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Abstract

The main focus of this thesis lies on the forecasting and backtest-
ing of Value-at-Risk (VaR), a widely used metric for assessing financial
risk. Using ten years of daily returns for the S&P 500 index, various
methods are applied to estimate VaR at 95% and 99% confidence lev-
els. These include traditional approaches like Historical Simulation
(HS) and Variance-Covariance (VC) methods, as well as advanced
methods incorporating time-varying volatility, such as Exponentially
Weighted Moving Average (EWMA) and Generalized Autoregressive
Conditional Heteroskedasticity (GARCH). The study reveal that con-
ditional methods, particularly EWMA-based approaches, consistently
outperform traditional models, adapting effectively to changing mar-
ket conditions and delivering more accurate risk estimates. Back-
testing results using the Kupiec and Christoffersen tests demonstrate
the reliability of EWMA methods in both stable and volatile peri-
ods, especially during the heightened market turbulence of 2020. In
contrast, HS-GARCH methods exhibit unusual behavior, likely due
to inherent challenges in combining GARCH volatility modeling with
the historical simulation approach, highlighting the need for further
investigation.
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1 Introduction

Risk in finance refers to the possibility of experiencing a loss or an unfavorable outcome due to
uncertainties in financial markets or other factors affecting the value of investments. It is an
inherent aspect of financial markets, as prices of assets, such as stocks, bonds, or commodities,
fluctuate due to various factors including economic events, geopolitical tensions, and market
sentiment. Financial risk can be classified into different types, including market risk (the risk
of changes in asset prices), credit risk (the risk that a borrower will default on a loan), liquidity
risk (the risk of not being able to sell an asset without significant loss), and operational risk
(the risk of failure in internal processes or systems)(see McNeil et al. [1], p.3).

To measure and manage risk as mentioned by Jorion ([2], p.248), financial professionals use var-
ious metrics and models such as standard deviation, Value-at-Risk (VaR) and expected shortfall
(ES). Standard deviation measures the volatility or variability of asset returns, while VaR esti-
mates the potential loss in a portfolio over a specific time period and confidence level. Expected
shortfall (ES) also known as the conditional value at risk (CVaR) is a related concept to VaR
and it refers to the expected value of the loss conditional on exceeding VaR. By accurately
measuring risk, investors, banks, and firms can make informed decisions to mitigate potential
losses and optimize their portfolios.

VaR is commonly used by financial institutions and investors to estimate potential losses in their
portfolios under normal market conditions. It provides a single value that represents the overall
risk of a portfolio ([3], p.255). JP Morgan introduced it in the late 1980s as part of its risk
management system, developing a tool called RiskMetrics, which later became an independent
company. Although JP Morgan did not create VaR, it helped make the concept more widely
known and used in finance ([4], p. 160).

In this thesis, we focus on evaluating Value-at-Risk as a tool for managing financial risk. We
apply various methods to forecast VaR for the S&P 500 index over a 10-year period and assess
their performance using backtesting techniques. The analysis involve both traditional and
advanced models, such as Historical Simulation, Variance-Covariance, EWMA, and GARCH,
with a particular focus on how well these methods adapt to changing market conditions.
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2 Theoretical Framework

2.1 General Definitions

In this section, we provide formal definitions and a consistent notation for the loss distribution
and Value-at-Risk, using the quantile function as a tool. If not explicitly stated otherwise, the
references for this section are Chapters 2.1 and 2.2 in [1] and Chapter 12.5 in [3].

2.1.1 Quantile Function

The quantile function provides a way to connect cumulative probabilities with the values of a
random variable in a distribution. It acts as the generalized inverse of the cumulative distribu-
tion function (CDF)[5].

Definition 2.1 (Quantile function). Let F : R → [0, 1] be a cumulative distribution function.
For a given α ∈ (0, 1), the α-quantile of F is given by

qα(F ) := inf{x ∈ R : F (x) ≥ α}.

In practice, for a random variable X with distribution function F , we often use the shorthand
notation qα(X) := qα(F ), which allows us to refer to the quantile function of X in terms of
the distribution function F . If F is continuous and strictly increasing, we can simplify this
expression to qα(F ) = F−1(α), where F−1 is the inverse of F .
Figure 1 below illustrates this concept using the normal distribution, showing the relationship
between the CDF and its inverse.

Figure 1: The cumulative distribution function F (on the left) gives the probability α = F (x)
for a given value x. The quantile function (on the right) does the opposite: it finds the value x
that solves α = F (x) for a given probability α.

For example, if α = 0.5, the quantile function identifies the median of the distribution. Simi-
larly, the 25th percentile corresponds to q0.25(F ), and the 75th percentile corresponds to q0.75(F ).
The quantile function is particularly helpful in determining such thresholds for a distribution [6].
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2.1.2 Loss Distribution

The loss distribution describes the probability of different levels of loss that a portfolio may
experience over a given time period.

Definition 2.2 (Loss Distribution). Let ∆ be a fixed time horizon , such as 1 or 10 days
and let Vt represent the value of a portfolio at time t∆. The portfolio loss between times t∆
and (t+ 1)∆ is given by

Lt+1 := −(Vt+1 − Vt). (1)

By this convention, losses will be positive numbers and profits negative. This loss is random
from the perspective of time t∆ because the future value of the portfolio is unknown.
There are two types of loss distribution:

• The unconditional loss distribution describes the loss without considering any specific
information about the state of the world at time t∆.

• The conditional loss distribution accounts for the information available at time t∆, i.e.,
the loss distribution given what is known at that time.

In practice, risk managers often focus on the upper tail of the loss distribution, which represents
the probability of large losses. This focus on large losses is critical to managing risk, especially
when analyzing worst-case scenarios.

2.1.3 Value-at-Risk

Consider a portfolio of risky assets over a fixed time horizon ∆. Let FL(l) = P (L ≤ l) represent
the distribution function of losses over this time. The goal is to define a risk measure based on
FL that can effectively assess the severity of holding this portfolio during ∆.
An intuitive idea for a risk measure might be the maximum possible loss, represented as

inf{l ∈ R : FL(l) = 1}.

However, this measure is problematic because in many financial models the support of FL is
unbounded, making the maximum loss potentially infinite and lacking the probability context.
Instead, Value-at-Risk (VaR) provides a more practical measure by considering the “maximum
loss that is not exceeded with a given high probability.” This probability is called the confidence
level.

Definition 2.3 (Value-at-Risk). For a given confidence level α ∈ (0, 1), the VaR at a confi-
dence level α is the smallest value l such that the probability of loss L exceeding l is not greater
than 1− α. Formally,

VaRα = inf{l ∈ R : P (L > l) ≤ 1− α} = inf{l ∈ R : FL(l) ≥ α}.

VaRα is a quantile of the loss distribution and to measure it, we need to define two quantitative
parameters, the confidence interval and the time horizon. Typical confidence levels for α are
0.95 or 0.99 and for market risk, the time horizon ∆ is often 1 or 10 days. The choice of these
parameters is described in more detail in ([1], p.42) and ([2], p.251,252).

To better understand the concept of Value-at-Risk (VaR), let us consider a practical example.
Suppose we are managing a portfolio and determine that VaR0.95 = $1, 000, 000 over a time
horizon of 10 days. This means that, with 95% confidence, the portfolio is not expected to lose
more than $1,000,000 over the next 10 days. In other words, there is a 5% chance that the
losses could exceed this amount within that 10-day period. The remaining 5% represents the
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tail risk, those extreme losses that are less frequent but still possible.

VaR gives an estimate of the worst loss we might expect, assuming normal market conditions,
with a certain level of confidence. However, one of the key limitations of VaR is that it does not
tell us anything about how bad the losses could be if they end up being worse than the estimate
of VaR. In other words, it does not provide insight into how severe losses might be in the worst
5% cases, which means that it misses information about extreme risks.

Figure 2 illustrates a loss distribution with the Value-at-Risk (VaR) marked by a vertical dashed
line. VaR represents the threshold loss not expected to be exceeded with a given confidence
level (e.g. 95%). The area to the left of this line shows the probability that losses will remain
below this threshold.

Figure 2: Calculating VaR from the distribution of the Loss in the Portfolio Value. The confi-
dence interval is α and VaRα is marked with a dashed line. Gains are negative losses.

2.2 Standard Methods for Market Risks

In this section, we will present several commonly used methods in the financial industry for
measuring market risk over a short time horizon, such as the variance covariance method, the
historical simulation, and methods based on Monte Carlo simulation. Before introducing these
three methods, we first need to model portfolio losses based on changes in risk factors. The
references for this section are Chapters 2 and 3 in [1].

