
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Making road networks that lower risk
of traffic accidents
Lowe Hjerth

Matematiska institutionen

Kandidatuppsats 2025:20
Matematisk statistik
Juni 2025

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Bachelor Thesis 2025:20

http://www.math.su.se

Making road networks that lower risk of traffic

accidents

Lowe Hjerth∗

June 2025

Abstract

In this thesis we compare different algorithms for constructing a
road network from a set of points. The aim is to minimize the risk of
traffic accidents by spreading out traffic across the network. We focus
on the structure of the road network, rather than traffic signs and
sight-lines. This is done with a simulation study using a simplified
model where the road network is represented by a euclidean graph,
and each point has a population of cars traveling to the other points.
The risk of a point is the square of the number of cars traveling trough
it, and the aim is to lower the total risk per capita with efficient use
of road space.

A set of algorithms are tested that work off a base of the mini-
mal spanning tree of a Delaunay triangulation, iteratively adding
back edges from the triangulation based on some criteria. The no-
table front- runners are the algorithms many paths and crowded,
which prior- itize adding back edges between points with many routes
through it, and edges between high population points, respectively.
We also find that the algorithms that add back edges with high or
low difference in population between the connected points perform no
better than each other, suggesting that the difference in population
between connected areas is an unimportant factor when designing a
road network.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: lowe.hjerth@gmail.com. Supervisor: Maria Deijfen, Daniel Ahlberg.

Contents

1 Acknowledgments 3

2 Introduction 3

3 Theory 4
3.1 Graph Theory . 4

3.1.1 Minimal Spanning Trees 4
3.2 Delaunay Triangulation . 5
3.3 Algorithms . 5

3.3.1 Bowyer-Watson algorithm 6
3.3.2 Prim’s algorithm . 7
3.3.3 Dijkstra’s shortest path algorithm 8

4 Model 8
4.1 Points . 8
4.2 Edges . 9
4.3 Population . 10
4.4 Destinations . 10
4.5 Paths . 11
4.6 Risk . 11

5 Simulation 11
5.1 Algorithms for Extending Tree 12
5.2 Code . 13

6 Results 13

7 Discussion 17
7.1 Data set 1 . 18
7.2 Data set 2 . 19
7.3 Conclusion and improvements 20

8 References 21

2

1 Acknowledgments

A big thank you to my two supervisors Maria Deijfen and Daniel Ahlberg.
They were a huge help every step of the way and this would not have been
possible without them.

ChatGPT was used only for spit-balling ideas and bug-fixing code.

2 Introduction

When designing a road network for cars, an important consideration is how
likely a driver is to experience an accident. This risk can be mitigated with
speed limits, improving sight-lines, better traffic signs, et cetera. These ex-
amples are only responses to the risks that are inherent to the underlying
road network; responding to the symptoms, so to speak. The question then
is, how can a road network be designed/improved by changing the structure
of the network only? In other words, by only changing what places have
roads between them.

In this thesis, we create and analyze a model depicting a road network
with a simulation study. The model represents a road network with a eu-
clidean graph with locations represented by vertices/points and roads rep-
resented by edges. It is a simplified model where cars are not individually
simulated, and roads are always straight lines that do not cross. The aim is
to generate a set of points in 2-dimensional space, and comparing algorithms
for connecting them with roads to minimize the risk of accidents while not
using too much road space. Theoretically, if all points had direct paths to
all others, there would be no intersections and risk of accidents would be
minimal, but this is a clear waste of road space, so it is important we take
the amount of road space used into account when analyzing these algorithms.

Since the amount of possible edges for a set of vertices scales quickly,
the algorithms will only consider a subset of these edges. Specifically we
will use the Delaunay triangulation of the point set we generated, to act as
a base for the algorithms to work off of. The Delaunay triangulation is also
a planar graph, so there are no crossing edges which simplifies our model.
The algorithms will start with the minimal spanning tree of the Delaunay
triangulation - the minimal possible network we could use - and iteratively
adding back edges from the full triangulation based on some criteria.

3

3 Theory

3.1 Graph Theory

To analyze a road network, the tools of graph theory are very useful.

A (simple, undirected) graph is defined as a set of vertices V and a set
of edges E, where the elements of E are unordered pairs {v, w} where v and
w are in V . This is often written G = (V,E). A graph is called connected
if all vertices are reachable from the others by following a sequence of edges
in E. If all possible edges between vertices is in the set of edges, the graph
is called complete.

