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Abstract

Maximum likelihood estimation (MLE) is one of, if not, the most
well known and used method of point estimation. Predictive distri-
butions created from substitution of the true unknown parameters
with the MLE are shown to be inferior in terms of average Kullback-
Leibler (KL) divergence for independent and identically distributed
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technique for calculating densities of Bayesian predictive distributions,
also known as posterior predictive distributions, is provided and illus-
trated for exponential and normal random variables.
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1. Introduction

A common problem in statistics is that of forecasting future events. What probabilities should be assigned to
future events given the data we have seen? One of the most common ways is to assume the future events/data come
from some, a priori, known distributional class with fixed unknown parameters, and heuristically estimate the
parameters from the data seen so far. This is the categor y of point estimators, to create a predictive distribution by
substituting the unknown true parameters with their respective point estimators. The quality of these methods is
typically judged by the repeated sampling properties of the point estimators.

This thesis compares predictive distribution created using one of the most well know method of creating point
estimators, that of maximum likelihood estimators, with a much less known Bayesian method. Instead of using point
estimators in the place of the true parameters, the parameters are treated as random variables and the predictive
distribution is obtained by integrating the unknown parameters with the respect to a posterior distribution. This is
referred to in this thesis as Bayesian predictive distributions, but sometimes referred to as posterior predictive
distributions. Bayesian predictive distributions, unlike point estimators based ones, have a direct interpretation of
representing one’s belief in future outcome, given the data seen so far, under the assumption of a known distributional
class with fixed unknown parameters.

In this first section, the introduction, we present the contents of the following sections along with the
acknowledgements. The second section presents the notation, prerequisite theor y, definitions that will be used, and a
technique to calculate the Bayesian predictive distribution from the normalization constant of the posterior distribution.
It also contains a large sample size asympto tic distribution independent result, for the average KL divergence, provided
by one of my super visors. The third section provides theoretical motivation for the superiority of the Bayesian
predictive distribution over the ML predictive distribution, in the case of an exponential model. In this section we also
provide a derivation of it and the maximum likelihood estimator. The fourth section provides theoretical motivation for
of superiority of the Bayesian predictive distribution over the ML predictive distribution, in the case of a normal model
with unknown mean and known variance. In this section we also provide a derivation of the Bayesian predictive
distribution for a normal model with unknown mean and unknown variance. The fifth section concludes the thesis
summarizing the results.

Acknowledgements

Special thanks goes to my super visors Ola Hössjer & Johannes Heiny who not only allowed me to go ahead with
the ideas I pitched, but also greatly helped me to untangle what notation to use to minimiz e confusion. They also
helped me to find sources which enabled me to obtain key results analytically, and more.
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2. General Theory

For a random variable X with parameter λ, with λ0 being the unknown true value, and sample x1:n = (x1, . . . xn)
of size n, the following notation will be used through out the thesis:

f(x|λ) = Density function

F(x|λ) = Cumulative distribution function

π0(λ) = Prior distribution of λ

π(λ|x1:n) = Posterior distribution of λ

g(x|x1:n) = Bayesian predictive density function

G(x|x1:n) = Bayesian predictive distribution function

I(λ) = Fisher information

2.1. Maximum Likelihood

The method of maximum likelihood estimation (MLE) creates, for an unknown fixed parameter λ, an estimator

λ̂ML as the solution to the equation

0 =
n

k=1
Σ 


d

dλ
log(f(xk|λ̂ML))




where n is the sample size of an i.i.d. sample, so that xk are observations of independent identically distributed random

variables Xk with density function f(x|λ) for som parameter λ. In other words λ̂ML is the point estimator maximizing

the chance to obtain the given sample. By substituting the true unknown parameter λ0 with λ̂ML we obtain the density

f(x|λ̂ML) as the density function of the ML predictive distribution.

Since the MLE is the value of λ with maximizes the sum of the empirical log-likelihoods

n

k=1
Σ 


log(f(xk|λ̂ML))




by definition, it follows that it minimiz es

n−1
n

k=1
Σ




log





1

f(xk|λ̂ML)









and therefore also minimizes

n−1
n

k=1
Σ




log





f(xk|λ0)

f(xk|λ̂ML)









which means it asympto tically as n → ∞ it minimiz es

x+

x−

∫



f(x|λ0) log





f(x|λ0)

f(x|λ̂ML)








dx

which can, from the definition of KL divergence in section 2.6, be seen to be the KL divergence bet ween the true
density and the ML predictive density. The is MLE therefore asympto tically optimal in this regard.

