the denominator has a
closed-form solution. For other problems, the product L(x|θ, Σ)π(θ, Σ) can be recognized as the
kernel of the density of a well-known probability distribution. For most problems, however, the
integral in the denominator lacks an analytical solution and is intractable numerically. Therefore
we in most cases can only assume that we can evaluate the posterior density up to an unknown
multiplicative constant. This common situation gave rise to the concept of Markov Chain Monte
Carlo. Markov Chain Monte Carlo uses evaluation of the posterior density up to a multiplicative
constant to create an irreducible Markov chain whose stationary distribution matches the posterior
distribution. For conceptual understanding, a description of the Metropolis algorithm is given

3.2 Markov Chain Monte Carlo Algorithms

3.2.1 The Metropolis Algorithm
Recall that the objective is to create a Markov chain whose stationary distribution is the posterior
distribution of a set of parameters given some data, using only evaluation of a function proportional
to this posterior density π∗(θ, Σ|x) = kπ(θ, Σ|x).

13
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Metropolis Algorithm
Input: A function π∗(θ|x) proportional to the posterior density π(θ|x) as well as a

proposal function P that gives a new sample θ′ given θ. The proposal function is non-
deterministic and is associated with a probability distribution q which must satisfy symmetry,
that is q(θ′|θ) = q(θ|θ′)

Output: A Markov chain with stationary distribution π
1. Initialise a random sample θ ∈ Θ
2. Propose a new sample θ′ = P (θ)
3. Compute the acceptance ratio α := π(θ′|x)

π(θ|x) . We do not know π, but π(θ′|x)
π(θ|x) = kπ(θ′|x)

kπ(θ|x) = π∗(θ′|x)
π∗(θ|x)

4. Draw u ∼ Uniform(0, 1). If u < α accept (append to the realisation of the Markov chain) θ′.
5. Return to 2.

From inspecting the description above one can arrive at the following intuitive understanding: A
proposal that improves the posterior density is always accepted, and the probability of a proposal
being rejected is proportional to how much "worse" (how much more incompatible with the prior
and data) it is. One very simple (but naïve) way to define the proposal distribution is to simply
perform a random walk across the parameter space. This gives Random-Walk Metropolis, which
can work well for isotropic low-dimensional problems, but is known to struggle in high dimensions
or for strongly anisotropic posterior distributions. This limitation is very intuitive, if there is a very
small region of "correct" moves (moves to samples that do not have significantly lower posterior
probability) then it is very unlikely for a random walk proposal to move in the "correct" direction
along the axes where the probability increases while also not moving along axes where probability
decreases. One way to resolve this problem is to decrease the variance of the random walk that
generates the proposals, but this comes at the cost of increasing the autocorrelation of the chain,
which is suboptimal since we for Bayesian inference require independent samples from the posterior
distribution. A visualisation of this problem is given in figure. 3.1

Figure 3.1: Sampling from an anisotropic distribution
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To avoid the trade-off of low acceptance rate or high autocorrelation one can employ information
about the gradient of the posterior distribution in order to generate proposals that conform better
to it. One such method is the Metropolis-adjusted Langevin Algorithm

3.2.2 The Metropolis-adjusted Langevin Algorithm
In this section the (Euclidean) Metropolis-adjusted Langevin Algorithm[5] (henceforth MALA) will
be described, as well as a possible extension of it to differentiable manifolds. We begin by defining
the Wiener process, which is a continous-time stochastic process used in MALA

Definition 3.2.1. (Wiener process [6]) Let Wt be a continuos time stochastic process on the
probability space (Ω, F ,P). Then Wt is said to be a Wiener process if the following holds

1. W0 = 0 P-almost surely.

2. If s < t then Wt+u − Wt ∼ N (0, u) and is independent of Ws for all u ≥ 0.

3. f(t) = Wt(ω) is a continuos function for P-almost every ω ∈ Ω.

