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Abstract

This thesis compares two powerful tree based machine learning
algorithms, Random Forest and XGBoost, with a focus on their abil-
ity to generalize under varying levels of noise. Simulated datasets
were designed to include four regression functions. These regression
functions corresponds to four distinct geometric shapes, referred to
as Sphere-Truncated Cone, Cone, Rhombus-Truncated Pyramid, and
Ridge, defined for five predictor variables and two noise levels, catego-
rized as ”high” and ”low.” These shapes serve as a challenge for both
algorithms, evaluating their performance under structured and noisy
conditions. The theoretical component of this study delves into the
mathematical foundations of Random Forest and XG Boost, providing
a step-by-step analysis of their mechanisms, including tree construc-
tion, optimization processes, and ensemble strategies. Using Mean
Squared Error (MSE) and Mean Squared Error of Prediction (MSEP)
for test data as evaluation metrics, this work systematically assesses
the algorithms’ performance across the simulated datasets. The find-
ings demonstrate that Random Forest excels in handling regression
functions with discontinuities, while Gradient Boosting performs bet-
ter for regression functions with continuous and smooth patterns.
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1 Introduction
Tree-based machine learning algorithms, such as Random Forest and XGBoost, have significantly
enhanced predictive modeling by capturing complex, nonlinear relationships in data. Despite their
widespread success, understanding how effectively these models generalize under varying levels of noise
and across diverse data structures remains a critical area of exploration. This study specifically
examines their performance under two distinct noise levels, "low" and "high", to uncover insights into
their robustness and adaptability.

The problem this thesis aims to solve is understanding the comparative performance of Random Forest
and XGBoost regression algorithms under diverse conditions. Specifically, the goal is to determine how
well each algorithm generalizes when applied to datasets with varying geometric structures and noise
levels. Using a number of different regression functions, characterized by various geometric structures,
including sphere-truncated cones, cones, rhombus-truncated pyramids, and ridges, the study
investigates the capacity of these algorithms to model feature interactions and adapt to the
complexities of different data structures.

By systematically comparing the performance of Random Forest and XGBoost under controlled
conditions, this thesis seeks to provide a deeper understanding of their behavior in structured
environments. The analysis focuses on how these algorithms handle complex geometric patterns within
the data and examines the impact of varying noise levels on their generalization capabilities. Through
this investigation, the study aims to uncover the strengths and limitations of both Random Forest and
XGBoost for diverse regression scenarios. By analyzing their performance, the research not only
contributes to algorithmic understanding but also provides actionable insights for practitioners, helping
them make informed decisions about the choice of machine learning method.

The thesis is structured as follows: Section 2 introduces the theoretical foundations and essential
background information necessary for understanding the study. Section 3, Simulation and Data,
outlines the methodological framework and describes the data generation process, including the
construction of synthetic datasets with different geometric structures and varying noise levels. Section
4, Algorithms and Performance Criteria, discusses the estimation and prediction based evaluation
metrics employed in the analysis. Finally, the thesis concludes with Results and Discussion, where the
findings are presented and analyzed in relation to the broader research context, highlighting their
implications for both theory and practice.

2 Theory

2.1 Regression Model
Suppose we have a dataset {(Xi, Yi)}Ni=1, where Xi = (Xi1, Xi2 . . . , Xip) is the vector of p predictor
variables or features, and Yi the dependent variable (or outcome variable), for observation i = 1, . . . , N .
The regression model is defined as

Yi = f(Xi) + εi, i = 1, . . . , N,

where f(x) = E(Y |X = x) is the regression function, that is, the expected outcome Y given an observed
value x of the predictor vector X. In this thesis, we assume that the outcome variables are quantitative,
with a continuous distribution. More specifically, we will assume that the error terms εi ∼ N(0, σ2) are
normally distributed with mean 0 and variance σ2. We will also denote the observed value of Yi by yi.

The total number of observations is N = N0 +N1. The first N0 of these observations will be used for
training, in order to estimate f , whereas the remaining N1 observations will serve as test data. An
estimate of f(x), based on training data, is denoted as f̂(x). The quality of this fit is assessed by the
smallness of the prediction errors Yi − Ŷi = Yi − f̂(Xi) for test data i = N0 + 1, . . . , N0 +N1.

4



2.2 Decision Trees
Decision trees are a widely used tool in supervised learning for both classification and regression tasks.
They simplify complex decision-making by iteratively splitting data into smaller, homogeneous subsets,
making it easier to visualize decision paths and analyze potential outcomes. In a decision tree, data is
split at each node according to specific criteria, aiming to minimize impurity or variance within each
subset. Each branch terminates at a leaf node, which provides a prediction for the dependent variable,
helping to ensure that nodes contain data with similar characteristics (Breiman et al. 2017).

There are two main types of decision trees: classification trees and regression trees. Classification trees
are used to predict categorical outcomes by splitting data based on measures like Gini impurity or
information gain, depending on the algorithm. Regression trees, on the other hand, are used to predict
continuous values by minimizing the variance within each node. This approach allows regression trees
to capture nonlinear relationships f(x) between predictors x and the dependent variable Y , effectively
averaging outcomes across training observations within the same node to improve predictive accuracy
(Breiman et al. 2017).

For effective splits, the choice of impurity measure is critical. In classification trees, Gini impurity
(commonly used in the CART algorithm) and information gain (used in algorithms like ID3 and C4.5)
are popular metrics to assess the purity of each split, guiding the tree toward homogeneous groups of
observations. In regression trees, the primary criterion is variance reduction, which evaluates splits
based on the extent to which each partition minimizes variance within its subset (Breiman et al. 2017).