2.2. Fisher Information

The Fisher information of a, univariate, parameter λ is defined for a random variable X with density function
f(x|λ), supported on (x−, x+), where −∞ ≤ x− < x+ ≤ ∞, as follows:
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I(λ) =
x+

x−

∫ f(x|λ0)



d

dλ
log(f(x|λ))




2

dx

and when Fisher’s reg ularity conditions hold it can also be calculated through

−
x+

x−

∫ f(x|λ0)



d2

dλ2
log(f(x|λ))



dx

assuming log(f(x|λ)) is twice differentiable with respect to λ.

2.3. Jeffreys’s Prior

Within a Bayesian framework, the Jeffreys’s prior is a well known prior distribution, defined as the square root of

the determinant of the Fisher information. In other words π0(λ) = |I(λ)|1/2. It is noteworthy that Jefferys’s prior is an
equivariant prior, meaning that if we change the parametrization of the distribution of the random variable, and
recalculate the posterior, it will be the same had we simply reparameteriz ed the posterior. This means that Jefferys’s
prior represents the same prior information independent of parametrization.

2.4. Bayesian predictive distribution

The predictive distribution of a random variable corresponds to our believed distribution given our model
assumptions and the data we have seen so far. The Bayesian predictive distribution is fundamentally different from
point estimator based predictive distributions in that it corresponds to a weighted average. More specifically, if

f(x1:n|λ) =
n

k=1
Π f(xk|λ)

is the likelihood of the data, and with π(λ|x1:n) as the posterior, defined as:

π(λ|x1:n) =
f(x1:n)π0(λ)

λ+

λ−

∫ f(x1:n)π0(λ)dλ

then the Bayesian predictive density function is defined as:

g(x|x1:n) =
λ+

λ−

∫ f(x|λ)π(λ|x1:n)dλ,

where −∞ ≤ λ− < λ+ ≤ ∞ are the lower and upper bounds for the parameter. The Bayesian predictive distribution
function, similar to the cumulative distribution function, is defined as:

G(x|x1:n) =
x

x−

∫ g(t|x1:n)dt,

with G(x−|x1:n) = 0, and G(x+|x1:n) = 1.

If the dataset x1:n has a sufficient statistics of the form sh =
n

k=1
Σ h(xk) for some h(x), there exist another way to

compute the density of the Bayesian predictive distribution. Calculate as a function of the sufficient statistics:

p(n, sh) =
λ+

λ−

∫ f(x1:n|λ)π0(λ)dλ,

where n is the sample size. We then get the density of the Bayesian predictive distribution as
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g(x|n, sh) =
p(n + 1, sh + h(x))

p(n, sh)
,

conv eniently parameteriz ed in terms of the sufficient statistics. This will be the way we calculate the Bayesian predictive
densities later.

A proof of this is easily seen using the definition of the predictive density. Start with the definition of the
predictive density:

g(x|x1:n) =
λ+

λ−

∫ f(x|λ)π(λ|x1:n)dλ

then expand the posterior distribution into

π(λ|x1:n) =
f(x1:n|λ)π0(λ)

p(n, sh)

where p(n, sh) can be moved out of the int egral, because it is ind ependent of λ, to obtain

g(x|x1:n) =

λ+

λ−

∫ f(x|λ)f(x1:n|λ)π0(λ)dλ

p(n, sh)

where the numerator is rewritable to p(n + 1, sh + h(x)) and finally get

g(x|x1:n) =
p(n + 1, sh + h(x))

p(n, sh)

which is better expressed as g(x|n, sh).

2.5. Bernstein-von Mises Theorem

The Bernstein-von Mises Theorem connects the MLE with the Bayesian posterior distribution. Specificly it
states that the posterior distribution converges, asympto tically in total variation distance, to a normal distribution
cent ered at the maximum likelihood estimator, and with a variance based on the Fisher information.

||π(⋅|x1:n) − N(λ̂ML, (nI(λ0))
−1)||TV → 0

This means that the posterior distribution asympto tically converges to a distribution of a single point P(λ = λ0) = 1, and
therefore the Bayesian predictive density, g(x|x1:n), asympto tically converges to the true density, f(x|λ0).

2.6. KL Divergences

The Kullback-Leibler (KL) divergence bet ween two density function h0(x) and h1(x) is defined as:

KL(h0(x), h1(x)) =
x+

x−

∫ h0(x) log


h0(x)

h1(x)


dx

and it can in information theor y be interpreted as the average additional information needed to encode the outcome
from a random variable with density h0(x) when assuming it instead have the density h1(x).

