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Abstract

In this report, we simulate a dynamic network based on preferential
attachment, where the network evolves over discrete time steps by
either growing or shrinking. That is, by adding or removing a node. We
study how different factors, such as the probability of adding a node,
the number of interactions per new node, and the removal strategy
(random vs. targeted), affect the overall robustness of the network.
The main focus is on how these changes influence the size of the largest
connected component, a common measure of structural cohesion. The
results provide insight into how seemingly small changes in network
dynamics can significantly affect resilience.

The simulations show that the network’s robustness is strongly in-
fluenced by the number of edges per new node (m) and the probability
of node addition (padd). When m is small, the network is sparse and
quickly fragments under both random and targeted removal. As m in-
creases, the network becomes significantly more connected and robust.

For padd > 0.5, the network grows, and the largest connected com-
ponent (LCC) remains stable under random attacks. However, tar-
geted removal of high-degree nodes leads to rapid fragmentation. The
degree distribution approximately follows a power law under random
removal, but simulations have confirmed that the pattern breaks down
under targeted strategies or when the growth rate is too slow. The
robustness curves and estimated power law exponents γ support the
theoretical prediction that scale-free networks are resilient to random
failures but vulnerable to targeted attacks.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: alvina@telia.com. Supervisor: Maria Deijfen, Daniel Ahlberg.
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1 Introduction

Many critical infrastructures, such as power grids, the internet, and communica-
tion systems can be represented as networks. These networks often look similar
to the ones studied in theory, with a few nodes that have many connections.
This makes the network efficient, but also more vulnerable if those high degree
nodes are removed.

The connection points, such as routers, printers, or switches that can receive and
send data from one endpoint to another are called network nodes. In networks
constructed according to preferential attachment some nodes tend to attract
more connections than others. An interesting question is: What happens to the
network’s cohesion when these central nodes are removed?

1.1 Real life network data

One clear example of a network structure when the whole system was affected
because of the disruption of a few key nodes is the cyberattack on Ukraine’s
power grid in 2015. Hackers managed to cut power for a large part of the
country by targeting just a few key parts of the network. In 2016, a new and
more advanced attack used special malware to attack the grid in Kyiv. [4]

In Sweden, the power grid became a hot topic during the winter of 2002, when
electricity prices rose sharply and there were warnings about possible power
shortages. At the same time, Svenska Kraftnät reported increased threats from
foreign actors, including espionage and sabotage. [7]

The internet is also vulnerable. In 2024, several submarine cables in the Baltic
Sea were damaged, which affected the internet access in parts of Northern Eu-
rope. Events like this show how real-world networks can be sensitive to the
removal of important nodes. That is why it is useful to study how networks
change when nodes are removed, either randomly or in a target way, which is
what this report explores through simulations.

1.2 Preferential Attachment and Scale-Free Networks

Scale-free networks refer to all networks whose degree distribution follows a
power law, at least asymptotically. According to the mechanism, each new
node connects to m existing nodes, with a probability proportional to their
current degree

πi =
ki

∑j kj

where ki is the degree of node i.

This results in a power-law degree distribution:

P (k) ∼ k−γ
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where the probability of a node having k connections decreases as k increases.
However, at a relatively slow rate compared to exponential or Poisson distribu-
tions. The power-law distribution, implies that there is a non-negligible proba-
bility of finding nodes with a very large number of connections. This property
differs scale-free networks from many other types of networks where high-degree
nodes are extremely rare. This model was first introduced by Barabási and Al-
bert in 1999 [1], and is now a foundational concept in network science.

One well-known generative model for producing scale-free networks is the pref-
erential attachment model. In this model, the network grows over time by se-
quentially adding nodes. Each new node connects to m existing nodes with
the probability πi (introduced above), meaning that nodes with higher degree
are more likely to receive new connections. The mechanism leads to a power
law degree distribution with exponent γ = 3, under idealized assumptions. It is
important to note that not all scale-free networks are generated via preferential
attachment, and not all networks generated by preferential attachment remain
scale-free under various modifications. Scale-freeness is a structural property of
the network, while preferential attachment is a model that can give rise to such
a structure.