Visualizing decision tree structures offers a clear, interpretable view of the model’s decision-making
process. This interpretability is a key advantage, as each path in the tree transparently represents a
series of decisions, especially in smaller trees. Additionally, decision trees have several practical benefits
over many algorithms: firstly, they are invariant to data scaling, as each feature is processed
independently, making normalization or standardization unnecessary, and secondly, they handle
features of varying types and scales effectively, working well with both binary and continuous variables.
However, a notable downside of decision trees is their tendency to overfit, capturing noise in the
training data and limiting generalization to new datasets (Müller and Guido, 2016, p. 83).

Overfitting can be mitigated through techniques like pruning and limiting the tree depth. Pruning,
which can be applied as either pre-pruning (stopping tree growth early) or post-pruning (removing
branches from a fully grown tree), reduces model complexity by removing branches with limited
predictive value, enhancing the tree’s generalizability. Limiting the tree depth similarly prevents the
model from growing overly complex, contributing to improved performance on unseen data (Müller and
Guido, 2016, p. 74).

2.2.1 Regression Tree

A regression tree divides the feature space into M disjoint regions denoted as R1, R2, ..., RM , with each
region assigned a specific constant value cm. The function f(x) outputs the predicted value based on
the region to which x belongs. More precisely, one has

f(x) =

M∑
m=1

cm1(x ∈ Rm), (1)

where 1 is the indicator function, equaling 1 if x ∈ Rm and 0 otherwise.

The best estimate ĉm of the constant value cm is just an average of yi in region Rm. This average is the
best estimate in the sense that it minimizes the empirical variance of the residuals within that region,
leading to the smallest possible sum of squared residuals for the data points in Rm. This can be
formalized as

ĉm = ave(yi|xi ∈ Rm), (2)

where ave() represents the average over yi values in region Rm (Hastie, Tibshirani, & Friedman, 2009,
p. 307).
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Determining ĉmis straightforward once the regions Rm are established. However, identifying these
regions involves selecting optimal binary splits across all features and split points, which according to
Hastie et al. (2009) is "generally computationally infeasible". Thus a greedy algorithm is typically
used, selecting splits that locally minimize the sum of squared errors (SSE) at each node.

Split Selection Process. The splitting process begins by considering all the training data in the root
node. For each node, the decision tree algorithm selects a splitting variable k from the p features of the
datasets and a corresponding split point s that divides the data into two groups. The selected split
minimizes the SSE or sum of squared residuals (SSR) within each resulting group, aiming to maximize
the homogeneity of the response variable in each child node.

In this context, the splitting point s refers to a specific threshold for the chosen feature k, creating two
regions

R1(k, s) = {X|Xk ≤ s}

and

R2(k, s) = {X|Xk > s}.

This process iterates, further subdividing each node until a stopping criterion is met. Common
stopping criteria include a minimum number of observations in each node or a maximum tree depth,
which helps balance model complexity and computational efficiency (James et al., 2013, p. 306-307).

Optimization of the Splitting Process. The objective is to find a split that minimizes the within
node residual sum of square by selecting optimal values for both the splitting variable k and the split
point s. Mathematically, this can be expressed as

min
k,s

min
c1

∑
xi∈R1(k,s)

(yi − c1)
2 +min

c2

∑
xi∈R2(k,s)

(yi − c2)
2

 . (3)

where c1 and c2 are the predicted values for regions R1(k, s) and R2(k, s), respectively. This nested
optimization first identifies the split (k, s) that best partitions the data and subsequently estimates c1
and c2 using equation (2). This greedy, step by step selection does not consider future splits, focusing
only on minimizing error within the current step (Hastie et al., 2009, p. 307).

Figure 1 illustrates a regression tree with a depth of four, constructed from binary splits. Each node
represents a subset of the data, with the root node encompassing the entire dataset. At each split, the
algorithm selects an optimal splitting variable (e.g., x3) and point (e.g., 0.51) dividing the data based
on this criterion. The terminal or leaf nodes at the bottom represent distinct predictions for any data
point falling within each corresponding region. The predicted value for each leaf node, shown in the
upper part of the oval, represents the average ŷ within that region. Additionally, the notation n
denotes the number of observations in each node, while the percentage indicates the proportion of the
datasets represented in that region.

This structure provides a clear visualization of how the data is segmented and predictions are made
based on different criteria defined by the decision tree. Each node provides insightful details about the
subset of data it contains, facilitating understanding of the model’s decisions and predictions.

Bias and Variance Trade-off
The bias-variance trade-off is a key concept in machine learning and statistics that describes the
interplay between two sources of error that affect the performance of predictive models, bias and
variance. This trade-off is illustrated in Figure 2, which provides two perspectives: a graphical
representation of bias and variance in predictions and a plot showing how these errors often vary with
model complexity. Bias represents the error caused by simplifying assumptions made by a model. For
instance, when a model is too simple, such as a linear regression applied to nonlinear data, it will fail to
capture the true structure of the data, leading to high bias. This typically results in underfitting, where
the model has poor performance on both training and unseen data.
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Figure 1: Example of a regression tree for a predictor space with p = 5 input variables. The tree has a
depth of four, constructed from four binary splits, and there are five terminal nodes at the lowest level.

As shown in Figure 2(a), a model with high bias tends to make predictions that are consistently far
from the target, regardless of the specific data points. Variance, in contrast, measures how sensitive a
model is to fluctuations in the training data. Highly complex models, such as those with many
parameters or high flexibility, tend to overfit the training data by capturing noise or random
fluctuations rather than the underlying pattern. This results in high variance, where the model
performs well on training data but poorly on unseen test data. In Figure 2(a), a model with high
variance produces predictions that are widely scattered, even when they have no systematic departure
from the target.

Figure 2(b) demonstrates the relationship between bias, variance and total error as a function of model
complexity. As model complexity increases, bias decreases because the model becomes more capable of
capturing intricate patterns in the data. However, variance increases because the model becomes more
sensitive to small changes in the training set. The total expected squared prediction error, which is the
sum of squared bias, variance, and irreducible error (the inherent noise in test data), is minimized at an
optimal level of model complexity. This is the point where the model achieves the best balance between
underfitting and overfitting, ensuring good generalization to unseen data.