Let π∗ : Rd → R be a differentiable kernel of some posterior density function and consider the
diffusion process defined by the stochastic differential equation

dXt = 1
2∇ log π∗(X) + dWt,

where dWt is the time derivative of a Wiener process Wt. It can be shown that as t → ∞ the
distribution of the process Xt converges to π. To avoid excessive formalism on stochastic differential
equations we will avoid focusing to much on the continuos time differential equation and instead
consider a discretisation of it by defining a new discrete time stochastic process {Xk}∞

k=1 by

Xk+1 := Xk + 1
2τ∇ log π∗(Xk) +

√
τεk,

where εk ∼ N (0, I). This discretisation gives us the unadjusted Langevin algorithm, which unfor-
tunately does not converge to π, although the introduced discretisation error is linearly bounded1.
The discretisation error can be removed by introducing a Metropolis-Hastings step where the unad-
justed Langevin process generates the proposals. This gives us the Metropolis-adjusted Langevin
Algorithm in Rd. We will now briefly discuss the Hastings correction in the acceptance ratio for
Euclidean MALA, in order to motivate how the acceptance ratio for the Riemannian case is derived.

Let xk denote the realisation at step k of the Markov chain given by the Metropolis Adjusted
Langevin Algorithm. Clearly, we have that

Xk+1 ∼ N
(

xk + 1
2τ∇ log π∗(xk), τI

)
.

This leads naturally to the insight that the kernel of the proposal density is given by

q(xk+1|xk) ∝ e− 1
2τ ||xk+1−xk− 1

2 ∇ log π∗(xk)||2
2 .

For Euclidean space, the metric tensor is global (independent of the point at which one is evaluating
it) and given in matrix form by the identity matrix. For the Riemannian case we will however see
that the covariance matrix of the proposal will instead become dependent on the current sample
since it will be the inverse of the metric tensor at the current point.

1Formally, one can by the triangle inequality bound the Wasserstein distance between the target distribution and
asymptotic sampling distribution linearly in the step size τ
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3.2.3 Generalisation to Riemannian Manifolds
There are several ways to generalise the discretisation of Langevin diffusion to a differentiable
manifold. We will consider the following generalisation:

Definition 3.2.2. (Discretised Langevin Diffusion on a Differentiable Manifold). Let E1, E2 . . . En

denote basis vectors of some orthonormal basis of TXM and let ζ ∼ N (0, I). Furthermore let τ
be the step size. Then

Xk+1 = expX

(
τ∇M log π(Xk) +

√
2τζiEi

)
defines discretised Langevin diffusion on M2 (ζiEi is Einstein summation notation) 3. Any finite
realisation of the process defined above is an unadjusted Langevin algorithm on M [16] [3]

3.2.4 Mixing
A term that often arises in the field of Markov chain Monte Carlo is mixing. There are several ways
to construct Markov chains whose stationary distribution equals some target distribution (in fact,
for most cases, Random Walk Metropolis will have this property). However, asymptotics are never
appliceable in practice by definition. We are instead interested in designing Markov chains that can
be stopped in finite (ideally also reasonable) time so that we can use their samples for inference.
A chain that has this property is said to be rapid mixing. To understand why rapid mixing is
desirable and why high autocorrelation causes problems when we wish to perform inference we will
state the Markov Chain Central Limit Theorem

Theorem 3.2.3. (Markov Chain Central Limit Theorem) [2] Suppose we wish to estimate E(g(X1))
for some measurable function g where X1 ∼ D. We have samples X1, X2, X3 · · · Xn from a Markov
Chain whose stationary distribution is D. Let µ = E(g(X1)) and let µ̂n := 1

n

∑n
k=1 g(Xk). Then

√
n(µ̂n − µ) D→ N (0, σ2),

where

σ2 = Var(g(X1)) + 2
∞∑

k=1
Cov(g(X1), g(Xk+1)).

