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Abstract

Modelling multiple assets requires multivariate approaches to cap-
ture co-movements in returns. While GARCH models are well es-
tablished for volatility forecasting, their extension to multivariate set-
tings allows analysis of portfolio risk. This thesis evaluates the DCC-
GARCH(1,1) model, applied to daily stock returns from 2014-2024.
Two specifications are considered, with Gaussian and multivariate
Student’s- t innovations. Their performance is assessed through Value-
at-Risk backtesting and statistical tests. Results show that both mod-
els capture volatility dynamics well, with only minor differences be-
tween the Gaussian and Student’s-t distributions.
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1 Introduction

Modeling and forecasting volatility is a central theme in modern financial
econometrics. Asset returns often display volatility clustering, heavy tails
and time-varying correlations features that cannot be captured by classical
models assuming constant variance.

The introduction of the Autoregressive Conditional Heteroskedasticity
(ARCH) model by Engle in 1982 (1) and its extension to the Generalized
ARCH (GARCH) model by Bollerslev in 1986 (3), provided a framework
for modeling conditional variances in financial time series. These models
have since become a cornerstone in risk management portfolio allocation
and derivative pricing.

While univariate GARCH models are useful for analyzing the volatility of
a single asset, many practical applications require understanding the joint
dynamics of multiple assets. For example, the construction of an optimal
portfolio or the evaluation of systemic risk necessitates the modeling of
time-varying covariances and correlations. This has motivated the
development of multivariate GARCH (MGARCH) models, which extend
the univariate framework to higher dimensions. Among these, the
Dynamic Conditional Correlation (DCC-GARCH) model proposed by
Engle and Sheppard (13) has gained attention due to its flexibility
compared to earlier specifications.

This thesis evaluates a DCC GARCH (1,1) model for forecasting
conditional covariances and correlations, testing for cross sector correlation
within the OMX30 using Atlas Copco B and Svenska Handelsbanken A
and see if there is significant correlation. We compare Gaussian and
multivariate Student’s t innovations on daily returns from 2014 to 2024,
sourced from Yahoo Finance. All analysis is in R with tidyquant for
data and rugarch and rmgarch for estimation. Model adequacy is assessed
through Value at Risk (VaR) backtests using the tests of Kupiec and
Christoffersen.

The thesis is structured as follows. Chapter 2 reviews univariate and
multivariate GARCH theory. Chapter 3 describes the forecasting
procedure, and Chapter 4 presents evaluation methods. Chapter 5 reports
the empirical results. Chapter 6 assesses goodness of fit, and Chapter 7
concludes with a discussion.
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2 Theoretical Framework

2.1 General Definitions

Before proceeding with the theoretical development, it is essential to
establish a set of general definitions and notational conventions that will
be employed throughout this section. These definitions serve to clarify the
mathematical constructs and assumptions underlying the models and
methodologies discussed in the subsequent analysis.

To make the generall defintions of all modells more clear the most vital
notations are going to be described below:

• rt: asset return at time t,

• yt = rt − µt: mean-corrected return at time t,

• µt: conditional mean of rt,

• εt: i.i.d. innovation with E[εt] = 0, E[ε2t ] = 1,

• ht: conditional variance of rt (univariate case),

• Ht: conditional covariance matrix of rt (multivariate case),

• αi, βj : model parameters,

• q, p: orders of ARCH/GARCH lags.

Note that the modelling of µt will not be of focus in this thesis and be
set as a constant in this thesis namely µt = 0.

2.1.1 ARCH model

Before the Autoregressive Conditional Heteroscedasticity (ARCH) process
was introduced by Robert F. Engle in 1982 (1), traditional econometric
models assumed constant one-period variance. With the introduction of
the ARCH model, the conditional variance could be modelled as a function
of past errors, leaving the unconditional variance constant. The ARCH
processes are zero-mean, serially uncorrelated processes with non-constant
variance conditional on the past. Hence, information about the recent past
can, with an ARCH model, describe future variance. An ARCH(1) process,
yt, is defined in Tsay (2005, p. 103) (12) as,

yt =
√
htεt (1)

ht = α0 + α1y
2
t−1. (2)
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where yt is a zero-mean process at time t, εt is the error term at time t,
ht is the conditional variance at time t, αt is the model parameter for lag t,
and the parameters satisfy

α0 > 0, α1 ≥ 0, α1 > 0

It is common to assume εt follows either a standard normal, or a stan-
dardized Student-t distribution. The ARCH model can be generalized to
ARCH(p), where p is the number of past terms in the process that should
be included in the model where, that is

yt =
√
ht εt (3)

ht = α0 +

p∑
i=1

αiy
2
t−i. (4)

similarly as above

α0 > 0, αi ≥ 0,

p∑
i=1

αi < 1 (i = 1, . . . , p).

where p is the order of the ARCH model. Adding the assumption of
normality, the ARCH model can be written as the following. Given Ψt−1

as the information set (σ-field) up to and including time t− 1 generated by
the observed series yt:

yt | Ψt−1 ∼ N(0, ht) (5)

ht = α0 + α1y
2
t−1 + · · ·+ αqy

2
t−p (6)

2.1.2 Generalized Autoregressive Conditional Heteroskedasticity

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
process is an econometric model introduced by Engle (1) and later
extended by Bollerslev (3). It provides a framework for modeling and
forecasting time-varying volatility in financial return series.
Consider a series of daily asset returns, r1, . . . , rn, derived from the
logarithmic differences of an observed price or index series {St}nt=0. These
returns are calculated as:

rt = ln

(
St

St−1

)
. (7)

The GARCH model assumes that the return at time t, rt, is conditionally
normally distributed given the information up to time t− 1, with
conditional mean µt and conditional variance ht = σ2

t , i.e.,

rt | Ft−1 ∼ N(µt, ht), (8)

where Ft−1 denotes the information set available at time t− 1.
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The hallmark of GARCH models is that the conditional variance ht is
time-varying and depends on past squared returns and past conditional
variances. The GARCH(1,1) model, which is the most commonly used
specification in empirical finance, is given by:

ht = α0 + α1r
2
t−1 + βht−1, (9)

where α0 > 0 is a constant term, α1 > 0 captures the short-term reaction
of volatility to shocks in returns, and β > 0 measures the persistence of
volatility from one period to the next.

For the model to be stationary, i.e., for the variance process to revert to a
long-run average level, the parameters must satisfy:

α1 + β < 1. (10)

Under this condition, the unconditional (long-run) variance is given by:

h =
α0

1− α1 − β
. (11)

The GARCH model also provides a framework for volatility forecasting.
The one-step ahead forecast of the conditional variance is:

Et−1(r
2
t ) = ht = α0 + α1r

2
t−1 + βht−1. (12)

For forecasting multiple steps ahead, the model relies on its recursive
structure. The two-step ahead forecast becomes:

Et−1(ht+1) = α0 + (α1 + β)ht, (13)

and more generally, the k-step ahead forecast is:

Et(ht+k) = α0 + γEt(ht+k−1), (14)

where γ = α1 + β. This recursive forecasting process shows that as k → ∞,
the forecasted variance converges to the unconditional variance h, provided
that γ < 1:

lim
k→∞

Et(ht+k) =
α0

1− α1 − β
. (15)

The GARCH(1,1) model effectively captures volatility clustering, a
common empirical feature of financial time series whereby large returns are
often followed by large returns. However, it assumes symmetric responses
to positive and negative shocks, which may limit its ability to capture
certain asymmetries observed in real-world financial data.
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2.1.3 Multivariate GARCH

The univariate GARCH-model can only be used on one asset at a time. The
extension from a univariate model to a multivariate model allows for multi-
ple assets to be modelled together. The multivariate GARCH (MGARCH)
models follow the same structure of the univariate GARCH model, however
it makes it possible to make joint analysis and forecasts.