A weighted graph is a graph where each edge in E has a (usually positive)
number associated with it. We might call this number the weight or length
of an edge. If these weights refer to the euclidean distance between the two
points, we call it a euclidean graph.

Figure 1: Example graph of 5 vertices

3.1.1 Minimal Spanning Trees

A graph is a tree if there is only one path (a sequence of unique connected
edges) between any two vertices.

Given a graph G, a spanning tree of this graph is a subgraph (a graph
using a subset of G’s vertices and edges) that is both a tree, and contains
all vertices in G. This subtree will only exist if G is a connected graph.

Given a weighted graph G, a spanning tree is minimal if it has the
lowest total edge weight possible.

4

Figure 2: Complete euclidean graph of 8 vertices and its minimal spanning
tree (dark blue)

3.2 Delaunay Triangulation

Delaunay triangulations are introduced inDelaunay Mesh Generation, Cheng,
Siu-Wing, Dey, T. K., & Shewchuk, J. (2013) pages 31-33. Voronoi diagrams
are defined in page 154.

A triangulation of a finite set of 2-dimensional points P , is a maximal
set of non-overlapping edges between the points in P . The stipulation that
it needs to be maximal makes it so that the edges only form triangles of
points in P , and the outer edges form a convex polygon.

There are many triangulations you can make from a set of points, but
an especially useful kind is the Delaunay triangulation. It have an addi-
tional stipulation that for any triangle in the triangulation, its circumcircle
contains no additional points. A triangle’s circumcircle is the unique circle
that passes through all points in the triangle. Delaunay triangulations max-
imize the minimum angle among the triangles, which minimizes the amount
of ”sliver triangles” in the triangulation.

Delaunay triangulations are also closely tied no Voronoi diagrams. For a
finite set of 2-dimensional points P , the Voronoi diagram is the partition of
the plane into regions, so that all points closest to some point p in P are in
the same region. By drawing edges between points in P if their respective
regions border each other, we get the Delaunay triangulation of those points.

3.3 Algorithms

A few well known algorithms are used in this thesis, they are described
below.

5

Figure 3: Ten random points Figure 4: Delaunay triangulation

Figure 5: Delaunay triangulation with circumcircles (left) and the corre-
sponding Voronoi diagram (red borders, right). Source: Wikipedia, Delau-
nay triangulation (2025)

3.3.1 Bowyer-Watson algorithm

This algorithm is detailed in Delaunay Mesh Generation, Cheng, Siu-Wing,
Dey, T. K., & Shewchuk, J. (2013) pages 59-61.

The Bowyer-Watson algorithm computes a Delaunay triangulation for a
set of 2-dimensional points P . It works by incrementally adding the points
to a valid Delaunay triangulation and replacing any triangles that have cir-
cumcircles containing the new point.

It starts by placing three new points q1, q2, q3 not in P , so that the
triangle made by q1, q2, q3 contains all points in P , which we call the super
triangle. Then we add one point p1 from P , and remove all triangles whose
circumcircles contain p (for the first iteration it is only the super triangle),

6

creating a hole in the triangulation. Then we add all triangles with two
points from triangles that were removed, and p. This fills the hole and
gives us a Delaunay triangulation for the points q1, q2, q3, p. Continue this
process of adding points until all elements of P have been added, and lastly
remove all triangles made using q1, q2 or q3. Then we have the Delaunay
triangulation of P .

Figure 6: Super trian-
gle

Figure 7: After adding
9 points

Figure 8: Adding
tenth point, removing
some triangles

Figure 9: Adding new
triangles to fill hole

Figure 10: Final trian-
gulation after remov-
ing q1, q2, q3

3.3.2 Prim’s algorithm

This algorithm is detailed in Discrete and Combinatorial Mathematics - An
Applied Introduction by R. Grimaldi (2004) page 639.

Prim’s algorithm finds a minimal spanning tree of the connected graph
G = (V,E).

First, choose an arbitrary vertex in V and add it to the tree. For each
iteration, choose the shortest edge in E connected to the tree, that doesn’t
connect two vertices already in the tree, and add the edge and its other
vertex to the tree. This way, we always add a new vertex every iteration.
Once all vertices in G are present in the tree, we have a minimal spanning
tree of G.

7

3.3.3 Dijkstra’s shortest path algorithm

This algorithm is detailed in Discrete and Combinatorial Mathematics - An
Applied Introduction R. Grimaldi (2004) page 631

Dijkstra’s algorithm is an algorithm for finding the shortest path from a
vertex v to another vertex u in a connected weighted graph G.