From the condition that X1 ∼ D we see that rapid mixing is required, we want the Markov chain
to approximately reach its stationary distribution in short time so that subsequent samples become
"useable" for estimation (that is, they roughly satisfy the conditions in Theorem 3.2.3). Further-
more, the faster the autocorrelation decays the lower the variance becomes, meaning fewer samples
are required for accurate estimation of µ. As previously stated the mixing properties of MALA
and HMC are generally superior to those of RWM. For the generalisation of MALA to Riemannian
manifolds, the discretisation error impacts the mixing properties of the resulting Markov chain. In
section 4 we prove that the manifold of symmetric positive definite matrices has certain properties
(defined in [3]) that guarantee this discretisation error is bounded. More specifically, it is shown
that the iteration complexity (number of iterations of the RMALA algorithm) grows in O(ϵ−2)
where ϵ is the desired Wasserstein distance between the invariant measure (stationary distribution
of the continous-time diffusion) and the distribution of the samples after some amount of iterations.
The Wasserstein distance is defined in the following way:

Definition 3.2.4. (Wasserstein distance) Let µ, ν be two probability measures on a metric space
(M, d) 4. The Wasserstein distance between µ and ν is given by

W (µ, ν) = inf
γ∈Γ(µ,ν)

Eγ [d(x, y)]

where Γ is the set of all couplings of µ, ν. A coupling of µ, ν is a joint distribution M × M where
the marginal distributions of the components are µ, ν.

2The proper way to sample a diffusion process uses the Laplace-Beltrami operator, but this yields a decent
approximation for small τ

3This can intuitively be thought of as "Diffuse in the tangent space and project back".
4we require the metric space to be a Polish space, but all Riemannian manifolds are trivially Polish spaces so we

avoid this formal technicality in the interest of brevity
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The Wasserstein distance has the properties of a metric5: W (µ, ν) = 0 if and only if µ = ν,
W (µ, ν) > 0 for all µ ̸= ν, W (µ, ν) = W (ν, µ) for all µ, ν and W (µ, ν) ≤ W (µ, ν′) + W (ν′, ν) (the
last condition is the triangle inequality). We take a particular interest in the Wasserstein distance
due to the following fact:

Theorem 3.2.5. (Convergence in Wasserstein distance is stronger than convergence in distribu-
tion, [15]). Let {Xn}∞

n=1 be a sequence random variables and denote by µn the distribution of Xn.
Furthermore let Y be a random variable with distribution given by µ. Then

W (µn, µ) → 0 as n → ∞ ⇒ Xn
d→ Y as n → ∞

Theorem 3.2.5 makes it immediately clear why we are interested in bounding the Wasserstein
distance: Informally, if we can bound the Wasserstein distance above between the distribution of
our samples and our target distribution by some small ϵ, then these samples will approximately have
the same distribution as our target distribution, meaning that we can appeal to the Markov Chain
Central Limit Theorem (3.2.3) to motivate estimating measurable functions of random variables
with our target distribution by evaluating them on our MCMC samples. For our purposes, if we
can show that conditions I - IV in [3] hold, we obtain guarantees on the order of the iteration
complexity required for a specific Wasserstein distance bound for our MALA samples.

5As noted in [15] this is technically not true, as the Wasserstein distance between two measures can be infinite,
so the "metric" is not real-valued. This does not change any practical conclusions, however.
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Chapter 4

Theoretical Mixing Results

The theory of probabilities is basically just common sense
reduced to calculus.

–Pierre-Simon Laplace

In this section we will investigate four sufficient conditions for theoretical guarantees on mixing
time and convergence of the Metropolis Adjusted Langevin Algorithm on Riemannian manifolds.
In the paper "Efficient Sampling on Riemannian Manifolds via Langevin MCMC" [3] two conditions
relating to the geometry of the manifold and two conditions relating to the potential function of
the target distribution are given. If these conditions are satisfied it is shown that the Wasserstein
distance between the distribution of the samples and the target distribution can be bounded above
by ϵ after O(ϵ−2) steps. Before introducing these, we make a short note on common generalisations
of the Lewandowski-Kurowicka-Joe distribution (henceforth LKJ distribution)

4.1 Generalisations of the LKJ distribution
The LKJ distribution is a common prior distribution to use over the space of correlation matrices,
and is defined as follows

Definition 4.1.1. (LKJ distribution) We say that C ∼ LKJ(η) if the density for a realisation C
is given by

p(C) ∝ (det C)η−1

where η ∈ (0, ∞) is the shape parameter1.