2.3 Bootstrap Aggregation
Bagging, short for bootstrap aggregation, is an ensemble learning technique designed to improve the
stability and accuracy of machine learning algorithms. The method generates B random samples from
the training data with replacement, each with same size as the original dataset. A separate model is
trained on each sample, allowing each model to learn from slightly different data. Predictions from all
models, f̂1(x), . . . , f̂B(x), are combined and averaged to obtain the final prediction

f̂(x) =
1

B

B∑
b=1

f̂b(x). (4)

Bagging reduces the variance of models prone to overfitting, such as decision trees, without significantly
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(a) Graphical illustration of bias
and variance.

(b) The variation of Bias and Variance
with the model complexity.

Figure 2: Bias and Variance, (Fortmann-Roe, 2012).

increasing bias. This characteristic makes bagging particularly effective when the base learner is highly
variable, providing more stable and generalized predictions (Hastie et al., 2009, p. 587-588).

Figure 3: Schematic illustration of bagging, (Kovačević et al, 2021).

2.4 Random Forest
Random Forest builds on the principles of bagging by incorporating additional randomization during
the construction of individual trees. While bagging trains each tree on a bootstrap sample of the
training data, Random Forest introduces another layer of randomness by selecting a random subset of
predictors at each split in the tree. This random feature selection reduces the correlation between trees,
a limitation of traditional bagging, and leads to improved ensemble performance.

The construction of a Random Forest involves:

1. Bootstrap Sampling: Each tree is trained on a random bootstrap sample from the training data.
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2. Random Feature Selection: At each split, a random subset of predictors is considered, ensuring
that trees are decorrelated and less likely to overfit to the training data.

Although individual trees in the Random Forest may be noisy and overfit their respective bootstrap
samples, the aggregation of these trees through averaging mitigates these issues, leading to more robust
predictions. The combined model is particularly effective in handling complex data structures and
mitigating the impact of noise, making it a powerful tool for a wide range of predictive tasks (Hastie et
al., 2009, p. 588).

Since each of the B generated trees is drawn from the same dataset, they are not independent but are
identically distributed (i.d.). This implies that the expectation of any individual tree is the same as the
average expectation of the B trees. Although trees are based on simple decisions, they do not
systematically favour one outcome over another, resulting in a low bias. Therefore, the only means of
enhancing the model’s accuracy through bagging is by reducing variance. Given the assumption that
predictions Ŷb = f̂b(x) are i.d. with variance σ2, and correlation ρ among predictions

Corr(Ŷb1 , Ŷb2) = ρ > 0, for all b1 ̸= b2,

the variance of the average prediction across all trees is

V ar

(
1

B

B∑
b=1

Ŷb

)
=

1

B2
[B(V ar(Ŷb) +B(B − 1)Cov(Ŷb1 , Ŷb2)] = ρσ2 +

(1− ρ)

B
σ2. (5)

As B → ∞,

lim
B→∞

V ar

(
1

B

B∑
b=1

Ŷb

)
= ρσ2. (6)

The variance approaches ρσ2, showing that a larger ensemble effectively reduces prediction variance as
long as trees remain decorrelated (Hastie et al., 2009, p. 589).

The procedure, as detailed in Algorithm 4.1, aims to enhance variance reduction, a key aspect of
bagging, by strategically reducing the correlation among trees. This goal is achieved by randomly
selecting features during the tree-growing process, which prevents excessive increases in variance. As
suggested by the expression (6), selecting features accordingly is more effective in reducing both the bias
and variance of the regression function than merely increasing the number of trees. This approach not
only optimizes the model’s accuracy but also ensures greater generalizability. According to Hastie et
al., the number of randomly selected features at each node is often chosen as p/3 (Hastie et al. p 589).

In regression tasks, each tree partitions the feature space into regions Rb
m with a constant value cbm

assigned to each region. Aggregating over all bootstrap samples yields the Random Forest regression
predictor

f̂rf (x) =
1

B

B∑
b=1

Mb∑
m=1

cbmI(x ∈ Rb
m), (7)

where M b denotes the number of regions of the b:th resampled tree, with regions Rb
m and levels cbm

within these regions. This equation illustrates how each tree contributes to the final prediction f̂rf (x),
offering a more robust prediction than any individual tree alone.

One advantage of Random Forests is their ability to provide feature importance metrics. By measuring
the impact of each feature on prediction accuracy. Random Forests offer insights into the most
influential variables, aiding interpretability. This characteristic makes Random Forests particularly
useful in fields where understanding variable contribution is essential. Random Forests efficiently
handle large datasets with complex variable interactions, offering accurate predictions without
overfitting. This method balances bias and variance effectively, leveraging ensemble learning to deliver
high predictive power across a range of applications (Breiman, 2001).
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2.5 Boosting
Boosting is a powerful ensemble learning method that combines the predictions of multiple weak
learners to create a strong learner. These weak learners, often decision trees, only slightly outperform
random guessing but are highly effective when combined iteratively. Boosting derives its strength from
sequential training, where each learner is fitted to correct the residual errors of its predecessors. By
prioritizing instances with higher residuals, boosting systematically reduces error and enhances
predictive accuracy. Unlike bagging, where trees are trained independently and combined to reduce
variance, boosting introduces strong interdependence among learners. This interdependence allows
boosting to iteratively reduce bias by focusing on improving the fit for harder-to-predict observations.
As a result, boosting adapts the ensemble to minimize residual error and provides significant
advantages, particularly in regression tasks where precise predictions are critical (Hastie et al., 2009,
chapter 10; Rocca, 2019).

2.5.1 Forward Stagewise Additive Modeling

Boosting can be understood as an iterative method for fitting an additive expansion of form:

f(x) =

B∑
b=1

βbz(x; θb),

where βb are the weights assigned to the individual basis functions z(x; θb), parameterized by θb. In the
context of regression boosting, z(x; θb) often corresponds to weak learners, such as regression trees, and
βb represents their contribution to the ensemble.

