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Abstract

We investigate epidemic dynamics and mitigation strategies in syn-
thetic populations using the inhomogeneous SIRVD (iSIRVD) model
on small-world networks. In our framework, individuals are divided
into high- and low-risk groups with distinct probabilities of mortal-
ity upon infection. We implement pre-epidemic (”pulse”) vaccination
strategies, comparing random allocation to targeted vaccination of
high-risk individuals. Simulations analyze how these strategies af-
fect total mortality, considering varying vaccine coverage levels and
intervention timing. Our results demonstrate that prioritizing high-
risk individuals for vaccination consistently reduces epidemic mortal-
ity more effectively than random allocation, especially when vaccine
resources are limited. These findings highlight the importance of risk-
based mitigation measures in structured populations and illustrate
the policy advantages of targeting vulnerable groups in public health
interventions.
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Chapter 1

Introduction

1.1 Background

Infectious disease outbreaks remain a persistent threat to public health and
highlight the importance of robust analytical tools for anticipating epidemic
dynamics and evaluating interventions. Mathematical models play a central
role in this task, enabling both researchers and policymakers to anticipate
the progression of outbreaks and assess potential control strategies before
implementation [1]. The traditional approach to modeling infectious diseases
employs compartmental models, such as the susceptible-infectious-recovered
(SIR) framework [2]. While such models have provided valuable insights into
epidemic dynamics, they often assume homogeneous mixing, not reflecting
the structured nature of real-world contact networks [3].

In reality, individuals are embedded in social and spatial networks that
constrain and channel disease transmission. Epidemics in such structured
populations can differ substantially from the predictions of well-mixed mod-
els [4]. Network-based epidemic models, where nodes represent individu-
als and edges represent potentially infectious contacts, address these struc-
tures and offer more realistic simulations of outbreaks. For instance, small-
world networks—which combine high clustering with short average path
lengths—have been shown to influence both the speed and extent of epi-
demic spread [5].

Incorporating network structure is also crucial for evaluating interventions
such as vaccination. The effectiveness of these measures depends not just on
coverage but also on the organization of contacts and the distribution of risk
within the population [6]. Risk stratification—directing interventions toward
those at greatest risk of severe outcomes—has become a central public health
strategy, especially in the context of COVID-19 [7].
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Building on these developments, the present study examines how risk-
based vaccination strategies affect outbreak trajectories in structured net-
works, with a focus on the benefits of targeting high-risk individuals to reduce
mortality.

1.2 Aim

This thesis investigates how targeted and random pulse vaccination strategies—
applied either before or during an epidemic—affect mortality and epidemic
size in small-world networks, using an inhomogeneous SIRVD (iSIRVD) model.
Particular attention is given to how the timing of vaccination interventions
and the allocation of vaccine doses between high- and low-risk groups shape
these outcomes.

Previous research has leveraged network-based epidemic models, espe-
cially those incorporating small-world features, to identify how the structure
of social contacts shapes disease dynamics [5, 8]. Recent studies empha-
size improving vaccine strategy timing and targeting, including optimal con-
trol approaches that dynamically minimize epidemic impacts [9] and game-
theoretic analyses of individual behaviors and collective outcomes [10].

Modern models increasingly incorporate complex network features or
adaptive features, with some demonstrating that hybrid strategies—such as
those based on network centrality or other heuristics—are particularly effec-
tive in large or heterogeneous populations [11]. Other approaches enhance
model realism by considering factors like region-specific contact patterns and
population mobility [12].

In addition to transmission modeling, researchers have considered behav-
ioral responses such as vaccine hesitancy [13] and strategies for promoting
equitable vaccine access [14].

Nonetheless, most prior work tends to analyze either timing or alloca-
tion strategies in isolation, often assuming a static network. Comprehensive
studies systematically comparing both timing and allocation—particularly
using iSIRVD frameworks with explicit risk groups on small-world networks—
remain limited [7, 1]. This study seeks to address this gap.

1.3 Delimitations

This research relies exclusively on simulations using synthetic small-world
networks and fixed risk groups, without empirical infection or mobility data [5,
8]. Models of optimal control, game-theoretic frameworks, behavioral re-
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sponses, and equity-focused delivery are not implemented [9, 10, 14]. Addi-
tional interventions such as quarantine or other adaptive policies are also be-
yond the study’s scope. Accordingly, results offer qualitative insights rather
than precise forecasts for policy.