In this thesis (and in many practical applications in Bayesian modelling) we are interested in
estimating the covariance matrix, not the correlation matrix. Any covariance matrix can be de-
composed into a diagonal matrix containing the marginal variances and a correlation matrix in the
following way:

Σ =


σ11 0 · · · 0
0 σ22 · · · 0
...

...
. . .

...
0 0 · · · σnn


︸ ︷︷ ︸

D


1 r12 · · · r1n

r21 1 · · · r2n

...
...

. . .
...

rn1 rn2 · · · 1


︸ ︷︷ ︸

C


σ11 0 · · · 0
0 σ22 · · · 0
...

...
. . .

...
0 0 · · · σnn


︸ ︷︷ ︸

D

.

One can then obtain a distribution for Σ by considering it as a joint distribution over the com-
ponents D, C where the LKJ distribution is the marginal distribution for C, with some freedom
to choose the marginal over the components of D. One can, for example choose D to be the
χ-distribution, which is strongly log-concave.

1For some intuition regarding the shape parameter, η = 1 gives a uniform distribution over correlation matrices,
η > 1 places more mass on weak correlations and η < 1 places more mass on strong correlations.
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4.2 Sufficient conditions for bounding the iteration com-
plexity

The sufficient conditions given in [3] for bounding the iteration complexity of RMALA with respect
to some Wasserstein bound ϵ by O(ϵ−2) are as follows

1. We assume that for all x ∈ M and all tangent vectors u ∈ TxM there exists a global constant
LRic ∈ R such that Ric(u, u) ≥ −LRic||u||22

2. A vector field β is said to be (m, q, R)-distant-dissipative if there exists real m, q, R with
m > 0 and R ≥ 0 such that for all x, y satisfying d(x, y) ≥ R there exists a minimising
geodesic γ : [0, 1] → M such that γ(0) = x and γ(1) = y such that the inequality ⟨Γ(β(y); y →
x) − β(x), γ′(0)⟩ ≤ −md(x, y)2. Here β is the vector field defined as − 1

2 ∇h where h is the
negative log-density of the distribution we are sampling from. Γ denotes parallel transport
from TyM to TxM along γ. It is also assumed that for all x, y ∈ M satisfying d(x, y) ≤ R it
holds that ⟨Γyxβ(y) − β(x), γ′(0)⟩ ≤ qd(x, y)2

3. A vector field β is said to be L′
β-Lipschitz if we have for allx ∈ M and all u ∈ TxM

||∇vβ(x)|| ≤ L′
β ||u||

4. Let R be the Riemannian curvature tensor of M. We assume there exists some LR ∈ R+ such
that for all x ∈ M, and for all u, v, w, z ∈ TxM we have that ⟨R(u, v)v, u⟩ ≤ LR||u||2||v||2 [3]

We will focus our discussion on condition I, the first half of condition II and condition IV. This is
due to the second half of condition II being redundant for strictly convex potentials, and since not
a lot of theory can be developed from a simple Lipschitz condition, which is condition III.

4.2.1 Condition I
We begin by proving statement 1. First, let M := M1 × M2 and denote by πi : M → Mi the
projection from the product manifold M to the factor manifold Mi.

Theorem 4.2.1. (The metric tensor for a product manifold is a block tensor, see [9]) Let (M1, g1)
and (M2, g2) be two Riemannian manifolds and define the product manifold (M1 × M2, g). Then
the Riemannian metric on the product manifold is given by the tensor sum g1 ⊕ g2

Theorem 4.2.2. Let Ric1(u, v) be the Ricci curvature tensor on M1 and let Ric2(u, v) be the
Ricci curvature tensor on M2 The Ricci curvature tensor on the product manifold M = M1 × M2
will simply be the tensor sum of the curvature tensors on the factor manifolds. Since these are
(0, 2)-tensors this means in particular that (Ric1 ⊕ Ric2)(u, v) = Ric1(π1u, π1v) + Ric2(π2u, π2v)
[7]