1.3 The largest connected component

The largest connected component (LCC) is a commonly used measure of a
network’s coherence. We letG = (V,E) be an undirected graph, where V denotes
the vertices (nodes), and E denotes the edges (links). The LCC is defined as
the component C ⊆ V such that

∣C ∣ =max{∣Ci∣∶Ci is a connected component of G}

and the LCC fraction is

fLCC =
∣C ∣

∣V ∣

A value of fLCC ≈ 1 implies that the network is mostly connected, and low values
indicate fragmentation.

To investigate the network’s resilience to node removal, we analyze the LCC
and how it changes under successive node removals. Both random removal and
targeted removal (based on high-degree nodes) are considered. After each node
is removed, the size of the LCC is calculated as a percentage of the original
network. This generates a robustness curve that illustrates how the network
fragments over time.

The robustness is also summed up in a single value, defined as the arithmetic
mean of the LCC proportion over the entire removal process:
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R =
1

Q

Q

∑
i=1

S(i), where S(i) =
LCC(i)

N

and N is the total nodes in the network at the end of the growth process, Q is
the number of removal steps and S(i) is the size of the LCC after i nodes have
been removed. [5]

1.4 Other network models

Not all networks are generated by the preferential attachment principle. One
example is the Erdős–Rényi model, introduced by Paul Erdős and Alfréd Rényi.
In the model, a graph is generated by connecting each possible pair of nodes with
a fixed probability, independently of all other pairs. This results in a random
network without any preference for central or highly connected nodes.

The model is often used to represent systems without a central structure, such as
certain communication or fault-prone systems. It produces a degree distribution
similar to a Poisson process, where most nodes have approximately the same
number of connections.

Unlike preferential attachment models, which typically produce a few highly
connected nodes and a power-law degree distribution, the Erdős–Rényi model
does not capture scale-free behavior. However, it is useful for studying random-
ness and serves as a baseline model in network theory.

2 Definition of the model

2.1 Simulation model

In this study, we simulate a dynamic network model based on the preferential
attachment principle by the removal of nodes. This allows the network both
to grow and to shrink over time. The stochastic model can be described as a
discrete-time process {Gt}t≥0, where Gt = (Vt,Et) denotes the network at time
t. Initially at t = 0, there is an initial network G0, usually a small complete
graph with ∣V0∣ = S nodes.

At each discrete time step t→ t+1 in the simulation, exactly one of the following
two events occurs:

• Growth with a probability padd. A new node is added to the network and
connects to m existing nodes. These m target nodes are selected without
replacement, meaning that each existing node can be chosen at most once
per step. This ensures that multiple edges between the same pair of nodes
do not occur.

The selection is based on preferential attachment, where the probability
of choosing a node is proportional to its degree at time t. For the first
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attachment, this is exactly

P(New node connects to node i) =
ki(t)

∑j∈Vt
kj(t)

For subsequent edges, the remaining nodes are rescaled accordingly, so
the probabilities are only approximately proportional to degree but the
principle of preferential attachment still holds.

• Removal with probability 1 − padd. An existing node is removed from the
network along with its edges. The removal is either random (uniform over
all nodes) or targeted, where the node with the highest degree is selected:

kmax(t) =maxi∈Vtki(t)

The process is repeated for a total of n time steps, resulting in the final network
Gn. We then analyze the resulting structure, focusing on the size of the largest
connected component (LCC) and the degree distribution.

By varying the parameters m and padd in the range (0.5,1], we investigate how
the balance between growth and shrinkage affects the formation and resilience
of highly connected nodes.

For each value of padd, we simulate a dynamic network with n time steps. After-
wards, we extract the degrees k of all the remaining nodes and examine whether
the degree distribution follows a power law of the form

P (k) ∼ k−γ ,

using the Python package powerlaw, which performs a statistical fit of a power
law distribution to empirical data.