2.2.1 Modeling Portfolio Losses with Risk Factors

In risk management, the value of a portfolio at any time t, denoted by Vt, is often modeled
as a function of time and a vector of risk factors Zt = (Zt,1, Zt,2, . . . , Zt,d)

⊤ . Typical risk
factors include, for example, the logarithmic prices of financial assets, yields, or the logarithmic
exchange rate. The portfolio value at time t is represented as

Vt = f(t,Zt), (2)

where f is a measurable function that maps time and risk factors to the portfolio value. The risk
factors are assumed to be observable, which means Zt is known at any given time t. The choice
of risk factors depends on the portfolio under consideration and the desired level of precision.
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Using (1) and the mapping (2), the change in portfolio value (i.e., the portfolio loss) from time
t to t+ 1 is given by

Lt+1 = −(f(t+ 1,Zt +Xt+1)− f(t,Zt)), (3)

where Xt+1 represents the change in risk factors between time t and t+ 1.
To model how risk-factor changes map into losses, a loss operator is introduced, which is defined
as

l[t](x) := −(f(t+ 1,Zt + x)− f(t,Zt)), x ∈ Rd. (4)

Thus, we have that Lt+1 = l[t](Xt+1).
For small changes in risk factors, a first-order Taylor expansion is used to approximate portfolio
loss (3). The linear approximation of the loss at time t+ 1 is given by

L∆
t+1 := −(f(t,Zt) +

d∑
i=1

fzi(t,Zt)Xt+1,i). (5)

Here, fzi(t,Zt) represents the partial derivatives of f with respect to each risk factor, indicating
how sensitive the portfolio value is to changes in each risk factor. The term Xt+1,i represents
the change in the i-th risk factor.
This linearized loss approximation simplifies the calculation of losses by considering the direct
impact of small risk-factor changes, assuming that the relationship between the portfolio value
and the risk factors is nearly linear for small changes.
To make the approximation computationally simpler, a linearized version of the loss operator
is introduced

l∆[t](x) := −(f(t,Zt) +

d∑
i=1

fzi(t,Zt)xi), (6)

where x = (x1, ....., xd)
T represents changes in the risk factors. This approximation is especially

useful when the changes in risk factors are small (i.e., when looking at risk over a short period),
and when the portfolio value responds almost linearly to changes in the risk factors.

2.2.2 Variance-Covariance Method (VC)

The Variance-Covariance method is a commonly used technique for calculating Value-at-Risk
in finance. This method simplifies the process by making several key assumptions. First, it
assumes that the changes in the risk factors Xt+1 follow a multivariate normal distribution,
that is, Xt+1 ∼ Nd(µ,Σ). So the the changes in risk factors in this model, are represented by
a random vector Xt+1, which has a mean vector µ and a covariance matrix Σ.
Additionally, the method assumes that the linearized loss, represented in terms of the risk
factors, is a reasonable approximation of the actual loss. This enables us to simplify the problem
by examining the distribution of

L∆
t+1 = l∆[t](Xt+1),

where l∆[t] is given in (6)
The linearized loss at time t is expressed as

l∆[t](x) = −(ct + b′tx),

where ct is a constant, and bt is a vector known at time t.
An important property of the multivariate normal distribution is that any linear combination
of the components of the random vector Xt+1 (such as b′tXt+1) will also follow a normal
distribution. As a result, the loss L∆

t+1 is normally distributed with the following mean and
variance
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L∆
t+1 = l∆[t](Xt+1) ∼ N (−ct − b′tµ, b

′
tΣbt).

To calculate Value-at-Risk, we need to find the quantile of the loss distribution at a given con-
fidence level α. For this purpose we can use the following lemma.

Lemma 2.1 (VaR for normal loss distributions). Suppose the loss distribution FL is
normal with mean µ and variance σ2, and let α ∈ (0, 1). Then the Value-at-Risk at confidence
level α is given by

VaRα = µ+ σΦ−1(α),

where Φ denotes the standard normal distribution function, and Φ−1(α) is the α-quantile of the
standard normal distribution.
For a proof of this lemma, see ([1], p.39).

The Student’s t-distribution is commonly used in risk modeling, particularly when dealing with
heavy tails. The loss distribution is modeled as L ∼ t(ν, µ, σ2), where ν represents the degrees
of freedom, µ is the mean, and σ2 is the variance of the distribution. The moments of the loss
distribution are given by E(L) = µ and var(L) = νσ2

ν−2 , when ν > 2.

Lemma 2.2 (VaR for the Student’s t-Distribution). The Value-at-Risk for a loss modeled
by a Student’s t-distribution is calculated as

VaRα = µ+ σt−1
ν (α),

where t−1
ν (α) is the inverse of the cumulative distribution function (CDF) of the t-distribution

at the confidence level α.

Remark 2.1. For the variance-covariance method to work, we require estimates for the mean
vector µ and the covariance matrix Σ, which are derived from historical data. These estimates
can be calculated using the standard method of moments estimators ([1], p. 65), specifically:

µ̂ =
1

n

n∑
i=1

Xi and Σ̂ =
1

n

n∑
i=1

(Xi − µ̂)(Xi − µ̂)⊤,

where X1, . . . , Xn represents the observations, n is the number of data points and µ̂ and Σ̂ are
the mean vector and the covariance matrix of the sample, respectively.

This approach amounts to an analysis of the unconditional loss distribution, which assumes
stationarity in the data. Alternatively, more advanced methods can be employed to forecast
the conditional moments of the distribution, such as exponentially weighted moving averages
(EWMA) or GARCH models. These forecasting techniques are designed to account for time-
varying characteristics in the data and are discussed in greater detail in Section 2.3.

2.2.3 Historical Simulation (HS)

The Historical simulation method is a non-parametric approach for estimating Value-at-Risk
by using historical data on risk-factor changes. Instead of relying on a probabilistic model to
estimate the distribution of L = l[t](Xt+1), this method estimates the distribution directly using
historical simulation.
Specifically, we gather historical data on the changes in risk factors. By applying the loss
operator to this data, we calculate the simulated portfolio losses
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{L̃s = l[t](Xs) : s = t− n+ 1, . . . , t},

which represent the portfolio loss that would occur if the risk-factor changes observed on day s
were to recur.
These simulated losses L̃s form an empirical distribution of portfolio losses, which reflects how
the portfolio could behave given the historical changes in the risk factors. The method assumes
the distribution of Lt+1(Xt+1) is discrete and takes on each of the values L̃s with equal prob-
ability 1/n ([7]). To estimate VaR at a given confidence level α, we calculate the empirical
quantile of the simulated loss distribution. Suppose the values of the data are ordered by

L̃n,n ≤ · · · ≤ L̃1,n.

An estimator for VaR at confidence level α then can be the (1 − α)-quantile of the ordered
losses. Specifically, VaRα is given by

VaRα(L) = L̃[n(1−α)],n,

where [n(1−α)] represents the largest integer not exceeding n(1−α). For example, if there are
1000 simulated losses (i.e.,n = 1000) and α = 0.99, we would select the 10th largest loss (since
1000× (1− 0.99) = 10).

2.2.4 Monte Carlo Simulation

The Monte Carlo method is a widely used approach in risk management that involves simulating
an explicit parametric model for risk-factor changes. The first step of the method is to choose
an appropriate model and calibrate it using historical risk-factor change data Xt−n+1, . . . ,Xt.
Once the model is calibrated, it is used to generate multiple independent realizations of future

risk-factor changes, denoted as X̃
(1)
t+1, . . . , X̃

(m)
t+1 , where m represents the number of independent

realizations simulated.
In a similar fashion to the historical simulation method, the loss operator is applied to these
simulated risk-factor vectors to calculate simulated portfolio losses. Specifically, for each simula-
tion, the portfolio loss is calculated using the loss operator applied to each simulated risk-factor
change. These simulated losses are then used to estimate VaR.
The number of replications, m, can be chosen freely, allowing for more accurate estimates of
risk measures compared to historical simulation, especially when a large number of simulations
is used.

2.2.5 Comparison of VaR Methods

The three main methods for calculating Value-at-Risk, variance-covariance, historical simula-
tion, and Monte Carlo simulation each have their strengths and weaknesses, as explained by
McNeil et al in ([1], Chapter.2.3) and Jorion in ([8], Chapter 10).

The variance-covariance method is easy to use and quick to compute. It provides a simple for-
mula for calculating risk using a covariance matrix, which makes it popular for straightforward
risk management. However, it relies on two big assumptions that can make it less accurate.
First, it assumes the relationship between risk factors and portfolio returns is linear, which
might not always be true. Second, it assumes that risk factors follow a normal distribution,
which tends to underestimate the chance of extreme losses. This method also struggles to han-
dle portfolios with nonlinear instruments like options or mortgages.
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The historical simulation method is simple and intuitive because it uses actual historical data
rather than making assumptions about how risk factors behave. This makes it effective at cap-
turing extreme events in the data and useful for explaining past risks. However, its accuracy
depends on having good quality historical data. If the data window is too short, it might miss
important events, while a long window may include outdated scenarios. It also assumes that
past patterns will repeat in the future, which may not always happen. Additionally, the method
can be less precise for high confidence levels and small sample size.

