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1 Introduction
In elementary probability theory, fundamental results such as the law of large
numbers are usually formulated in terms of sequences of random variables or
"random numbers". While such statements are intuitive and easily applied,
their rigorous foundation often requires a more abstract formulation using
measure theory.

Using general measure theory as a starting point, we want to translate
the theory in a constructive manner to end up with the measure theoretic
language for probability theory, highlighting how random variables, expec-
tations, and convergence theorems can be understood within this general
structure. This will help us to understand how the probabilistic version of
Birkhoff’s Ergodic Theorem follows from the general version, since essentially
it is just a translation between mathematical languages. Finally, we demon-
strate how the classical Strong Law of Large Numbers arises as a corollary
of this theorem.

2 Preliminaries
In this section, we begin by introducing the general construction of measure
spaces, which will later enable us to rigorously define probability spaces. Our
main focus is on spaces of infinite sequences, for which we aim to construct
appropriate event spaces and develop a well-defined notion of probability.

We then provide a brief review of integration theory, which serves as a
foundation for formulating Birkhoff’s Ergodic Theorem and defining expec-
tations and related concepts. Only the theoretical tools relevant to the main
results will be presented.

2.1 Construction of Measure Spaces

Given a set Ω, which is usually referred to as the sample space in the proba-
bilistic language, we define a σ-algebra, a special collection of subsets of the
sample space and also know as the event space.

Definition 2.1 (σ-algebra). A σ-algebra over a set Ω is a set A ⊂ 2Ω such
that:

(i) Ω ∈ A,
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(ii) if A ∈ A then Ω \ A ∈ A,

(iii) if Ai ∈ A for i ∈ N, then
⋃∞

i=1Ai ∈ A.

Given a set Ω and a σ-algebra A over Ω, the tuple (Ω,A) is called a mea-
surable space. The elements of A are said to be measurable sets (with respect
to the given measurable space). This structure allows us to define a measure
on A, which is a special type of function that assigns a real number to each
measurable set. For instance, in probability theory, we assign probabilities
to events using a probability measure.

Example 2.2. The trivial σ-algebra on a set Ω is {∅,Ω}.

Example 2.3. Given a set Ω and a collection C ⊂ 2Ω, we can easily construct
a σ-algebra that contains C by:

σ(C) =
⋂{

A ⊂ 2Ω
∣∣ A is a σ-algebra over Ω and C ⊂ A

}
,

since the intersection of σ-algebras is again a σ-algebra. This is referred to
as the σ-algebra generated by C. It is clearly the smallest σ-algebra that
contains C.

To be able to define a sequence of random variables, we require a product
σ-algebra on a space of sequences. We define the σ-algebra over both a finite
and a countable product of spaces.

Definition 2.4 (Product σ-algebra). Finite case: For n ∈ N, let (Ω1,A1), . . . , (Ωn,An)
be measurable spaces and let

C = {
n∏

i=1

Ai | Ai ∈ Ai for each i ∈ {1, 2, . . . , n}}.

The σ-algebra over
∏n

i=1Ωi, denoted by
⊗n

i=1 Ai, is called the product σ-
algebra and is defined by

n⊗
i=1

Ai = σ(C).

This makes (
∏n

i=1Ωi,
⊗n

i=1Ai) into a measurable space.
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Countable case: Let ((Ωi,Ai))
∞
i=1 be a sequence of measurable spaces

and define the collection of cylinder sets

D = {
n∏

i=1

Ai ×
∞∏

i=n+1

Ωi | n ∈ N, Ai ∈ Ai for each i ∈ {1, 2, . . . , n}}.

The σ-algebra over
∏∞

i=1Ωi, denoted by
⊗∞

i=1Ai, is called the infinite-product
σ-algebra and is defined by

∞⊗
i=1

Ai = σ(D).

This makes (
∏∞

i=1Ωi,
⊗∞

i=1Ai) into a measurable space.