Using the KL divergence bet ween the true and the ML or Bayesian predictive distribution, we define for a
specific sample

DKLML = KL


f(x|λ0), f(x|λ̂ML)
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DKLB = KL


f(x|λ0), g(x|x1:n)




where the first letter D emphasizes that both KL divergences are functions of a sample and therefore have a sampling
distribution in the conte xt of repeated sampling. For repeated sampling we define

EKLML(n) =
x1:n+

x1:n−

∫ DKLML f(x1:n|λ0)dx1:n

EKLB(n) =
x+

x−

∫ DKLB f(x1:n|λ0)dx1:n

as functions of the sample size n. They correspond to the expected KL divergence bet ween the true distribution and
the ML and Bayesian predictive distributions respectively.

Both DKLML and DKLB can however be split int o two parts, with the differential entropy as a common term,
and a separate cross entropy term. The differential entropy is defined as

x+

x−

∫ f(x|λ0) log


f(x|λ0)



dx

and the cross entropy terms as

−
x+

x−

∫ f(x|λ0) log


f(x|λ̂ML)



dx

for the ML predictive distribution and

−
x+

x−

∫ f(x|λ0) log


g(x|x1:n)



dx

for the Bayesian predictive distribution respectively.

A distribution independent asympto tic result for both EKLML(n) and EKLB(n), courtesy of my supervisor Ola,
states that for a parameter vector λ = (λ1, . . . , λp):

EKLML(n) =
p

2n
+ o(1/n)

EKLB(n) =
p

2n
+ o(1/n)

where o(1/n) → 0 as n → ∞ and p = dim(λ), which for univariate λ means p = 1. Proof is provided in the appendix.
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3. Exponential Model

The density and distribution functions using the λ rate parametrization are:

f(x|λ) = λ exp (−λx)

F(x|λ) = 1 − exp (−λx)

where x− = 0 and x+ = ∞.

3.1. Maximum Likelihood

The MLE λ̂ML is ns−1
1 . To see this, we look for the solution of the likelihood equation

0 =
n

k=1
Σ 


λ̂

−1

ML − xk



which in terms of the sufficient statistic s1, were h(x) = x1, is

λ̂ML = ns−1
1

3.2. Fisher Information and Jeffreys’s Prior

The Fisher information is given by I(λ) = λ−2. To see this we calculate

I(λ) =
∞

0

∫ λ exp (−λx)

λ2
dx

were the denominator can be moved out of the int egral since it does not depend on x, to trivially obtain the solution λ−2

knowing the density int egrates to 1.

From the above Fisher information we get Jeffreys’s prior π0(λ) = I(λ)1/2 = λ−1.

3.3. Posterior Distribution and Normalizer

Using Jeffreys’s prior as our prior distribution, π0(λ), the posterior becomes a gamma distribution with α = n and
β = s1. To see this we calculate the unnormaliz ed posterior

f(x1:n|λ)π0(λ) = λ−1
n

k=1
Π λ exp (−λxk) = λn−1 exp (−s1λ)

whose integral, the posterior normaliz er p(n, s1), is Γ(n)s−n
1 .

Proof: Since the density fZ(z|α, β) of a gamma distributed random variable Z with parameters α and β integrates
to 1, we get

1 =
∞

0

∫ βnzα−1 exp (−βz)Γ(α)−1dz.

We multiply both sides with Γ(α)β−α, and substitute z = λ, α = n, β = s1, to get

Γ(n)s−n
1 =

∞

0

∫ λn−1 exp (−s1λ)dλ

and by dividing f(x1:n)π0(λ) by p(n, s1), the previous gamma distribution can be obtained as the posterior distribution.

3.4. Bayesian Predictive Distribution

Knowing the posterior normaliz er p(n, s1) = Γ(n)s−n
1 , we have p(n + 1, s1 + x) = Γ(n + 1)(s1 + x)−(n+1). We divide

them to get the desnist y function of the predictive distribution:
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g(x|n, s1) =
p(n + 1, s1 + x)

p(n, s1)
=

Γ(n + 1)(s1 + x)−(n+1)

Γ(n)s−(n)
1

a special case of the generaliz ed Pareto distribution sometimes called a Lomax distribution, but rarely written in this
form since it can be simplified to something much more intuitive.

Since sample sizes cannot be non-integers we can use k! = Γ(k + 1), and rewrite s−n
1 as s1s

−(n+1)
1 , to get

g(x|n, s1) =
n(s1 + x)−(n+1)

s1s
−(n+1)
1

which can be further simplified into

g(x|n, s1) = 


n

s1





1 +

x

s1




−(n+1)

or in terms of the maximum likelihood estimator λ̂ML

g(x|n, λ̂ML) = λ̂ML




1 +

λ̂MLx

n





−(n+1)

where it can easily be seen that g(x|n, λ̂ML) converges to the true density f(x|λ0) as n → ∞ since

n→∞
lim λ̂ML




1 +

λ̂MLx

n





−(n+1)

= λ0 exp (−λ0x) = f(x|λ0)

using the well known theorem

n→∞
lim



1 +

z

n



(n+1)

= exp (z).

and applying exp (−z) = exp (z)−1 with the substitution z = λ̂MLx.