The Monte Carlo simulation method is the most powerful and flexible approach. It is excellent
for complex portfolios because it can handle issues like changing volatility, extreme scenarios,
and nonlinear instruments. However, this method requires a lot of computational power and
expertise to implement. It can also be slow and expensive because it involves running many
simulations. Additionally, the results depend on the assumptions made about how risk factors
behave, which introduces the risk of errors if the model is wrong. The accuracy of the method
also depends on running a large number of simulations, which can increase variability in the
results if not done properly.

2.3 VaR with Time-dependent Volatility

In Section 2.2, we introduced methods for calculating Value-at-Risk that rely on analyzing the
unconditional loss distribution. This approach assumes that the risk factors are drawn from
a stationary process, meaning that past data is used as a reliable indicator of future risk ([1],
p.49).
However, in real-life financial markets, volatility is not consistent over time. Volatility tends to
vary based on market conditions: it may be low during stable periods but increase significantly
during market shocks or crises ([3], p.201). Therefore, relying on an unconditional distribution
that assumes constant volatility may not accurately reflect the changing nature of financial
markets.
In this section, we will introduce models that take into account the changes in volatility over
time. In our work, we will focus on two such models: Generalized Autoregressive Condi-
tional Heteroskedasticity (GARCH) and a special case, Exponentially Weighted Moving Aver-
age (EWMA). The same approach for describing these two methods, as outlined in Chapter
14.3 of [2], is considered with some explanation from Chapter 10.6 and Chapter 10.7 of [3].

2.3.1 Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

The generalized autoregressive conditional heteroskedasticity (GARCH) process is an economet-
ric model developed by Engle (1982) and Bollerslev (1986), which describes an approach to
estimate volatility in financial markets ([2], p. 340).
Consider a dataset of daily return values, X1, . . . , Xn, derived from the logarithmic differences
of a price, index, or exchange rate series (St)t=0,1,...,n. These returns are calculated as

Xt = ln(St/St−1). (7)

The GARCHmodel assumes that log-return (Xt) at time t, has a normal distribution conditional
on the mean µt and the standard deviation σt, that is, Xt ∼ N (µt, σ

2
t ).

The model focuses on the conditional variance, ht = σ2
t , which depends on current and past

information. Unlike simple models, here the standard deviation σt changes over time (time-
varying volatility). This contrasts with the unconditional variance, which remains constant
over time. The GARCH(1,1) model describes the conditional variance as

ht = α0 + α1X
2
t−1 + βht−1,
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where α0 > 0 is the constant term, α1 > 0 represents the influence of the most recent squared
return X2

t−1, and β > 0 accounts for the persistence of past conditional variance ht−1 .
The stationarity of the model requires α1 + β < 1, ensuring the variance process stabilizes at a
long-term average. The unconditional variance h is given by

h =
α0

1− α1 − β
.

The GARCH model can also be used to forecast future variances. For the next-day forecast,
the variance forecast depends on today’s variance and the parameters of the model

Et−1(X
2
t+1) = α0 + α1Et−1(X

2
t ) + βht = α0 + γht,

where γ = α1 + β.
For multi-step forecasting, this recursive structure propagates, allowing for variance forecasts
to stabilize toward the long-run variance as time horizons extend.

2.3.2 Exponentially Weighted Moving Average (EWMA)

The Exponentially Weighted Moving Average (EWMA) model is a simplified version of the
GARCH model, with a particular structure that emphasizes recent observations while exponen-
tially reducing the weight of older data ([2], p.342). In the EWMA framework, the variance
forecast is based on a weighted average of the previous forecast and the latest squared return.
Mathematically, it is expressed as

ht = λht−1 + (1− λ)X2
t−1, (8)

where ht is the conditional variance at time t, λ is the decay factor, which determines the
relative weight of past observations and X2

t−1 is the squared return at time t− 1.
The EWMA model applies exponentially decreasing weights to past squared returns. This
means that recent returns have the most influence on the forecast, while older returns gradually
contribute less.
To gain a clearer understanding of why equation (8) represents exponentially decreasing weights,
we begin by substituting ht−1 into the equation. This leads to the following expression

ht = λ[λht−2 + (1− λ)X2
t−2] + (1− λ)X2

t−1.

This can also be rewritten as

ht = (1− λ)(X2
t−1 + λX2

t−2) + λ2ht−2.

By substituting ht−2 in a similar manner, we obtain

ht = (1− λ)(X2
t−1 + λX2

t−2 + λ2X2
t−3) + λ3ht−3.

And repeating this process shows that

ht = (1− λ)

m∑
i=1

λi−1X2
t−i + λmht−m, m ∈ N.

For a larger dataset, the term λmht−m is sufficiently small to be ignored from the equation.
The total variance forecast can be rewritten as

ht = (1− λ)
[
X2

t−1 + λX2
t−2 + λ2X2

t−3 + . . .
]
.

Here, the weight on the return X2
t−k is (1− λ)λk−1. This shows that as k increases, the weight

diminishes exponentially, meaning older observations contribute less and less to the variance
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forecast.

The EWMA approach is efficient as it requires minimal data storage, needing only the prior
variance estimate and the latest observation. The decay factor λ serves as the smoothing pa-
rameter. A higher λ value (close to one) implies slower decay in the series, retaining more data
points that ”fall off” gradually. Conversely, a lower λ indicates faster decay, where the weights
decrease more rapidly, resulting in fewer data points being used due to the rapid drop-off. The
RiskMetrics database applies EWMA with λ = 0.94 for daily volatility updates.

The EWMA model is a special case of GARCH(1,1) where α0 = 0 and α1 = 1− λ and β = λ,
meaning the EWMA model has permanent persistence (α1 + β = 1) and ignores any impact on
long run variance. This makes the model particularly useful for short-term forecasting, where
capturing the immediate impact of recent observations is more important.

Remark 2.2. Both EWMA and GARCH provide the conditional volatility σt that can be used
in parametric VaR calculations. After forecasting volatility using these models, we can use this
volatility estimate to calculate VaR. In the variance covariance method we can use the formula
from Lemma 2.1 when assuming a normal distribution. As for the student’s t-distribution, we
can use the formula from Lemma 2.2.

Remark 2.3. There are several approaches to improve historical simulation (HS) described
in section 2.2.3. One way is by using the EWMA model, as suggested by Boudoukh et al.[9].
Instead of giving equal weight to all past data, we apply decreasing weights to older returns.
Then, we select the desired percentile from this weighted distribution. This approach is called
hybrid historical simulation or age-weighted historical simulation. Other methods, such as
volatility-weighted historical simulation and filtered historical simulation, are discussed by K.
Dowd in Chapter 4.4 of [10].

2.4 Backtesting Value-at-Risk

In sections 2.2 and 2.3 different methods for calculating VaR were explained. However, these
methods and VaR itself have several limitations that make the accuracy of risk estimates ques-
tionable. VaR models are only valuable if they can accurately predict future risks. To ensure
the estimates are reliable, it is important to backtest the models using proper methods ([11],
p.16).

Backtesting is a statistical procedure used to verify the accuracy and reliability of Value-at-
Risk models by comparing actual financial outcomes with the model’s projections. It acts as
a ”reality check” to determine whether the VaR estimates accurately capture market risk. If
the results indicate discrepancies, this may signal issues such as incorrect assumptions, faulty
modeling, or improper parameter settings ([8], p.153).

Exceptions (or exceedances) occur when observed losses exceed the model’s predicted VaR. For
a well-calibrated model, the number of exceptions should be in line with the confidence level,
for example, around 1% for a 99% confidence level. Too many exceptions mean the model
underestimates risk, while too few exceptions indicate the model overestimates risk([8], 154).

Several methods have been developed to backtest VaR. A thorough review of these backtesting
techniques is provided in [12], offering a detailed overview of the available approaches. In this
section, we will narrow our focus to two key tests: Kupiec’s proportion of failures (POF) test,
and the Christoffersen test.
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2.4.1 Kupiec Test

The process of backtesting VaR, involves assessing the accuracy of a VaR model by comparing
predicted losses to actual losses. The most common approach is to record the failure rate x/n,
where x is the number of exceptions and n is the total number of observations. This proportion
should ideally converge to p := 1−α, the probability level corresponding to the confidence level
as the sample size increases. For instance, a 99% confidence level implies that violations should
occur approximately 1% of the time. It is uncommon to observe the exact number of exceptions
implied by the confidence level. Therefore, statistical analysis is required to determine whether
the observed number of exceptions is within a reasonable range, ultimately deciding whether
the model should be accepted or rejected ([11], p.17).