Remark 2.5. There is an alternative definition of the product σ-algebra
that is equivalent to the one given in definition 2.4 that is particularly useful
when constructing independent random variables. For the countable case,
let Ω =

∏∞
i=1Ωi and

πi : Ω → Ωi

be defined by
πi(ω1, ω2, . . . ) = ωi

which is the projection map onto the i-th coordinate. Define also

G = {π−1
i (Ai) | Ai ∈ Ai, i ∈ N},

consisting of preimages of measurable sets under the projection maps . Then
the product σ-algebra is defined by

∞⊗
i=1

Ai = σ(G)

which is the smallest σ-algebra on the countable product space such that all
coordinate projections are measurable.

Example 2.6. a) For n ≥ 1, let T be the collection of open sets of R. Then
the smallest σ-algebra on R that is generated by T , that is, σ(T ), is called
the Borel σ-algebra on R and is usually denoted by B(R).
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b) The Borel σ-algebra over
∏n

i=1 R = Rn is
⊗n

i=1 B(R) which is denoted
by B(Rn).

c) In a similar manner, the Borel σ-algebra over the space of real sequences∏∞
i=1 R = RN is

⊗∞
i=1 B(R) and denoted by B(RN).

From now on, these spaces will always be equipped with the Borel σ-
algebras.

Definition 2.7 (Sub σ-algebra). Let A and F be σ-algebras on a set Ω.
Then F is a sub σ-algebra of A if F ⊂ A.

Definition 2.8 (Measure). Let Ω be a set and A a σ-algebra over Ω. A func-
tion µ : A → [0,∞] is called a measure on (Ω,A) if the following conditions
hold:

(i) for all A ∈ A, µ(A) ≥ 0,

(ii) µ(∅) = 0,

(iii) for all (Ai)
∞
i=1 of pairwise disjoint sets in A,

µ

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

If µ is a measure on a σ-algebra A over Ω, the triple (Ω,A, µ) is said to
be a measure space. We will later be restricting ourselves to a special case
of a measure space, the probability space, which is just a measure space with
µ(Ω) = 1 (where we restrict the codomain to [0,1]).

Definition 2.9 (σ-finite measure). Let (Ω,A, µ) be a measure space. The
measure µ is called σ-finite if there exists a sequence of measurable sets
(Ai)

∞
i=1 such that

Ω =
∞⋃
i=1

Ai

and µ(Ai) < ∞ for each i.

Example 2.10. If (Ω,A, µ) is a probability space, then it is σ-finite. Indeed,
let Ai = Ω for all i ∈ N. Clearly the union is equal to Ω and µ(Ai) = µ(Ω) =
1 < ∞.
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The concept of measure spaces can be generalized to product measure
spaces as follows: Let (Ω1,A1, µ1), . . . , (Ωn,An, µn) be measure spaces with
σ-finite measures, and let the product space Ω =

∏n
i=1 Ωi be endowed with

A =
⊗n

i=1Ai as in definition 2.4. It can be shown that there exists a unique
measure µ : A → [0,∞], often denoted µ1 × µ2 × · · · × µn, such that

µ(A1 × A2 × · · · × An) =
n∏

i=1

µi(Ai).

This construction defines a measure space (Ω,A, µ). We now define what it
means for a (real-valued) function to be measurable.

Definition 2.11 (Measurable function). Let (Ω1,A1) and (Ω2,A2) be mea-
surable spaces. A function f : Ω1 → Ω2 is said to be measurable (or A1-
measurable) if f−1(A) is a measurable set for all A ∈ A2.

Remark 2.12. Note that if f is F -measurable and F is a sub σ-algebra of
A, then f is also A-measurable.

The following function bear som important properties in Ergodic Theory.
It will be used to deduce the strong law of large numbers. The first thing we
need to do is to show that it is measurable.

Example 2.13. The shift map φ : RN → RN defined by

φ(x1, x2, . . . ) = (x2, x3, . . . ).

is measurable. To see this, recall that the Borel σ-algebra B(RN) is generated
by sets of the form C = {(x1, x2, . . . ) ∈ RN| (xi1 , xi2 , . . . , xin) ∈ B} where
B ∈ B(Rn), so we only need to show measurability for any such cylinder set.
Note that

φ−1(C) = {(x1, x2, . . . ) ∈ RN | (xi1+1, xi2+1, . . . , xin+1) ∈ B}.

which is also a cylinder set and thus belongs to B(RN).