Forward stagewise additive modeling builds models sequentially. Instead of solving for all coefficients
and parameters simultaneously, this method introduces one basis function at a time, ensuring that each
weak learner incrementally corrects the residual error of the current model. Once a weak learner is
added, it remains unchanged throughout the modeling process. At each iteration b, the algorithm
minimizes the loss function L by solving the optimization problem:

(βb, θb) = argmin
β,θ

N0∑
i=1

L(yi, fb−1(xi) + βz(x; θ)),

where fb−1(x) is the model built up to the previous iteration b− 1, z(x; θb) represents a new weak
learner (regression tree) and N0 is the number of training observations.

To simplify the minimization of the loss function L, consider the square error loss
L(y, f(x)) = (y − f(x))2. The residuals at iteration b are defined as:

rib = yi − fb−1(xi),

representing the difference between the observed values and the model predictions up to the previous
step. Solve the for yi and substitute into the loss function, the optimization problem can be written as:

(βb, θb) = argmin
β,θ

N0∑
i=1

(rib − βz(xi; θ))
2

This reformulation focuses on fitting the residuals with the new basis function z(x; θb), weighted by βb.

Once βb and θb are determined the model is updated iteratively as:

fb(x) = fb−1(x) + βbz(x; θb).

Each step progressively reduces the error by targeting the residuals while keeping the previously
selected terms unchanged.
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2.5.2 Boosted Trees

Suppose the basis function in each step of boosting is a regression tree. The prediction of a single
regression tree of boosting algorithm can be represented as:

T (x; θ) =

M∑
m=1

cm1(x ∈ Rm), (8)

where the parameters θ = {Rm, cm}Mm=1 defines the structure of the tree. In this equation, Rm

represents disjoint regions of the feature space and cm is the predicted value associated with region Rm.
The indicator function 1(x ∈ Rm) equals 1 if x ∈ Rm and 0 otherwise.

To train the single regression tree (8), we need to find the optimal parameters θ = {Rm, cm}Mm=1 by
solving the optimization problem:

θ̂ = argmin
θ

M∑
m=1

∑
xi∈Rm

L(yi, cm), (9)

where L(yi, cm) denotes the loss incurred when predicting yi in region Rm with value cm. In this thesis,
we use the squared loss L(yi, cm) = (yi − cm)2.

The optimization problem in (9) is a complex combinatorial task due to the need to determine both
regions Rm and the value cm. The optimization problem is typically solved using a greedy recursive
partitioning algorithm, as discussed in section 2.2.1. This algorithm sequentially partitions the feature
space into regions Rm by minimizing the squared loss at each step.

In boosting, each tree T (x; θb) is trained sequentially to improve the predictions of the previous trees.
As mentioned in section 2.5.1, this is achieved by focusing on the residuals of the current model and
fitting a new tree to minimize these residuals. For each tree, the parameters θb = {Rmb, cmb} are found
by solving the following optimization problem:

θ̂b = argmin
θb

N0∑
i=1

L(yi, fb−1(xi) + T (xi; θb)), (10)

where fb−1 is the prediction from the first b− 1 trees (the current model) and T (xi; θb) is the
contribution of the bth tree. After determining the region Rmb for the bth tree, the predicted value for
each region is optimized using:

ĉmb = argmin
cmb

∑
xi∈Rmb

L(yi, fb−1(xi) + cmb), (11)

where ĉmb is the optimal constant prediction for the mth region of the bth tree. For squared error loss,
ĉmb is simply the mean of the resiudals in Rmb, which makes the optimization computationally efficient.
Over multiple iterations, boosting builds a strong predictive model by combining many weak learners
into a single ensemble.

2.5.3 Gradient Boosting

Gradient Boosting is a specialized implementation of the boosting framework that integrates gradient
descent into its optimization process. This algorithm builds models sequentially, with each regression
tree trained to minimize the gradient of the chosen loss function with respect to the current ensemble’s
predictions. The stagewise process aligns with functional gradient descent, ensuring incremental
corrections to residual errors at each iteration (Friedman, 2001; Hastie et al., 2009, p. 359–361).

The regression function of a boosted model is given by:

fB(x) =

B∑
b=1

T (x; θb), (12)
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where fB(x) is the ensemble prediction after B boosting iterations and T (x; θb) is the b-th regression
tree parametrized by θb. As in section 2.5.2, each tree is trained on the residuals of the previous
ensemble, enabling the model to address the most challenging errors at each stage (Hastie et al., 2009,
p. 359–361).

A core concept in Gradient Boosting is the use of the negative gradient of the loss function to
approximate the residual errors. For a chosen loss function L(y, f(x)), the gradient at each data point
provides the direction and magnitude of adjustment required to improve the model’s predictions:

gib =
∂L(yi, fb−1(xi))

∂fb−1(xi)
.

For regression tasks with squared error loss is defined as:

L(y, f(x)) =
1

2

N0∑
i=1

(yi − f(xi))
2.

The negative gradient is equivalent to the residual:

−gib = yi − fb−1(xi) = rib.

This relationship highlights how the negative gradient and residuals are closely connected, with the
gradient providing the necessary adjustments to reduce the loss.

The goal of each boosting iteration is to fit a new tree T (x; θb) to approximate the negative gradient
values −gib. By doing so, the model incrementally refines its prediction to reduce the residual errors.

At each boosting stage, the optimization problem is formulated as:

θ̂b = argmin
θb

N0∑
i=1

(−gib − T (xi; θ))
2, (13)

This equation minimizes the squared difference between the negative gardient gib and the predictions of
the new tree T (x; θ), effectively fitting a regression tree to negative gradient values. This step uses least
squares regression, which is computationally efficient and straightforward to implement.