The function powerlaw.Fit() estimates two key parameters:

• γ: the power-law exponent, describing how quickly the probability de-
creases for higher node degrees.

• xmin: the minimum degree from which the power-law behavior is assumed
to hold. Degrees below xmin are excluded from the fit, as they may not
follow power-law scaling.

These parameters are estimated using maximum likelihood methods by fitting
a discrete power-law model to the observed degree distribution.

The estimated values of γ and xmin for each padd are presented in the tables
below, alongside the final number of nodes in the network.

It is important to note that the model does not exhibit a power law for all
combinations of m and padd, particularly under targeted node removal and low
values of padd. This will become evident in section 3.1 where we analyze the
distributions observed in the simulations.
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2.2 Analytical derivation of expected number of nodes

The stochastic process that describes the network development can be seen as
a discrete ”birth-death process”, where at every time step the number of nodes
decreases with 1 node (birth) or increases with 1 node (death). As mentioned
earlier, we have

• Probability that one node is added is padd.

• Probability that one node is removed is 1 − padd.

Let Xt be the stochastic number of nodes at time t. Then the change at every
time step can be described as

Xt+1 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Xt + 1 with probability padd,

Xt − 1 with probability 1 − padd.

The number of nodes after n steps can be described as

Xn =X0 +
n

∑
i=1

Yi,

where every Yi is an independent and identically distributed random variable
that takes on values according to

Yi =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

+1 with probability padd,

−1 with probability 1 − padd.

Since each step is independent and identically distributed, the expected value
is

E[Yi] =∑
y

y ⋅ P(Yi = y)

and we obtain

E[Yi] = (+1) ⋅ padd + (−1) ⋅ (1 − padd) = 2padd − 1.

Because of the linearity of expectation value, we can determine the expected
number of nodes after n steps

E[Xn] = E[X0] +
n

∑
i=1

E[Yi] =X0 + n(2padd − 1),

where X0 is the initial number of nodes.
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This describes a random walk with a step variable Yi ∈ {−1,+1}, representing
either the removal or addition of a node. The parameter padd thus controls the
drift of the process.

• If padd > 0.5, the process has a positive drift and the expected number of
nodes increases linearly with time. The network grows.

• If padd = 0.5, the network becomes a symmetric random walk with no
drift. In probability theory, it is well known that such a process will
almost surely be absorbed to 0. In this context, it means that the network
will eventually lose all its nodes. Because of this extinction behavior, we
exclude simulations with padd = 0.5 in this study.

• If padd < 0.5, the process has a negative drift, and the number of nodes
decreases with time. The network shrinks over time and eventually col-
lapses.

To quantify the variation, we can also calculate the variance for each step

Var(Yi) = E[Y 2
i ] −E[Yi]

2
= 1 − (2padd − 1)

2
= 4padd(1 − padd).

Since the steps are independent, the total variance after n steps is

Var(Xn) = 4npadd(1 − padd).

This provides a measure of the spread we can expect around the expected value
after n steps.

3 Theoretical analysis of network robustness

3.1 Degree distribution and power-law behavior

In the simulations we investigate whether the degree distribution of the network
follows a power law of the form

P (k) ∼ k−γ ,

where the exponent γ determines how quickly the probability of large node
degrees decreases. It is known from the Barabási-Albert model (BA model)
that network with pure preferential growth (without removal) asymptotically
have a power-law distribution with exponent γ ≈ 3.

More precisely, the theoretical form of the discrete power-law distribution is
given by

P (K = k) =
k−γ

ζ(γ, xmin)
,

where ζ(γ, xmin) is the Hurwitz zeta function. [10]. This function acts as a
normalization constant to ensure that the probabilities sum to 1 over all degrees
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k ≥ xmin. The Hurwitz zeta function is defined as

ζ(s, a) =
∞

∑
n=0

1

(n + a)s
,

and is used to model the long-tail behavior of scale-free networks.