In measure theory, we are often concerned only with properties that hold
on sets of positive measure. This perspective allows us to simplify many
arguments by ignoring sets of measure zero. For example, some important
convergence theorems do not hold unless the convergence fails only on a set
of measure zero. The following definition makes this idea more precise.
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Definition 2.14. Let P be a property concerning the points ω of a measure
space (Ω,A, µ). Then P is said to be true almost everywhere (a.e.) if the set
of points for which P is not true has measure zero.

Remark 2.15. If the measure space is a probability space, the term "almost
everywhere" (a.e.) is often referred to as "almost surely" (a.s.).

Given a measurable function function from an arbitrary measure space,
the measure can be pushed forward along the function to obtain a new mea-
sure on the codomain. This is commonly used in probability spaces to obtain
the so called probability distribution of a random variable, which we will in-
troduce later.

Proposition 2.16. Let (Ω1,A1, µ) be a measure space and (Ω2,A2) a mea-
surable space. Let f : Ω1 → Ω2 be a measurable function. Then the mapping

µf : A2 → [0,∞]

given by
µf (A) = µ(f−1(A))

is a measure on A2. The measure µf is usually referred to as the measure
induced by f .

Proof. Clearly µf ≥ 0 since µ ≥ 0, and µf (∅) = µ(f−1(∅)) = µ(∅) = 0. Given
a sequence (Ai)

∞
i=1 of pairwise disjoint sets in A2, we have

µf

(
∞⋃
i=1

Ai

)
= µ

(
f−1

(
∞⋃
i=1

Ai

))

= µ

(
∞⋃
i=1

f−1(Ai)

)

=
∞∑
i=1

µ
(
f−1(Ai)

)
=

∞∑
i=1

µf (Ai),

so it is indeed a measure on A2.
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2.2 Lebesgue Integration

We briefly go through the construction of the Lebesgue integral. A main
advantage of the Lebesgue integral over the Riemann integral, especially
in probability theory, is that it allows, for example, expectations of both
discrete and continuous random variables to be treated simultaneously. Other
important advantages include its convergence properties that follows from the
Bounded Convergence Theorem, which will be used later in the text. The
statements are given without further discussion.

Definition 2.17 (Indicator Function). Let Ω be a set and A ⊂ Ω. The
indicator function of A, denoted 1A : Ω → R, is defined by

1A(ω) =

{
1, if ω ∈ A,

0, if ω /∈ A.

Proposition 2.18. The indicator function 1A : Ω → R on a measurable
space (Ω,A) is measurable if and only if A is measurable.

Definition 2.19. (Simple Function) Let (Ω,A) be a measurable space. A
function f : Ω → R is called a simple function if it can be written as

f(ω) =
n∑

i=1

ci1Ai
(ω),

where ci ∈ R and Ai are measurable sets.

Remark 2.20. Note that since the sum of measurable functions are mea-
surable, it follows that every simple function is measurable.

Definition 2.21. A simple function f on a measure space (Ω,A, µ), given
by

f(ω) =
n∑

i=1

ci1Ai
(ω)

is said to be integrable if µ(Ai) < ∞ for all i for which ci ̸= 0. We define the
integral of f with respect to µ to be∫

f dµ =
n∑

i=1

ciµ(Ai).

We adopt the convention that ciµ(Ai) = 0 whenever ci = 0 and µ(Ai) = ∞.
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We now extend the definition of the integral to more general functions.
The same notational convention will be used.

Definition 2.22. If f : Ω → [0,∞) is a measurable function on a measure
space (Ω,A, µ), its integral is defined as∫

f dµ = sup

{∫
g dµ : 0 ≤ g ≤ f, g simple

}
.

Finally, A measurable function f : Ω → R is said to be integrable (w.r.t.
the measure µ) if ∫

|f | dµ < ∞.

If f is integrable, its integral is defined by∫
f dµ =

∫
max(f, 0) dµ−

∫
max(−f, 0) dµ.

If A is a measurable set and f is integrable, then the integral over A is
defined by ∫

A

f dµ =

∫
f · 1A dµ.

Remark 2.23. If the integral is taken over the entire set Ω, we will sometimes
omit writing it out.

Bear in mind the following proposition, which will be the key to deducing
the probabilistic version of the Ergodic Theorem from the general one.