First, list all edges connected to v and order them by length. These are
all paths of one edge. Look at the shortest path (the path with the lowest
sum of their edge lengths) l, and add to the list all paths starting with l with
one more edge added. For the first iteration, that would be all paths of two
edges where the first edge in it is the shortest edge from v. Then remove l
from the list. Now sort the list again, look at the shortest path, extend it
by one edge and add those to the list, removing the original. Continue this
until the shortest path ends at the vertex u. this is the/a shortest path from
v to u.

4 Model

Our model will consist of vertices and edges connecting pairs of these ver-
tices. The vertices representing abstract locations - buildings, cities, et
cetera - and the edges represent roads between them. To simulate the flow
of cars, each vertex will have a population, and each person will have a lo-
cation to travel to by following a path. The more people travel through a
specific vertex, the higher the risk of accidents will be in that vertex. This
gives us six decisions for how the model is constructed:

• How are the points generated?

• How will the edges, and thus road network, be generated?

• How are the point’s the population generated?

• How will cars decide where to travel?

• How will cars decide what path to take to a destination?

• How will the risk in a point be determined based on people traveling
through?

4.1 Points

To generate the points to use for our network, we must decide how they will
be distributed in the x-y-plane.

8

We will limit the points to be generated in a 10 by 10 square, with a
uniform distribution. We could use a distribution that generated points in
the entirety of the plane, but this would mean some networks would likely
have outlier points far away, skewing our data. By limiting the points to a
square, we normalize our data to focus on our network creation algorithms,
rather than having to worry about how the generation affects the data.

4.2 Edges

How we connect the points in our model is the central focus of this study.
To make a road network we require it to be connected, so that anyone in one
point can make their way to another. A natural way of doing this is with a
triangulation. This would mean there are no overlapping edges, which would
represent crossroads. In this study, we will consider the points themselves
to be crossroads, so if two edges crossed, we would simply turn that crossing
into a point. Thus, the lack of crossing edges in a triangulation is of minimal
importance for the purposes of this study.

A specific type of triangulation that fulfills our needs well are Delau-
nay triangulations. They maximize the minimum angle among the triangles
present. In other words, they minimize the occurrence of sliver triangles;
triangles with one very small angle. A simplification of our model is that
there is no maximum amount of cars in a road, so a sliver triangle means
that two of the edges are nearly the same road. This is a waste of road
space, so their minimal occurrence in Delaunay triangulations make them a
good fit for our model.

Another reason Delaunay triangulations fit our needs is their connec-
tion to Voronoi diagrams. Voronoi diagrams have two regions bordering if
the points on the border are equally close to the points from the set inside
these regions. These borders, when turned into edges, create the Delaunay
triangulation. This shows Delaunay triangulations have a geometric prop-
erty. Traversing a Delaunay triangulation’s edges is the same as traversing
a Voronoi diagram’s borders.

While a Delaunay triangulation connects our points into a reasonable
road network, it might have too many unnecessary roads. By the nature of
a triangulation, it creates a convex shape. If there is low demand for paths
to and from a point on the end of this shape, that road space might be
better used elsewhere. We can consider the Delaunay triangulation as the
”maximum” network for a set of points, so it is natural to consider what the
”minimal” network would be. The minimal spanning tree of the triangula-
tion is a good candidate since it is the network with the smallest possible
road length. It just so happens that the Delaunay triangulation’s minimal

9

spanning tree is the same as the euclidean minimal spanning tree, see M.
I. Shamos. 1978. In other words, it is the absolute smallest network that
connects all our points.

Now that we have a maximal network and a minimum network for our
points, one being a subgraph of the other, we will use iterative methods
of adding edges from the triangulation to the minimal spanning tree. The
comparison of these methods will be the focus of this study. The methods
are described in the section 5.

4.3 Population

Each point will have a population assigned to it that equals the number of
cars that will travel from it. Each point will be independently assigned a
population from a uniform distribution, for this study the range [200, 1000]
was chosen. This does mean that the total population will vary across
networks, but by looking at the risk per capita we account for this variance.

4.4 Destinations

Each car will have a destination to travel to. We want this to be determin-
istic, since our study iterates on the structure of a road network. The only
random thing should be the network itself.

The cars should choose some destinations more than others. Otherwise,
The amount of cars traveling to each point will be nearly the same. Instead,
we can reasonably assume that a person is more likely to want to travel to
points with higher population. In real life this would be analogous to travel-
ing to cities more often than villages, whether that be for work or vacations,
et cetera.