The cumulative distribution function, parameteriz ed by the sufficient statistic and MLE respectively are

G(x|n, s1) = 1 − 

1 +

x

s1




−n

G(x|n, λ̂ML) = 1 −



1 +

λ̂MLx

n





−n

,

which is easily seen by taking their derivatives to obtain the above density, and noting it is 0 for x− = 0 and 1 for
x+ = ∞.

3.5. Resulting KL Divergences

Now knowing the MLE and the density of the Bayesian predictive distribution, we can compare them in terms of
KL divergence, but first we calculate the common differential entropy term of DKLML and DKLB:

∞

0

∫ f(x|λ0) log


f(x|λ0)



dx =

∞

0

∫ f(x|λ0)


log (λ0) − λ0x



dx = log (λ0)

∞

0

∫ f(x|λ0)dx − λ0

∞

0

∫ f(x|λ0)xdx = log (λ0) − 1

having separated the two int egrals and moved out the terms independent of x, the final step uses the fact the density
integrates to 1, and the expectation value of λ−1

0 .
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With the common differential term known, the calculation of DKLML becomes

DKLML = log (λ0) − 1 −
∞

0

∫ f(x|λ0) log


λ̂ML exp



−λ̂MLx





dx

which can be simplified to

DKLML = − log




λ̂ML

λ0





− 1 +
∞

0

∫ f(x|λ0)


λ̂MLx



dx

and futher into

DKLML = − log




λ̂ML

λ0





− 1 +
λ̂ML

λ0

and by shifting back into sufficient statistics

DKLML = log



λ0s1
n




− 1 +
n

λ0s1

and through a substitution t1 = λ0s1 get

DKLML = log


t1
n




− 1 +
n

t1

where t1 for an unrealized sample would follow a Gamma distribution with α = n and β = 1.

With the common differential entropy term known, the calculation of DKLB becomes

DKLB = log (λ0) − 1 −
∞

0

∫ f(x|λ0) log






λ̂ML




1 +

λ̂MLx

n





−(n+1)




dx

which can be simplified into

DKLB = − log




λ̂ML

λ0





− 1 + (n + 1)
∞

0

∫ f(x|λ0) log



1 +

λ̂MLx

n




dx

and by switching to sufficient statistics, substituting z = λ0x and using a different normaliz ed sufficient statistic t1 = λ0s1

DKLB = log


t1
n




− 1 + (n + 1)
∞

0

∫ f(z|1) log


1 +

z

t1



dz

As a next step we expand the density function f(z|1), an exponential random variable with unit rate parameter, so that
the Bayesian KL divergence becomes

DKLB = log


t1
n




− 1 + (n + 1)
∞

0

∫ exp (−z) log


1 +

z

t1



dz.

After solving the int egral, using a proof in the appendix , the Bayesian KL divergence, finaly becomes

DKLB = log


t1
n




− 1 + (n + 1) exp (t1)Γ(0, t1)

were Γ(0, z) =
∞

t

∫ exp(−z)/z dz is the upper incomplete gamma function, see Abramowitz & Stegun (1964) page 262

(6.5.15) for more details.
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3.6. Average KL Divergences

Knowing the formula for DKLML and DKLB, written in terms of n and t1, for a specific sample, we would like to
know their repeated sampling behavior, specifically their average.

In repeated sampling t1 will be a gamma random variable with α = n and β = 1. Using here f(t1) as its density
function, we have

EKLML =
∞

0

∫ DKLML(t1)f(t1)dt1

EKLB =
∞

0

∫ DKLB(t1)f(t1)dt1

from the definitions in section 2.

Starting with EKLML we immediately expand DKLML and get

EKLML =
∞

0

∫ f(t1)


log(t1) − log(n) − 1 +

n

t1



dt1

where f(t1) is the density. We can split the int egral and substitute the logarithmic and inv erse moments, see the proof
in the appendix, to get

EKLML = ψ(n) − log(n) − 1 +
nΓ(n − 1)

Γ(n)

Knowing that sample sizes can only take int eger values lets us simplify the last expression into

EKLML = ψ(n) − log(n) +
1

n − 1

with ψ(n) = Γ′n(n)/Γ(n) representing the digamma function, see Abramowitz &  Stegun (1964) page 258 (6.3.1) for
more details.