Under the null hypothesis that the model is correct, the occurrence of exceptions follows a
sequence of independent Bernoulli trials, where each trial has two possible outcomes: either
a VaR violation (success) or no violation (failure). Consequently, the number of exceptions x
follows a binomial distribution

P (x = k) =

(
n

k

)
pk(1− p)n−k

for k = 0, 1, 2, 3, ...., n, where x has the expected value E(x) = pn and variance V (x) = p(1 −
p)n. For large sample sizes n, the binomial distribution can be approximated by a normal
distribution. The standardized form of the test statistic becomes

z =
x− pn√
p(1− p)n

,

which is approximately ∼ N(0, 1).
To statistically test whether the observed failure rate p̂ = x/n significantly deviates from the
expected failure rate p, Kupiec (1995) proposed the proportion of failures (POF) test. This test
evaluates the null hypothesis H0 : p = p̂ using a likelihood-ratio (LR) test statistic defined as

LRPOF = −2 ln

(
(1− p)n−xpx(

1−
(
x
n

))n−x (x
n

)x
)
. (9)

Under the null hypothesis, LRPOF follows a chi-squared distribution with one degree of free-
dom. If LRPOF exceeds the critical value of the chi-squared distribution, the null hypothesis is
rejected, and the model is considered inaccurate.

A critical consideration in backtesting is the tradeoff between Type 1 and Type 2 errors. A
type 1 error occurs when a correct model is rejected, whereas a type 2 error happens when
an incorrect model is not rejected. A powerful test minimizes both errors, i.e., avoiding the
rejection of good models (type 1) while ensuring that bad models are not accepted (type 2).
Jorion illustrates the concepts in a straightforward way in Chapter 6.2 in [8].

Kupiec introduces approximate 95% confidence regions for such test, based on the tail values of
the log-likelihood ratio, which follows a chi-squared distribution with one degree of freedom as
the sample size n increases. The null hypothesis is rejected if the test statistic LRPOF > 3.841,
(the critical value for the chi-squared distribution at a 95% confidence level)([8], p.160).

Table 1 summarizes these regions which define the range of acceptable exceptions for differ-
ent confidence levels and sample sizes, ensuring the model’s performance is evaluated against
statistically significant thresholds.
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Probability VaR Confidence Nonrejection Region for Number of Failures N

Level p Level n = 252 Days n = 510 Days n = 1000 Days

0.01 99% N < 7 1 < N < 11 4 < N < 17

0.025 97.5% 2 < N < 12 6 < N < 21 15 < N < 36

0.05 95% 6 < N < 20 16 < N < 36 37 < N < 65

0.075 92.5% 11 < N < 28 27 < N < 51 59 < N < 92

0.10 90% 16 < N < 36 38 < N < 65 81 < N < 120

Table 1: Nonrejection regions for number of failures N for POF-test with different sample sizes
and confidence levels as presented by Kupiec in [13].

Assuming α = 0.99, with one year of data (n = 252 trading days), we would expect to observe
approximately N = pn = 1% × 252 exceptions. However, as long as the number of exceptions
N remains below 7 (N < 7), the null hypothesis cannot be rejected. If N reaches 7 or higher
(N ≥ 7), it suggests that the Value-at-Risk is too low or that the model underestimates the
likelihood of large losses.
As the sample size increases, the confidence intervals for the POF-test become narrower, making
it easier to reject an incorrect model. For example, at the 95% confidence level with 252 observa-
tions, the interval for x

n is [6/252 = 0.024, 20/252 = 0.079] .With a larger sample size of 1000 ob-
servations, the interval becomes much smaller given the values [37/1000 = 0.037, 65/1000 = 0.065] .
This shows that increasing the sample size reduces the range of acceptable values ([8], p.161).

Remark 2.4. Note that N represents the number of failures that can occur in a sample of
size n without rejecting the null hypothesis that p is the correct probability, based on a 95%
confidence level for the backtest. It is also important to highlight that the confidence level used
for backtesting is not the same as the confidence level used when calculating the actual VaR.

2.4.2 Christoffersen Test

Christoffersen’s (1998) interval forecast test is an extension of Kupiec’s POF-test, designed to
assess both the correct coverage and the independence of exceptions in VaR models. While
Kupiec’s test focuses solely on whether the frequency of violations is in line with the expected
failure rate (unconditional coverage), Christoffersen introduces a framework to also test if ex-
ceptions occur independently over time, i.e., the test checks if a VaR violation on one day is
affected by what happened the day before. ([11], p.27).

The approach to this test is based on the methodology presented by Olli Nieppola in ([11],
p.27). Following this framework, consider portfolio return data for n days. For each day, we
define an indicator variable It, which equals 1 if a VaR violation occurs (i.e., the portfolio loss
exceeds the VaR) and 0 otherwise

It =

{
1 if a VaR violation occurs

0 if no VaR violation occurs

For i, j ∈ {0, 1}, let ni,j represent the number of days where state j occurs, given that state i
occurred on the previous day. The independence test checks whether the probability of observing
an exception today depends on whether an exception occurred on the previous day. This is done
by defining a 2× 2 contingency table that counts the transitions between states It−1 (previous
day) and It (current day). The table is structured as follows
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It−1 = 0 It−1 = 1 Total

It = 0 n00 n10 n00 + n10

It = 1 n01 n11 n01 + n11

Total n00 + n01 n10 + n11 n

From this table, we calculate the conditional probabilities

π0 =
n01

n00 + n01
and π1 =

n11

n10 + n11
,

where π0 is the probability of observing a violation when the previous day had no violation
(It−1 = 0), and π1 is the probability of a violation following a violation on the previous day
(It−1 = 1). The overall probability of observing a violation is

π =
n01 + n11

n
,

where n is the total number of observations.
Under the null hypothesis of independence H0 : π0 = π1, the likelihood ratio statistic is given
by

LRind = −2 ln

(
(1− π)n00+n10πn01+n11

(1− π0)n00πn01
0 (1− π1)n10πn11

1

)
.

This statistic follows a χ2-distribution with one degree of freedom. If LRind exceeds the critical
value, we reject the null hypothesis, indicating that exceptions are not independent and may
exhibit clustering over time.
To test conditional coverage (both correct coverage and independence), Christoffersen combines
the independence test with Kupiec’s POF-test. The joint likelihood ratio statistic is

LRcc = LRPOF + LRind,

where LRPOF tests unconditional coverage, and LRind tests independence of exceptions.
The combined test statistic LRcc follows a χ2-distribution with two degrees of freedom. If
LRcc exceeds the critical value, the VaR model is rejected for failing either correct coverage,
independence, or both.
A joint test may sometimes pass, while the individual components coverage or independence
fail. Therefore, it is advisable to separately evaluate LRPOF and LRind to identify the source
of the problem. In this case each statistic, LRPOF and LRind, is calculated separately, with
the chi-squared distribution with one degree of freedom serving as the critical value for both
statistics ([11], p.28). Christoffersen’s framework provides a robust method for assessing both
the frequency and independence of VaR exceptions.
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3 Methodology

3.1 Data

The dataset used in this thesis consists of the stocks that make up the Standard & Poor’s 500
(S&P 500) index. The study spans ten years, starting on December 1, 2014, and ending on
December 1, 2024 with 2516 observations.
The daily returns are calculated using adjusted closing prices, which take into account stock
splits, dividends, and other changes. This method ensures that the data reflects the true changes
in stock value. Continuous returns are used using the formula 7 in section 2.3.1. The data was
obtained from Yahoo Finance1 using the tidyquant package in R.

Some of the descriptive statistics for the daily log returns of the S&P 500 index are shown in
Table 2. The dataset contains 2,516 observations with no missing values. The returns range
from a minimum of -0.1277 to a maximum of 0.0897. The central measures indicate a mean daily
return of 0.0004, with the first quartile (Q1) at -0.0038, the median at 0.0007, and the third
quartile (Q3) at 0.0057. The standard deviation, representing volatility, is 0.0113. The dis-
tribution exhibits negative skewness (-0.8019), indicating more frequent small positive returns
and fewer extreme negative returns. Additionally, the kurtosis is high (15.6966), reflecting the
presence of fat tails and a greater likelihood of extreme outcomes, common in financial return
data.

Statistic Value

Number of Observations 2,516

Missing Values (NAs) 0.0000

Minimum -0.1277

Quartile 1 (Q1) -0.0038

Mean 0.0004

Median 0.0007

Quartile 3 (Q3) 0.0057

Maximum 0.0897

Standard Deviation 0.0113

Skewness -0.8019

Kurtosis 15.6966

Table 2: Descriptive statistics for S&P 500 daily log returns (December 2014- December 2024).

Figures 3 and 4 show the adjusted prices and the corresponding daily returns derived from these
prices, respectively. Figure 3 shows that the S&P 500 adjusted closing prices rose steadily over
the ten years, with a sharp drop in early 2020 during the COVID-19 pandemic. Despite this,
the index quickly recovered and reached new highs by 2024. While Figure 4 shows the daily
returns moving around zero, with clear spikes in early 2020 due to market instability. After
2020, the returns became more stable, though some fluctuations still occurred, showing the
market’s changing nature.

1The data is available on http://finance.yahoo.com/.
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Figure 3: S&P500 adjusted closing prices (December 2014- December 2024).

Figure 4: S&P500 daily returns (December 2014- December 2024).