For each point, a proportion if its population will go to each other point
proportional to the population at that other point. Algebraically, if we have
a network with the points A, B, and C, with populations 4, 2, and 3 respec-
tively, we take A’s proportion of the remaining population A

A+B and multiply

it by C’s population. This gives us C·A
A+B = 12/6 = 2 people traveling from

C to A. Similarly we get 1 person traveling from C to B.

These resulting proportions will likely not be whole numbers if we use
large populations. To remedy this, we want to round the proportions so their
sum equals the population we are drawing from (C in the example above),
so all cars leave the point and no cars go to multiple points. To that end we
sort the proportions in descending order by their fractional part, and then
take their floor. The difference between the sum of the floored proportions

10

and the population it should equal is now some positive integer n, so we add
1 to the top n floored proportions, which were the closest ones to the next
highest number by our previous orderings. These rounded proportions will
be the amount of cars sent to each destination.

4.5 Paths

When having a car decide which path to take to get to their destination,
similarly to the destinations themselves, we want it to be deterministic. An
easy assumption we can make is that if someone wants to make their way
to a destination, they want to take the shortest path to their destination.
In the modern day, route planning services take into account traffic while
calculating the fastest route, but that is only as a response to the effects
of the network already in place, the focus of this study. Thus, we will be
simplifying away this factor, and assuming that the time it takes to follow
a path is simply the length of the constituent roads.

Every car will take the shortest path to their destination, which will
we uniquely determined outside of degenerate cases in our network. Prim’s
algorithm will be used to find these paths.

4.6 Risk

For this study we will be working under the simple assumption that more
cars → more accidents. We will be assuming accidents only occur in points,
not on roads. The motivation for this is that intersections necessarily have
cars meet and turn, while stretches of road such as motorways do not.

Risk will determined at each point by a function f(x), where x is the
amount of cars that drive through it. This function should be nonlinear,
since otherwise the distribution of cars in the network would not change the
total risk, only the amount of points they travel through. It should also be
an increasing function because of our assumption that more cars → more
accidents. Specifically this function should have the property f(x) > x for
all x > 1, so risk increases faster than x increases. The simplest choice
for such a function is f(x) = x2. While other functions are possible, it
would likely only serve to complicate the model. The effect of a different
risk function may be examined by future studies.

5 Simulation

Our model is a road network represented by a euclidean graph with popula-
tions assigned to each point, and risk calculated at each point based on the
number of people traveling through that point. We also have a procedure

11

for testing this model by generating a set of points and finding its Delau-
nay triangulation, and then iteratively adding back edges to its minimal
spanning tree according som some algorithms. Now we have to create these
algorithms and apply them. The algorithms we use will be based on some
attribute of the points and edges.

5.1 Algorithms for Extending Tree

The simplest algorithms would be ones that look at the length of each edge
to be added, the two extremes of this kind being the following algorithms:

• short - add back edges in ascending order of length

• long - add back edges in descending order of length

Figure 11: Initial net-
work

Figure 12: iteration 1
of long

Figure 13: iteration 1
of short

Another attribute of a road network in our model is the population of a point.
Since each edge connects two different points, we have two populations to
take into count. The simplest ways to use these populations is to look at
their sum and their difference. Taking the two extremes of these we get the
following methods:

• crowded - each iteration, adds edge with the highest population
summed between its connected points

• alone - each iteration, adds edge with the lowest population summed
between its connected points

• high population difference - each iteration, adds the edge with the
largest difference in population between its two connected points

• low population difference - each iteration, adds the edge with the
smallest difference in population between its two connected points

We can also inform the algorithm with the paths cars travel through.

• many paths - each iteration, checks the total amount of fastest paths
(not cars) that travel through the connected points, and adds the edge
one with the most.

12

Figure 14: Initial net-
work (populations rep-
resented by size)

Figure 15: iteration 1
of crowded

Figure 16: iteration 1
of alone

• few paths - each iteration, checks the total amount of fastest paths
(not cars) that travel through the connected points, and adds the edge
one with the least.

5.2 Code

The code used to build the model and run simulation was written in Python.
We used the libraries math and numpy for a few mathematical operations and
data organization, and the libraries random and pandas were used for sim-
ulating random points and saving data. The library time was used to time
how long simulation took.