Proposition 2.24 (Change of variable formula). Let (Ω1,A1, µ) be a mea-
sure space and (Ω2,A2) a measurable space. Let g : Ω1 → Ω2 be a measurable
function and f : Ω2 → R integrable w.r.t the measure induced by g. Then for
any A ∈ A we have ∫

A

f dµg =

∫
g−1(A)

f ◦ g dµ.

3 Random Variables
We start by reviewing the definition of a probability space.
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Definition 3.1 (Probability space). A probability space is a measure space
(Ω,A, P ), where Ω is a set called the sample space, A is a σ-algebra called
the event space, and P is a measure, called the probability measure, that
satisfies P (Ω) = 1.

From now on, we will denote a general probability space by (Ω,A, P ).

3.1 Definition and Properties

Loosely speaking, a random variable is a function that assigns each element
of the sample space to a real number. Because the probability measure is
defined only on measurable sets, the function itself must be measurable

Definition 3.2 (Random variable). A random variable is a measurable func-
tion X : Ω → R.

More generally, if X1, ..., Xn : Ω → R are random variables, a random
vector is a measurable function (X1, ..., Xn) : Ω → Rn.

We have previously defined the measure induced by a measurable function
between arbitrary measurable spaces (see proposition 2.16). In the proba-
bilistic setting, the measure induced by a random vector Y = (X1, . . . , Xn) :
Ω → Rn, consistent with the previous notation, is given by

PY : B(Rn) → [0, 1], PY (A) = P (Y −1(A))

and is called the probability distribution of Y .

Two events A1, A2 ∈ A are said to be independent if P (A1 ∩ A2) =
P (A1)P (A2). This notion can be extended to more than two events by
induction. Since for any random variable X, the preimage of any borel
set belongs to A, independence of n random variables is naturally defined as
follows:

Definition 3.3. The random variables X1, . . . , Xn : Ω → R are said to be
independent if

P

(
n⋂

i=1

X−1
i (Bi)

)
=

n∏
i=1

PXi
(Bi)

for all Bi ∈ B(R).
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Proposition 3.4. Suppose X1, X2, . . . , Xn are independent random vari-
ables with distributions PX1 , . . . , PXn respectively. Then the random vector
(X1, . . . , Xn) has distribution PX1 × · · · × PXn.

Proof. Using the product measure constructed earlier, for B1, . . . , Bn ∈ B(R)
we have that

P
(
(X1, . . . , Xn)

−1(B1 × · · · ×Bn)
)
= P

(
X−1

1 (B1) ∩ · · · ∩X−1
n (Bn)

)
indep.
=

n∏
i=1

PXi
(Bi)

= PX1 × · · · × PXn(B1 × · · · ×Bn).

3.2 Expectations

As claimed earlier, one important advantage of measure-theoretic probability
theory is that it allows us to define objects such as the expected value for
both discrete and continuous random variables simultaneously, since, we can
use the counting measure for discrete random variables and the Lebesgue
measure for the continuous case.

Definition 3.5 (Expected Value). Let X be a random variable defined on
(Ω,A, P ). The expected value of X, denoted by E[X], is the defined as

E[X] =

∫
Ω

X dP.

We will sometimes write EP [X] to emphasize the underlying probability mea-
sure.

The probabilistic Ergodic Theorem is formulated in terms of conditional
expectation, and therefore we will introduce it here.

Remark 3.6. Since a random variable X is, in particular, a measurable
function, it follows by the definition given in section 2.2 that it is integrable
if E[|X|] < ∞.

Definition 3.7 (Conditional Expectation). Let F ⊂ A be a sub σ-algebra,
and X : Ω → R a (A-measurable) random variable with E[|X|] < ∞.
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The conditional expectation of X given F , written as E[X | F ], is an F -
measurable random variable that satisfies∫

F

E[X | F ] dP =

∫
F

X dP

for all F ∈ F .

Lemma 3.8. The conditional expectation E[X | F ] given in definition 3.7
is integrable, i.e., E[E[X | F ]] < ∞.

Proof. Let A = {ω ∈ Ω | E[X | F ](ω) > 0}. It is easy to verify that A is
F -measurable. By the monotonicity of the integral, We have∫

A

E[X | F ] dP =

∫
A

X dP ≤
∫
A

|X| dP.