Going next for EKLB we again expand DKLB and get

EKLB =
∞

0

∫ f(t1)


log(t1) − log(n) − 1 + (n + 1) exp(t1)Γ(0, t1)



dt1

where we again split the int egral and substitute the moments, see the proof in the appendix, to get

EKLPB = ψ(n) − log(n) +
1

n

a ver y similar but smaller result then that of EKLML. Specifically EKLML − EKLB = 1/(n(n − 1)).

Using the inequality (2.2) 1/(2x) ≤ log(x) − ψ(x) ≤ 1/(x), which can be found in Alz er (1997) page 374, we can
rewrite it as 0 ≤ ψ(x) − log(x) + 1/x ≤ 1/(2x) to obtain a further result that EKLB ≤ 1/(2n) and see that it outperforms
the distribution independent asympto tic result of 1/(2n).
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4. Normal Model

The density function using the mean and standard deviation parametrization is

f(x|µ, σ) =



2πσ2 exp



x − µ

σ



2



−1/2

but it will be more convenient using a different less common parametrization

f(x|µ, v) = 

2πv exp



(x − µ)2

v





−1/2

with mean µ and variance v = σ2.

4.1. Maximum Likelihood, Fisher Information, and KL divergence

The maximum likelihood estimator µ̂ML and v̂ML are the well known s1n
−1 and

s2
n

− 

s1
n




2

respectively. Notably

the marginal distribution of µ̂ML is another normal with mean µ0 and variance v0/n.

The Fisher information matrix for the normal model is




v−1

0

0

(2v2)−1



with the top left element for the mean and the bottom right element for the variance.

The KL divergence bet ween to normal densities is

∞

−∞

∫ f(x|µ0, v0) log


f(x|µ0, v0)

f(x|µ1, v1)


dx =

(µ0 − µ1)
2

2v1

+
1

2


v0

v1

− 1 − log


v0

v1






where the first one has mean µ0 and variance v0 and the second has mean µ1 and variance v1.

4.2. Unknown Mean with Known Variance

From the square root of the Fisher information of the mean we have Jeffreys’s prior as π0(µ) = v(−1/2) and the
posterior normalization constant as

p(n, s1, s2) =
∞

−∞

∫ f(x1:n|µ, v)π0(µ)dµ =
∞

−∞

∫ 

(2π)nv(n+1) exp



s2 − 2s1µ + nµ2

v





(−1/2)

dµ

which we can rewrite int o

p(n, s1, s2) =
∞

−∞

∫






(2π)
v

n
exp









µ − 


s1
n






2




v

n















(−1/2)

dµ







(2π)(n−1)vnn exp









s2
n




− 

s1
n




2




v

n















(−1/2)

and seeing that the remaining integral corresponds to a normal density with mean
s1
n

and variance
v

n
it int egrates to 1

and we obtain
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p(n, s1, s2) =







(2π)(n−1)vnn exp









s2
n




− 

s1
n




2




v

n















(−1/2)

as our posterior normalization constant as a function of the sufficient statistics s1 and s2.

Seeking the Bayesian predictive distribution we take

g(x|n, s1, s2) =
p(n + 1, s1 + x, s2 + x2)

p(n, s1, s2)
=







(2π)v


n + 1

n



exp









s2 + x2

n + 1



− 

s1 + x

n + 1



2




v

n + 1



−



s2
n




− 

s1
n




2




v

n















(−1/2)

which while correct is not that useful so we to get

g(x|n, s1, s2) = 

(2π)v



n + 1

n



exp


x2n2 − 2xs1n + s21

vn(n + 1)





(−1/2)

which we then simplif y into

g(x|n, s1, s2) =







(2π)v


n + 1

n



exp









x −

s1
n




2

v
(n + 1)

n













(−1/2)

or in terms of the maximum likelihood estimator µ̂ML

g(x|n, s1, s2) =







(2π)v


n + 1

n



exp









x − µ̂ML




2

v
(n + 1)

n













(−1/2)

which corresponds to a normal distribution with a mean of µ̂ML and variance v(n + 1)/n.

And with the Bayesian predictive density known we have everything we need to calculate DKLML and DKLB for
a specific sample where

DKLML =
∞

−∞

∫ f(x|µ0, v0) log



f(x|µ0, v0)

f(x|µ̂ML, v0)


dx =

(µ0 − µ̂ML)2

2v0

DKLB =
∞

−∞

∫ f(x|µ0, v0) log



f(x|µ0, v0)

f(x|µ̂ML, v0(n + 1)/n)


dx =

(µ0 − µ̂ML)2

2v0(n + 1)/n
+

1

2



−1

n + 1
+ log



n + 1

n





thanks to both predictive densities being normal. From this we note that both KL divergences are functions of µ̂ML

whose marginal distribution is a normal with mean µ0 and variance v0/n. Using f(µ̂ML) here as the marginal density of
µ̂ML we obtain

EKLML =
∞

−∞

∫ f(µ̂ML|µ0, v0/n)



µ̂ML − µ0




2

2v0

dµ̂ML =
1

2n

EKLB =
∞

−∞

∫ f(µ̂ML|µ0, v0/n)



µ̂ML − µ0




2

n

2v0(n + 1)
−

1

2(n + 1)
+

1

2
log



(n + 1)

n


dµ̂ML =

1

2
log



(n + 1)

n
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where we see that EKLB is smaller then EKLML for all positive int egers.