1.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 reviews the
theoretical foundations of epidemic modeling, including compartmental and
network-based frameworks, with particular emphasis on the SIRVD model
and the Watts-Strogatz small-world network structure. Chapter 3 describes
the methodological approach, detailing the construction of risk-stratified pop-
ulations, network generation, vaccination strategies, and the simulation pro-
tocol. Chapter 4 presents the experimental design, including the formulation
of research questions and hypothesis testing procedures. The results of these
simulations are displayed in Chapter 5, focusing on the comparative effective-
ness of targeted and random vaccination strategies under various scenarios.
Chapter 6 discusses the main findings in the context of existing literature,
evaluates the practical implications and potential limitations of the study,
and outlines directions for future research. The thesis concludes with ac-
knowledgements, as well as supplementary material and code provided in
the appendices.
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Chapter 2

Theory

2.1 Compartmental Epidemic Models

Compartmental models are a foundational tool in infectious disease epidemi-
ology [1]. These frameworks describe how individuals in a population move
among mutually exclusive health states over time. To analyze intervention
strategies and risk heterogeneity, we extend the classical SIR model as de-
scribed below.

2.1.1 Graph-based SIRVD Model (Discrete Time)

In this study, the SIRVD model is formulated on a contact network, repre-
sented by an undirected graph G = (V,E). Each node in V corresponds to
an individual, and edges in E represent potential transmission routes (i.e.,
close-contact links).

The population is partitioned into five compartments: susceptible (S),
infectious (I), recovered (R), vaccinated (V ), and deceased (D). The size of
each compartment evolves in discrete time steps (t), with transitions governed
by the following probabilistic rules:

• At each timestep, every susceptible individual examines each network
neighbor. For each infectious neighbor, a transmission event occurs
independently with probability β. That is, a susceptible becomes in-
fected with probability 1−(1−β)kI , where kI is the number of infectious
neighbors.

• Susceptible individuals may also be vaccinated with probability ν. In
standard compartmental models, vaccination typically occurs continu-
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ously, with a proportion of susceptible individuals vaccinated at each
timestep.1

• Infectious individuals recover with probability γ, or die due to disease
with probability µ; otherwise, they remain infectious. The sum γ + µ
cannot exceed 1, since it represents the total probability of leaving the
infectious state per timestep.

The underlying contact network G is generated using a small-world algo-
rithm; see Section 2.2.1 for details.
Vaccinated individuals are assumed to acquire complete and lasting immu-
nity throughout the simulation.

St+1 = St − new infectionst − new vaccinationst

It+1 = It + new infectionst − new recoveriest − new deathst

Rt+1 = Rt + new recoveriest

Vt+1 = Vt + new vaccinationst

Dt+1 = Dt + new deathst

(2.1)

Table 2.1: Variables and parameters for the discrete-time SIRVD model.

Symbol Description

St Number of susceptible individuals at time t
It Number of infectious individuals at time t
Rt Number of recovered individuals at time t
Vt Number of vaccinated individuals at time t
Dt Number of deceased individuals at time t
β Probability of infection per susceptible per step
ν Probability of vaccination per susceptible per step
γ Probability of recovery per infectious per step
µ Probability of disease-induced death per infectious per step

In standard compartmental models with homogeneous mixing (i.e., no un-
derlying network), infection is modeled differently; here, we explicitly restrict
infection events to occur along the edges of G only.

1In this study, by contrast, vaccination is implemented as a one-time (“pulse”) event,
rather than a possibility at each timestep. See Chapter 3.4 for implementation details.
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Figure 2.1: Flowchart of the discrete-time SIRVD model. Symbols: S =
Susceptible, I = Infectious, R = Recovered, V = Vaccinated, D = Deceased.
Transitions are governed by the per-step probabilities in Table 2.1.

2.1.2 Risk Group Stratification: The iSIRVD Model

To represent differing disease risks, the population is stratified into high-risk
and low-risk groups, giving the inhomogeneous SIRVD (iSIRVD) model [7].
Each node is randomly assigned to one risk group (g ∈ {HR,LR}) at initial-
ization, and retains this classification.
For each group g, the five compartments (Sg, Ig, Rg, Vg, Dg) are tracked
separately. Transition probabilities are identical across groups except for the
disease-induced death probability µg, which is greater for the high-risk group.
For all groups, the constraint γ + µg ≤ 1 applies.
All disease transmission steps continue to occur exclusively along edges in
the underlying network.

Table 2.2: Additional notation and parameters for the iSIRVD model, with
risk group stratification.

Symbol Description

g Risk group: HR (high risk) or LR (low risk)
Sg, Ig, Rg, Vg, Dg Compartment counts for risk group g
µg Disease-induced death probability for group g per time step

This framework allows simulation of targeted vaccination interventions
and group-differentiated health outcomes under network-based epidemic sce-
narios. For further mathematical specifics and implementation details, see
Section 3.1.
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Figure 2.2: Flowchart of the discrete-time iSIRD model with high-risk
(Sh, Ih, Rh, Dh) and low-risk (Sl, Il, Rl, Dl) groups. Both groups share the
same recovery probability (γ) but have group-specific mortality probabilities
(µh, µl).