To estimate the exponent γ and the lower bound xmin, we use the Python
package powerlaw, which applies a maximum likelihood method (MLE), under
the assumption that the degree distribution follows a power-law behavior for
k ≥ xmin. The package also supports statistical goodness-of-fit tests, such as
Kolmogorov-Smirnov (KS) test, to asses how well the fitted power law matches
the observed data.

However, in this study, no such formal tests were performed. This means that
while we provide fitted values of γ and xmin, we do not verify whether the power
law is the best fit compared to other heavy-tailed distributions (e.g., exponential
or log-normal). Still, the estimated parameters serve as useful indicators of
whether the scale-free behavior emerges in the simulations.

It is also known from theory that under targeted removal of highly-connected
nodes, especially when m = 1 and padd is small, that the network does not main-
tain a power-law degree distribution. This is because the most connected nodes
are repeatedly removed, preventing the development of a heavy-tailed struc-
ture. These theoretical expectations are confirmed in the simulations: under
random removal, the estimated γ typically remains within the range expected
for scale-free networks, whereas under targeted removal, γ becomes unstable or
undefined when the network fragments severely.

In particular, Deijfen (2010) shows that for m = 1, a power-law degree distribu-
tion cannot be maintained under target removal when padd is too low. However,
under random removal, the network still tends to follow a power-law distribu-
tion, albeit with modified parameters.

3.2 Percolation threshold and network fragmentation

The percolation threshold marks the critical point at which the network un-
dergoes a structural phase transition, from being largely connected to breaking
apart into many smaller components. This transition is typically characterized
by the removal of the giant component, defined as a connected subgraph con-
taining a positive fraction of all nodes in the network. A giant component is one
whose size grows linearly with the total number of nodes n, i.e., it is of order
Θ(n).

In classical random networks, such as the Erdős-Rényi model, the percolation
threshold is well defined and can be analyzed mathematically using classical
percolation theory. Above the threshold, a giant component forms; below it,
only small components exist. In contrast, scale-free networks with degree distri-
bution P (k) ∼ k−γ are known to be remarkably robust to random failure. Albert
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et al. (2000) showed that this resilience arises from the network’s heterogeneity:
most nodes have low degrees, while a few nodes have very high degrees and
maintain the overall connectivity. Under random removal, the giant component
can persist even when a large fraction of nodes are removed.

4 Simulations and results

4.1 Robustness Curve

In the simulation conducted in this study, we initialized the network with a
small initial graph of three nodes. A connected starting network ensures that
growth is always possible, while keeping the initial structure minimal reduces
its influence on the evolving network properties. In the dynamic network, at
each time step, either one node is added with probability padd (between 0.6 and
1), or one node is removed with probability 1 − padd.

The number of time steps (n) was set to 5000. We aimed for a network large
enough for meaningful statistical analysis, while keeping the simulations com-
putationally manageable.

To illustrate how two different types of attacks affect the network structure when
the network has reached its full size, we perform two types of attacks: a targeted
attack, where highly connected nodes are removed first, and a random attack,
where nodes are removed uniformly at random. The figure below shows the
size of the Largest Connected Component (LCC) as a function of the fraction
of removed nodes, for both attack types. We have chosen a node addition
probability of padd = 1 to prevent the network from already being fragmented
for m = 1, but the qualitative behavior of the robustness curve remains the same
for other values.

We settle on 10 iterations in this simulation, calculating the R scores and LCC
before the attack. This means that the mean values are represented in Table 1
below.
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Figure 1: Robustness Curve for ran-
dom and central targeted removal of
nodes (m = 1)

Figure 2: Robustness Curve for ran-
dom and central targeted removal of
nodes (m = 2)

Figure 3: Robustness Curve for ran-
dom and central targeted removal of
nodes (m = 3)

Figure 4: Robustness Curve for ran-
dom and central targeted removal of
nodes (m = 8)

Figure m LCC before attack (% of network) Rtargeted Rrandom

Figure 1 1 100% 0.0025 0.1940
Figure 2 2 100% 0.1033 0.4126
Figure 3 3 100% 0.1918 0.4562
Figure 4 8 100% 0.3860 0.4910

Table 1: LCC before node removal and robustness scores R (average LCC size
during removal) for both targeted and random strategies

As expected, we can see that for allm, the LCC covers the entire network, before
the simulated attack begins. This makes it easier to interpret the robustness
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results, because it shows how a well-connected network reacts to different types
of attacks.