Normality Check
Before implementing the VaR forecasting methods, the dataset was checked for normality. This
step was crucial as many VaR estimation methods assume a normal distribution of returns.
Deviations from normality could affect the accuracy and reliability of the methods.
To evaluate the normality of daily returns for the S&P 500 over the last 10 years, we conducted
a Shapiro-Wilk test, a widely used statistical test for assessing the normality of a dataset [14].
The test yielded a test statistic of W = 0.87695 and a p-value < 2.2 × 10−16. This result
strongly suggests the rejection of the null hypothesis that the returns are normally distributed.
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The Q-Q plot shown in Figure 5 further supports this conclusion, as the sample quantiles (black
points) deviate significantly from the reference line (red line), particularly in the tails where
the points curve away from the line. This deviation indicates the presence of outliers in the
tails, suggesting extreme values that may compromise the reliability of the variance-covariance
method and GARCH models with normal innovations. Consequently, results based on this
method should be interpreted with caution.
Additionally, the skewness of −0.8019 highlights a pronounced left skew in the data, while
the kurtosis of 15.6966 underscores the heavy-tailed nature of the returns, as shown in Table 2.
Despite these deviations from normality, the normal distribution remains a useful approximation
in certain situations. As highlighted in [15] by Costa et al., while financial returns often deviate
from normality, the normal distribution can still provide practical insights for tools like Value
at Risk (VaR). However, its limitations, particularly in underestimating tail risks, must be
carefully considered in risk-sensitive scenarios.

Figure 5: Q-Q Plot of Daily Returns for S&P 500.

3.2 Forecasting VaR Methods

The empirical part of this thesis will focus on applying the theoretical methods described in
sections 2.2 and 2.3 to actual financial data, demonstrating the calculation, improvement, and
backtesting of Value-at-Risk. Specifically, we will estimate VaR using historical simulation and
variance-covariance methods. We will enhance the accuracy of these methods by incorporat-
ing conditional volatility models such as exponentially weighted moving average (EWMA) with
decay factor λ = 0.942 and generalized autoregressive conditional heteroskedasticity (GARCH).
To assess the validity of these VaR estimates, backtesting will be conducted using the Kupiec
test and the Christoffersen test, ensuring that the results meet statistical and practical accuracy
standards.

Our analysis is inspired by the example provided in the book Quantitative Risk Management
by McNeil et al ([1], p.55). In their study, they evaluate 95% and 99% VaR estimates for a
portfolio exposed to five risk factors: three international equity indices and two exchange rates.
The methods employed include unconditional and conditional approaches, as well as backtesting

2The decay factor λ = 0.94 is commonly used in financial models (e.g., RiskMetrics) for daily returns as it
effectively balances responsiveness to recent changes and smoothness in volatility estimation.
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to verify their effectiveness. However, our analysis differs from McNeil’s example in the follow-
ing ways: McNeil’ s example considers a portfolio influenced by multiple risk factors, including
indices and exchange rates, while our study focuses solely on the SP 500 index, simplifying
the analysis to a single risk factor. Additionally, McNeil’s study spans the years 1996-2003,
capturing events like the Dot-com bubble, whereas we will analyze data from December 2014
to December 2024, covering recent market dynamics such as the COVID-19 pandemic and its
aftermath. Furthermore, McNeil includes an advanced method, HS-CONDEVT, which incor-
porates extreme value theory, but we exclude this method as it falls outside the scope of our
study. Finally, while McNeil primarily evaluates violations, we will explicitly use Kupiec and
Christoffersen tests to assess the accuracy of VaR estimates.

The analysis focuses on the S&P 500 index over a ten-year period. The portfolio consists of the
S&P 500, making the portfolio loss directly proportional to the index’s log-returns. The loss
operator for this case is defined as l∆[t](x) = −x, where x represents the log-return of the S&P
500.
The goal is to estimate VaR at the 95% and 99% confidence levels for all trading days during
2019-2024. The estimation uses the last 1,000 days of historical data for risk-factor returns.
To estimate the Value-at-Risk, we use the most recent 1,000 daily log-returns, following a
rolling-window approach. Specifically, for each trading day t + 1, VaR is estimated based on
the historical data from days t − 999 to t. This dynamic approach ensures that VaR esti-
mates reflect the evolving market conditions. The analysis spans the period from December 1,
2018, to December 1, 2024, allowing for a sufficient warm-up period during the initial years (De-
cember 1, 2014, to November 30, 2018) to build a robust dataset for rolling-window calculations.

By employing this methodology, we aim to assess the effectiveness of various VaR estimation
techniques, including historical simulation, variance-covariance methods, and conditional mod-
els like EWMA and GARCH, applied to the S&P 500 index.

The methods in Table 3 will be employed to calculate and analyze VaR.

Symbol Method

HS An unconditional method that uses historical data to estimate the quan-
tile of the loss distribution.

HS-EWMA A conditional version of historical simulation that uses the EWMA
method to estimate changing volatility.

HS-GARCH A conditional historical simulation method where GARCH(1,1) models
with Gaussian innovations estimate volatility.

HS-GARCH-t A conditional historical simulation method where GARCH(1,1) models
assume t-distributed innovations.

VC An unconditional variance-covariance method assuming univariate
Gaussian risk-factor changes.

VC-EWMA A conditional method similar to VC but with the EWMA approach to
estimate time-varying variance.

VC-GARCH A conditional variance-covariance method where GARCH(1,1) models
estimate the conditional variance.

VC-t An unconditional variance-covariance method assuming a univariate t-
distribution to model heavier tails.

VC-GARCH-t A conditional variance-covariance method where GARCH(1,1) models
use t-distributed innovations.

Table 3: Methods employed for VaR calculation.
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The study will evaluate the effectiveness of traditional and enhanced VaR estimation methods
on S&P 500 data over the past decade. By employing advanced conditional models and back-
testing procedures, we aim to provide robust insights into the reliability of these methods under
real-world market conditions.

3.3 Backtesting Methods

The accuracy of the Value-at-Risk estimates was checked using backtesting. This process used
the Kupiec test and the Christoffersen test to see if the observed violations, where actual losses
exceeded the VaR, matched their expected frequency and if these violations happened randomly.

The data used for backtesting included daily returns of the S&P 500 index and the VaR esti-
mates from the methods listed in Table 3. VaR estimates were generated at both 95% and 99%
confidence levels. However, backtesting for both 95% and 99% VaR was conducted at a 95%
confidence level. A violation was counted whenever the actual daily loss exceeded the predicted
VaR value for the corresponding confidence level.

The backtesting process followed several steps. First, a binary sequence of violations was cre-
ated for each VaR method by comparing actual daily returns with the VaR estimates at 95%
or 99% confidence levels. The Kupiec test was used to check if the percentage of observed
violations matched the expected rate (5% for 95% VaR and 1% for 99% VaR). Additionally, the
Christoffersen test ensured that the violations occurred independently, rather than in clusters.

To account for market changes, a rolling-window approach was employed. The VaR for each day
was based on the most recent 1,000 daily returns. Backtesting covered the entire dataset from
2019 to 2024, with additional yearly analyses to assess performance during different market
conditions.

Backtesting was implemented in R using the rugarch and dplyr packages. Automated scripts
calculated test statistics for each method to ensure consistent results. Outputs included the ex-
pected and observed number of violations, likelihood ratio statistics for both unconditional and
conditional coverage, p-values, and decisions on the null hypotheses. Results were summarized
in tables to compare all methods at both 95% and 99% confidence levels. The results for 2020
were also analyzed to highlight performance changes over time.

4 Results

This section presents the results of forecasting and backtesting Value-at-Risk (VaR) using the
methods described in section 3. The analysis focuses on evaluating how well these methods
estimate VaR at 95% and 99% confidence levels and how accurately they capture market risk
over the study period. The results are divided into two parts: forecasting results, which com-
pare predicted VaR estimates to actual market returns, and backtesting results, which assess
the reliability of these methods using statistical tests.

4.1 Forecasting Results

We will evaluate the performance of the methods for estimating Value-at-Risk at 95% and
99% confidence levels, focusing on their ability to capture market risk during the study period.
Particular attention is given to periods of extreme volatility, such as the COVID-19 pandemic
in early 2020.
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4.1.1 Unconditional Methods

Our analysis begins with the unconditional methods: Historical Simulation (HS), Variance-
Covariance (VC), and Variance-Covariance with t-distribution (VC-t). These methods rely
entirely on historical data and assume constant market volatility, which limits their ability to
adapt to sudden changes in risk. To assess their performance, we use two plots that compare
predicted VaR values to daily returns and highlight the patterns of VaR estimates over time.

(a) Returns vs. VaR estimates for HS, VC, and VC-
t at 95% and 99% confidence levels.

(b) VaR estimates for HS, VC, and VC-t over time
at 95% and 99% confidence levels.

Figure 6: VaR forecasting results using unconditional methods: comparison of returns and
predicted VaR estimates.