Case Fatality Rate in the Discrete-Time SIRVD Model

It is important to clarify that the per-step, group-specific death probabilities
(pdeath,HR, pdeath,LR) set in the model dictate the likelihood of death given
infection at each timestep, but do not correspond directly to the overall
case fatality rate (CFR) observed over the course of the epidemic. In the
discrete-time SIRVD dynamics, each infected individual either recovers (with
probability prec), dies (with probability pdeath), or remains infectious at each
timestep. The probability that an individual ultimately dies from infection
before recovering is given by:

CFR =
pdeath

pdeath + prec
(2.2)

This calculation applies independently to each risk group by substituting
the corresponding death probability. For example, with pdeath,HR = 0.04
and prec,HR = 0.15, the high-risk group has a theoretical CFR of 0.210. For
pdeath,LR = 0.01 and prec,LR = 0.15, the low-risk CFR is 0.0625.
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Risk Group pdeath prec Theoretical CFR

High-Risk 0.04 0.15 0.210
Low-Risk 0.01 0.15 0.0625

Table 2.3: Input death and recovery probabilities with corresponding theo-
retical case fatality rate (CFR) in the iSIRVD framework.

Simulation results and reporting of CFR always refer to this emergent,
model-based definition unless otherwise specified.

2.2 Network Models for Epidemics

Traditional epidemic models often assume homogeneous mixing, where every
individual is equally likely to contact any other. However, real populations
exhibit complex patterns of social connections. Network-based models ad-
dress this by representing individuals as graph nodes, with edges denoting
potential transmission contacts [3, 4]. This approach captures heterogene-
ity in contact patterns, clustering, and community structure, all of which
substantially influence disease dynamics compared to well-mixed models.
NNetwork structure affects not only epidemic spread but also the impact
of interventions such as vaccination and quarantining [8].

2.2.1 The Watts-Strogatz Small-World Model

Let G = (V,E) be an undirected graph with N = |V | nodes, where N is the
population size and K (even, K ≪ N) represents the number of neighbors
each node connects to. The Watts-Strogatz (WS) model constructs G in two
steps [5]:

1. Regular Ring Lattice: Place N nodes on a ring and connect each
node i ∈ V to its K/2 nearest neighbors on each side:

E0 = {(i, j) | i ∈ V, 1 ≤ |i− j| mod N ≤ K/2}

This forms a K-regular lattice.

2. Random Rewiring: For each edge (i, j) with i < j in E0, with
probability p (0 ≤ p ≤ 1), rewire the endpoint j to a new node l ̸= i,
selected uniformly at random from all nodes except i. If the chosen
l would result in a self-loop (l = i) or would create a duplicate edge
(i, l) ∈ E, a new l is selected uniformly at random, and this process is
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repeated until a valid node is found. Each edge may be rewired only
once.

By design, G is a simple, undirected graph with mean degree K for all
p. The rewiring parameter p controls the transition from a regular lat-
tice (p = 0) with high clustering and long paths, to a random network
(p = 1) with low clustering and short average path length. It is only for
small values of p that networks exhibit both high clustering and short av-
erage path lengths—defining the ”small-world” regime—whereas clustering
drops rapidly as p increases [5, 8].

Figure 2.3: Transition from a regular lattice (p = 0) to small-world (0 < p <
1) and random (p = 1) networks in the Watts-Strogatz model.

The parameter K determines each node’s initial neighborhood size, while
p sets network randomness. For intermediate p, clustering stays high but the
mean shortest path length quickly drops to the random graph limit [5, 8].
The clustering coefficient for node i with degree ki is:

Ci =
2Ei

ki(ki − 1)
, (2.3)

where Ei is the number of edges among i’s neighbors. The overall clustering
coefficient C is the average over all nodes, while mean shortest path length
L averages the minimal steps between pairs.

Small-world networks (low to intermediate p) include ”shortcuts” that
speed up spreading, similar to epidemic outbreaks. High clustering also
changes local transmission and the effectiveness of certain interventions [5,
4, 8].

TheWSmodel is used here for its relevance to social contact networks—balancing
realism and computational efficiency. Still, it does not allow weighted or dy-
namic edges, heterogeneous degrees, or explicit community structure, which
may limit its representation of real social systems [4, 8].