We also know that Ω \A is F -measurable and again by monotonicity we get∫
Ω\A

−E[X | F ] dP =

∫
Ω\A

−X dP ≤
∫
Ω\A

|X| dP.

Using the fact that |E[X | F ]| = E[X | F ] on A and |E[X | F ]| = −E[X | F ]
on Ω \ A, we conclude that E|E[X | F ]| ≤ E|X|.

Theorem 3.9 (Kolmogorov’s Existence and Uniqueness Theorem for Con-
ditional Expectation). The conditional expectation E[X | F ] exists and is
unique almost surely.

Proof. See for example [1, pp. 206–207].

Example 3.10. If F is the trivial σ-algebra (see example 2.2) , Then E[X |
F ] = E[X]. Indeed, we have that∫

∅
E[X | F ] dP =

∫
∅
X dP = 0

and ∫
Ω

E[X | F ] dP =

∫
Ω

X dP = E[X].
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4 Stochastic Processes and Extension of mea-
sures

We begin by defining what a (general) stochastic process is.

Definition 4.1. Let T be an index set (often interpreted as time). A stochas-
tic process is an ordered collection of random variables (Xt : Ω → R | t ∈ T).

4.1 Sequences of Random Variables

If T = N, we obtain a sequence of random variables X1, X2, . . . The process
is then called a discrete-time stochastic process. We will only consider se-
quences of random variables. It will be essential for stating and proving the
Strong Law of Large Numbers.

A stochastic process can also be viewed as a measurable function Y =
(X1, X2, . . . ) : Ω → RN. This is helpful because it allows us to study the
process as one mathematical object.

Proposition 4.2 (Measurability of The Canonical Stochastic Process). The
mapping

Y = (X1, X2, . . . ) : Ω → RN

defined by
Y (ω) = (X1(ω), X2(ω), . . . ),

is a measurable function. Hence it defines a stochastic process.

We now present the three most important properties that a sequence of
random variables can satisfy.

Definition 4.3. The random variables X1, X2, ... are said to be independent
if every finite subcollection (Xi1 , . . . , Xin) consists of independent random
variables.

Definition 4.4. A sequence of random variables X1, X2, . . . are said to be
identically distributed if PX1 = PXn for all n ≥ 1.

Definition 4.5. A sequene of random variables X1, X2, . . . is said to be
stationary if for any k ≥ 0 and any n ≥ 0, the random vectors (X1, X2, ..., Xn)
and (Xk+1, Xk+2, ..., Xk+n) has the same distribution.
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Example 4.6. Let X1, X2, . . . be i.i.d. random variables. Then they form a
stationary sequence. Given k, n ≥ 0, define the random vector

Yk = (Xk+1, Xk+2, . . . , Xk+n).

Using Proposition 3.4 and the fact that the variables have the same distri-
bution, we obtain for B1, . . . , Bn ∈ B(R) that

PY0(B1 × · · · ×Bn)
indep.
= PX1(B1)× · · · × PXn(Bn)

i.d.
= P⊗n

X1
(B1 × · · · ×Bn).

Similarly, for Bk+1, . . . , Bk+n ∈ B(R),

PYk
(Bk+1×· · ·×Bk+n)

indep.
= PXk+1

(Bk+1)×· · ·×PXk+n
(Bk+n)

i.d.
= P⊗n

Xk+1
(Bk+1×· · ·×Bk+n).

Since X1 and Xk+1 are identically distributed, it follows that the distri-
butions of Y0 and Yk agree. Hence, the sequence is stationary.

4.2 Kolmogorov’s 0-1 Law and Extension Theorem

Theorem 4.7 (Kolmogorov’s Extension Theorem). Suppose we are given
a probability measures P1, . . . , Pn on (R,B(R)), . . . , (Rn,B(Rn)) respectively,
which are consistent, that is,

Pn+1(B1 × · · · ×Bn × R) = Pn(B1 × · · · ×Bn)

for all B1, ..., Bn ∈ B(R). Then there exists a unique probability measure
PN : B(RN) → [0, 1] such that

PN(B1 × · · · ×Bn × RN) = Pn(B1 × · · · ×Bn).