4.3. Unknown Mean and Unknown Variance

From the square root of the determinant of the Fisher information matrix we have Jeffreys’s prior as

π0(µ, v) = (2v3)(−1/2) and the posterior normalization constant as

p(n, s1, s2) =
∞

0

∫
∞

−∞

∫ f(x1:n|µ, v)π0(µ, v)dµdv =
∞

0

∫
∞

−∞

∫ 

exp



µ2n − 2µs1 + s2

v
+ log(2(2π)nvn+3)






(−1/2)

dµdv

which we can split int o

p(n, s1, s2) =
∞

0

∫
∞

−∞

∫









exp







n


µ −

s1
n




2

v
+ log



2π

v

n









exp









n






s2
n




− 

s1
n




2



v
+ log



2(2π)n−1vn+2n




















−1/2

dµdv

where the right hand part of the expression can be moved out of the inner integral leaving the left hand expression as
the typical normal density int egrating to 1. With the inner integral gone we now have

p(n, s1, s2) =
∞

0

∫ exp









n






s2
n




− 

s1
n




2



2v
+ 


n

2
+ 1




log(v) + 

1

2



log


2(2π)n−1n












−1

dv

which with that substitutions α = n/2 and β = n((s2/n) − (s1/n)2)/2 can be rewritten into

p(n, s1, s2) =
∞

0

∫ exp


β

v
+ (α + 1) log(v) − α log(β) + log(Γ(α))




−1

exp


α log(β) − log(Γ(α)) + log(2(2π)n−1n)/2




−1

dv

where the left hand expression corresponds to the density of an inv erse-gamma distribution and the right hand side
expression does not depend on v and therefore moved out with the remaining expression within the int egral integrating
to 1. Simplif ying the remaining expression gives us the posterior normalization constant as a function of the sufficient
statistics s1 and s2

p(n, s1, s2) = Γ

n

2













s2
n




− 

s1
n




2



n

πn−1nn+1




−(1/2)

from which we calculate the Bayesian predictive density

g(x|n, s1, s2) =
p(n + 1, s1 + x, s2 + x2)

p(n, s1, s2)
=

Γ

n + 1

2



Γ

n

2

















s2 + x2

n + 1



− 

s1 + x

n + 1



2



(n+1)







s2
n




− 

s1
n




2



(n)
π

(n + 1)(n+2)

n(n+1)









−(1/2)

which while correct is terribly unintuitive so we simplif y it int o
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g(x|n, s1, s2) =
Γ


n + 1

2



Γ

n

2


√n + 1
















s2 + x2

n + 1



− 

s1 + x

n + 1



2



s2
n




− 

s1
n




2







(n+1)



n + 1

n



(n+1)

π






s2
n




− 

s1
n




2










−(1/2)

which is still horrible so we simplif y more to get

g(x|n, s1, s2) =
Γ


n + 1

2



Γ

n

2


√n + 1







(s2n − s21) + x2n − 2xs1 + s2

s2n − s21




(n+1)



n

n + 1



(n+1)

π






s2
n




− 

s1
n




2







−(1/2)

which we will continue simplifying

g(x|n, s1, s2) =
Γ


n + 1

2



Γ

n

2


√n + 1














n + 1

n
+

(x − s1/n)2

n


s2
n




− 

s1
n




2







(n+1)




n

n + 1



(n+1)

π






s2
n




− 

s1
n




2










−(1/2)

which we finally simplify int o

g(x|n, s1, s2) =
Γ


n + 1

2



Γ

n

2


√n + 1


















1 +



x −

s1
n




2

(n + 1)






s2
n




− 

s1
n




2











(n+1)

π






s2
n




− 

s1
n




2












(−1/2)

Alternatively, we express the Bayesian predictive density in terms of the maximum likelihood estimators µ̂ML nad v̂ML

g(x|n, µ̂ML, v̂ML) =
Γ


n + 1

2



Γ

n

2


√n + 1







1 +

(x − µ̂ML)2

(n + 1)v̂ML




(n+1)

πv̂ML





(−1/2)

which is interestingly quite similar to the density of the student t distribution.
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5. Conclusion

We conclude this thesis by summarizing the two main results; that for single parameter exponential models and
unknown mean known variance normal models the Bayesian predictive distribution outperforms the ML predictive
distribution in terms of expected KL divergence bet ween the true and predictive densities, and the Bayesian predictive
densities also outperform the asympto tic KL divergence result for all sample sizes. The technique of dividing posterior
normalization constants was also used to derive the predictive density for an exponential distribution and for normal
distributions, both unknown mean with known variance and unknown mean with unknown variance. It was also noted
that the Bayesian predictive density function could in all these cases be conveniently parameteriz ed by the MLE instead
of the sufficient statistics.