• rt is the log return at time t of n assets (n× 1 vector),

• µt is the conditional mean of rt at time t (n× 1 vector),

• yt = rt − µt is the mean-corrected return at time t (n× 1 vector),

• Ht is the conditional covariance matrix of yt (equivalently, of rt given
Ψt−1) (n× n matrix),

• εt is an i.i.d. innovation vector with E[εt] = 0 and E[εtε′t] = In.

Consider a stochastic return vector rt ∈ Rn×1. Let Ψt−1 denote the
information set generated by the observed series of rt up to time t− 1, and
assume that rt is conditionally heteroscedastic (5). The definition of the
mean-corrected returns by

yt = rt − µt, (16)

and model them as

εt | Ψt−1 ∼ i.i.d. (0, In), yt = H
1/2
t εt. (17)

Here, H
1/2
t is obtained from Ht via Cholesky decomposition. There are

many ways of computing Ht. Different methods of computing the condi-
tional covariance matrix will be discussed in the next section. The vector µt

can be modelled as a function of time or as a constant. In this thesis, the
modelling of µt will not be in focus and will be treated as a constant vector.

2.1.4 Introduction to the multivariate GARCH model

Silvennoinen and Terasvirta (5) categorize multivariate GARCH models into
four main classes. This section reviews these classes, each representing a dis-
tinct approach to modeling the conditional covariance matrix Ht in Equa-
tion (17).

A central challenge in MGARCH modeling is to balance parsimony with
flexibility, since the number of parameters increases rapidly with the number
of assets n. In addition, the positive definiteness of the covariance matrices
must be guaranteed. This is often ensured through eigenvalue decompo-
sition, which can become computationally demanding in high-dimensional
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systems. Consequently, MGARCH specifications that minimize matrix in-
versions are particularly desirable.

The modeling of the conditional covariance matrix has been a central
theme in the development of MGARCH models. One of the earliest ap-
proaches is the VEC model, introduced by Engle, Wooldridge, and Boller-
slev (6) in 1988, as a direct generalization of the univariate GARCH frame-
work. In this specification, both variances and covariances are expressed as
functions of their own past values and lagged conditional covariances:

VECH(Ht) = c+

q∑
j=1

Aj VECH(yt−jy
′
t−j) +

p∑
j=1

Bj VECH(Ht−j) (18)

In this specification, VECH(·) denotes the half vectorization operator
applied to symmetric matrices. The term c is an n(n + 1)/2 × 1 vector,
while Aj and Bj are parameter matrices. Although the VEC model is very
general, it is computationally demanding and requires additional restrictions
in order to guarantee that Ht remains positive definite. To address these
difficulties, Engle and Kroner introduced the BEKK model in 1995 (7),
which secures the positive definiteness of Ht by construction:

Ht = CC ′ +

q∑
j=1

K∑
k=1

A′
kjyt−jy

′
t−jA

′
kj +

p∑
j=1

K∑
k=1

B′
kjHt−jB

′
kj (19)

In this formulation, C, Akj , and Bkj represent parameter matrices.

An alternative approach is offered by factor models, which are motivated
by asset pricing theory. The earliest factor based GARCH model was pro-
posed by Engle, Ng and Rothschild in 1990 (8). Within this framework, the
underlying factors are assumed to be conditionally heteroskedastic and can
themselves be modeled using GARCH processes:

Ht = Ω+

K∑
k=1

wkw
′
kf

′
k,t (20)

In this context, Ω denotes a positive semi-definite n× n matrix, wk are
the portfolio weight vectors, and fk,t represent the factor-specific variances.
Among the factor-based GARCH models, one of the most widely applied is
the GO-GARCH model, introduced by Van der Weide in 2002 (10), which
is characterized by the assumption of uncorrelated factors:

Ht = WHz
t W =

N∑
k=1

wkw
′
kh

z
k,t (21)
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In this formulation, the vectors wk correspond to the columns of the
matrix W , while hzk,t represent the diagonal elements of Hz

t . The key dis-
tinction between Equations (20) and (21) lies in the latter’s assumption of
uncorrelated factors.

Non-parametric and semi-parametric approaches offer alternatives to
parametric models by not imposing strict structure on the conditional
covariance matrix. A method was developed which was an approach that
begins with estimating a parametric MGARCH model, extracting
standardized residuals η̂t, and then using a kernel-weighted estimator to
capture any remaining structure:

Ht = Ĥ
1/2
t

∑T
r=1 η̂rη̂

′
rKh(st − sr)∑T

r=1Kh(st − sr)
Ĥ

1/2
t (22)

In this context, Ĥt denotes the conditional covariance obtained from
the initial MGARCH estimation, st ∈ Ψt−1 represents an observed variable
within the available information set, andKh(·) = K(·/h)/h refers to a kernel
function with bandwidth h.

Subsequently, models that focus on conditional variances and correlations
decompose the conditional covariance matrix into its two components:
conditional standard deviations and conditional correlations. Within this
class of models, the Constant Conditional Correlation (CCC) model and
the Dynamic Conditional Correlation (DCC) model are the most
prominent. The DCC specification, which is the subject of the next
section, extends the CCC framework by allowing correlations to vary over
time while preserving computational feasibility.

2.1.5 CCC-GARCH model

The Constant Conditional Correlation (CCC) model, introduced by Boller-
slev in 1990 (11), is a multivariate time series framework that allows con-
ditional variances and covariances to vary over time, while assuming corre-
lations remain constant. Under this assumption, the conditional covariance
matrix Ht is expressed as:

Ht = DtRDt (23)

Here, R is the constant correlation matrix with elements R = ρij , where
ρii = 1 for i = 1, . . . , n, and n is the number of assets. Dt is a diagonal
matrix containing the conditional standard deviations

√
hit for i = 1, . . . , n

of the fitted univariate GARCH models for each asset, i.e.,

Dt = diag
(√

h1t, . . . ,
√

hit

)
11



The off-diagonal elements of Ht are given by:

[Ht]ij =
√

hit
√
hjtρij , i ̸= j (24)

where i ≥ 1, j ≥ 1. Since the processes rit are modelled as univariate
GARCH(p, q) models, the conditional variances can be written in vector
form as:

ht = ω +

q∑
j=1

Ajy
∗
t−j +

p∑
j=1

Bjht−j (25)

In this formulation, y∗t−j = yt−j ◦yt−j , where ◦ represents the Hadamard
(element-wise) product. The vector ω has dimension n×1, while Aj and Bj

are diagonal matrices of size n× n.

For the conditional covariance matrix Ht to remain positive definite, it is
necessary that the correlation matrix R is positive definite and that the
diagonal entries of Aj and Bj are strictly positive. This condition,
however, is only essential in the special case where p = q = 1, as noted by
Nelson and Cao (2).