Proof. A detailed proof can be found in [1, Appendix A.3, pp. 464–466]

There is an important special case of the theorem. If P is a probability
measure on (R,B(R)) and Pn = P⊗n, which is the product measure with
respect to itself, then by the definition of the product measure (see the dis-
cussion on page 8) and the fact that the measure on the whole space is 1, we
have

P⊗(n+1)(B1 × · · · ×Bn × R) = P⊗n(B1 × · · · ×Bn) · P (R)
= P⊗n(B1 × · · · ×Bn).
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This shows consistency. Hence by the extension theorem, the measure can
be uniquely extended to PN such that

PN (B1 × · · · ×Bn × RN) = P⊗n (B1 × · · · ×Bn)

=
n∏

i=1

P (Bi).

Note how, given that a sequence of random variables X1, X2, . . . has the
same distribution PX1 , we can let P = PX1 to imply independence.
Before we state Kolmogorov’s 0− 1 law, we simplify notations and state an
important definition. Let X1, X2, . . . be a sequence of random variables on
(Ω,A, P ) and write

σ(Xk, Xk+1, . . . ) = σ(X−1
k (B) | B ∈ B(R)).

This is the smallest σ-algebra that makes all the random variables in the
sequence measurable. Define the tail σ-algebra

T =
∞⋂
k=1

σ(Xk, Xk+1, . . . ).

Note that T is a sub σ-algebra of A.

Theorem 4.8 (Kolmogorov’s 0-1 Law). Suppose that X1, X2, . . . are inde-
pendent random variables. If A ∈ T , then P (A) ∈ {0, 1}.

Proof. The proof is short and straightforward and can be found in [1, pp.
81–82].

5 Birkhoff’s Ergodic Theorem

5.1 Ergodicity and Measure-preserving

Throughout this section, let (Ω,A, µ) a be probability space.

Definition 5.1 (Measure-Preserving). A measurable map T : Ω → Ω is
said to be measure-preserving (or to preserve µ) if µ(T−1(A)) = µ(A) for all
A ∈ A.
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From now on, we let T be a measure-preserving transformation with
respect to (Ω,A, µ). We call the quadruple (Ω,A, µ, T ) a measure-preserving
system. A set A ∈ A is said to be T -invariant if T−1(A) = A a.s.. We will
adopt the convention that two sets are considered equal if they are equal up
to a set of measure 0, and will sometimes omit writing "a.s." explicitly.

Definition 5.2 (Ergodicity). The transformation T is ergodic if every T -
invariant set has measure 0 or 1.

5.2 Statement of the Ergodic Theorem

Theorem 5.3 (Birkhoff). Let (Ω,A, µ, T ) be a measure-preserving system
and suppose that f : Ω → R is integrable, then the limit

f ∗(ω) = lim
n→∞

1

n

n−1∑
j=0

f(T j(ω))

exists a.e. Moreover, f ∗ is integrable, and∫
f ∗ dµ =

∫
f dµ.

If T is ergodic, then

f ∗(ω) =

∫
f dµ a.e.

5.3 A Probabilistic Formulation

Fix a measure-preserving system (Ω,A, P, T ). Define I to be the collection
of T -invariant events, i.e.,

I = {A ∈ A : T−1(A) = A}.

The following lemma shows that it is a σ-algebra.

Lemma 5.4. The collection I is a sub σ-algebra of A.

Proof. First, note that Ω ∈ I Since T is a map from Ω to Ω:

T−1(Ω) = {ω ∈ Ω | T (ω) ∈ Ω}
= Ω.
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Now let A ∈ I, then since T−1(A) = A we have

T−1(Ac) = T−1(A)c = Ac

hence Ac ∈ I. Finally, we show that I is closed under countable unions. If
Ai ∈ I for i ∈ N, then T−1(Ai) = Ai for each i ∈ N so

T−1(
∞⋃
i=1

Ai) =
∞⋃
i=1

T−1(Ai) =
∞⋃
i=1

Ai.

Recall that T is ergodic if every T -invariant subset has measure 0 or 1.
In other words, T is ergodic if for every A ∈ I, P (A) ∈ {0, 1}, which is
equivalent to saying that I is trivial.

Lemma 5.5. A random variable X : Ω → R is I-measurable if and only if
it is T-invariant, i.e., X ◦ T = X a.s.