Example of potential future work would be to determine the Bayesian predictive distributions for more models,
determine if the obser ved superiority over ML predictive distributions holds more generally, and if Jeffreys’s prior is the
optimal equivariant prior if one seeks to minimiz e average KL divergence. Calculating higher order cumulants, like the
variance, of the KL divergence would also be of interest.

As a final statement I will conjecture that the Bayesian predictive distribution when used with Jeffreys’s prior
always outperforms the ML predictive distribution in terms of minimizing the expected KL divergence and that
Jeffreys’s prior is the best equivariant prior for minimizing it.
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Appendi x A - Complimentary Proofs

Ola’s Asymptotic Distribution Independent Result

The proof of Ola’s asympto tic result is simple to obtain using the second order Taylor expansion on the

definitions of EKLML nad EKLB, which by using f(λ̂ML) as the marginal density of λ̂ML becomes

λ̂ML+

λ̂ML−

∫ f(λ̂ML)(λ̂ML − λ0)
T I(λ̂0)

2
(λ̂ML − λ0)dλ̂ML

which together with the asympto tic normality with mean λ0 and variance (nI(λ0))
(−1) becomes

(2n)(−1)

i,j
Σ(I(λ̂0)I(λ̂0)

(−1)
i,j )

where the Fisher information matrices cancels each other out and the expression simplifies into
p

2n
, where

p = dim(λ̂ML), the asympto tic result.

The second order Taylor expansion is however not a well know result for the Bayesian predictive distribution so
for completeness we take the definition of DKLB and the Bayesian predictive density

DKLB(n) =
λ̂ML+

λ̂ML−

∫ f(x|λ̂0) log









f(x|λ̂0)
λ+

λ−

∫ f(x|λ)π(λ|λ̂ML)dλ









dλ̂ML

Now we will do three thing: Replace f(x|λ) with its second order Taylor expansion around λ0, utilise the Bernstein-von
Mises theorem to solve the inner integral using a normally distributed posterior, and simplif y the above int o

DKLB(n) =
x+

x−

∫ f(x|λ̂0)



−

f′λ(x|λ0)

f(x|λ0)
(λ̂ML − λ0) + 


f′λ(x|λ0)

f(x|λ0




2
(λ̂ML − λ0)

2

2
−

f′′λ(x|λ0)

f(x|λ0)

(λ̂ML − λ0)
2

2
+ o((λ̂ML − λ0)

2)



dλ̂x

which can be solved for

DKLB(n) = (λ̂ML − λ0)
T I(λ̂0)

2
(λ̂ML − λ0) + o((λ̂ML − λ̂0)

2)

which lets us apply the above proof for the asympto tic result for EKLML for EKLB as well.

First Predictive Distribution KL Divergence Integral

We seek to prove that

exp (t1)Γ(0, t1) =
∞

0

∫ exp (−z) log


1 +

z

t1



dz

so we take the right hand int egral and perform integration by parts to get

∞

0

∫ exp (−z) log


1 +

z

t1



dz =




− exp (−z) log



1 +

z

t1







∞

0

−
∞

0

∫ exp (−z)



1

t1 + z


dz

with the middle part having trivial limits of 0 in both directions, so that the whole expression simplifies to
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∞

0

∫ − exp (−z)



1

t1 + z


dz

which can be rewritten to

exp (t1)

∞

0

∫ − exp (−(t1 + z))



1

t1 + z


dz

and by the substitution y = t1 + z results in

exp (t1)

∞

t1

∫ exp


−y





1

y


dy

Through the definition of the upper incomplete gamma function the last displayed equation becomes

exp (t1)Γ(0, t1)

which was to be proven, see Abramowitz & Stegun (1964) page 262 (6.5.15).

Gamma Logarithmic Moment

We seek to prove that assuming a gamma random variable Z with density f(z|α, β), we have

∞

0

∫ f(z|α, β) log (z)dz = ψ(α) − log (β),

where ψ(x) is the digamma function defined as ψ(x) = Γ′(x)/Γ(x), see Abramowitz & Stegun (1964) page 258 (6.3.1).