Although the CCC-GARCH model offers a parsimonious parameterization,
its assumption of constant correlations is often considered too restrictive in
practice. Empirical evidence, such as the study by Chevallier (9),
highlights this limitation and provides motivation for adopting more
flexible specifications, most notably the DCC-GARCH model.

2.1.6 DCC-GARCH model

The Dynamic Conditional Correlation model (DCC-GARCH) was intro-
duced by Engle and Sheppard in 2001 as an extension of the CCC-GARCH
model (13). The DCC model uses Equation (23), but instead of modelling
R as a constant matrix, it is modelled dynamically, with Rt depending on
time t, such that:

Ht = DtRtDt (26)

The off-diagonal elements in Ht then follow the structure below and the
Equation (24) becomes:

[Ht]ij =
√
hit
√
hjtρij,t (27)

The matrix Dt in Equation (26) is defined as:

12



Dt =


√
h1t 0 · · · 0
0

√
h2t · · · 0

...
...

. . .
...

0 0 · · ·
√
hnt

 (28)

Each hit is defined as:

hit = ωi0 +

qi∑
j=1

αijy
2
i,t−j +

pi∑
j=1

βijhi,t−j

For models specified as in Equation (26), the positive definiteness of Ht

is ensured only if both the conditional variances hit (for i = 1, . . . , n) and the
correlation matrix Rt remain positive definite at all time points. Compared
to the CCC model, this requirement increases the computational burden of
the DCC model, since Rt must be continuously updated and inverted at
each step.

The dynamic conditional correlation structure introduced by Engle is
given by:

Qt = (1− α− β)S + α εt−1ε
′
t−1 + βQt−1 (29)

Rt = (I ◦Q−1/2
t )Qt(I ◦Q−1/2

t ) (30)

In Equation (29), Qt is the evolving covariance matrix, and S is the
unconditional correlation matrix of the standardized residuals εt, defined
as:

S =
1

T

T∑
t=1

εtε
′
t

This follows from the assumption that S = Cov[εtε
′
t] = E[εtε′t].

Parameters α and β are the DCC-GARCH parameters satisfying: α > 0,
β > 0, and α+ β < 1. This process ensures positive definiteness of Qt,
though Rt must be normalized to yield valid correlation matrices.
Specifically, the normalization in Equation (30) rescales Qt using a
diagonal matrix:

I ◦Q−1/2
t =


√
q1t 0 · · · 0
0

√
q2t · · · 0

...
...

. . .
...

0 0 · · · √
qnt

 (31)
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This rescaling ensures that ρij,t ≤ 1 and ρii,t = 1, maintaining the valid-
ity of the correlation matrix Rt.

Finally, under the assumption of conditional normality, the mean-corrected
return vector yt can be expressed as:

yt | Ψt−1 ∼ N(0, DtRtDt) = N(0, Ht) (32)

This assumption facilitates likelihood-based estimation. Even when mod-
eling yt with Student’s t-distributed errors, the normality assumption is of-
ten retained in the context of the two-stage Quasi Maximum Likelihood
Estimation (QMLE), which will be discussed in the following section.
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3 Forecasting Procedure and Evaluation

Engle and Sheppard (13) proposed a two-step estimation procedure for the
parameters of the DCC model, based on a decomposition of the quasi-
likelihood function. The idea is to separate the estimation into two compo-
nents: a volatility part and a correlation part. In the first step, the volatility
parameters are estimated. These results are then used as inputs in the sec-
ond step, where the correlation parameters are obtained.

An important feature of this approach is that the first-stage volatility
estimation is unaffected by the choice of innovation distribution.As
demonstrated in earlier studies (see e.g. (18)), altering the univariate
distribution in the volatility stage does not influence the correlation
parameters estimated in the second stage.

In the following, the two-step quasi-likelihood estimation procedure will be
presented for both Gaussian innovations and multivariate Student’s t
innovations.

3.1 Gaussian distributed innovations

First, we define the multivariate Gaussian distribution according to (17):

f(εt) =

T∏
t=1

1

(2π)n/2
exp

(
−1

2
ε′tεt

)
(33)

Consider a mean-corrected return vector yt of dimension n, with mean µ
and conditional covariance matrix Ht as defined in Equations (17) and (16).
Under these assumptions, yt follows a multivariate normal distribution, i.e.
yt ∼ MN(µ,Ht). By the properties of linear transformation and scaling,
the error term εt = yt − µt also satisfies εt ∼ MN(0, Ht). Here t = 1, . . . , T
is the time period used to estimate the model.

The corresponding likelihood function for the errors at time t is given
by:

L(θ) =
T∏
t=1

1

(2π)n/2|Ht|1/2
exp

(
−1

2
ε′tH

−1
t εt

)
(34)

Note that θ denotes the parameters of the model. |Ht| is the determinant
of Ht. Given Equation (34), the log-likelihood estimator can be written as:

15



ln(L(θ)) = −1

2

T∑
t=1

(
n log(2π) + log |Ht|+ y′tH

−1
t yt

)
= −1

2

T∑
t=1

(
n log(2π) + log |RtDtRt|+ y′tD

−1
t R−1

t D−1
t yt

)
= −1

2

T∑
t=1

(
n log(2π) + 2 log |Dt|+ log |Rt|+ ε′tR

−1
t εt

)
= −1

2

T∑
t=1

(
n log(2π) + 2 log |Dt|+ y′tD

−1
t D−1

t y′t − ε′tεtlog|Rt|+ ε′tεtRt

)
(35)

where εt = D−1
t yt and Ht = DtRtDt.

If we denote the parameters in Dt by θ and the parameters in Rt by ϕ,
the log-likelihood function can be decomposed into a volatility part and a
correlation part:

L(θ, ϕ) = Lv(θ) + Lc(θ, ϕ) (36)

Where:

ln(Lv(θ)) = −1

2

T∑
t=1

(
n log(2π) + 2 log |Dt|2 + y′tD

−2
t y′t

)
(37)

ln(Lc(θ, ϕ)) = −1

2

T∑
t=1

(
log |Rt|+ ε′tR

−1
t εt − ε′tεt

)
(38)

Furthermore, the volatility part Lv(θ) can be expressed as the sum of
univariate GARCH log-likelihoods:

ln(Lv(θ)) = −1

2

T∑
t=1

n∑
i=1

(
log(2π) + log

(
(hi,t) +

y2i,t
hi,t

))
(39)

To summarize, the two-step procedure to maximize the likelihood is:

Step 1: θ̂ = maxLv(θ), Step 2: ϕ̂ = maxLc(θ̂, ϕ) (40)

This two-stage estimation procedure is used to estimate Gaussian distri-
bution innovations within the Quasi Maximum Likelihood framework.
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3.2 Multivariate Student’s t distributed

As noted previously, the volatility component Lv(θ) is identical for both
Gaussian and multivariate Student’s t errors. The distinction arises in the
second stage of the likelihood estimation, where the Student’s t distribu-
tion requires a different specification. Therefore, the correlation component
Lc(θ, ϕ) must be adapted for this case.