After the regression tree T (x; θ) is constructed, the constant prediction cbm for each region Rbm are
optimized to further reduce residuals. The constants cbm are determined by solving:

ĉmb = argmin
cmb

∑
xi∈Rmb

L(yi, fb−1(xi) + cmb), (14)

where Rmb denotes the mth region of the bth tree. For squared error loss, this simplifies to assigning
the mean of the residuals within each region:

ĉmb =

∑
xi∈Rmb

(yi − fb−1(xi))

|Rmb|
.

The updated model after incorporating the bth tree is given by:

fb(x) = fb−1(x) + νT (x; θb), (15)

where ν is the learning rate with a value between 0 and 1, a hyperparameter controlling the step size
for the gradient updates. Smaller values of ν promote slower but more robust convergence, while larger
values can accelerate convergence but risk overfitting (Friedman, 2001, p. 1203-1204).
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Figure 4: Schematic illustration of Gradient Boosting, (GeeksForGeeks, 2020).

2.5.4 eXtreme Gradient Boosting (XGBoost)

The theoretical framework and formulation discussed will primarily follow Guestrin (2016), the original
developers of XGBoost, as outlined in the paper XGBoost: A Scalable Tree Boosting System.

The objective function of XGBoost, which models f as a sum of B regression trees, is expressed as:

L =

N0∑
i=1

L(yi, f(xi)) +

B∑
b=1

Ω(Mb), (16)

where L(yi, f(xi)) denotes the loss function. The term Ω(Mb) is a regularization term, designed to
prevent overfitting by penalizing the complexity of the model. This regularization term is defined as:

Ω(Mb) = γMb +
1

2
λ

Mb∑
m=1

c2mb. (17)

where γ penalizes the number of leaves Mb in the tree, and λ discourages large leaf weights cmb. By
including this term, XGBoost achieves simpler, more generalizable models compared to traditional
gradient boosting. To optimize the objective function, XGBoost uses a Second Order Taylor
Approximation, which efficiently estimates the loss function around a current prediction:

f(x) ≈ f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2. (18)

Here, f(a) is the current prediction, f ′(a) is the gradient, and f ′′(a) is the Hessian. In the context of
boosting, a represents the prediction at step b− 1, while x− a corresponds to the new tree T (x; θ)
being added in step b to minimize the objective function. For this approximation to work, the loss
function L must be twice differentiable, which is true for squared loss. At each iteration b, the gradient
(first derivative) and Hessian (second derivative) are calculated as:

Gradient:
gb(xi) =

∂L(yi, fb−1(xi))

∂fb−1(xi)
(19)

Hessian:

hb(xi) =
∂2L(yi, fb−1(xi))

∂2fb−1(xi)
(20)
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These derivatives quantify the steepest descent direction and curvature of the loss function, guiding
model updates. The updated loss function after adding the new tree T (x; θ) can then be approximated
as:

N0∑
i=1

L(yi, fb−1(xi) + Tb(xi; θ)) ≈ C +

N0∑
i=1

(
gb(xi)Tb(xi; θ) +

1

2
hb(xi)Tb(xi; θ)

2

)
+Ω(Mb). (21)

The approximated loss now includes the gradient gb(xi), Hessian hb(xi), and the regularization term
Ω(Mb). The term C =

∑N0

i=1 L(yi, fb−1(xi)) is a constant and it has no impact on finding the optimal
tree T (·; θ) in step b of the boosting algorithm. To compute Tb(xi; θ), XGBoost represents it as a sum
over disjoint regions Rm of the regression tree:

Tb(xi; θ) =

M∑
m=1

cmb1(x ∈ Rmb), (22)

where 1(x ∈ Rm) is an indicator function that equals 1 if x ∈ Rm and 0 otherwise (see section 2.2.1).
Substituting this representation into the approximated loss yields:

Mb∑
m=1

[( ∑
xi∈Rmb

gb(xi)

)
cmb +

1

2

( ∑
xi∈Rmb

hb(xi)

)
c2mb

]
+Ω(Mb). (23)

Here, the terms Gmb =
∑

xi∈Rmb
gb(xi) and Hmb =

∑
xi∈Rmb

hb(xi) are introduced to simplify notation.
Incorporating the regularization term, the loss function becomes:

Mb∑
m=1

[
Gmb cmb +

1

2
Hmb c

2
mb

]
+ γMb +

1

2
λ

Mb∑
m=1

c2mb =

=

Mb∑
m=1

[
Gmb cmb +

1

2

(
Hmb + λ

)
c2mb

]
+ γMb.

(24)

To find the optimal leaf weights c∗mb, we differentiate (24) with respect to cmb and set the derivative to
zero, according to

∂

∂cmb

[
Gmb cmb +

1

2

(
Hmb + λ

)
c2mb

]
= Gmb +

(
Hmb + λ

)
cmb = 0.

Solving for optimal leaf weight yields (with gib = gb(xi) and hib = hb(xi)):

c∗mb =
−Gmb

Hmb + λ
= −

∑
i∈Rmb

gib∑
i∈Rmb

hib + λ
. (25)

This formula determines the optimal value of each leaf, balancing the gradient and Hessian information
while penalizing large leaf weights through λ. We can also express (25) as

Optimal leaf value =
Sum of Residuals

Number of Residuals + λ
.

Plugging (25) into (24), we get:

⇒ −1

2

Mb∑
m=1

G2
mb

Hmb + λ
+ γMb = −1

2

Mb∑
m=1

(
∑

i∈Rmb
gib)

2∑
i∈Rmb

hib + λ
+ γMb,

where a higher similarity score indicates that the observations within the node are more homogeneous
with respect to the target variable. This metric helps prioritize splits that improve leaf homogeneity.
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To evaluate splits of tree Tb, the gain is computed as:

Lsplit =
1

2

[
(
∑

i∈RL
gib)

2∑
i∈RL

hib + λ
+

(
∑

i∈RR
gib)

2∑
i∈RR

hib + λ
−

(
∑

i∈R gib)
2∑

i∈R hib + λ

]
− γ, (26)

where RL, RR, and R represent the left, right, and parent nodes, respectively. Higher gain indicates
better splits, guiding tree growth.