Proof. Suppose X is I-measurable. Then for any B ∈ B(R) we have X−1(B) ∈
I. By the definition of I,

T−1(X−1(B)) = X−1(B) a.s..

But

T−1(X−1(B)) = {ω : T (ω) ∈ X−1(B)} = {ω : X(T (ω)) ∈ B} = (X◦T )−1(B).

Thus
(X ◦ T )−1(B) = X−1(B) a.s..

This shows that
X ◦ T = X a.s..

Conversely, suppose X ◦ T = X a.s. . Let B ∈ B(R). We need to show
that X−1(B) ∈ I, i.e.

T−1(X−1(B)) = X−1(B) a.s..

But
T−1(X−1(B)) = (X ◦ T )−1(B).
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Since X ◦ T = X a.s.,

(X ◦ T )−1(B) = X−1(B).

Thus T−1(X−1(B)) = X−1(B) a.s., so X−1(B) ∈ I.
Hence X is I-measurable.

Theorem 5.6 (Birkhoff - A Probabilistic Formulation). Let (Ω,A, P, T ) be
a measure-preserving system, and let X : Ω → R be a random variable with
E[|X|] < ∞. Then,

lim
n→∞

1

n

n−1∑
j=0

X(T j(ω)) = E[X | I](ω) a.s..

Furthermore, if T is ergodic, then

lim
n→∞

1

n

n−1∑
j=0

X(T j(ω)) = E[X] a.s..

We aim to show that this probabilistic formulation is equivalent to the
one given in theorem 5.3. Suppose theorem 5.3 holds and let f = X. Since
X is, in particular, a measurable function defined on a probability space,
the assumptions are fulfilled. Now, let I be as above. To conclude that
f ∗ = E[X | I] a.s., we has to show that f ∗ is an I-measurable random
variable that satisfies ∫

I

E[X | I] dP =

∫
I

X dP

for all I ∈ I. Define

fn(w) =
1

n

n−1∑
j=0

X(T j(ω)).

Both X and T are measurable by assumption so the composition is also
measurable. Furthermore, finite sums of measurable functions are measur-
able, and the pointwise limits are then measurable, which shows that f ∗ is a
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random variable. Moreover, f ∗ is T invariant:

f ∗(T (ω)) = lim
n→∞

1

n

n−1∑
j=0

X(T j+1(ω))

= lim
n→∞

1

n

n∑
j=1

X(T j(ω))

= lim
n→∞

(
1

n

n−1∑
j=0

X(T j(ω))− 1

n
X(ω) +

1

n
X(T n(ω))

)
=

= f ∗(ω) a.s.

since X(ω) ∈ R and X(T n(ω)) ∈ R. Hence it follows by lemma 5.5 that f ∗ is
I-measurable. Let I ∈ I. Using the change of variable formula (proposition
2.24) and the fact that I is invariant and T is measure-preserving we have∫

I

fn dPT =

∫
I

(
1

n

n−1∑
j=0

X ◦ T j

)
dPT

=
1

n

n−1∑
j=0

∫
I

X ◦ T j dPT

=
1

n

n−1∑
j=0

∫
I

X d(P ◦ T−j)

=
1

n

n−1∑
j=0

∫
I

X dP

=

∫
I

X dP

But note also that ∫
I

fn dPT =

∫
I

fn d(P ◦ T−1)

=

∫
I

fn dP

thus we have ∫
I

fn dP =

∫
I

X dP for all n.
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Finally, since fn converges pointwise to f ∗, we may, omitting the details of
finding a dominating function, apply the Bounded Convergence Theorem (see
[3, pp. 54–56] for a full proof and statement)∫

I

f ∗ dP =

∫
I

lim
n→∞

fn dP

= lim
n→∞

∫
I

fn dP

=

∫
I

X dP.

The claim f ∗ = E[X | I] follows from the uniqueness of conditional expec-
tation (see theorem 3.9). The last part of the theorem is clear, since if T is
ergodic, then I is trivial and the claim then follows from example 3.10

6 The Strong Law of Large Numbers
Start by observing that a sequence of random variables can be viewed as an
element of RN, namely (X1(ω), X2(ω), . . . ) ∈ RN. To deduce the Strong Law
of Large number from the Ergodic Theorem, we need construct a measure-
preserving system on the space of real sequences RN. We start by showing
some crucial properties about the shift map defined in example 2.13, where
its measurability was shown.