First, we define the multivariate Student’s t distribution:

f(εt | ν) =
T∏
t=1

Γ
(
ν+n
2

)
Γ
(
ν
2

)
[π(ν − 2)]n/2

[
1 +

ε′tεt
ν − 2

]− ν+n
2

(41)

Here, Γ(·) denotes the Gamma function. Unlike the Gaussian distri-
bution, the multivariate Student’s t distribution introduces an additional
parameter, ν, which governs the heaviness of the tails. This parameter ap-
pears because the Student’s t distribution can be viewed as a mixture of a
multivariate Gamma and a multivariate Normal distribution. As a result,
it preserves symmetric tail dependence while allowing for heavier tails than
the Gaussian case.

Formally, if the mean-corrected return vector yt has mean µt, conditional
covariance matrix Ht, and shape parameter ν, then it follows a
multivariate Student’s t distribution:

yt ∼ MT (µt,Ωt, ν)

where Ωt is a scale matrix such thatHt =
ν

ν−2Ωt. The likelihood function

of yt = H
1/2
t εt at time t of the errors is then:

L(θ) =
T∏
t=1

Γ
(
ν+n
2

)
Γ
(
ν
2

)
[π(ν − 2)]n/2|Ωt|1/2

[
1 +

ε′tΩ
−1
t εt

ν − 2

]− ν+n
2

(42)

Given Equation (42), the corresponding log-likelihood estimator is:

ln(L(θ)) =
T∑
t=1

(
log Γ

(
ν + n

2

)
− log Γ

(ν
2

)
− n

2
log(π(ν − 2))

− 1

2
log |DtRtDt| −

ν + n

2
log

(
1 +

y′tD
−1
t R−1

t D−1
t yt

ν − 2

))
(43)

where Ht = DtRtDt.
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As with the Gaussian case, we adopt a two-step estimation procedure.
Step 1 is identical to the Gaussian likelihood estimation, and step 2 includes
the additional shape parameter ν:

Step 1: θ̂ = maxLv(θ), Step 2: ϕ̂, ν̂ = maxLc(θ̂, ϕ, ν) (44)

Since the variance parameters in Lv(θ) are already estimated in Step 1,
we can treat Dt as constant and exclude it from the second-stage likelihood.
As such, we simplify Lc(θ̂, ϕ, ν) as follows:

ln(Lc(θ̂, ϕ, ν)) =

T∑
t=1

(
log Γ

(
ν + n

2

)
− log Γ

(ν
2

)
− n

2
log(π(ν − 2))

− 1

2
log |Rt| −

ν + n

2
log

(
1 +

ε′tR
−1
t εt

ν − 2

))
(45)

This formulation represents the second stage likelihood estimation as-
suming multivariate Student’s t distribution innovations.
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3.3 Forecasting GARCH methods

Forecasting variances is a fundamental requirement of GARCH models.
Most GARCH models provide a convenient framework for generating k-
step ahead forecasts. For a univariate GARCH(1,1) process which is given
by (18) we get the following:

Recall Ht = DtRtDt with Dt = diag
(√

h1,t, . . . ,
√
hn,t

)
and Rt the con-

ditional correlation matrix.

Step one, univariate variance forecasts. The diagonal entries of Dt+k

come from the univariate variance forecasts, which can be computed asset by
asset. For the general GARCH(p, q) model the forecast procedure becomes,

Et[hi,t+k|Ft] = ω0 +

max(p,q)∑
j=1

(
αj + βj

)
Et[hi,t+k−j |Ft],

where Et[hi,t+k|Ft] = y2i,t+k for k < 0, i = 1, . . . , n

For the widely used GARCH(1, 1) the k-step ahead forecasting procedure
becomes,

Et[hi,t+k] =

k−2∑
i=0

ω0 (α1 + β1)
i + (α1 + β1)

k−1 Et[hi,t+1|Ft].

where
Et[hi,t+k|Ft] = ω0 + α1y

2
i,t+k + β1hi,t

Note that in theory the memory will decline with a exponential rate
(α1 + β1). The forecast of the conditional variance becomes the following:

Et[Dt+k|Ft] =

(
diag

√
Et[h1,t+k|Ft], . . . ,

√
Et[hn,t+k|Ft]

)
Step two, conditional correlation forecasts. The elements in the con-
ditional correlation matrix, Rt+k, are not themselves forecasts, but they are
the ratio of the forecast of the conditional covariance to the square root of
the product of the forecasts of the conditional variances, i.e. ρ̂ij =

q̂ij√
q̂iiq̂jj

,

where q̂ij , q̂ii and q̂jj are the forecast elements in Qt+k. Thus is the expec-
tation of Qt+k:

(1− α− β)S + α εtε
′
t + β Qt, for k = 1,

(1− α− β)S + aE[εt+k−1ε
′
t+k−1 | Ft] + β E[Qt+k−1 | Ft], for k > 1.

(46)
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where

E[εt+k−1ε
′
t+k−1|Ft] = E[Rt+k−1|Ft] = E[(I ◦Q−1/2

t+k−1)Qt+k−1(I ◦Q
−1/2
t+k−1)|Ft]

Due to this dependency, the k-step ahead forecast cannot be computed di-
rectly. Engle and Sheppard (13) proposed two different approaches for fore-

casting the DCC parameters. Since E[(I ◦ Q
−1/2
t+k−1)Qt+k−1(I ◦ Q

−1/2
t+k−1)|Ft]

is unknown, we cannot directly compute the k-step ahead forecast in 46.
However, there exists two methods that approximates this forecast,

1. Method 1; Assumes that E[εt+iε
′
t+i | Ft] ≈ E[Qt+i | Ft] for i =

1, . . . , k.

2. Method 2; Assumes that R̄ ≈ S and E[Rt+i | Ft] ≈ E[Qt+i | Ft] for
i = 1, . . . , k.

Method 1.

E
[
εt+iε

′
t+i | Ft

]
≈ E[Qt+i | Ft] for i = 1, . . . , k.

For k > 1,

E[Qt+k | Ft] = (1− α− β)S + αE
[
εt+k−1ε

′
t+k−1 | Ft

]
+ β E[Qt+k−1 | Ft]

≈ (1− α− β)S + (α+ β)E[Qt+k−1 | Ft]

≈ (1− α− β)S + (α+ β)
[
(1− α− β)S + (α+ β)E[Qt+k−2 | Ft]

]
= (1− α− β)S

k−2∑
i=0

(α+ β)i + (α+ β)k−1E[Qt+1 | Ft]

=
(
1− (α+ β)k−1

)
S + (α+ β)k−1E[Qt+1 | Ft] = Q̂t+k.

From 46 we get that,

E[Qt+1 | Ft] = (1− α− β)S + α εtε
′
t + β Qt.

Then
R̂t+k = E[Rt+k | Ft] ≈ (I ◦ Q̂−1/2

t+k ) Q̂t+k (I ◦ Q̂
−1/2
t+k ),

Method 2, Assume that R̄ ≈ S and E[Rt+i | Ft] ≈ E[Qt+i | Ft] for
i = 1, . . . , k. For k > 1,

E[Rt+k | Ft] ≈ E[Qt+k | Ft]

= (1− α− β)S + αE[Rt+k−1 | Ft] + β E[Qt+k−1 | Ft]

≈ (1− α− β) R̄ + (α+ β)E[Rt+k−1 | Ft]

≈ (1− α− β) R̄ + (α+ β)
[
(1− α− β) R̄ + (α+ β)E[Rt+k−2 | Ft]

]
= (1− α− β) R̄

k−2∑
i=0

(α+ β)i + (α+ β)k−1E[Rt+1 | Ft]

=
(
1− (α+ β)k−1

)
R̄ + (α+ β)k−1E[Rt+1 | Ft].