The simulation results show that for small values of m the random removal
curve gradually declines, and the targeted removal leads to an abrupt collapse
of the network structure. This shows that the network is robust to random
failures but vulnerable to targeted attacks, a characteristic feature of scale-free
networks.

In addition to the robustness curves, we also calculated a number called the
robustness score R for each simulation. This score shows, on average, how
much of the network remained connected when nodes were being removed. It
gives a simple way to compare how well the network handled attacks. As shown
in Table 1, the robustness score increases as m increases, meaning that networks
with more initial connections are better able to withstand attacks.

4.2 Connectivity: m = 1 (Tree-like structure)

We now investigate how the parameter padd affects the components, particularly
the LCC, when nodes are added with exactly one link (m = 1), which means
that the network grows in a tree-like structure and no new cycles can be created.
Here s̄comp denotes the mean size of the components, excluding the LCC. We
performed 10 iterations, and calculated the mean values, which are shown in
the tables below.

The results show that the choice of removal strategy has a large effect on the
network’s growth and structure.

Table 2: Removal strategy: Random removal, m = 1

padd Nodes (n) Components s̄comp LCC LCC (%) γ xmin

0.6 967.3 (19.33%) 391.0 2.31 65.6 6.39% 3.37 3.6
0.7 2009.0 (40.16%) 600.1 3.09 155.2 7.73% 2.97 3.6
0.8 2999.2 (59.95%) 580.7 4.34 484.4 16.15% 2.86 3.8
0.9 3997.8 (79.91%) 397.3 6.56 1396.9 34.94% 2.73 3.7
1.0 5003 (100%) 1 NaN 5003 100% 2.70 4.1

Table 3: Removal strategy: Targeted (high degree) removal, m = 1

padd Nodes (n) Components s̄comp LCC LCC (%)

0.6 1002.0 (20.03%) 1000.8 1.00 2.1 (0.21%)
0.7 1891.6 (37.81%) 1978.6 0.95 4.0 (0.21%)
0.8 2983.9 (59.64%) 2778.7 1.07 9.9 (0.33%)
0.9 4006.2 (80.08%) 2231.6 1.79 24.4 (0.61%)
1.0 5003 (100%) 1 NaN 5003 (100%)
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The results in Table 2 and Table 3 show clear structural differences in the
network depending on both the probability parameter padd and the removal
strategy.

We observe that the number of components is lower for random removal than for
targeted removal. This is likely because targeted removal isolates nodes more
effectively by removing the most connected nodes first, which leads to rapid
fragmentation of the network.

The mean component size (excluding the LCC), denoted by s̄comp, is generally
larger for random removal and appears to increase as padd grows. In contrast, for
targeted removal, the mean component size remains close to 1, with its highest
value reaching only 1.79.

As expected, the size of the LCC is significantly larger under random removal
than under targeted removal, and increases rapidly with higher values of padd.
While the LCC gives an idea of global connectivity, the mean component size
reveals how the rest of the network is structured after fragmentation.

Under random removal, γ remains in a typical scale-free range between 2.60
and 3.37. For targeted removal, these values are unstable or undefined when
the LCC becomes too small, as expected for m = 1 networks at low padd, where
targeted attacks are known to destroy the power-law degree distribution.

Size of the largest component, m = 1

To deepen the analysis, we plot the mean size of the largest connected compo-
nent (LCC) as a function of padd and expand the parameter space by simulating
more values of padd in steps of 0.05. As before, we run 10 iterations and report
the average results.