11



2.3 Vaccination and Risk-Based Mitigation

Strategies

Vaccination is central to public health responses, substantially reducing cases
and deaths due to infectious disease [7, 1]. By reducing the number of sus-
ceptible people (S), vaccination alters epidemic dynamics and lowers disease
impact.

2.3.1 The Basic Reproduction Number and Herd Im-
munity Threshold

The basic reproduction number, R0, is the expected number of secondary cases
generated by a single infectious person in a fully susceptible population [1].
In compartmental models such as SIR, R0 determines whether an epidemic
can take off (R0 > 1) and is set by factors including transmission probability,
contact rate, and infectious period.

Immunization lowers the effective reproduction number, Reff , by reducing
the susceptible fraction. The critical vaccination coverage needed to halt sus-
tained transmission in a well-mixed population—the so-called herd immunity
threshold—is:

vc = 1− 1

R0

(2.4)

This result assumes random vaccination and homogeneous mixing, so that
all individuals contribute equally to indirect protection [1]. In practice, pop-
ulation structure, heterogeneous risk, and imperfect vaccine effectiveness can
cause real thresholds to differ from this prediction [8].

2.3.2 Risk-Based and Network-Aware Vaccination Strate-
gies

Risk Stratification and Targeted Vaccination

Populations show wide variation in infection risk, disease severity, contact
patterns, and vaccine response [7, 1]. Risk-based vaccination gives priority
to those at highest risk—such as the elderly or those with underlying condi-
tions. Modeling results show that targeting these groups can greatly reduce
severe cases and deaths, even at coverage below the classical herd immunity
threshold [7]. In modeling studies, this is often represented by higher mor-
tality or lower recovery rates for high-risk groups. Comparisons consistently
find targeted strategies more effective than random allocation [7, 8].
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Network Effects and Structural Targeting

Contact network structure strongly shapes epidemic spread and the impact
of vaccination. In networks with heterogeneous degree distributions, highly
connected individuals can play an outsized role in transmission. Vaccinat-
ing individuals based on their network position or structural properties can
reduce epidemic size more efficiently than random allocation [6, 8].

By contrast, the small-world networks used in this study have a narrow
degree distribution and lack highly connected hubs, but their high clustering
and short average path lengths can still significantly affect epidemic dynamics
and the outcomes of different vaccination strategies [5, 8].

2.3.3 Policy Implications and Limitations

While targeted and network-informed vaccination strategies are generally
more efficient and effective than non-targeted mass vaccination, practical
and ethical challenges remain. These include identifying high-risk individu-
als fairly, protecting privacy, managing logistics, and ensuring public trust.
Implementation may also be limited by data needs, organizational capacity,
and vaccine acceptance. Nonetheless, both modeling and real-world evidence
emphasize the importance of considering population structure and individual
risk when designing epidemic policies [7, 8].
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Chapter 3

Methods and Implementation

3.1 Epidemic Model

We employ an inhomogeneous Susceptible-Infectious-Recovered-Vaccinated-
Deceased (iSIRVD) model to simulate disease transmission on a dynamic
network in discrete time, as detailed in Section 2.1. Each individual occupies
a single compartment (S, I, R, V , or D) at each timestep. State transitions
are applied synchronously according to group-specific transition probabilities.

Vaccination Implementation: Our model diverges from standard com-
partmental approaches by administering only a single discrete “pulse” vacci-
nation event per simulation. This pulse occurs either pre-emptively at t = 0
or reactively when the proportion of infectious individuals surpasses 10%,
depending on the scenario. During the pulse, candidate individuals are ran-
domly drawn from the combined pool of susceptible (S), infectious (I), and
recovered (R) compartments until the intended coverage is achieved. Only
candidates who are susceptible at the moment receive vaccination and ac-
quire immunity; those drawn from I or R remain in their original states,
resulting in a degree of vaccine wastage to reflect imperfect ascertainment.

All other disease state transitions—infection, recovery, and mortality—proceed
as specified by the group-specific parameters described in Section 2.1.

3.2 Risk Group Assignment

At initialization, each individual (node) is randomly assigned to one of two
fixed risk groups:

• High-risk (HR, 35% of the population): per-timestep probability
of death pdeath,HR = 0.04.
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• Low-risk (LR, 65%): per-timestep probability of death pdeath,LR =
0.01.

Both groups share an identical per-timestep probability of recovery, prec =
0.15. All individuals also have a uniform per-contact transmission probabil-
ity (β = 0.3).
Because these transition probabilities apply at each discrete timestep, the
overall probability that an infected individual ultimately dies (the case fatal-
ity rate, CFR) is not equal to the per-timestep death probability. Instead,
for each group,

CFRg =
pdeath,g

pdeath,g + prec

yielding CFRHR = 0.210 and CFRLR = 0.0625 with the parameters above
(see also Section 2.2).
These risk assignments determine the distribution of severity outcomes and
inform targeted interventions in subsequent simulation steps.