20



and finally, E[Rt+1 | Ft] ≈ (I ◦ Q̂−1/2
t+k ) Q̂t+k (I ◦ Q̂−1/2

t+k ), Q̂t+1 = (1 − α −
β)S + α εtε

′
t + β Qt,

With the notation Ĥt+k = E[Ht+k | Ft], R̂t+k = E[Rt+k | Ft], and
D̂t+k = E[Dt+k | Ft], the k step ahead covariance forecast is

Ĥt+k = D̂t+k R̂t+k D̂t+k.
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4 Methodology

4.1 Evaluation of estimations

To assess the model’s goodness of fit, it is necessary to evaluate the marginal
and multivariate distributions separately. This section outlines the methods
employed for these evaluations.

4.1.1 Goodness of fit for univariate distributions

A visual inspection of the residuals provides an intuitive way to assess their
behaviour. If the residuals are independently and identically distributed
(IID), the plot should display no visible patterns and appear random.

4.1.2 The Auto Correlation Function

The autocorrelation function (ACF) of a stochastic process X is defined as
(14):

RX(t) = Cov[X(s), X(s+ t)].

For a sample of size n, the process εt can be considered independently and
identically distributed (IID) if approximately 5% of the autocorrelation lags
fall outside the 95% confidence bounds.

4.1.3 Ljung-Box test

A central task in time series analysis is to examine the presence of auto-
correlation, i.e., whether correlations exist between observations at different
lags.

One widely used method for this purpose is the Ljung-Box test. To
introduce the test, we first define the sample autocorrelation at lag l for a
return series {yt}Tt=1:

ρ̂l =

∑T
t=l+1(yt − ȳ)(yt−l − ȳ)∑T

t=1(yt − ȳ)2
, 0 ≤ l < T,

where ȳ = 1
T

∑T
i=1 yi (Tsay, 2005, p. 26).

Using these sample autocorrelations, the Ljung-Box statistic for m lags
in a sample of size T is defined as:

Q(m) = T (T + 2)

m∑
l=1

ρ̂2l
T − l

,

see Tsay (2005, p. 27). The Q(m) statistic tests the joint null hypothesis
that all autocorrelations up to lag m are zero. A common choice for m is
m ≈ ln(T ).
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The null hypothesis is that:

ρ̂1 = ρ̂2 = · · · = ρ̂m = 0.

Under the null hypothesis, the statistic Q(m) follows asymptotically a
chi-squared distribution withm degrees of freedom. Consequently, if the cor-
responding p-value is smaller than the chosen significance level (commonly
5%), the null hypothesis is rejected. This outcome indicates the presence of
autocorrelation in the series.

4.2 Goodness of fit for multivariate distributions

While the univariate distributions may be adequately specified, this does
not necessarily guarantee that the corresponding multivariate distributions
are well defined. To address this, two backtesting procedures for Value-at-
Risk (VaR) are considered in this section. These tests provide a framework
for assessing whether the tails of the portfolio return distribution conform
to the assumed model.

4.2.1 Value at Risk

We begin by defining Value-at-Risk (VaR). VaR is a risk measure that quan-
tifies the maximum expected loss of a portfolio over a specified time horizon,
given a certain probability level. Denote this probability level by α, and let
l represent the corresponding loss threshold. In this context, l is interpreted
as the VaR at confidence level α.

Extending VaR to a multivariate setting requires knowledge of the un-
derlying portfolio return distribution. As discussed in Section 2.1.3, the
multivariate normal distribution exhibits linearity properties that facilitate
this analysis. Recall that the error terms were defined as εt ∼ MN(0, Ht).
For portfolio returns Rp,t, we have

Rp,t = wεt +wµt,

where w denotes the portfolio weights, rt represents the returns, and εt are
the Gaussian error terms. Consequently, under the assumption of multivari-
ate normality, the distribution of the portfolio returns becomes:

Rp,t,MN ∼ MN(wµt,w
′Htw). (42)

Similarly, in Section 2.1.3, the errors of the multivariate Student’s t-
distribution were defined as yt ∼ MT (µt,Ωt, ν). The portfolio returns Rp,t

under the multivariate Student’s-t assumption are then given by

Rp,t,MT ∼ MT (wµt, w
′Htw, ν). (43)

Here, w is assumed to be equally distributed among the stock pairs.
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4.2.2 Kupiec’s test

The Kupiec’s test is designed to assess whether the observed number of
Value-at-Risk (VaR) violations is consistent with a specified confidence level
α (15). The null hypothesis, H0, states that the frequency of violations
matches the expected rate implied by α. In contrast, the alternative hypoth-
esis, Hα, posits that the observed violation rate deviates from the expected
level. Since the occurrence of violations can be modelled as a binomial pro-
cess, the test is formulated as a likelihood ratio test. The corresponding
Kupiec test statistic is expressed as:

LKT = −2 log
(
(1− p)N−xpx

)
+ 2 log

(
(1− x)N−x

( x

N

)x)
, (47)

If H0 is true, the test statistic asymptotically follows a chi-squared dis-
tribution with 1 degree of freedom, i.e. LKT ∼ χ2(1). Large deviations
from the expected number of violations indicate that the model may not be
correctly specified (16).

4.2.3 Christoffersen’s test

The Christoffersen’s test examines whether the likelihood of observing a vi-
olation on a given day is influenced by the occurrence of a violation on the
preceding day. In contrast to unconditional coverage tests, which only assess
the overall frequency of violations, the Christoffersen’s test explicitly evalu-
ates the dependence structure between consecutive violations. As such, the
test relies on a Markov chain framework to capture the potential clustering
of exceptions.

The hypotheses are defined as:

H0 : Failures are independently and identically distributed (IID)

Hα : Failures are not IID

The corresponding likelihood ratio test statistic is:

LCT = 2 ln

(
(1− πn00

01 )πn01
01 (1− π11)

n10πn11
11

αx(1− α)n−x

)
, (48)

where:

• nij is the number of transitions from state i to state j, where i, j ∈
{0, 1}, and each state represents failure (1) or non-failure (0)

• π01 is the conditional probability of a failure following a non-failure
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• π11 is the conditional probability of a failure following a failure

• α is the expected failure rate

• x is the total number of failures

• n is the total number of observations

4.3 Statstical Time Series test

Model validation plays a crucial role in determining whether a GARCH-type
model is appropriate for financial time series analysis. A key requirement
of these models is that the underlying return series must be stationary. To
assess this property, the Augmented Dickey-Fuller (ADF) test is applied to
the log-return series of each stock. The test evaluates the presence of a unit
root, where rejection of the null hypothesis implies stationarity. If the null is
rejected, the series can be considered suitable for volatility modeling within
the GARCH and DCC-GARCH frameworks.