Figure 5: m = 1, removal strategy: tar-
geted (high degree)

Figure 6: m = 1, removal strategy: ran-
dom

Form = 1, the results reveal a sharp contrast in robustness between targeted and
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random node removal. In Figure 5 (targeted removal), the growth of the largest
connected component (LCC) remains severely limited even for relatively high
values of padd. For example, the LCC size is only about 4 nodes at padd = 0.7,
meaning that the network contains almost entirely isolated nodes. As padd
increases, it reaches around 42 nodes at padd = 0.95. This indicates that although
the network is growing, the continuous removal of high-degree nodes effectively
prevents any substantial structure from forming.

In contrast, Figure 6 (random removal) shows a faster-than-linear increase in
LCC size under random node removal. At padd = 0.95, the LCC reaches nearly
2900 nodes on average-more than half of the network. This suggests that the
network is significantly more robust to random failures than to targeted attacks.
Even at padd = 0.8, the LCC already exceeds 750 nodes, showing that a con-
nected core can survive as long as new nodes are added faster than they are
removed at random.

4.3 Connectivity: m > 1

In this section, we analyze the behavior of the dynamic network when each new
node connects to m = 2, 3 and 8 existing nodes. As in the previous section, we
vary the growth parameter padd and compare both random and targeted node
removal strategies. The results are presented in the tables below.

Table 4: Removal strategy: Random removal, m = 2

padd Nodes (n) Components s̄comp LCC LCC (%) γ xmin

0.6 1029.4 (20.58%) 147.4 1.07 872.9 84.79% 3.16 3.6
0.7 2004.8 (40.07%) 176.9 0.82 1860.0 92.78% 3.06 4.1
0.8 3015.8 (60.28%) 93.2 1.03 2921.0 96.86% 2.90 4.2
0.9 4005.6 (80.06%) 30.0 1.01 3976.2 99.27% 2.73 4.3
1.0 5003 (100.00%) 1 NaN 5003 100% 2.74 5

Table 5: Removal strategy: High degree, m = 2

padd Nodes (n) Components s̄comp LCC LCC (%) γ xmin

0.6 1024.6 (20.48%) 1017.70 1.00 6.40 0.62% 2.99 2.00
0.7 2032.8 (40.63%) 1682.0 1.06 247.90 12.20% 4.60 2.8
0.8 2971.9 (59.40%) 1140.6 1.09 1727.30 58.12% 4.356 3
0.9 4001.8 (79.99%) 528.7 1.06 3440.5 85.97% 9.57 6.6
1.0 5003 (100.00%) 1 NaN 5003 100% 2.68 4
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Table 6: Removal strategy: Random removal, m = 3

padd Nodes (n) Components s̄comp LCC LCC (%) γ xmin

0.6 1001.2 (20.01%) 64.50 1.03 936.0 93.49% 3.32 4.6
0.7 2019.2 (40.36%) 48 1.02 1971.25 97.63% 3.23 5.4
0.8 2994.0 (59.84%) 21.1 1.00 2973.9 99.33% 2.99 4.9
0.9 3984.2 (79.64%) 4.6 1.00 3980.6 99.91% 2.84 5.1
1.0 5003 (100.00%) 1 NaN 5003 100% 2.67 4

Table 7: Removal strategy: High degree, m = 3

padd Nodes (n) Components s̄comp LCC LCC (%) γ xmin

0.6 1010.9 (20.21%) 980.10 1.00 29.40 2.90% 4.55 3
0.7 1997.0 (39.91%) 824.70 1.04 1139.5 57.06% 5.25 3.60
0.8 2992.0 (59.80%) 448.60 1.03 2528.80 84.52% 3.71 3.30
0.9 4030.6 (80.56%) 155.4 1.02 3873.3 96.10% 6.92 5.9
1.0 5003 (100.00%) 1 NaN 5003 100% 2.74 5