3 Simulation Study

3.1 Data Generation
In this section, we describe how to generate 100 datasets (numbered j = 1, . . . , 100) of size N = 1000,
from the model of Section 2.1. Each of these datasets is split into a training data set with N0 = 0.8N
observations and a test dataset with N1 = 0.2N observations. That is, for each j we generate

{(Xj
i , Y

j
i )}

N
i=1, Y j

i = f(Xj
i ) + εji . (27)

The observation number i ranges over i = 1, . . . , N , where N0 +N1 = N . There are p = 5 predictors
and the error terms εji are assumed to be independent and normally distributed with mean 0 and
variance σ2. Thus for each dataset j we generate the following:

Training data: Y j
i = f(Xj

i1, . . . , X
j
i5) + εji , i = 1, . . . , N0.

Test data: Y j
i = f(Xj

i1, . . . , X
j
i5) + εji , i = N0 + 1, . . . , N0 +N1.

This process is to be repeated 100 times, indicated by j = 1, . . . , 100. For each dataset j we obtain an
estimate f̂ j of the regression function f from the training data.

In this thesis, we will analyze a single dataset through two distinct machine learning methods: Random
Forest and Gradient Boosting. This dataset will be generated with error terms from a normal
distribution. The aim is to conduct simulations for each method 100 times to ensure statistical
significance. The experimental setup includes eight scenarios, defined by four unique regression
functions (referred to as sphere-truncated cone, cone, rhombus-truncated pyramid, and ridge), and for
each regression function, we consider two different noise levels, σlow = 0.2 and σhigh = 1.

3.2 Regression Functions
In more detail the four regression functions are defined, with different nonlinearities, as follows:

f(x) =


|x| I(|x| ≤

√
5), sphere-truncated cone,

|x|, cone,
|x|1 I(|x|1 ≤ 1), rhombus-truncated pyramid,√
x2
1 + x2

2, ridge,

where |x| = (
∑5

k=1 x
2
k)

1/2 is the Euclidean norm of x, whereas |x|1 =
∑5

k=1 |xk| is the L1-norm. The
predictor variables are generated as independent random vectors Xj

i from a five-dimensional normal
distribution with expected value (0, 0, 0, 0, 0) and a covariance matrix that equals the identity matrix of
order 5.

Selected shapes
The selected shapes for this analysis, sphere-truncated cone, cone, rhombus-truncated pyramid, and
ridge, were chosen to evaluate the performance of Random Forest and Gradient Boosting models across
a variety of patterns and challenges in the data. Each shape offers unique characteristics that test
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specific aspects of the models’ behavior, enabling a comprehensive comparison of their strengths and
weaknesses.

Sphere-Truncated Cone |x| I(|x| ≤
√
5): This shape is limited to specific range, with sharp edges at

its boundary (
√
5). It is useful test case for seeing how well the algorithms can handle boundaries and

make predictions near the edges.

Cone |x|: This is a simple, unbounded linear function. Its straightforward nature makes it a good
starting point to understand how the algorithms perform with basic relationships. Since it has no sharp
edges or limits, it allows us to see how well the models handle simple, continuous patterns without
extra complications.

Rhombus-Truncated Pyramid |x|1 I(|x|1 ≤ 1): This shape combines the steady increase of the cone
with the clear boundaries of the sphere-truncated cone. It behaves differently in different direction and
has well defined edges. Studying this function shows how well the algorithms handle patterns that
include both gradual changes and sharp limits, while also dealing with varying behavior along different
directions.

Ridge
√

x2
1 + x2

2: This shape has a circular symmetry and a smooth surface that gradually changes as
the distance from the origin increases. The function’s nonlinear nature makes it a useful example for
studying how well models can approximate smooth transitions and capture patterns that change
continuously in all directions.

4 Algorithms and Performance Metrics

4.1 Algorithm for Random Forest Regression
In this section we define the Random Forest algorithm for each simulation j = 1, . . . , 100. For
simplicity of notation subscript j is omitted.

1. Initialization:

• Input: Training data {Xi, Yi}N0
i=1 , number of trees B = 500 (default), minimum node size

nmin = 5 (default) , number of predictors p = 5, low standard deviation for error term σlow = 0.2,
high standard deviation for the error term σhigh = 1.

• Output: Ensemble of regression trees {f̂b}Bb=1

2. Algorithm For b = 1 to B do:

(a) Bootstrap Sampling: The process begins by drawing a bootstrap sample of size N0 from the
training data. A bootstrap sample is a subset of the training data, selected with replacement.

(b) Tree Building: Each bootstrap sample is then used to grow a decision tree. This is done by
recursively splitting the nodes of the tree based on certain criteria until a specified minimum node
size nmin = 5 is reached.

(i) Feature Selection: At each node of the tree, one variable is selected at random from the total
of 5 variables available.

(ii) Best Split Selection: For the selected variable, the algorithm identifies the exact split point
that minimizes squared loss.

(iii) Node Splitting: Once the splitting variable and point are determined, the node is split into
two daughter nodes, and this process repeats for each of the new nodes until the stopping
criterion is reached.

(c) Once (b) is completed, a regression tree f̂b is stored, that includes the regions of all terminal nodes
and the average outcomes within these regions. All bootstrapped trees have been stored {f̂b}Bb=1.

The estimated regression function is

f̂B
rf (x) =

1

B

B∑
b=1

f̂b(x).
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4.2 Algorithm for Gradient Boosting
In this section we define the Gradient Boosting algorithm for each simulation j = 1, . . . , 100. For
simplicity of notation subscript j is omitted.