4.3.1 Augmented Dickey-Fuller test

The whole analysis will be conducted under the assumption that the time
series of daily log returns is stationary. Therefore, it is crucial to test whether
this assumption is reasonable. To verify stationarity of a series {xt}, we
apply the Augmented Dickey-Fuller (ADF) test. The ADF regression is
defined as:

∆xt = αt + (β − 1)xt−1 +

p−1∑
i=1

ϕi∆xt−i + εt (49)

where ∆xj = xj − xj−1, ϕi are constants, αt is a function of time (con-
stant or trend), and εt is assumed to be white noise (12).

The null hypothesis of the test is:

H0 : β = 1,

which implies the presence of a unit root, that is, the series is non stationary,
and each shock εt has a permanent effect. If we set αt = 0 for simplicity,
the ADF equation reduces to:

xt = xt−1 +

p−1∑
i=1

ϕi∆xt−i + εt (50)

This is a random walk, where the innovations εt serve as nonstationary
increments.
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Under the alternative hypothesis:

H1 : β < 1,

the model becomes:

xt = βxt−1 +

p−1∑
i=1

ϕi∆xt−i + εt (51)

Since |β| < 1, the influence of past values xt−1 decays geometrically and
the shocks εt dissipate over time, resulting in a stationary process.

Moreover, the ADF test statistic is defined as:

tβ =
β̂ − 1

std(β̂)
,

Here, β̂ denotes the least squares estimate of β, and std(β̂) its standard
error. The test statistic tβ is compared against the critical values from the
Dickey-Fuller distribution. If tβ is sufficiently negative, the null hypothesis
H0 is rejected, implying that the series is stationary. The detailed results
are reported in the Appendix 8.

4.3.2 ARCH effects

Before specifying a volatility model, we first check for the presence of time-
varying variance. After fitting an ARMA(p, q) model to the mean equation
µt via maximum likelihood estimation, we compute the residuals:

at = yt − µt,

which, in practice, reduces to at = yt, since we assume µt = 0.

Even though the series {at}may exhibit characteristics of white noise, its
squared series {a2t } often shows significant serial correlation. This suggests
that while the first moment (mean) may be independent, there is dependence
in the second moment (variance).

To detect this phenomenon, we apply the Ljung-Box test to the squared
residuals {a2t } (12). For results of the ARCH effects see Appendix, Table 9.

4.3.3 Assessing the Orders of the GARCH model

We proceed by fitting GARCH(p, q) models to each stocks daily log re-
turn series separately using the maximum likelihood estimation, under the
assumption that residuals follow a Student-t distribution. In Table 8 see Ap-
pendix A, reports the AIC and BIC values for models of order (p, q) ranging
from (1,1) to (3,3).
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The results indicate that, for most stocks, the GARCH(1,1) model pro-
vides the lowest AIC and BIC values, suggesting it offers the best trade-off
between model fit and complexity. This finding is consistent with the general
results discussed in Section 2.1.2.
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5 Empirical results

In order to test the DCC-model, an application to real data was performed.
The chosen data set consists of the stocks Svenska Handelsbanken and Atlas
Copco:

Yt,i = (SHB A, ATCO B)

The dataset covers daily trading data from 2014-01-01 to 2024-01-01, corre-
sponding to a time span of t = 1, . . . , 2513, where t = 1 represents 2014-01-
01 and t = 2513 represents 2024-01-01. Daily data were chosen instead of
weekly data, as the higher frequency provides more observations and allows
for a more accurate representation of volatility dynamics. The log returns
are defined as:

rt,i = log Yt,i − log Yt−1,i

As stated in 16, rt = yt + µt where rt is the log returns, yt are the mean
corrected returns and µt is the mean vector. Here E[yt] = 0, Cov[yt] = Ht.

5.1 Data

Looking at the mean-corrected returns in Figure 1, it is obvious that each
series has volatility clustering. In other words, we see that large changes
tends to be followed by large changes and small changes are followed by
small changes. Given the heteroscedastic properties of the series it indicates
that GARCH-models are appropriate to use for this data set.

(a) Mean corrected-returns for ATCO B (b) Mean corrected-returns for SHB A

Figure 1: Mean-corrected returns for ATCO B and SHB A

5.2 Autocorrelation function

By examining the autocorrelation function of y2t in Figure 3 one can see that
more than 5% of the lags fall outside the confidence limits of 95%, and there
is a clear pattern in which the autocorrelations are large at the beginning
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but decay over time. This suggests that y2t is not serially uncorrelated, and
consequently yt exhibits dependence.

On the other hand, when inspecting the ACF of yt in Figure 2, we see that
fewer than 5% of the lags fall outside the confidence interval, indicating
that yt is serially uncorrelated.

Based on these observations, we conclude that a GARCH process is
appropriate for modelling the data, as yt is uncorrelated but dependent.
This property holds across all stock pairs in the dataset.

Figure 2: ACF plots of mean-corrected returns(yt) for SHB A and ATCO B

Figure 3: ACF plots of squared mean-corrected returns(y2t ) for SHB A and
ATCO B
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5.3 Modelling and estimations

In this section the estimated parameters of the DCC-model will be presented
for the stock pair Yt,i =(SHB A, ATCO B). For the underlying univariate
models, they are all p = q = 1.

5.3.1 First stage parameters

The first stage estimation parameters, estimated from max{Lv(θ)} which
is explained in Section 3.1, see Equation 40, are the same for both the
Gaussian distribution and the multivariate Student’s t-distribution, since
both approaches assume normally distributed univariate GARCH models.
The estimated parameters from the first stage are:

Estimated GARCH(1,1)

Stock ω α1 β1
SHB 2.257861e-07 5.074903e-02 9.002305e-01
ATCO 3.320269e-07 5.170496e-02 9.006502e-01

Table 1: Estimated GARCH(1,1) for SHB A and ATCO B

Both series show high persistence in Table 1, α1 ≈ 0.051, β1 ≈ 0.90, and
α1 + β1 ≈ 0.95 < 1, which is consistent with stationarity. The implied
unconditional daily volatility is about 0.21% for SHB and 0.26% for
ATCO, so ATCO is a bit more volatile. Parameter similarity indicates
very similar volatility dynamics across the two stocks.

5.3.2 Second stage parameters

As explained in Section 3, the second stage estimation differs between the
Gaussian distribution and the multivariate Student’s t-distribution. For
the Gaussian case, max{Lv(θ̂,ϕ)} was estimated, see Equation 40, while
for the multivariate Student’s t-distribution, the estimation was based on
max ϕ̂ = max{Lv(θ̂,ϕ, ν)} outlined in Section 3.2, see Equation 44. The
second stage parameters are:

Estimated DCC(1,1) Parameters for Different Distributions

Distribution α1 β1 ν

Gaussian 0.052949 0.808967 NA
MV Student-t 0.036821 0.853241 4.9996

Table 2: Second-stage DCC parameter estimates for Gaussian and Multi-
variate Student’s t distributions
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Both DCC estimates in Table 2 are persistent but mean reverting, with
α1 + β1 ≈ 0.86 for Gaussian and ≈ 0.89 for Student t, both below one.
Relative to Gaussian, the Student t fit shifts weight from α1 to β1,
implying smoother and slightly more persistent correlation dynamics. The
estimated degrees of freedom ν ≈ 5 indicates a more pronounced tail.