Table 8: Removal strategy: Random removal, m = 8

padd Nodes (n) Components s̄comp LCC LCC (%) γ xmin

0.6 1011.8 (20.22%) 4.7 1.00 1008.1 99.63% 4.15 10.1
0.7 2011.6 (40.21%) 1.6 1.00 2011.0 99.97% 3.62 10.2
0.8 2993.2 (59.83%) 1.0 NaN 2993.2 100% 3.22 9.50
0.9 4016.6 (80.28%) 1.0 NaN 4016.6 100% 3.01 9.5
1.0 5003 (100%) 1.0 NaN 5003 100% 2.83 8

Table 9: Removal strategy: High degree, m = 8

padd Nodes (n) Components s̄comp LCC LCC (%) γ xmin

0.6 1026.9 (20.53%) 129.0 1.47 838.9 71.69% 11.213 8.8
0.7 2003.0 (40.03%) 45.3 1.02 1958.0 97.75% 10.58 10.9
0.8 3000.4 (59.97%) 10.5 1 2990.9 99.68% 5.57 9.7
0.9 3994.8 (79.85%) 2.1 1 3993.7 99.97% 3.38 8
1.0 5003 (100.00%) 1 NaN 5003 100% 2.88 12

Compared to the sensitive network structures observed when m = 1, the intro-
duction of fixed connectivity m > 1 leads to a significant change in the net-
work behavior. Both the number of connected components and the size of the
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largest connected component (LCC) show systematic improvements as m in-
creases.

The simulation results in Tables 3 – 6 show significant variation in fLCC (the
fraction of nodes belonging to the LCC) depending on the parameters padd and
m. Specifically:

• For m = 2, under random removal, the number of components decreases
and fLCC remains high across all the tested values of padd.

• Under targeted removal, the results suggests a transition region around
padd ≈ 0.7. At padd ≈ 0.6, the number of components increases signifi-
cantly, while for padd > 0.7, the network appears to regain a more coherent
structure, with a pronounced decrease in the number of components and
a marked increase in fLCC.

• For m = 3, this trend becomes even more pronounced. The LCC consis-
tently increases in relative size across all tested values of padd, and the
number of components (padd ≥ 0.6) continues to decrease, even under tar-
geted removal.

These results indicate that each additional connection per node (i.e., higher
m) increases the probability that the network remains coherent despite node
removal during growth.

Size of the largest component m = 2,3,8

We will again examine the size of the largest component (LCC) as a function of
the parameter padd, with m = 2,3 and 8. The results are shown in Figure 7 to
Figure 12.

Figure 7: m = 2, removal strategy: tar-
geted (high degree)

Figure 8: m = 2, removal strategy: ran-
dom
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Figure 9: m = 3, removal strategy: tar-
geted (high degree)

Figure 10: m = 3, removal strategy:
random

Figure 11: m = 8, removal strategy:
targeted (high degree)

Figure 12: m = 8, removal strategy:
random

We observe that, for all values of m, the mean LCC increases with padd, but
the growth rate and threshold behavior vary depending on the removal strat-
egy.

In the targeted removal scenario, for m = 2, we can see that between padd = 0.55
and padd = 0.65 the network remains highly fragmented, with mean LCC values
between 5 and 9. For padd = 0.70 the mean LCC increases to around 200 and
continues to grow, reaching approximately 4200 at the upper end of the range.
In contrast, under random removal, the network retains a much larger connected
component even at lower padd, indicating that the network is significantly more
robust to random node deletion.

For the highly connected network where m = 8, the results show an almost linear
growth in the mean LCC size, regardless of removal strategy. This suggests that
the network structure becomes increasingly resilient as each node connects to
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many existing nodes. The removal of either random or high-degree nodes has
limited impact on the integrity of the largest component, provided that padd is
sufficiently high.

Overall, the simulations illustrate how both the parameter m and the removal
strategy critically influence the network’s ability to maintain a large connected
component. A higher m compensates for the destructive effect of node removal,
while targeted strategies are consistently more effective at fragmenting the net-
work, especially when m is small.

5 Conclusion

This report explored how a growing network governed by preferential attach-
ment responds to node removal. By combining growth and deletion in a dynamic
simulation model, we analyzed how varying the probability of node addition
padd, the number of connections per new node m, and the removal strategy
(random vs. targeted) affects the network’s structural resilience.