We take the left hand side and expand the density knowing its integral is 1

1 =
∞

0

∫ exp


−βz + (α − 1) log(βz) + log(β)



/Γ(α)dz

Then we multiply both sides by Γ(α) and take the derivative with regard to α

Γ′(α) =
∞

0

∫ log(βz) exp


−βz + (α − 1) log(βz) + log(β)



dz

Then we divide both sides by Γ(α) and substitute back the density

Γ′(α)/Γ(α) =
∞

0

∫ f(z|α, β) log(βz)dz

in which we use the definition of the digamma function and splitting the logs to finaly get

ψ(α) − log(β) =
∞

0

∫ f(z|α, β) log(z)dz

which was to be proven.

Gamma Inverse Moment

We seek to prove that assuming a gamma random variable Z with density function f(z|α, β), we have

∞

0

∫ f(z|α, β)z−1dz = β
Γ(α − 1)

Γ(α)
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We start with the left hand side int egral and expand the density function into

∞

0

∫ z−1 exp (−βz)zα−1βα/Γ(α)dz

and rewrite it int o

β
Γ(α − 1)

Γ(α)

∞

0

∫ exp (−βz)zα−2βα−1/Γ(α − 1)dz

witch with the substitution α′ = α − 1 can be rewritten into

β
Γ(α − 1)

Γ(α)

∞

0

∫ f(z|α′, β)dz

with the density int egrating to 1 resulting in

β
Γ(α − 1)

Γ(α)

which was to be proven.

First Predictive Distribution KL Divergence Integral

We seek to prove that

∞

0

∫ f(t1)


log(t1) − log(n) − 1 + (n + 1) exp(t1)Γ(0, t1)



dt1 = ψ(n) − log(n) +

1

n

which we will do by splitting the int egral into

∞

0

∫ f(t1) log(t1)dt1 − (log(n) + 1)
∞

0

∫ f(t1)dt1 + (n + 1)
∞

0

∫ f(t1) exp(t1)Γ(0, t1)dt1 = ψ(n) − log(n) +
1

n

and substituting the logarithmic moment int o ψ(n) − log(n) leaving

(n + 1)
∞

0

∫ f(t1) exp(t1)Γ(0, t1)dt1 + ψ(n) − log(n) − 1 = ψ(n) − log(n) +
1

n

which we simplif y into

∞

0

∫ f(t1) exp(t1)Γ(0, t1)dt1 =
1

n

leaving only the above moment of t1 left to prove.

To prove the last displayed formula, we begin by noting that

d

dt1
Γ(0, t1) =

exp(−t1)

−t1

which is trivial to obtain using

d

dx
Γ(a, x) = −

exp(−x)

xa−1

from Abramowitz & Stegun (1964) page 262 (6.5.25) with a = 0.

Going back to the moment to prove, expand the density and simplif y the int egral into
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∞

0

∫ tn−1
1 Γ(0, t1)/Γ(n)dt1

and performing integration by parts to get

[tn1Γ(0, t1)]
∞
0

nΓ(n)
+

1

n

∞

0

∫ tn−1
1 exp(−t1)

Γ(n)
dt1

and note that the int egral corresponds to f(t1) which integrates to 1 to get

[tn1Γ(0, t1)]
∞
0

nΓ(n)
+

1

n

leaving only the left side of the expression to prove 0.

We now as the final step seek to prove [tn1Γ(0, t1)]
∞
0 = 0 which we will do by proving each limit to individually be

zero.

Firstly from using the definition of Γ(0, t1) we have for 0 < x < 1

|Γ(0, x) ≤ |Γ(0, 1)| +
1

x

∫ t−1dt = |Γ(0, 1)| + log(|x−1|)

from which we get

xn|Γ(0, x)| ≤ xn|Γ(0, 1)| + xn log(|x−1|)

where the right hand side goes to 0 as x → 0 for all positive int eger n. Knowing that sample sizes are all positive
integers we use to above to see that tn1|Γ(0, t1)| → 0 as t1 → 0.

For the second limit t1 → ∞ we use again the definition of Γ(0, t1) to get the inequality

|Γ(0, x)| ≤ x−1
∞

x

∫ exp(−t)dt = x−1 exp(−x)

which gives us

xn|Γ(0, x)| ≤ xn−1 exp(−x)

where the right hand side goes to 0  as x → ∞ which gives us a stronger result then the sought t1Γ(0, t1) → 0 as
t1 → ∞.

From applying the above two results we have [t1Γ(0, t1)]
∞
0 = 0 which mean we finally have our sought result of

∞

0

∫ f(t1) exp(t1)Γ(0, t1)dt1 =
1

n

for proving that EKLB = ψ(n) − log(n) + 1/n