5.4 DCC-forecasts

The k step ahead forecast of the conditional covariance matrix is Ht+k =
Dt+k Rt+k Dt+k,where Dt+k is diagonal with the univariate volatility fore-
casts

(
conditional standard deviations

)
on the diagonal, and Rt+k is the con-

ditional correlation matrix. This decomposition separates marginal volatil-
ity from covariation and allows examination of time varying dependence
between assets.

Applied to Svenska Handelsbanken (SHB A) and Atlas Copco (ATCO
B), this framework assesses whether two firms from distinct sectors, banking
and industrials, are effectively uncorrelated. The estimates reported below
indicate a meaningful correlation between their returns.

In this thesis a k = 350 step ahead forecast will be performed where k
is one trade day.

5.4.1 Dt-forecasts

The Dt+k forecasts were obtained from the first stage of the quasi-maximum
likelihood estimation. As discussed earlier in Section 3.1, the univariate
normal forecasts serve as the basis for the second-stage estimations under
both the Gaussian and the multivariate Student’s t distributions. Note that
in the Figure 4, the black line corresponds to Dt, the red line illustrates
Dt+k and the cyan line denotes the unconditional variance.
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Figure 4: Plots of Dt+k.

Both stocks show pronounced volatility spikes (notably around 2020) but
mean-revert toward their pre-shock baseline. Short-horizon forecasts from
Gaussian and Student t specifications are very similar, with the Student t
paths a bit smoother. ATCO B remains consistently more volatile than
SHB A.
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5.4.2 Rt-forecasts

The Rt+k forecasts were derived from the second-stage quasi-maximum like-
lihood estimations, as outlined in Section 3. In the Figures 5 and 6, the black
line denotes Rt, the red line represents Rt+k and the cyan line corresponds
to the unconditional correlation.

Figure 5: Plots of Rt+k under Multivariate Student-t distribution.
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Figure 6: Plots of Rt+k under Multivariate Gaussian distribution.

The DCC estimates show that correlation between Svenska Handelsbanken
and Atlas Copco is clearly time varying and often climbs above fifty
percent, despite the firms operating in different sectors. The series tends to
hover around forty percent on average, rising during market stress and
drifting toward thirty percent in calmer periods. Short horizon forecasts
settle near the mid thirties to about forty percent, with the Student t
specification a little lower than the Gaussian one, but the overall picture is
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the same.

This level of covariation is plausible given shared exposure to broad market
factors within OMX30, macro shocks such as interest rates, the SEK
exchange rate, and global demand, links between credit conditions and
industrial investment, and an overlapping investor base. Both
specifications pass basic checks, so the finding is not model driven. For
portfolio construction the diversification benefit from pairing these names
is limited and depends on the state of the market.

5.4.3 Ht-forecasts

Since Ht+k combines the previously presented plots of Dt+k and Rt+k, it
reflects both components jointly. In Figure 7, the black line denotes Ht, the
red line represents Ht+k and the cyan line corresponds to the unconditional
covariance.
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Figure 7: Plots of Ht+k under Multivariate Gaussian distribution and Mul-
tivariate Student-t distribution.

The covariance is positive most of the time, with sharp spikes during stress
periods around 2020 and brief dips toward zero. Both models short
horizon forecasts revert to a modest positive level, the Student-t path is a
bit smoother and slightly lower than the Gaussian. Overall this points to a
persistent but state dependent.
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6 Goodnes of fit

6.1 Marginal distributions

In this section of the thesis the errors will be assessed and we will also look
at the goodness of fit for each distribution with help of figures and statistical
tests.

6.1.1 Visual error evaluation

The errors are calculated from the conditional covariance matrix. The errors

are calculated from εt = H
− 1

2
t yt. It is not possible to draw any conclusions

by looking at the error plots in Figures 8 and 9 but we can see that the
tails of the errors for the gaussian distribution are slightly heavier than the
multivariate student-t distribution in Figure 10.

Figure 8: Errors for SHB A under the Gaussian and Multivariate Student-t
DCC-GARCH(1,1) model.

Figure 9: Errors for ATCO B under the Gaussian and Multivariate Student-
t DCC-GARCH(1,1) model.
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(a) Empirical quantiles of the errors
from the DCC-GARCH(1,1) model with
a student-t distribution.

(b) Empirical quantiles of the errors
from the DCC-GARCH(1,1) model with
a Gaussian distribution.

Figure 10: QQ-Plots for εt

6.1.2 The autocorrelation function

Displayed below in Figures 11 and 12 are the autocorrelation functions of
the different error series εt. At the 5% significance level, approximately 5%
of the lags are expected to lie outside the confidence bounds (the red lines).
In practice, fewer than 5% of the lags do so, leading to the conclusion that
the errors for both distributions behave randomly at the 5% level across all
series. These results can also be verified in Table 3.

(a) SHB A (b) ATCO B

Figure 11: ACF for multivariate Student’s-t errors.
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(a) SHB A (b) ATCO B

Figure 12: ACF for Gaussian errors.

Statistic Series and model Lags outside 95% CI Percent outside

ACF of εt SHB A, DCC t 1/40 2.5%
ACF of εt ATCO B, DCC t 2/40 5.0%
ACF of εt SHB A, DCC Gaus. 1/40 2.5%
ACF of εt ATCO B, DCC Gaus. 2/40 5.0%

Table 3: ACF diagnostic summary for residuals of the DCC-GARCH(1,1)
Multivariate student-t and Gussian model.
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6.1.3 Ljung-Box test

Figures 13 and 14 below shows the Ljung-Box test statistic as a function of
the lag, 1, . . . , 30. The results indicate that, across all series and for both dis-
tributions, some lags exhibit correlation while others do not. Consequently,
no definitive conclusion can be drawn from this test. The red line denotes
the 5% significance level of the test statistic.

Figure 13: Ljung Box test, Gaussian and student-t errors.

Figure 14: Ljung-box test for SHB A and ATCO B.

6.2 Multivariate goodness of fit

This section evaluates Value at Risk (VaR) backtesting with the Kupiec
test and the Christoffersen test. All tests are conducted in a rolling window
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setting. The fitting set contains the data used to estimate the model, while
the forecast period is the subsequent out of sample horizon generated from
the fitted model and compared with the realized data. In Table 4 we can
observe the estimated parameters when performing the VaR back-test.

Distribution α1 β1 ν

Gaussian DCC 0.2154 0.5948 NA
Student’s t DCC 0.1284 0.7381 4.985

Table 4: Estimated parameters α1, β1, and degrees of freedom under Gaus-
sian and Student’s t DCC models.

6.2.1 VaR Violations

In the section we apply two tests to the VaR violation sequences, the Kupiec-
test and the conditional coverage test (or Christoffersen test). The Kupiec-
test evaluates whether the total number of violations matches the expected
rate, while the conditional coverage test jointly tests both the violation
frequency and the independence of violations over time. The p-values for
each test are presented in Table 5 and 6.

Modell Violation rate Kupiec p-value CC p-value

DCC(gaussian), α = 10% 0.094 0.590 0.827
DCC(gaussian), α = 5% 0.050 0.960 0.997
DCC(gaussian), α = 1% 0.017 0.070 0.154

Table 5: Violation rate, Kupiec and Christoffersen p-values for DCC-
GARCH(1,1) Gaussian.