Lemma 4.2.3. The Ricci curvature of the manifold M = Rk×P(k) can be computed as RicM (u, v) =
RicP(k)(πu, πv) where π denotes the projection of M onto P(k)

Proof. Follows immediately from the fact that Rk has zero curvature everywhere and theorem
4.2.2

Theorem 4.2.4. (Explicit construction of the Ricci curvature tensor [13]). Consider the basis for
the tangent space of P(n) defined in [13]. In this basis the Ricci curvature tensor can be represented
in the following way

RicP(k)(u, v) = −n

4 ut

(
In − 1

n 11T 0
0 In(n−1)/2

)
v.

We are now ready to prove our first important result
2The ||u||2 term does not appear in the original paper. E-mail correspondence with one of the authors (Dr.

Cheng) confirms this is an erroneous omission and that the ||u||2 term is in fact necessary



4.2. SUFFICIENT CONDITIONS FOR BOUNDING THE ITERATION COMPLEXITY 21

Theorem 4.2.5. (M satisfies condition 1) Let M = Rk × P(k). There exists some scalar Lric
such that ∀x ∈ M, u ∈ TxM it holds that Ric(u, u) ≥ −LRic

Proof. By lemma 4.2.3 we have that Ric(u, u) = RicP(k)(πu, πu) which by theorem 4.2.4 can be
represented as (πu)T A(πu) where

A = −n

4

(
In − 1

n 11T 0
0 In(n−1)/2

)
for a certain choice of basis on TxM . Since A does not depend on x we can obtain a uniform lower
bound on the quadratic form, expressed in the eigenvalues of A

4.2.2 Condition II
We now move on to condition II. We will begin by showing that µ-strong geodesic convexity is
a stronger condition than (m, q, R)-distance dissipativity. It will also be shown that geodesically
linear functions can never be (m, q, R)-distance dissipative, and that the Log-Sobolev inequality
always fails for weakly convex vector fields on manifolds with a non-positive lower bound on their
Ricci curvature. This allows us to exclude a large class of matrix variate distributions from attaining
the mixing rate guarantees presented in [3]

Geodesic convexity

We begin by defining µ-strong geodesic convexity

Definition 4.2.6. Let f : M → R. Then f is said to be geodesically µ-strongly convex if it for
any x, y ∈ M holds that

f(y) ≥ f(x) + ⟨∇f(x), Logx(y)⟩x + µ

2 d(x, y)2.

here Log denotes the logarithmic map, that is the inverse of the exponential map. [17]

Lemma 4.2.7. (Gradient-Log inequality) Suppose that f is µ-strongly geodesically convex on M.
Then for any two points x, y ∈ M it holds that

⟨∇f(y), Logy(x)⟩y + ⟨∇f(x), Logx(y)⟩x ≤ −µd(x, y)2. (4.1)

Proof. We have by assumption the two inequalities

f(y) ≥ f(x) + ⟨∇f(x), Logx(y)⟩x + µ

2 d(x, y)2

f(x) ≥ f(y) + ⟨∇f(y), Logy(x)⟩y + µ

2 d(x, y)2

If we in the first inequality replace f(x) with the right hand side in the second inequality we obtain

f(y) ≥ f(y) + ⟨∇f(y), Logy(x)⟩y + µ

2 d(x, y)2︸ ︷︷ ︸
Right hand side of second inequality

+⟨∇f(x), Logx(y)⟩x + µ

2 d(x, y)2

Which after simplification gives

⟨∇f(y), Logy(x)⟩y + ⟨∇f(x), Logx(y)⟩x ≤ −µd(x, y)2.

We are now ready to prove that µ-strong convexity implies condition two holds for all R ≥ 0

Theorem 4.2.8. On a symmetric space M, µ-strong convexity is a stronger condition than
(m, q, R)-distance dissipativity.
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Proof. Recall that if Γyx : TyM → TxM is a parallel transport map then Γyx is not only a linear
isomorphism but also an isometry of the inner product spaces TyM and TxM. This means we
can convert the inner product in the first term of equation (4.1) given in lemma 4.2.7 to an inner
product on the tangent space TxM. This gives us

⟨Γyx∇f(y), Γyx Logy(x)⟩x + ⟨∇f(x), Logx(y)⟩x ≤ −µd(x, y)2.