The code for computing Delaunay triangulations using the Bowyer-Watson
algorithm is based on work by Viter, Antonii (2024). They made a demon-
stration of python code for the Bowyer-Watson algorithm, which was instru-
mental in understanding the algorithm and how to implement it.

The two datasets that were made took approximately 5 hours to gener-
ate.

6 Results

The amount of points to start with for a simulation is not self evident. We
chose to make sets of points with size 20, 25, and 30. For each of these sizes
we generated 100 sets, each with an accompanying Delaunay triangulation
and minimal spanning tree. Each method for extending the tree was applied
for nine iterations on each minimal spanning tree. Figures 17 - 20 contain
plots of the average risk per capita for each algorithm and the amount of
edges added. The first three use the 100 point sets sized 20, 25, and 30, and
the last one uses all 300 sets. The plots are made with the number of edges
along the x-axis.

13

We could try to plot with the total road length added as the x-axis,
but because our stopping criteria for the algorithms is the number of edges
added, the method short will have lacking data for longer total road lengths,
and long will be the only one with data for especially long road lengths.
Thus the resulting plots would be unhelpful.
Notably, the short method was by far the least effective at reducing risk

Figure 17: Average risk per capita for graph size 20

in these plots. This is likely a result of plotting based on the number of
edges added rather than road length. Since this doesn’t reflect the actual
amount of road space used, and because this data set is unfit for plotting
along total road length added, a new set of data was generated. The differ-
ence being that the stopping criteria now was the total length of the added.
The stopping point was chosen to be halfway from the total length of the
minimal spanning tree and the Delaunay triangulation.

This new set of data no longer has the problem of some algorithms not
fitting well when plotting with road length added as the x-axis. Now for any
given base graph, all algorithms reach roughly the same total road length
added at the stopping point. However We still cannot simply plot along the
amount of added road length. These values are not integers, so we cannot
take averages of risk per capita, as there is likely only one data point with
each value in the dataset. We also cannot simply plot all the points directly,
as the exact values for added road length and risk per capita do not follow
a neat line. Some datapoints have high added road length and low risk per
capita, and vice versa, even for the same algorithm. Instead, to plot the

14

Figure 18: Average risk per capita for graph size 25

Figure 19: Average risk per capita for graph size 25

data we will estimate the data with a curve, using least-squares fitting to
find the best parameters for a curve to fit the data. Looking at the plots for
the first set of data, we see risk per capita lowering slower once more edges
are added. An exponential curve f(x) = ae−bx + c has this property (where
b > 0). This class of curves can have this slight bend upwards, making it
a good choice. Fitting the parameters a, b, and c to the data for each algo-

15

Figure 20: Average risk per capita for graph sizes 20-30

rithm for the graph sizes 20, 25, and 30 gives us the plots 21 - 23. A plot
was also made using the data for all sizes in plot 24.

Figure 21: Estimated risk per capita for graph size 20

16

Figure 22: estimated risk per capita for graph size 25

Figure 23: Estimated risk per capita for graph size 30

7 Discussion

We have two sets of data, one where the network building algorithms were
limited by the number of edges that could be added, and one where they
were limited by the total road length that could be added. The latter is
more accurate for our purposes of determining algorithms that are efficient

17

Figure 24: Estimated risk per capita for graph size 20-30

for the road space used, but it is still worth examining the results of the first
set.

7.1 Data set 1

In plots 17-20 we see a clear outlier in our methods: short, the method
that prioritizes adding short roads to our network. It is markedly worse at
lowering risk, no matter how many edges are added. Conversely, the long
method is third or fourth best in the plots. This implies that long roads
lower risk more than short ones. It can be rationalized that short roads only
alter an existing path slightly, while a long one can let some cars completely
bypass their previous route for a more direct path. However this does not
necessarily mean that long roads are more efficient than short ones, since
the total road length added for a fixed number of edges is as different as
they could be with these two methods.

For the other methods we can see that many paths is better than few
paths, which makes since if you consider that having few paths cross a
point means few people will change their path if a new road is added there.
For the methods crowded and alone we see that connecting high popula-
tion areas lowers risk better than connecting low population areas. Since
high population areas with have high travel between them it makes sense
that letting those people have a more direct route lowers risk. Lastly for
high population difference and low population difference there is al-
most no difference between the methods, even though they will be adding

18

completely different edges. This seems to imply that the difference in pop-
ulation between two areas does not matter compared to the total population.