The results show that the network’s ability to maintain connectivity is highly
dependent on both m and padd. A key finding is that networks with low m
are fragile even under moderate levels of node deletion. This is particularly
evident under targeted removal, which rapidly destroys the largest connected
component. As m increases, the network gains redundancy and becomes more
resilient to both random failures and targeted attacks.

We find strong support for the hypothesis that scale-free networks are robust
to random failures but vulnerable to targeted attacks. This pattern is espe-
cially visible in the robustness curves and LCC growth figures. In addition,
the emergence of threshold-like behavior in padd, where the network transitions
from fragmented to cohesive, highlights the relevance of percolation theory in
understanding network connectivity.

An additional observation is that for m > 1, the size of the largest connected
component increases approximately linearly with padd, particularly under ran-
dom removal. This suggests that as long as node addition dominates the process,
the network maintains a growing core structure despite ongoing deletion.

6 Discussion

In this study, the simulations suggests a possible threshold or transition in the
network’s structural behavior, particularly under targeted node removal. For
networks with m > 1, the largest connected component (LCC) tends to frag-
ment significantly at lower values of padd. At these lower values, the network
struggles to sustain a dominant component and instead splits into smaller dis-
connected sub-networks. However, once padd exceeds a critical region (approxi-
mately around 0.6 − 0.7), the network becomes capable of maintaining a single
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large component whose size grows proportionally with the total number of nodes
n. Due to the discrete intervals used in the simulations (steps of 0.05), the ex-
act value of this transition remains uncertain. Additional simulations with finer
intervals would be valuable for accurately characterizing this threshold.

A critical factor influencing the resilience of the network is the removal strategy.
Our results show that under random removal, the network is robust, maintain-
ing a substantial LCC even at relatively low values of padd (see, for example
Table 6 and Table 8). This aligns with existing theory, which suggests ran-
dom deletion rarely impacts highly connected, structurally important nodes. In
contrast, under targeted removal, consistently removing nodes with the highest
degree leads to rapid fragmentation of the network at moderate to low values of
padd, especially noticeable when m is small. As we observed, the threshold for
structural collapse under targeted attacks appears significantly lower and varies
depending on specific parameter settings.

Interestingly, the threshold for network fragmentation increases with larger m,
for example, at m = 8 (see Table 9). Already at padd = 0.6, the LCC corre-
sponds to around 70% of the network and quickly grows to nearly the entire
network as padd increases. This suggests that highly connected networks can
maintain global connectivity even under targeted removal, provided that growth
is sufficiently strong.

A promising direction for future research is to explore probabilistic node removal
strategies rather than deterministic targeting. For example, instead of always re-
moving the highest-degree node, nodes could be selected for removal with prob-
abilities proportional to their degrees. Such probabilistic removal could more
realistically model scenarios like cyberattacks or failures in complex infrastruc-
tures, potentially smoothing out the observed sharp threshold effects.

In the report ”Weighted Betweenness Preferential Attachment: A New Mech-
anism Explaining Social Network Formation and Evolution” [6] it is suggested
that new nodes may not necessarily attach to those with the highest degree, but
rather to those with high betweenness, an idea that has not been explored in
this report. Betweenness centrality quantifies a node’s role as an intermediary
on shortest paths between other nodes, highlighting its importance for overall
connectivity. Nodes with high betweenness centrality may serve as critical con-
nectors whose removal could significantly disrupt the network, potentially more
so than simply removing nodes based solely on degree. This could be an area
to study for future research.

Overall, the concept of percolation threshold provides a useful theoretical frame-
work for understanding how network resilience varies with different parameters
and removal strategies. Our findings confirm the well-known structural char-
acteristics of scale-free networks-namely, their robustness to random failures
and vulnerability to targeted attacks. Moreover, the results underscore the
importance of structural redundancy (larger m) in enhancing the network re-
silience.
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