The first plot, shown in Figure 6(a) which overlays returns with the predicted VaR estimates,
reveals that all three methods struggle during periods of extreme volatility. For example, during
early 2020, returns frequently exceeded the predicted VaR valuess, particularly for the HS and
VC methods, indicating that these approaches underestimated the level of market risk. The
VC-t method, on the other hand, consistently produced higher VaR estimates, which helped
it better capture extreme losses. However, this came at the cost of overestimating risk during
calmer periods, as its thresholds remained higher than necessary in less volatile conditions.
The second plot in Figure 6(b) provides further insights by showing how the methods’ VaR
estimates change over time. The HS method appears slow to react to shifts in market volatility,
reflecting its reliance on historical returns without any adjustments for changing risk levels.
The VC method, while providing smoother estimates, underestimates risk during periods of
sharp volatility spikes, such as those in early 2020, as its assumption of a normal distribution
fails to account for the fat tails present in financial return data. In contrast, the VC-t method
shows a larger increase in VaR estimates during volatile periods, reflecting its ability to account
for extreme returns through its t-distribution assumption. However, this method’s consistently
higher estimates across the entire period suggest that it tends to be overly cautious even in
stable markets.
Overall, the results highlight that while these methods share a reliance on historical data and
constant volatility assumptions, their approaches lead to notable differences in performance.
The HS method is slower to respond to changing conditions, the VC method underestimates
risk during extreme events, and the VC-t method is more responsive to tail risk but often over-
estimates risk in calmer markets. None of the three methods adapt dynamically to changes in
volatility, which limits their ability to accurately estimate risk during rapidly changing market
conditions. These findings underscore the need for more advanced methods, such as GARCH or
EWMA, that can explicitly model time-varying volatility. Further validation through backtest-
ing will be conducted to assess the accuracy of these methods in capturing real-world market
risk.
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4.1.2 HS-GARCH and HS-GARCH-t Methods

When examining the plots for the 95% VaR and 99% VaR generated using the HS-GARCH and
HS-GARCH-t methods, some unusual patterns became apparent. For both methods, the 95%
and 99% VaR estimates appear almost identical, which is unexpected as shown in Figure 7 (a)
and (c). Typically, the 99% VaR estimates should lie significantly above the 95% VaR, as it
represents a higher confidence level and, therefore, larger potential risk values.

(a) VaR estimates for HS-GARCH at 95% and 99%
confidence level.

(b) Returns vs. VaR estimates for HS-GARCH at
95% and 99% confidence level.

(c) VaR estimates for HS-GARCH-t at 95% and
99% confidence level.

(d) Returns vs. VaR estimates for HS-GARCH-t at
95% and 99% confidence level.

Figure 7: VaR forecasting results for HS-GARCH and HS-GARCH-t at 95% and 99% confidence
level.

Additionally, as illustrated in Figure 7 (b) and (d), the VaR lines for these methods seem to
closely mimic the daily returns, fluctuating in a way that resembles the return series rather than
acting as stable thresholds. This behavior is unusual because VaR is supposed to represent a
relatively steady boundary for extreme values, rather than reacting dynamically to short-term
movements.
When comparing these four models-HS-GARCH 95%, HS-GARCH 99%, HS-GARCH-t 95%,
and HS-GARCH-t 99%- to the other methods, only these stood out as being unusual. The
plots for all other models showed expected behavior, with the 95% and 99% VaR lines clearly
separated and providing smooth, logical estimates for risk. This strange behavior in the HS-
GARCH and HS-GARCH-t methods will be explored further during the backtesting analysis
later in the thesis, where their performance and validity will be assessed in greater detail.
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4.1.3 EWMA Methods

The VaR estimates for both VC-EWMA and HS-EWMA methods are smooth and well-behaved.
Unlike the previous methods (e.g., HS-GARCH), the plots clearly distinguish between the 95%
and 99% VaR levels. Starting with Figure 8 (a), the VaR estimates for both methods behave
as expected, with the 99% VaR consistently higher than the 95% VaR. This is logical since
the 99% VaR accounts for a higher confidence level and reflects greater potential losses. Both
methods show good responsiveness to market volatility, particularly during significant events
like the 2020 COVID-19 crisis, where sharp spikes in VaR estimates are observed. These spikes
gradually decline as market conditions stabilize.

(a) VaR estimates for EWMA models over time at
95% and 99% confidence levels.

(b) Returns vs. VaR estimates for EWMA models
at 95% and 99% confidence levels.

Figure 8: VaR forecasting results using EWMA methods: comparison of returns and predicted
VaR estimates.

Focusing on the 95% VaR models specifically, the HS-EWMA and VC-EWMA methods behave
almost the same way up to early 2022. Their lines closely overlap during this period, indicating
they capture market dynamics similarly. However, after early 2022, the HS-EWMA line becomes
more visible and diverges above the VC-EWMA line. This suggests that the HS-EWMA method
begins estimating slightly higher risk compared to VC-EWMA. This difference occurs because
HS-EWMA directly uses historical returns and reacts more strongly to past extreme losses,
while VC-EWMA smooths these effects due to its reliance on normal distribution assumptions.
As a result, HS-EWMA becomes more conservative in its risk estimates during this later period.

In Figure 8 (b), returns are plotted against the VaR estimates for both methods at 95% and 99%
confidence levels. Both methods perform well, with the VaR estimates acting as effective bound-
aries for the returns. Breaches, where returns exceed the VaR values, are rare, which aligns
with expectations for models at these confidence levels. The 99% VaR estimates are breached
even less frequently than the 95% estimates, as expected. Comparing the two methods, HS-
EWMA provides slightly higher estimates during volatile periods, making it more conservative
in capturing tail risks. On the other hand, VC-EWMA provides smoother and slightly lower
estimates, which may underestimate risks in extreme market conditions.
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4.1.4 VC-GARCH and VC-GARCH-t Methods

The plots in Figure 9(a) show the performance of the VC-GARCH and VC-GARCH-t methods
for estimating VaR at 95% and 99% confidence levels. Both methods produce smooth and
well-behaved VaR estimates, similar to what was observed with the EWMA methods. The 99%
VaR consistently lies above the 95% VaR, reflecting proper calibration for the two confidence
levels. Both models respond effectively to market volatility, with significant spikes during the
COVID-19 crisis in 2020 and a gradual stabilization afterward.

For the 95% and 99% VaR estimates, there are no significant differences between the two models.
When plotted together, the lines for VC-GARCH and VC-GARCH-t at each confidence level
are nearly identical. This similarity occurs despite VC-GARCH-t assuming a t-distribution
for innovations, which is designed to better capture heavy tails. In this dataset, the impact
of the heavier tails in the t-distribution appears negligible, resulting in almost identical VaR
estimates. Because of this, separate plots for the two models were not included in the thesis to
avoid redundancy and an overload of figures. However, the performance of these models and
whether their similarity holds will be further investigated in the backtesting process.

(a) VaR estimates for VC-GARCH and VC-
GARCH-t models at 95% and 99% confidence levels.

(b) Returns vs. VaR estimates for VC-GARCH and
VC-GARCH-t models at 95% and 99% confidence
levels.

Figure 9: VaR forecasting results using VC-GARCH and VC-GARCH-t methods: comparison
of returns and predicted VaR estimates.

In Figure 9 (b), where returns are plotted alongside the VaR values, both models perform well.
The VaR estimates effectively bound the returns, with only rare breaches, as expected for mod-
els calibrated at 95% and 99% confidence levels. The 99% VaR values are breached even less
frequently than the 95% values, demonstrating the models’ reliability. While VC-GARCH-t
theoretically provides slightly more conservative risk estimates due to its t-distribution assump-
tions, this difference is not visible in the performance of the models with this dataset.

4.2 Backtesting Process

This section evaluates the performance of the VaR models using backtesting to assess their
accuracy and reliability. The backtesting process is conducted for the entire dataset (2019-
2024) and separately for the year 2020, a period of heightened market volatility. The analysis
includes both the Kupiec test (Unconditional Coverage) and the Christoffersen test (Conditional
Coverage). Models estimating VaR at both 95% and 99% confidence levels are tested at a 95%
confidence level.
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4.2.1 Backtesting for 95% VaR

The backtesting results presented here are for the entire period from 2019 to 2024. These results
assess the accuracy of the VaR estimates for all methods using the Kupiec and Christoffersen
tests. It is worth noting that the results for the HS GARCH and HS GARCH t methods are
not included in the tables. This will be explained later in the analysis.

Table 4 evaluates whether the actual number of violations, where losses exceed the VaR esti-
mates, matches the expected number. For most methods, the Kupiec test fails to reject the null
hypothesis (H0), indicating that the observed violations are close to what is expected.