3.3 Network Construction

To capture realistic social contact patterns, we generate interaction networks
using the Watts-Strogatz small-world model (see Section 2.2.1). By default,
each network comprises N = 1000 nodes, with mean node degree K = 6 and
rewiring probability p set to either 0.3 or 0.9 based on scenario. All networks
are undirected, unweighted, and constructed without self-loops or multiple
edges using fixed random seeds to ensure reproducibility. If a generated
network is not fully connected, only the largest component is retained for
analysis.

For each of the 500 simulation replicates per scenario, a fresh network
topology and randomized risk group assignment are produced using unique
seeds. This design guarantees statistical independence across replicates and
ensures that outcome variability captures both stochastic epidemic dynamics
and underlying network structure.

3.4 Vaccination Strategies

This study systematically compares two strategies for allocating a fixed num-
ber of vaccine doses:
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Parameter Value(s)

Number of nodes (N) 1000
Mean degree (K) 6
Rewiring probability (p) 0.3, 0.9
Replicates per scenario 500

Table 3.1: Default parameters for Watts-Strogatz network generation in sim-
ulation experiments.

• Random Vaccination: Vaccine doses are allocated by randomly se-
lecting eligible individuals from the entire living population until the
desired coverage level is reached.

• Targeted Vaccination: High-risk individuals are prioritized for vac-
cination. If the coverage target exceeds the size of the high-risk group
(35%), any remaining doses are distributed at random among low-risk
individuals.

Scenarios vary by:

• Timing of Vaccination:

– Start: Prior to introduction of infection (t = 0)

– Early: At the first time step when at least 10% of individuals are
infectious

• Coverage Rate: 15%, 20%, or 25% of the population

Within each scenario, vaccination is implemented as a single “pulse” event
per simulation, and candidates for vaccination are drawn from non-deceased
individuals, regardless of current infection status, to model imperfect status
ascertainment.

3.5 Simulation Protocol

Each simulation replicate follows these procedural steps:

1. Initialization: Set scenario parameters (strategy, timing, and cov-
erage). Generate the Watts-Strogatz contact network and assign each
individual to a fixed risk group. Set all nodes to susceptible (S), except
for a single randomly selected node that is set to infectious (I).
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2. Time Step Iteration:

• Vaccination: At either t = 0 or when the early-vaccination
threshold is reached (10% infected), implement a single vaccina-
tion pulse according to the assigned strategy. Randomly select
vaccine recipients from the current non-deceased population until
the coverage level is reached. Only susceptible individuals imme-
diately benefit; individuals in I or R remain unchanged, modeling
operational wastage.

• Transmission: For each infectious (I) node, attempt to infect all
susceptible (S) neighbors with probability β per contact.

• Progression: For each I node, determine transition to recov-
ered (R), deceased (D), or remain infectious, according to group-
specific probabilities.

• Removal: Remove deceased individuals and associated edges.

• Synchronization: Update all individual states for the next time
step.

3. Repeat until no infectious (I) individuals remain.

3.6 Simulation Parameters

Unless stated otherwise, the following parameters are used:
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Table 3.2: Default simulation parameters.

Parameter Value / Sym-
bol

Description

Transmission probability per contact β = 0.3 Per-contact transmis-
sion risk

Recovery rate γ = 0.15 Probability of recov-
ery per time step

Mortality rate, low risk µLR = 0.01 Per-timestep death
probability

Mortality rate, high risk µHR = 0.04 Per-timestep death
probability

Case fatality rate, low risk CFRLR = 0.062 Actual mortality
among infected

Case fatality rate, high risk CFRHR = 0.211 Actual mortality
among infected

Fraction high-risk 0.35 Population share in
high-risk group

Initial infectious cases n0 = 1 Seed infections at t =
0

Network size N = 1000 Number of individuals
Mean node degree K = 6 Average contacts per

node
Rewiring probability p ∈ {0.3, 0.9} Watts-Strogatz

”small-worldness”
Vaccination coverage [0.15, 0.20, 0.25] Fraction immunized

per strategy
Early vaccination threshold 0.10 Infection threshold for

early timing
Simulations per scenario 500 Replicates for averag-

ing/stats

Parameter Selection and Justification

The simulation parameters (Table 3.2) are chosen to balance computational
tractability, epidemiological plausibility, and the ability to robustly detect
differences between intervention strategies. Network parameters—the popu-
lation size (N = 1000) and mean degree (K = 6)—are selected to provide
a sufficiently large and interconnected model population, while keeping sim-
ulations manageable. The rewiring probabilities (p ∈ {0.3, 0.9}) allow com-
parison of clustered small-world and effectively random network structures,
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following established modeling frameworks [5].
Epidemic parameters, including the per-contact transmission probability

(β = 0.3) and per-timestep recovery probability (prec = 0.15), yield mod-
erately sized outbreaks without trivial (extinction) or explosive (saturation)
dynamics.