Gradient Boosting Algorithm

1. Initialize:

Input: Training data {Xi, Yi}N0
i=1 and a differentiable loss function L(yi, c) =

1
2 (yi − c)2. Squared

loss penalizes large deviations between prediction and true values.

f0(x) = argmin
c

N0∑
i=1

L(yi, c)

f0(x) initializes the model to the constant value that minimizes the loss over the entire dataset.
This gives f0(x) = c = 1

N0

∑N0

i=1 yi. After solving the optimization problem above.

2. Algorithm:

For b = 1 to B:

(a) For i = 1, 2, . . . , N0, compute the pseudo-residuals:

rib = −
[
∂L(yi, f(xi))

∂f(xi)

]
f=fb−1(xi)

(b) Fit a regression tree to the pseudo residuals rib using the input feature xi to split the data
into Mb terminal regions Rmb, where m = 1, 2, ...,Mb. Each region Rmb groups data points
that need similar changes.

(c) For m = 1, 2, . . . ,Mb, compute the leaf value:

cmb = argmin
c

∑
xi∈Rmb

L(yi, fb−1(xi) + c)

(d) Update the model:

fb(x) = fb−1(x) + ν

Mb∑
m=1

cmbI(x ∈ Rmb)

where ν is the learning rate and I(·) is the indicator function.

3. Output:
f̂(x) = f̂B(x)

4.3 Algorithm for eXtreme Gradient Boosting
In this section we define the eXtreme Gradient Boosting algorithm for each simulation j = 1, . . . , 100.
For simplicity of notation subscript j is omitted.
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XGBoost Algorithm
Input: Training data {Xi, Yi}N0

i=1, differentiable loss function L(yi, f(xi)), learning rate ν, and regular-
ization parameters λ, γ.

1. Initialize:

f0(x) = argmin
f

N0∑
i=1

L(yi, f).

2. Iterate for b = 1 to B:

(a) Compute gradients and Hessians for all observations:

gib =
∂L(yi, fb−1(xi))

∂fb−1(xi)
, hib =

∂2L(yi, fb−1(xi))

∂2fb−1(xi)
.

(b) Fit a tree by maximizing the gain for a number of splits until no improvement is possible:

i. For each split of a region R in to RL and RR, compute:

Gain =
1

2

[
(
∑

i∈RL
gib)

2∑
i∈RL

hib + λ
+

(
∑

i∈RR
gib)

2∑
i∈RR

hib + λ
−

(
∑

i∈R gib)
2∑

i∈R hib + λ

]
− γ.

ii. Choose the split with the highest gain.

(c) Compute the optimal leaf weights for each terminal region Rmb:

cmb = −
∑

xi∈Rmb
gib∑

xi∈Rmb
hib + λ

.

(d) Update the model:

fb(x) = fb−1(x) + ν

Mb∑
m=1

cmb1(x ∈ Rmb).

3. Output:
f̂(x) = fB .

4.4 Performance criteria
This section outlines two essential metrics for assessing regression models, the Mean Squared Error
(MSE) and the Mean Squared Error of Prediction (MSEP). These metrics provide complementary
perspectives on model performance, with MSE focusing on the estimation error and MSEP
incorporating both estimation error and the noise variance inherent in the data.

4.4.1 Mean Squared Error of Estimation (MSE)

The Mean Squared Error (MSE) quantifies how well the model approximates the true regression
function f by evaluating the squared differences between the predicted values f̂j(Xi) and the true
function values f(Xi). Formally, for N1 test data points, the MSE is defined as:

MSEj =
1

N1

N0+N1∑
i=N0+1

(
f̂j(X

j
i )− f(Xj

i )
)2

,

where:

• f̂j(X
j
i ) is the predicted value of f(Xj

i ) from simulated training dataset j,
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• f(Xj
i ) is the true underlying regression function value at Xj

i ,

• N0 represents the number of training data points, and N1 denotes the test data size.

The MSE isolates the estimation error by comparing predictions directly to the true function values. A
lower MSE indicates that the model provides a more accurate approximation of f .

4.4.2 Mean Squared Error of Prediction (MSEP)

The Mean Squared Error of Prediction (MSEP) extends the MSE by incorporating both the estimation
error and the inherent noise in test data. Given test outputs Y j

i , which include random noise εji , the
MSEP for simulation j is defined as:

MSEPj =
1

N1

N0+N1∑
i=N0+1

(
Y j
i − f̂j(X

j
i )
)2

,

where Y j
i = f(Xj

i ) + εji and εji ∼ N(0, σ2). The prediction error can be decomposed into two
components:

MSEPj ≈ MSEj + σ2,

where:

• MSEj represents the estimation error,

• σ2 is the variance of the random noise εi.

Thus, while MSE evaluates the model’s ability to approximate the true function, the MSEP captures
the overall prediction error, including the unavoidable contribution of noise from test data. This
distinction highlights why MSEP is often larger than MSE.

By understanding both metrics, we gain a comprehensive perspective on model performance: MSE
reveals how well the model estimates the signal, while MSEP reflects the practical accuracy of
predictions under noisy conditions.

4.4.3 Sample Mean & Sample Standard Deviation:

When combining MSEj and MSEPj from all simulations j = 1, . . . , J = 100, we obtain the following
summary measures of estimation and predction accuracy:

MSE Sample Mean = M̂SE =

J∑
j=1

MSEj

J

MSE Sample Standard Deviation =

√√√√ J∑
j=1

(MSEj − M̂SE)2

(J − 1)

MSEP Sample Mean = M̂SEP =

J∑
j=1

MSEPj

J

MSEP Sample Standard Deviation =

√√√√ J∑
j=1

(MSEPj − M̂SEP )2

(J − 1)
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5 Results
In this section we present results of the simulation study. The simulation program was written in R
Studio. It makes use of the R functions randomForest() and xgb.train() for Random Forest and XG
Boost respectively.