Methods Expected Actual UC LR Stat UC Critical UC P-Value UC Decision

HS 95 75 82 0.51197 3.84146 0.47429 Fail to Reject H0

HS EWMA 95 75 82 0.51197 3.84146 0.47429 Fail to Reject H0

VC 95 75 74 0.04787 3.84146 0.82682 Fail to Reject H0

VC EWMA 95 75 88 1.95265 3.84146 0.16230 Fail to Reject H0

VC GARCH 95 75 92 3.39934 3.84146 0.06522 Fail to Reject H0

VC t 95 75 53 8.06302 3.84146 0.00452 Reject H0

VC GARCH t 95 75 86 1.37306 3.84146 0.24129 Fail to Reject H0

Table 4: Backtesting Results for 95% VaR - Unconditional Coverage, Kupiec test.

The HS 95 and HS EWMA 95 methods both have 82 actual violations compared to the ex-
pected 75. This is slightly higher than expected, but the results are within acceptable limits,
as the test fails to reject H0. VC 95 performs particularly well, with 74 actual violations, very
close to the expected 75. Its high p-value suggests strong alignment with the expected fre-
quency. VC EWMA 95 and VC GARCH 95 show slightly higher actual violations (88 and 92,
respectively), suggesting mild underestimation of risk. However, the test does not reject H0,
indicating these methods are still within acceptable limits. VC t 95, on the other hand, signif-
icantly overestimates risk, with only 53 violations. The test strongly rejects H0 (p = 0.00452),
showing that this method fails to capture tail risk accurately. VC GARCH t 95 has 86 viola-
tions, slightly higher than expected, but still passes the test with H0 not rejected.

Table 5 assesses not just the number of violations but whether they occur independently, rather
than in clusters. This is a stricter test of the model’s performance.

Method Expected Actual CC LR Stat CC Critical CC P-Value CC Decision

HS 95 75 82 22.51324 5.99146 0.00001 Reject H0

HS EWMA 95 75 82 1.07386 5.99146 0.58454 Fail to Reject H0

VC 95 75 74 17.55961 5.99146 0.00015 Reject H0

VC EWMA 95 75 88 1.95524 5.99146 0.37620 Fail to Reject H0

VC GARCH 95 75 92 5.52975 5.99146 0.06298 Fail to Reject H0

VC t 95 75 53 24.66605 5.99146 0.00000 Reject H0

VC GARCH t 95 75 86 2.30023 5.99146 0.31660 Fail to Reject H0

Table 5: Backtesting Results for 95% VaR - Conditional Coverage, Christoffersen test.

HS 95 fails the Christoffersen test, as H0 is rejected. This suggests that the violations for this
method may occur in clusters. HS EWMA 95, however, performs much better. The test fails to
reject H0, showing that violations are random and the method adapts well to market changes.
VC 95, despite performing well in the Kupiec test, fails the Christoffersen test due to H0 being
rejected. This indicates clustering of violations and points to a limitation in handling dynamic
market conditions. VC EWMA 95 shows strong performance, with H0 not rejected, meaning
violations are well-distributed and occur randomly. This aligns with its adaptability seen in
the earlier VaR plots. VC GARCH 95 is close to the borderline, with H0 not rejected (p =
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0.06298), suggesting acceptable but slightly clustered violations. VC t 95 continues to perform
poorly, with H0 rejected again. This confirms its inability to capture violations accurately, as
noted in the Kupiec test. VC GARCH t 95 performs well, with H0 not rejected, indicating good
distribution and independence of violations.

From the results, HS EWMA 95, VC EWMA 95 and VC GARCH t 95 stand out as the best-
performing methods, passing both tests and showing reliable estimates with random and well-
distributed violations. VC 95, while accurate in terms of the number of violations, struggles
with clustering, as shown in the Christoffersen test. The HS EWMA 95 method performs well,
especially compared to HS 95, which fails to handle violations independently. On the other
hand, VC t 95 consistently underperforms, failing to capture tail risk and struggling with both
tests.
These backtesting results largely align with the trends observed in the earlier VaR plots. For
example, HS EWMA 95, VC EWMA 95 and VC GARCH t 95, which showed stable and well-
adapted VaR estimates, perform reliably here as well.

4.2.2 Backtesting for 99% VaR

The backtesting results for the 99% confidence level use the Kupiec and Christoffersen tests to
evaluate the accuracy of the VaR estimates. The Kupiec test results, shown in Table 6, reveal
mixed performance among the methods.

Method Expected Actual UC LR Stat UC Critical UC P-Value UC Decision

HS 99 15 20 1.41205 3.84146 0.23472 Fail to Reject H0

HS EWMA 99 15 10 2.02308 3.84146 0.15492 Fail to Reject H0

VC 99 15 37 22.63712 3.84146 0.00000 Reject H0

VC EWMA 99 15 37 22.63712 3.84146 0.00000 Reject H0

VC GARCH 99 15 35 19.12497 3.84146 0.00001 Reject H0

VC t 99 15 16 0.04506 3.84146 0.83189 Fail to Reject H0

VC GARCH t 99 15 30 11.39958 3.84146 0.00073 Reject H0

Table 6: Backtesting Results for 99% VaR - Unconditional Coverage, Kupiec test.

The HS 99 method performs reasonably well, with 20 actual violations compared to the ex-
pected 15, and the test fails to reject the null hypothesis. Similarly, HS EWMA 99 passes the
test with only 10 violations, slightly overestimating risk but remaining statistically valid. In
contrast, methods such as VC 99, VC EWMA 99, and VC GARCH 99 show significant devia-
tions, with 35 to 37 actual violations compared to the expected 15, leading to a rejection of the
null hypothesis and indicating underestimation of risk. The VC t 99 method closely matches
the expected number of violations (16 vs. 15), passing the test and showing good calibration.
However, VC GARCH t 99, with 30 violations, fails the test, highlighting underestimation of
risk.

The Christoffersen test results, in Table 7, indicate additional challenges for some methods.
HS 99 struggles to pass this test, while HS EWMA 99 performs strongly, highlighting its adapt-
ability. Methods like VC 99, VC EWMA 99, and VC GARCH 99 continue to struggle, further
confirming their difficulties in accurately estimating risk. VC t 99, although passing the uncon-
ditional coverage test, shows challenges in the Christoffersen test, indicating that its violations
may not occur independently. VC GARCH t 99 fails both tests, highlighting underestimation
of risk and clustering of violations.
In summary, HS EWMA 99 stands out as the most reliable method for 99% confidence level
estimation, while other methods, particularly variance-covariance-based approaches, show sig-
nificant limitations in their risk assessments. These findings align with trends seen earlier at
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Method Expected Exceed Actual Exceed CC LR Stat CC Critical CC P-Value CC Decision

HS 99 15 20 6.35867 5.99146 0.04161 Reject H0

HS EWMA 99 15 10 2.15589 5.99146 0.34029 Fail to Reject H0

VC 99 15 37 28.90344 5.99146 0.00000 Reject H0

VC EWMA 99 15 37 22.64771 5.99146 0.00001 Reject H0

VC GARCH 99 15 35 20.77941 5.99146 0.00003 Reject H0

VC t 99 15 16 6.71321 5.99146 0.03485 Reject H0

VC GARCH t 99 15 30 12.61097 5.99146 0.00183 Reject H0

Table 7: Backtesting Results for 99% VaR - Conditional Coverage, Christoffersen test.

the 95% level, with EWMA methods generally outperforming in adaptability.

4.2.3 Analysis of the Backtesting Results for 2020

To understand how the VaR models performed during a challenging year, we look at the back-
testing results for 2020. This year was chosen because of its high market volatility and uncer-
tainty. The analysis includes results from the Kupiec test (Unconditional Coverage) and the
Christoffersen test (Conditional Coverage) at 95% confidence level. These results will also be
compared to those from the full dataset (2019-2024) to see if there are any patterns or differ-
ences in how the models performed during this period.

For 95% VaR, methods like HS 95, VC 95, and VC t 95 significantly underestimated the num-
ber of breaches, resulting in a rejection of the null hypothesis as shown in Table 8. These
results indicate that these methods did not perform well in capturing risk during 2020. On the
other hand, HS EWMA 95, VC EWMA 95, and VC GARCH t 95 performed much better, as
the actual number of breaches aligned more closely with the expected values, leading to ”Fail
to Reject H0” decisions.

Method Expected Exceed Actual Exceed UC LR Stat UC Critical UC P-Value UC Decision

HS 95 12 32 22.29843 3.84146 0.00000 Reject H0

HS 99 2 12 18.78315 3.84146 0.00001 Reject H0

HS EWMA 95 12 16 0.86472 3.84146 0.35242 Fail to Reject H0

HS EWMA 99 2 2 0.12083 3.84146 0.72813 Fail to Reject H0

VC 95 12 28 14.79654 3.84146 0.00012 Reject H0

VC 99 2 18 40.67328 3.84146 0.00000 Reject H0

VC EWMA 95 12 15 0.43484 3.84146 0.50962 Fail to Reject H0

VC EWMA 99 2 12 18.78315 3.84146 0.00001 Reject H0

VC GARCH 95 12 19 2.92697 3.84146 0.08711 Fail to Reject H0

VC GARCH 99 2 9 10.07068 3.84146 0.00151 Reject H0

VC t 95 12 23 7.25273 3.84146 0.00708 Reject H0

VC t 99 2 13 22.05887 3.84146 0.00000 Reject H0

VC GARCH t 95 12 18 2.11770 3.84146 0.14560 Fail to Reject H0

VC GARCH t 99 2 7 5.38792 3.84146 0.02028 Reject H0

Table 8: Backtesting Results for 2020 - Unconditional Coverage (UC), Kupiec test.