There are two clear winning methods in this set of data and it is crowded
and many paths. They are lower risk than all of the others after 6 edges
added, with many paths staying lowest risk the whole way through in all
plots. Notably, these two methods are independent of each other. Given
a set of points, the Delaunay triangulation and its minimal spanning tree
is uniquely determined (barring degenerate cases), and the values for the
many paths algorithm are set, with no input from the population values of
the points. Given that same set of points, the populations are independently
generated, and is the only input for the crowded algorithm, with no input
from the positions of the points.

7.2 Data set 2

The second set of data is more useful, since we can plot it by road length
added rather than edges added. We have to approximate our data with a
curve, and this produces curves in plots 21-23 that looks similar to the plots
for our other set of data, but not for 24 that plots for all graph sizes.

The results in this set are relatively similar to the previous. The standout
difference is short and long. In the other set, long was markedly better, but
here, it is the opposite. long is by far the worst performing method. This
time it is likely for the opposite reason from before; adding long roads adds
the most length to the network, likely connecting points far from the center,
which makes the road unlikely to be traveled. Short performs better than
only few paths and alone, which were bad methods in the other set as well.

The methods high population difference and low population dif-
ference have similar results in figure 23, but in figure 21 and 22 high
population difference performs better after much road length is added.
That this difference is only once some edges have been added suggests that
a strategy that adds edges of middling population difference might be better
than picking from either extremes.

The best performing method by far is many paths, even more so than
in the other set of data. We can think of this method as connecting choke
points to each other, which after a few roads are added, is likely to create
paths around them. It is also possible that this algorithm is connecting two
points next to the choke point, bypassing the choke point for any cars going
through.

Plot 24 has a noticeably more extreme curve than the others. When

19

generating data for larger graph sizes, the more road length each algorithm
must add before terminating, we see that in plot 21, the x-axis stretches
from 0 to 25, while 23 goes all the way to 40. This means we have more
data points for these lower values, making 24 have an extreme curve that
tries to fit the early values at the expense of not fitting later ones as well.
This makes plot 24 a misrepresentative estimation, but the most important
quality of these plots - the ordering of the algorithms - is still intact.

7.3 Conclusion and improvements

Throughout all our data, we see two standout algorithms, many paths
and crowded. Many paths gives the lowest risk network both for early
iterations and late ones. They both lower the risk per capita in a network
in different ways. Many paths lowers it by connecting points that are
central to the network, ones that many cars have to travel through, and in
turn make journeys that travel through them faster, lowering the amount
of points visited by each car. Crowded solves it by connecting multiple
high population areas, which will have many cars wanting to travel between
them. These algorithms being at the top may not be very surprising, but
lends credence to the underlying model being sound.

This makes the other results all the more important. The algorithms
high population difference and low population difference had very
similar results to each other, implying that the difference in population of
two places matters less when connecting them than the total population
compared to surrounding places.

An assumption made in our model is that expanding a road does little
to lower the risk of accidents. That is why we don’t allow multiple edges
between points, and why roads have no carrying capacity. If a traffic official
was to decide on what roadwork to order, and the assumption that expand-
ing a road does not noticeably lower risk of accidents, the best choice is to
go for short roads that circumvent central and high population areas in the
network. This gives drivers options for their journeys, so choke points are
less prevalent.

An improvement that could be made for this model optimizing the code.
With faster code we could likely generate larger graphs and get more data to
analyze. As is the code is not very optimized, and better implementations of
the different algorithms and data management could go a long way. Another
thing that could be done is using more granular algorithms, instead of only
taking the most or least populous edges, including algorithms that take the
25%, 50%, and 75% quantile edge could give us better data. We could also
use an iterative approach for determining the algorithm itself, by making it
a genetic algorithm instead.

20

8 References

Cheng, Siu-Wing, Dey, T. K., & Shewchuk, J. (2013). Delaunay Mesh Gen-
eration. p. 31-33, 59-61

M. I. Shamos (1978). Computational Geometry. Yale University.

R. Grimaldi. (2004). Discrete and Combinatorial Mathematics - An Applied
Introduction. 5th ed., Pearson. p. 639, 631.

Viter, Antonii (2024). Triangulation Algorithm in Python.
https://github.com/AntoniiViter/Delaunay-Triangulation

Wikipedia (2025). Delaunay triangulation.
https://en.wikipedia.org/wiki/Delaunay_triangulation

21

https://github.com/AntoniiViter/Delaunay-Triangulation
https://en.wikipedia.org/wiki/Delaunay_triangulation