Model Violation rate Kupiec p-value CC p-value

DCC(Student-t), α = 10% 0.1088 0.4288 0.7310
DCC(Student-t), α = 5% 0.0597 0.2359 0.4857
DCC(Student-t), α = 1% 0.0040 0.0586 0.1651

Table 6: Violation rate, Kupiec and Christoffersen p-values for DCC-
GARCH(1,1) Multivariate student-t.
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Figure 15: DCC-GARCH(1,1) multivariate Student-t VaR.

Figure 16: DCC-GARCH(1,1) Gaussian VaR.

We evaluate Value at Risk violation sequences with the Kupiec test and
the Christoffersen conditional coverage test. For both DCC GARCH
specifications, the 10% and 5% VaR levels show violation rates close to
target, with large p values and no evidence of dependence in violations. At
the 1% level, the Gaussian model produces a rate of 1.7% and the
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Student-t model produces a rate of 0.4%. In both cases the Kupiec p
values are near but above the 5% threshold and the Christoffersen p values
do not indicate dependence.

At conventional 5% significance, both models pass coverage and
independence checks across the reported levels. The Gaussian specification
aligns most closely with target coverage at 10% and 5%, while the
Student-t specification is more conservative in the far tail. For applications
that prioritize precision around common risk thresholds, the Gaussian
model is adequate, for stricter tail protection, the Student t model offers a
conservative alternative. Overall, the DCC-GARCH(1,1) framework
delivers VaR forecasts with acceptable coverage and no detected clustering
of violations. To visulies the Value at Risk test and see the rather similar
performances see Figures 15 and 16.
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7 Discussion and Key findings

The objective of this thesis was to examine the application of the
DCC-GARCH(1,1) model for forecasting conditional covariances and
correlations, with a particular focus on comparing Gaussian and
multivariate Student’s t distributed innovations. The analysis combined
both theoretical considerations and empirical evaluation based on daily
stock returns from SHB A and ATCO B.

Several simplifying assumptions were made to narrow the scope of the
study. For instance, the mean vector µt in the univariate GARCH(1,1)
model was treated as constant rather than being modeled through an
ARMA process, and only one of the forecasting approaches for Rt

proposed by Engle and Sheppard was implemented. Moreover, the lag
orders of the univariate and multivariate GARCH models were restricted
to (1, 1) but since we accessed the order of the univariate GARCH model
according to the Table 8 it was not necessary to model with other lags
since the AIC and BIC values suggested that the GARCH(1,1) model was
overall the best fit.

The empirical results showed that both Gaussian and Student’s t
specifications displayed high persistence in conditional correlations, as
reflected in the estimated α1 and β1 parameters. For the Student’s t
model, the degrees of freedom ν was not that large, suggesting thinner tails
and behavior closer to the Gaussian distribution.

The backtesting of Value at Risk (VaR) was carried out using both the
Kupiec test and the Christoffersen conditional coverage test. The Kupiec
test evaluates whether the observed number of violations matches the ex-
pected level, while the Christoffersen test extends this by also checking for
independence of violations over time. The results are summarized in Tables
5 and 6.

For both the Gaussian and the Student-t DCC-GARCH(1,1) models,
the violation rates at the 10% and 5% levels are close to their theoretical
targets, and the corresponding p-values are high, suggesting no evidence of
misspecification. At the 1% level, the Gaussian model slightly overestimates
risk (1.7% violation rate), while the Student-t model slightly underestimates
it (0.4% violation rate). In both cases, the Kupiec p-values are borderline
but remain above the 5% threshold, and the Christoffersen test does not
indicate serial dependence.

Taken together, the results suggest that both models provide adequate
VaR forecasts at conventional significance levels. The Gaussian specification
tracks the nominal levels more closely at 10% and 5%, while the Student-
t specification is more conservative in the far tail. This implies that the
Gaussian model is sufficient when accuracy around common risk thresholds
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is most important, whereas the Student-t model may be preferred when
stricter tail protection is desired. Overall, the DCC-GARCH(1,1) frame-
work produces VaR forecasts with satisfactory coverage and no clustering of
violations. The similar performance of the two models is also illustrated in
Figures 15 and 16.

Overall, the comparison indicates that the Gaussian and Student’s t
DCC-GARCH models perform more similarly than might be expected.
Although the Student’s t distribution is often considered superior due to
its ability to capture heavy tails in financial returns, the relatively high
estimates of ν reduced this advantage in practice. Consequently, the
Student’s t specification can be regarded as performing marginally better
in some cases, but the overall findings suggest that both distributions
provide comparable performance in multivariate risk modelling.
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8 Appendix A

Aktie p-value

SHB 0.01
ATCO 0.01

Table 7: ADF-testresults for SHB and ATCO

(a) SHB

Model AIC BIC

GARCH(1,1) -5.868558 -5.852181
GARCH(1,3) -5.867319 -5.842754
GARCH(1,2) -5.867174 -5.846703
GARCH(2,3) -5.867124 -5.838465
GARCH(2,1) -5.866985 -5.846514
GARCH(2,2) -5.865582 -5.841017
GARCH(3,3) -5.865529 -5.832776
GARCH(3,1) -5.865464 -5.840899
GARCH(3,2) -5.864066 -5.835406

(b) ATCO

Model AIC BIC

GARCH(1,1) -5.262768 -5.246392
GARCH(2,1) -5.261135 -5.240664
GARCH(1,2) -5.261130 -5.240659
GARCH(2,2) -5.259612 -5.235047
GARCH(1,3) -5.259535 -5.234970
GARCH(3,1) -5.259526 -5.234961
GARCH(2,3) -5.258268 -5.229608
GARCH(3,2) -5.257976 -5.229316
GARCH(3,3) -5.256673 -5.223919

Table 8: AIC and BIC values for GARCH(p, q) models for each stock

Stock ARCH Test p-value

SHB 0.00000
ATCO 0.00000

Table 9: ARCH test p-values for SHB and ATCO.
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(a) Student-t distribution (b) Gaussian distribution

Figure 17: Residuals for ATCO B with the GARCH(1,1) modell

Test Distribution VaR 1% VaR 5% VaR 10%

1 Gaussian DCC Fail to Reject H0 Fail to Reject H0 Fail to Reject H0

1 Student’s t DCC Fail to Reject H0 Fail to Reject H0 Fail to Reject H0

2 Gaussian DCC Fail to Reject H0 Fail to Reject H0 Reject H0

2 Student’s t DCC Fail to Reject H0 Fail to Reject H0 Reject H0

Table 10: Kupiec test decisions for VaR at 1%, 5%, and 10% levels (signifi-
cance: 5%).

Test Distribution Unconditional (UC) Conditional (CC)
1% 5% 10% 1% 5% 10%

1 Gaussian 0.075 0.134 0.372 0.180 0.216 0.092
1 Student-t 0.214 0.134 0.833 0.426 0.216 0.401
2 Gaussian 0.428 0.071 0.000 0.727 0.050 0.000
2 Student-t 0.428 0.071 0.000 0.727 0.050 0.000

Table 11: Christoffersen test p-values for both Gaussian and Student-t DCC
models under Test 1 and Test 2. Bold values indicate rejection of H0 at the
5% significance level.
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(a) Student-t distribution (b) Gaussian distribution

Figure 18: Residuals for SHB-A with the GARCH(1,1) modell
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