For 99% VaR, methods such as HS 99, VC 99, and VC t 99 also struggled, showing a much
higher number of breaches than expected. However, HS EWMA 99 performed well, perfectly
matching the expected breaches. VC GARCH t 99 showed slightly better results compared to
other methods but still had issues, leading to a rejection of the null hypothesis.

The Analysis of the Christoffersen test results is presented in Table 9 indicates that for 95% VaR,
methods such as HS 95, VC 95, and VC t 95 showed evidence of clustering in the breaches, lead-
ing to a rejection of the null hypothesis. In contrast, methods like HS EWMA 95, VC EWMA 95,
VC GARCH 95 and VC GARCH t 95 showed no significant clustering, with decisions to ”Fail
to Reject H0.”
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Method Expected Exceed Actual Exceed CC LR Stat CC Critical CC P-Value CC Decision

HS 95 12 32 26.50943 5.99146 0.00000 Reject H0

HS 99 2 12 21.31900 5.99146 0.00002 Reject H0

HS EWMA 95 12 16 3.96173 5.99146 0.13795 Fail to Reject H0

HS EWMA 99 2 2 0.15283 5.99146 0.92643 Fail to Reject H0

VC 95 12 28 16.07545 5.99146 0.00032 Reject H0

VC 99 2 18 42.70631 5.99146 0.00000 Reject H0

VC EWMA 95 12 15 1.63046 5.99146 0.44254 Fail to Reject H0

VC EWMA 99 2 12 19.07859 5.99146 0.00007 Reject H0

VC GARCH 95 12 19 4.52683 5.99146 0.10399 Fail to Reject H0

VC GARCH 99 2 9 10.73750 5.99146 0.00466 Reject H0

VC t 95 12 23 11.01545 5.99146 0.00406 Reject H0

VC t 99 2 13 24.07620 5.99146 0.00001 Reject H0

VC GARCH t 95 12 18 4.15074 5.99146 0.12551 Fail to Reject H0

VC GARCH t 99 2 7 5.78798 5.99146 0.05535 Fail to Reject H0

Table 9: Backtesting Results for 2020 - Conditional Coverage (CC), Christoffersen test.

For 99% VaR, methods like HS 99, VC 99, and VC t 99 struggled again, with clear evidence
of clustered breaches. HS EWMA 99 stood out as the only method that performed well, while
VC GARCH t 99 showed marginal results, with a p-value close to the threshold.

The results for 2020 highlight the strengths of HS EWMAmethod, which consistently performed
well across both tests and confidence levels. VC EWMA also performed well for 95% VaR but
struggled for 99% VaR for the Christoffersen test, where was rejected. In contrast, methods
such as HS 95, VC 95, and VC t 95 showed significant issues in capturing risk accurately, both
in terms of the number of breaches and their independence. This suggests that EWMA-based
methods were more effective in handling the volatility and dynamics of 2020. When compared
to the results from the entire period (2019-2024), similar patterns are observed. Methods like
HS EWMA and VC EWMA 95 consistently performed better in both datasets, while HS 95,
VC 95, and VC t 95 showed issues with overestimating breaches and clustering in both cases.
However, the problems with methods such as VC 99 and VC t 99 were more pronounced in
2020, likely due to the heightened volatility during that year. This indicates that while some
methods are robust across different periods, others struggle more in years with extreme market
conditions.

4.2.4 Backtesting Issues with HS GARCH Models

During the VaR estimation process for the HS GARCH and HS GARCH t methods at both
the 95% and 99% confidence levels, unusual behavior was observed in the VaR plots for these
methods. The plots appeared strange and did not align with the expected patterns of other
methods, as shown in Figure 7. To investigate this further, backtesting was conducted to
determine whether this behavior would also be reflected in the statistical tests.
As we mentioned before in the previous section, backtesting was carried out using automated
scripts in R. These scripts calculated the test statistics for the Kupiec and Christoffersen likeli-
hood ratio (LR) tests, including the expected and observed number of violations, p-values and
decisions on the null hypotheses. However, the results for the HS GARCH and HS GARCH t
methods were missing from the output tables, which required further investigation to understand
the cause of this issue.
After doing some research [16], we found that the problem was likely due to the number of
observed breaches being zero for these methods. Since these numbers were not calculated along
with the other methods, we calculated the breaches separately to confirm this. The recalcula-
tion showed that the observed breaches for HS GARCH and HS GARCH t were indeed zero.
Table 10 summarizes the observed breaches for all methods:
The Kupiec and Christoffersen backtesting methods rely on likelihood ratio statistics, which
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Model Breaches

HS 95 82

HS 99 20

HS EWMA 95 82

HS EWMA 99 10

HS GARCH 95 0

HS GARCH 99 0

HS GARCH t 95 0

HS GARCH t 99 0

VC 95 74

VC 99 37

VC EWMA 95 88

VC EWMA 99 37

VC GARCH 95 92

VC GARCH 99 35

VC t 95 53

VC t 99 16

VC GARCH t 95 86

VC GARCH t 99 30

Table 10: Summary of observed breaches for all methods.

depend on the number of observed violations. Specifically, the likelihood ratio (LR) statistic for
the Kupiec test is calculated as in equation (9).
When x = 0, the formula encounters issues because ln(0) and 00 are undefined. This is the
primary reason why backtesting does not work for methods with zero observed violations, as
the calculation of LRPOF becomes impossible.
The Christoffersen test, which builds on the Kupiec test by also checking the independence of
violations over time, has a similar limitation. This test requires a binary sequence of violations
to calculate whether they occur randomly or in clusters. However, when there are no observed
violations, the binary sequence is empty, and the test cannot proceed.

The issue with the HS GARCH and HS GARCH t methods seems to come from a few differ-
ent factors. One possible reason is how the GARCH-estimated volatilities are combined with
historical returns in the historical simulation framework. The GARCH and EWMA functions
seem to work fine in other methods like VC GARCH or HS EWMA, so the issue is likely specific
to how the historical simulation framework handles the scaling of returns with volatilities. The
data itself could also play a role. Factors such as outliers, changes in volatility over time, or
long periods of low volatility might exacerbate the problem, affecting the VaR estimates and
causing the unusual behavior in the plots.
At this stage, the exact cause is not clear. It likely involves a mix of issues with the historical
simulation framework and the dataset. More investigation is needed to fully understand the
problem.
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5 Conclusion and Discussion

This thesis examined the forecasting and testing of Value-at-Risk (VaR), an essential tool for
managing financial risks. Using ten years of S&P 500 data, several methods for estimating
VaR were applied and evaluated for accuracy through backtesting. The study revealed that
traditional methods like Historical Simulation (HS) and Variance-Covariance (VC) performed
reasonably well during stable market periods but struggled during volatile times, such as the
COVID-19 crisis in 2020. These methods often underestimated risk during extreme events be-
cause they assume market conditions remain constant over time.

Conditional methods, such as EWMA and GARCH, proved to be more effective as they adapt
to changing market conditions. Among these, EWMA-based methods consistently provided
reliable results. The Variance-Covariance approach using a t-distribution (VC t) addressed
the issue of rare, extreme losses (fat tails) but tended to overestimate risk in calmer periods.
Backtesting results showed that many methods produced the expected number of breaches,
but some, like HS and VC, had clustering issues where breaches were not evenly spread out. In
contrast, EWMA-based methods, particularly HS EWMA and VC EWMA, excelled in adapting
to changing market conditions and delivering dependable estimates. However, the HS GARCH
methods displayed unusual behavior, producing no breaches at all, which suggests potential
challenges in integrating GARCH volatility modeling with the historical simulation approach.
The year 2020, marked by high market volatility, further underscored the limitations of static
methods like HS and VC, which failed to keep up with rapid changes in risk. In contrast,
EWMA-based methods demonstrated their strength by providing accurate estimates even in
such a challenging environment. Overall, this study highlights the importance of using adaptive
models like EWMA and GARCH for effective risk management. These models offer greater
reliability and flexibility in dynamic and uncertain market conditions, though there is always
room for further refinement and innovation in risk estimation.

This study offered useful insights, but there are some limitations. The unexpected behavior of
HS-GARCH models needs further exploration to understand and fix the issues. Additionally,
the analysis was limited to the S&P 500 index, which may not fully apply to portfolios with
more complex structures or multiple risk factors. Managing risk is crucial for financial markets.
This study showed that methods that adapt to changing conditions, like EWMA and GARCH,
are more reliable than simpler, static methods. However, there is always room for improving
these models to handle new challenges in the future.
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