The model’s case fatality rates for low-risk (6.2%) and high-risk (21.1%)
groups, determined from the combination of per-timestep death and recov-
ery probabilities (see Section 2.2), are set higher than typical for common
diseases. This deliberate choice enhances the contrast between vaccination
strategies, ensuring detectable effects in a simulated population of N = 1000
individuals and a realistic number of epidemic events. The model thus rep-
resents a severe pandemic setting, where intervention strategy is crucial for
public health outcomes.

Vaccination coverage rates between 15 − 25% reflect the limited supply
scenarios often encountered during the first phases of a pandemic. Performing
500 independent simulation replicates per scenario ensures stable statistical
estimates, while accounting for the inherent stochasticity of network-based
disease transmission.

Overall, this parameterization is designed to maximize the ability to dis-
tinguish intervention effects under operationally realistic constraints, with a
primary focus on comparing the relative performance of different vaccination
strategies.

3.7 Software and Computational Tools

Simulations are implemented in Python 3.10 using the following libraries:

• NetworkX for network generation and manipulation

• NumPy for numerical operations and random sampling

• Pandas and Matplotlib for data storage, management, and visualiza-
tion

All random number generators use fixed seeds for reproducibility.
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Chapter 4

Experimental Design and
Analysis

4.1 Overview

This chapter details the comparative framework for evaluating how different
vaccination strategies influence epidemic outcomes on small-world networks.
The design systematically explores the effects of allocation approach, timing,
coverage, and network structure through structured simulation scenarios.

4.2 Research Questions and Hypotheses

The study addresses two central research questions:

1. Does prioritizing high-risk individuals for vaccination reduce overall
mortality more effectively than random vaccination?

2. How does vaccination timing—pre-outbreak (start) versus reactive (early,
after 10% infection prevalence)—affect the relative effectiveness of each
strategy?

The corresponding hypotheses are:

• H1: Targeted (high-risk) vaccination reduces total mortality more ef-
fectively than random allocation, while potentially increasing mortality
among unvaccinated low-risk individuals.

• H2: Pre-emptive vaccination yields greater reductions in mortality
than early reactive vaccination, with the magnitude of this effect de-
pendent on network structure and coverage level.
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4.3 Scenario Construction

Simulation scenarios are fully defined by four parameters: network rewiring
probability (p), vaccination strategy, coverage rate, and timing of vaccine
deployment. The parameter grid is shown in Table 4.1. Each combination
(for a total of 2 × 3 × 2 × 2 = 24 scenarios) is replicated 500 times, using
independently generated networks and randomized risk group assignments,
to ensure robust and representative results.

Table 4.1: Parameter combinations for simulation scenarios

Parameter Values
Network rewiring probability 0.3, 0.9
Vaccination coverage rate 15%, 20%, 25%
Vaccination strategy Random, Targeted
Vaccination timing Start (pre-outbreak), Early (10% infected)

These scenarios support systematic evaluation of:

• Strategy effectiveness: Random vs targeted vaccination

• Coverage response: Effects across increasing coverage rates

• Timing sensitivity: Start vs early vaccination

• Network dependency: Influence of rewiring probability

4.4 Performance Metrics

To directly address the research questions, the following outcome measures
are computed for each scenario (see Table 4.2 for details):

• Total epidemic mortality (overall deaths)

• High-risk and low-risk group mortality

All metrics are reported stratified by vaccination strategy, timing, cover-
age, and network structure. Other epidemiological outcomes—such as attack
rate or peak prevalence—are not included as primary endpoints; metrics are
selected for direct alignment with the study hypotheses.
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Metric Notation Description

High-risk mortality MHR = DHR

NHR
Proportion of high-risk individuals who
die during the simulation

Low-risk mortality MLR = DLR

NLR
Proportion of low-risk individuals who
die during the simulation

Total mortality Mtotal =
DHR+DLR

Ntotal
Proportion of all individuals who die
during the simulation

Table 4.2: Performance metrics used to evaluate vaccination strategies and
timing across scenarios.