Now, by assumption M is a symmetric space (See section 6.5 in [1]) meaning that Γyx Logy(x) =
− Logx(y) giving us

⟨∇f(x), Logx(y)⟩x − ⟨Γyx∇f(y), Logx(y)⟩x ≤ −µd(x, y)2.

Applying the linearity of real inner products we obtain

⟨∇f(x) − Γyx∇f(y), Logx(y)⟩x ≤ −µd(x, y)2.

Now using that Logx(y) = γ′(0) where γ is a minimising geodesic connecting x and y we obtain

⟨∇f(x) − Γyx∇f(y), γ′(0)⟩x ≤ −µd(x, y)2.

Finally since the vector field defined as the negative of the gradient we obtain that condition 2 is
implied by µ-strong convexity.

Geodesic linearity

We will now characterise the geodesically linear functions on P(n)

Definition 4.2.9. (Geodesic linearity) A function f : M → R is said to be geodesically linear if
the following holds

(f ◦ γ)(t) = at + b

where γ is any geodesic and a, b are real constants.

A very important result for the continued analysis of the mixing properties of Langevin diffusion
for potentials induced by matrix-variate prior distributions is the following:

Lemma 4.2.10. (Geodesic linearity of the log-determinant) The function f(Σ) := log det Σ is
geodesically linear

Proof. Let γ : [0, 1] → M be a geodesic connection Σ1, Σ2. We have

γ(t) = Σ1/2
1 (Σ−1/2

1 Σ2Σ−1/2
1 )tΣ1/2

1

Using the additive properties of the log-determinant function we get

log det γ(t) = log det Σ1 + t log det Σ−1/2
1 Σ2Σ−1/2

1

which satisfies definition 4.2.9 with a = log det Σ1 and b = log det Σ−1/2
1 Σ2Σ−1/2

1

We are now ready to prove the important result that a large class of matrix variate distributions
are not suitable as potential functions for Riemannian Langevin diffusion

Theorem 4.2.11. (Impossibility of (m, q, R)-distance dissipativity for induced potentials of geodesi-
cally linear functions). Let f : M → R be geodesically linear. Then there exists no m, q, R such
that

⟨Γyx∇f(y) − ∇f(x), γ′(0)⟩x ≤ −md(x, y)2.

Proof. In the interest of brevity we give the proof idea, and allow the interested reader to fill in the
details. The argument is as follows: Since f is geodesically linear its Riemannian gradient will be
a Killing vector field3. The parallel transport map restricted to a Killing field is the identity map,
meaning that the term Γyx∇f(y) − ∇f(x) = 0 and thus the inner product vanishes everywhere,
meaning we can never upper bound it by a negative definite expression in x, y

3One might think it is called a Killing vector field since it preserves isometries, thus killing off any curvature
terms, but it gets its name from the mathematician Wilhelm Killing.
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This immediately gives us that if the marginal distribution over correlation matrices is the LKJ
distribution we will fail to satisfy the conditions for mixing guarantees. With the additional fact
that the trace operator is only weakly geodesically convex on P(n) we conclude that the Wishart
distribution also fails to satisfy these conditions globally (that is, for R = 0). The Riemannian
Gaussian distribution, defined as

p(Σ) ∝ e−τd(Σ,Σ0)2

will however satisfy this condition since by lemma 4.8.2 in [8] the Riemannian metric on a manifold
with non-positive sectional curvature is 1-strongly geodesically convex.