Table 1: Random Forest

MSE
Sample Mean

MSE
Sample SD

MSEP
Sample Mean

MSEP
Sample SD

Sphere-Truncated Cone Low Noise 0.3829 0.0533 0.4241 0.0575

Cone Low Noise 0.0692 0.0147 0.1088 0.0179

Rhombus Truncated Pyramid Low Noise 0.0950 0.0087 0.1347 0.0132

Ridge Low Noise 0.0829 0.0166 0.1221 0.0196
Sphere-Truncated Cone High Noise 0.3812 0.0526 1.3898 0.1415

Cone High Noise 0.0703 0.0122 1.0683 0.0957

Rhombus Truncated Pyramid High Noise 0.0948 0.0088 1.1013 0.1027

Ridge High Noise 0.0841 0.0153 1.0811 0.0978

Table 2: XG Boost

MSE
Sample Mean

MSE
Sample SD

MSEP
Sample Mean

MSEP
Sample SD

Sphere-Truncated Cone Low Noise 0.4421 0.0525 0.4826 0.0553

Cone Low Noise 0.0323 0.0088 0.0718 0.0108

Rhombus Truncated Pyramid Low Noise 0.1021 0.0102 0.1422 0.0150

Ridge Low Noise 0.0066 0.0041 0.0458 0.0063
Sphere-Truncated Cone High Noise 0.4467 0.0580 1.4461 0.1473

Cone High Noise 0.0326 0.0074 1.0321 0.0948

Rhombus Truncated Pyramid High Noise 0.1026 0.0106 1.1071 0.1008

Ridge High Noise 0.0063 0.0033 1.0066 0.0936

Table 3: Difference Between XGBoost and Random Forest Metrics

MSE
Sample Mean

MSE
Sample SD

MSEP
Sample Mean

MSEP
Sample SD

Sphere-Truncated Cone Low Noise 0.0592 -0.0008 0.0585 -0.0022
Cone Low Noise -0.0369 -0.0059 -0.0370 -0.0029
Rhombus Truncated Pyramid Low Noise 0.0071 0.0015 0.0075 0.0018
Ridge Low Noise -0.0763 -0.0133 -0.0763 -0.0133
Sphere-Truncated Cone High Noise 0.0655 0.0054 0.0563 0.0058
Cone High Noise -0.0377 -0.0022 -0.0362 -0.0021
Rhombus Truncated Pyramid High Noise 0.0078 0.0062 0.0058 -0.0019
Ridge High Noise -0.0778 -0.0120 -0.0745 -0.0042

Sphere-Truncated Cone: Datasets for this model demonstrate similar performance for Random
Forest and XGBoost across low and high noise levels. Nonetheless, Random Forest consistently
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achieves lower MSE and MSEP than XGBoost, outperforming it by approximately 0.06 units in each
metric. Despite this, both models exhibit higher MSE and MSEP compared to other shapes,
highlighting the increased difficulty of this complex geometry for both algorithms.

Cone: This model achieves one of the best overall performances, second only to the Ridge. In this
setting, XGBoost significantly outperforms Random Forest, achieving half the MSE and substantially
lower MSEP values. This trend is observed across low and high noise levels, where both methods
maintain relatively consistent performance. The simpler geometry of the Cone appears to contribute to
its superior results for both methods.

Rhombus Truncated Pyramid: Random Forest slightly outperforms XGBoost, with marginally
lower MSE and MSEP values. Both models display similar performance under low and high noise
levels, demonstrating stability. However, this dataset does not perform as well as the Cone and Ridge
datasets, likely due to its increased geometric complexity.

Ridge: Datasets for this model exhibit the largest performance gap between the two models. XGBoost
significantly outperforms Random Forest, particularly in low noise settings where its MSE is 0.0066
compared to Random Forest’s 0.0829. This strong performance advantage is maintained across both
noise levels, showcasing XGBoost’s robustness and effectiveness in handling this simpler dataset shape.

5.1 Box plots
In this section we present Box plots for {MSEj}Jj=1 and {MSEPj}Jj=1 from J = 100 simulations. This
is done for each combination of method (Random Forest or Gradient Boosting), the four regression
models and the two noise levels. Altogether, this gives rise to eight figures with four Box plots each.

5.1.1 Sphere-truncated cone

Figure 5: Box plots for sphere-truncated cone model with low noise level.
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Figure 6: Box plots for sphere-truncated cone model with high noise level.

5.1.2 Cone

Figure 7: Box plots for cone model with low noise level.
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Figure 8: Box plots for cone model with high noise level.

5.1.3 Rhombus-truncated pyramid

Figure 9: Box plots for rhombus-truncated pyramid model with low noise level.
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Figure 10: Box plots for rhombus-truncated pyramid model with high noise level.

5.1.4 Ridge

Figure 11: Box plots for ridge model with low noise level.
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Figure 12: Box plots for ridge model with high noise level.

6 Discussion
This thesis investigates the comparative performance of Random Forest and Gradient Boosting
regression across datasets with varying geometric complexities and noise levels. By constructing a
number of different regression functions featuring distinct structures, such as Sphere-Truncated Cone,
Cone, Rhombus-Truncated Pyramid, and Ridge, and systematically introducing noise directly into
data, the study examines how these two methods respond to both discontinuities and smooth patterns
in the data.

The results reveal that the performance of Random Forest and Gradient Boosting is strongly influenced
by the continuity and complexity of the underlying regression functions. Random Forest demonstrates
its strength in handling regression functions with discontinuities, such as the Sphere-Truncated Cone
and Rhombus-Truncated Pyramid, where its robustness enables it to effectively manage abrupt changes
and noise. In contrast, Gradient Boosting excels for continuous regression functions, such as the Cone
and Ridge, where its iterative boosting mechanism effectively captures smooth patterns and intricate
relationships.

These findings align with the theoretical strengths of each model and highlight their complementary
nature. Random Forest’s ensemble averaging makes it well-suited to datasets with discontinuities, while
Gradient Boosting’s sequential optimization allows it to achieve superior performance in smoother and
more continuous regression settings.
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