Lemma 6.1. The shift map is ergodic.

Proof. Recall the shift map

φ : RN → RN, φ(x1, x2, . . . ) = (x2, x3, . . . ),

and let Iφ be the collection of φ-invariant events. Let A ∈ Iφ, then

A = φ−1(A) = {(x1, x2, . . . ) ∈ RN | (x2, x3, . . . ) ∈ A} ∈ σ(X2, X3, ...)

since A only depends on (x2, x3, . . . ) and not on x1. Similarly,

A = φ−2(A) = {(x1, x2, . . . ) ∈ RN | (x3, x4, . . . ) ∈ A} ∈ σ(X3, X4, ...).

By induction we get that

A ∈
∞⋂
k=1

σ(Xk, Xk+1, . . .) = T ,
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where T is the tail σ-algebra. This implies that Iφ ⊂ T . When the proba-
bility distribution PN

X1
is put on RN, we get that the sequence X1, X2, . . . are

independent by the extension theorem, so T is trivial by the 0-1 law. Thus
Iφ is trivial which shows that P (A) ∈ {0, 1}.

Now let X1, X2, . . . be a sequence of random variables on (Ω,A, P ). By
proposition 4.2, the random variables induces a stochastic process

Y = (X1, X2, . . . ) : Ω → RN

defined by
Y (ω) = (X1(ω), X2(ω), . . . ).

Since Y is a measurable function, we can endow RN with the induced
measure which we refer to as the distribution of the stochastic process Y . We
prove the following lemma:

Lemma 6.2. If X1, X2, . . . are i.i.d., then the shift map preserves the dis-
tribution PY .

Proof. Note that the distribution of Y is given by

PY : B(RN) → [0, 1], PY (B) = P (Y −1(B)).

We want to show that PY (φ
−1(B)) = PY (B) for all B ∈ B(RN). Given

B ∈ B(RN), we have

PY (φ
−1(B)) = P (Y −1(φ−1(B)))

= P ((φ ◦ Y )−1(B))

= Pφ◦Y (B).

Now, since a sequence of i.i.d. random variables is stationary (see example
4.6), the distribution of the shifted sequence φ◦Y agrees with the distribution
of Y , that is,

Pφ◦Y (B) = PY (B),

which completes the proof of the lemma.

Theorem 6.3 (Strong Law of Large Numbers). Let X1, X2, . . . be a sequence
of i.i.d. random variables over (Ω,A, P ) with E[|X1|] < ∞. Then

lim
n→∞

1

n

n∑
k=1

Xk(ω) = E[X1] a.s..
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Proof. Since X1, X2, . . . are i.i.d., lemma 6.2 says that the shift map φ pre-
serves the distribution PY , the unique measure on RN. Hence (RN,B(RN), PY , φ)
is a measure-preserving system. Furthermore, φ is ergodic by lemma 6.1.
Now let X = π1, the projection map onto the first coordinate (which is mea-
surable by construction), and T = φ in Theorem 5.6. Thus, almost surely,
we get that

EPY
[X] = lim

n→∞

1

n

n−1∑
j=0

X
(
T j(w1, w2, . . . )

)
= lim

n→∞

1

n

n∑
j=1

X
(
T j−1(w1, w2, . . . )

)
= lim

n→∞

1

n

n∑
j=1

π1

(
φj−1(X1(w), X2(w), . . . )

)
= lim

n→∞

1

n

n∑
j=1

π1

(
Xj(w), Xj+1(w), . . .

)
= lim

n→∞

1

n

n∑
j=1

Xj(w).

But since Xj = π1 ◦ T j, we conclude that

lim
n→∞

1

n

n∑
j=1

Xj(w) = Ep(X1) a.s.

Note how this can be solved with theorem 5.3 using the change of variable
formula (proposition 2.24):

EPY
[π1] =

∫
RN

π1 dPY =

∫
Ω

π1 ◦ Y dP = EP [X1].

But this is essentially already done in the discussion about the probabilistic
formulation of the Ergodic Theorem.
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