4.2.3 Condition IV
Lemma 4.2.12. (Relationship of sectional curvature and Riemannian curvature) Let M be a
Riemannian manifold. If the sectional curvature of M is everywhere non-positive, the quadratic
form (u, v) 7→ ⟨R(u, v)v, u⟩ is negative semidefinite

Proof. Recall that the sectional curvature of linearly independent tangent vectors is given by

K(u, v) = ⟨R(u, v)v, u⟩
⟨u, u⟩⟨v, v⟩ − ⟨u, v⟩2

By the Cauchy-Schwartz inequality the denominator is always positive, and thus if K(u, v) is
negative then ⟨R(u, v), u⟩ must be negative. For linearly dependent tangent vectors the skew-
symmetry of R(u, v) gives that R(u, λu) = 0 and therefore K(u, v) < 0 implies negative semi-
definiteness of the aforementioend quadratic form induced by the Riemannian curvature tensor

Theorem 4.2.13. (Rn × P(n) satisfies condition IV)

Proof. Follows immediately from the fact that the Riemannian curvature tensor on the product
manifold is the direct sum of the curvature tensors on the constituent manifolds and that P(n) is
a Cartan-Hadamard manifold

We are now ready to state the central result of this thesis

Theorem 4.2.14. (Mixing time of the Riemannian Metropolis Adjusted Langevin Algorithm on
Rn × P(n)) Let π : Rn × P(n) → R be defined as π(x) ∝ e−β(x) for some geodesically µ-strongly
convex potential function β. Then the Wasserstein distance between the distribution of samples
from the Riemannian Metropolis Adjusted Langevin Algorithm and the invariant measure π(x) will
be bounded above by ϵ after O(ϵ−2) iterations

Proof. Follows from theorems 4.2.5, 4.2.8 and 4.2.13 as well as the general result given in [3]

To shed light on this central theoretical result, we will refer back to the Wishart, χ-LKJ and
Riemannian Gaussian distributions (see Table 4.1)

∝ p(Σ) Name Mixing bound
|Σ|(n−p−1)/2 exp

(
− 1

2 tr(Σ−1
0 Σ)

)
Wishart density Fails the stronger condition of

global µ-strong geodesic convex-
ity∏p

i=1 dη
i |R|−1 ∏p

i=1 σp−1
i χ-LKJ density Can never satisfy II, even out-

side of a compact subset due to
geodesic linearity of log det

exp(− 1
σ2

0
d2(Σ, Σ0)) Riemannian Gaussian density By the strong convexity of the

Riemannian distance function,
this satisfies condition II. By the
smoothness of the distance func-
tion it satisfies condition III

Table 4.1: Properties of prior distributions supported on P(n)
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This theoretical result suggests that the most appropriate prior distribution for problems where
one wishes to utilise the Riemannian Metropolis Adjusted Langevin Algorithm is the Riemannian
Gaussian distribution. It should be noted, however, that the conditions given in [3] are sufficient,
but not necessarily necessary. As a concluding remark to this thesis, we therefore conjecture the
following

Conjecture 4.2.15. Let D·|Σ0 denote the conditional distribution of the sample Σk from dis-
cretised Langevin diffusion process on P(n), where the conditioning is with respect to the initial
sample Σ0. If

⟨ΓΣkΣ0β(Σk) − β(Σ0), γ′(0)⟩ ≤ −md(Σk, Σ0)2

holds D·|Σ0 -almost surely for some positive constant m and some Σ0 ∈ P(n) then (provided con-
ditions I, III and IV hold) one obtains the same O(ϵ−2) bound on the iteration complexity of
RMALA.

The intuition for this conjecture is as follows: condition II is required to ensure the integrability
of e−β(x), that is to prevent the diffusion process from indefinitely drifting across the manifold,
never converging to a compact subset. Condition II essentially requires that the potential induces
contractive behaviour on the diffusion process to prevent this indefinite drift. But intuitively, if the
circumstances which cause this bound to fail happen with probability 0 under the diffusion process it
should not in practice effect this integrability, since we will almost always have contraction toward
a region of high probability. Furthermore, it is shown in [3] that one obtains the same bounds
even when replacing the exact gradient with a stochastic estimate of it4, which should further
heuristically convince the reader that weakening the conditions to hold only probabilistically would
not make a practical difference. Such a re-formulation would likely be a fruitful future endeavour.

4akin to stochastic gradient descent in machine learning
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