4.5 Analytical Methods

For each scenario, simulation outputs are summarized by means and, where
relevant, 95% confidence intervals or selected percentiles across 500 repli-
cates. No formal inferential (statistical) hypothesis tests are used, as all
principal comparisons are within a closed set of exhaustively simulated sce-
narios, rather than population-level inference.
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Chapter 5

Results

5.1 Effect of Network Rewiring Probability

Preliminary analysis confirmed that epidemic outcomes are robust to net-
work topology within the examined parameter range. Comparisons between
small-world (p = 0.3) and random-like (p = 0.9) networks showed virtually
identical mortality and epidemic size across all vaccination scenarios (see Ap-
pendix A.1). All subsequent analyses therefore use p = 0.3 as the default
configuration.

Figure 5.1: Detailed comparison of total mortality and total infected across
network topologies. Error bars show standard deviations over 500 replicates.
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5.2 Vaccination Outcomes by Strategy, Tim-

ing, and Risk Group

This section presents results using all mortality metrics defined in Table 4.2:
absolute and proportional mortality for both high- and low-risk groups, as
well as total mortality.

5.2.1 Population-Level Effects

Targeted vaccination strategies consistently reduced mean total mortality
(Mtotal) compared to random allocation at all coverage levels (Table 5.1).
For example, at 15% coverage, targeted-start vaccination yielded an average
of Mtotal = 93.6 deaths, a 20.1% reduction relative to random-early (117.2
deaths).

Expressed as a proportion of the total population (Ntotal), this corre-
sponds to Ntotal = 0.094 for targeted-start versus 0.117 for random-early
vaccination (assuming N = 1000). Both Mtotal and Ntotal improved further
at higher coverage, reaching Mtotal = 65.0 and Ntotal = 0.065 at 25% coverage
under targeted-start (vs. Mtotal = 104.2, Ntotal = 0.104 for random-early; a
37.6% improvement).

Vaccination timing also impacted outcomes: start-of-epidemic adminis-
tration led to lower mortality than early reactive vaccination for both total
deaths (Mtotal) and proportion (Ntotal). The effect was more pronounced for
targeted than random strategies.

5.2.2 Risk-Stratified Outcomes and Trade-offs

Outcomes for high- and low-risk groups are summarized in both absolute
(MHR, MLR) and proportional terms (NHR, NLR) in Table 5.1.

Targeted allocation substantially reduced both absolute and proportional
mortality among high-risk individuals: at 15% coverage, mean high-risk
deaths were MHR = 51.9 (NHR = 0.52) for targeted-start, versus MHR = 80.2
(NHR = 0.80) for random-early. At 25% coverage, targeted-start resulted in
MHR = 24.7 (NHR = 0.25), reducing both the number and risk-group-specific
proportion of high-risk deaths by over 65% compared to random-early.

By contrast, targeted vaccination led to a modest increase in low-risk
mortality: MLR = 41.7 (NLR = 0.042) for targeted-start, compared toMLR =
37.0 (NLR = 0.037) for random-early at 15% coverage; the increases were
outweighed by the reduction in high-risk mortality.
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Figure 5.2: Total mortality metrics (Mtotal, Ntotal) by vaccination strategy
and timing at 15% coverage.

Table 5.1: Absolute (M) and proportional (N) mortality by risk group and
strategy. Proportions are relative to group or total size.

Strategy MHR NHR MLR NLR Mtotal Ntotal

Targeted-start, 15% 51.9 0.52 41.7 0.042 93.6 0.094
Random-early, 15% 80.2 0.80 37.0 0.037 117.2 0.117
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Chapter 6

Discussion

6.1 Risk Stratification as the Key Mechanism

Our simulations indicate that prioritizing high-risk individuals for vaccina-
tion yields the greatest reduction in mortality per vaccine dose, consistent
with established public health principles [7]. In networks with p = 0.3, tar-
geted vaccination reduced mean total deaths by 18.6% at 15% coverage (87.8
vs 112.6), 29% at 20% coverage (74.7 vs 105.3), and 39% at 25% coverage
(61.2 vs 100.4), compared to random vaccination. The benefit arose almost
entirely from a reduction in high-risk mortality: at 25% coverage, targeted
allocation reduced high-risk deaths by 66% (23.5 vs 69.0). However, tar-
geted allocation was associated with a 16–20% increase in low-risk deaths
(e.g., 37.7 vs 31.5 at 25% coverage), a trade-off decisively outweighed by the
much larger reduction among high-risk groups. These results underscore the
importance of focusing limited vaccination resources on populations most
vulnerable to severe outcomes.

6.2 Trade-offs and Implementation Challenges

While risk-based targeting offers clear epidemiological advantages, practical
implementation faces challenges. Our modeling assumes perfect identification
and delivery to high-risk individuals, whereas misclassification, incomplete
data, or logistical constraints could erode real-world effectiveness. Although
targeted schemes may lead to modest increases in mortality among low-risk
individuals (as noted above), these are far outweighed by substantial reduc-
tions among high-risk groups, making targeted allocation more effective at
minimizing overall deaths. Random allocation, though logistically simpler,
is considerably less efficient at reducing mortality.
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6.3 Timing Considerations

The timing of vaccination—whether before epidemic onset or reactive during
outbreak growth—produced only minor differences in total mortality within
the explored parameter space. For instance, shifting from start-of-epidemic
to reactive timing (at 15% coverage) reduced total deaths by up to 4.6 (ran-
dom strategy) and up to 9.8 (targeted strategy), compared to the total dif-
ference of 24.8 fewer deaths between targeted and random strategies. This
suggests that, for epidemics with characteristics similar to those modeled
here, accurately targeting high-risk groups is substantially more impactful
than acceleration of rollout.

6.4 Effect of Network Rewiring Probability

Empirical results demonstrated that epidemic outcomes—including total mor-
tality and final epidemic size—were virtually identical across Watts-Strogatz
networks with p = 0.3 (small-world) and p = 0.9 (random-like), for all vacci-
nation scenarios studied. Therefore, outcome sensitivity to network topology
was minimal within the examined parameter range, justifying p = 0.3 as the
standard in all further analyses [5].

6.5 Policy Implications

These results highlight the importance of epidemic preparedness plans that
support robust systems for risk identification and flexible strategies to over-
come logistical challenges [7]. As vaccine availability expands, phased ap-
proaches can broaden eligibility to additional groups, but initial efforts should
prioritize those populations likely to benefit most, based on risk profiles. The
minimal effect of timing in this model underlines the importance of careful
prioritization over rollout speed.

6.6 Limitations

These findings should be interpreted in light of several limitations. The
model assumes perfect and instantaneous vaccine protection, two discrete risk
groups, and a pulse vaccination approach. In practice, vaccine effectiveness
varies, protection may be delayed, and risk is typically continuous [1]. The
modeled population structure employs a simplified Watts-Strogatz network;
control simulations varying the rewiring parameter (p = 0.3 and p = 0.9)
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showed no significant effect on total mortality in this context. Further, dy-
namic processes—such as virus evolution, seasonality, behavioral adaptation,
or waning immunity—were not included, though each could substantially al-
ter real-world outcomes [6].

6.7 Future Work

To improve real-world relevance, future studies should incorporate imperfect
risk identification, variable or delayed vaccine immunity, and ongoing vacci-
nation strategies. Considering more complex population structures, such as
variable mixing between age groups or communities, will enhance generaliz-
ability [7, 6]. Integrating factors like behavioral response, vaccine hesitancy,
and economic evaluation could further inform actionable policy. Additionally,
examining scenarios where timing and network effects are more pronounced,
and validating models against empirical or highly resolved synthetic data,
would extend applicability and support practical epidemic planning.

6.8 Conclusion

In summary, this study demonstrates that risk-based vaccine allocation can
substantially reduce mortality compared to random distribution, reinforc-
ing the value of prioritizing vulnerable populations when vaccine resources
are limited. While vaccine timing and network structure had comparatively
minor effects in our model, further research should delineate the conditions
under which this generalizes to other pathogens and real-world complexities.
Incorporating nuanced risk assessment, logistical challenges, and dynamic
epidemic factors will be critical for translating these findings into public
health practice.
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Appendix A

Additional Figures and Tables

A.1 Network Topology Robustness Analysis

This section provides detailed validation that our results are robust to net-
work structure variations.

Figure A.1: Final deaths by vaccination strategy and timing across network
topologies. Results demonstrate robustness to network structure.
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Figure A.2: Comprehensive heatmap analysis showing final deaths and high-
risk deaths by strategy-timing combination across network types. Darker
shading indicates higher death counts.

The consistency across topologies validates that our vaccination strategy
conclusions are not dependent on specific network structural assumptions.
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Appendix B

Code

B.1 Computational Implementation

B.1.1 Performance Metrics

• Peak memory usage: 23.5 MB

• Total compute time: 0.02 hours for 6000 simulations

• Average time per simulation: 0.012 seconds

B.1.2 Code Availability

Repository: https://github.com/AlbinAbsint/Bachelor Thesis
Key modules:

• epidemic_model.py: SIRVD dynamics implementation

• simulation.py: Epidemic simulation

• network.py: Watts-Strogatz network generator

• visualize_plots.py: Results analysis and plotting

All results are fully reproducible using documented random seeds and
parameter configurations.
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