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Abstract

Maximum likelihood estimation (MLE) is one of, if not, the most
well known and used method of point estimation. Predictive distri-
butions created from substitution of the true unknown parameters
with the MLE are shown to be inferior in terms of average Kullback-
Leibler (KL) divergence for independent and identically distributed
exponential and unknown mean normal random variables. A novel
technique for calculating densities of Bayesian predictive distributions,
also known as posterior predictive distributions, is provided and illus-
trated for exponential and normal random variables.
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1. Introduction

A common problem in statistics is that of forecasting future events. What probabilities should be assigned to
future events given the data we have seen? One of the most common ways is to assume the future events/data come
from some, a priori, known distributional class with fixed unknown parameters, and heuristically estimate the
parameters from the data seen so far. This is the category of point estimators, to create a predictive distribution by
substituting the unknown true parameters with their respective point estimators. The quality of these methods is
typically judged by the repeated sampling properties of the point estimators.

This thesis compares predictive distribution created using one of the most well know method of creating point
estimators, that of maximum likelihood estimators, with a much less known Bayesian method. Instead of using point
estimators in the place of the true parameters, the parameters are treated as random variables and the predictive
distribution is obtained by integrating the unknown parameters with the respect to a posterior distribution. This is
referred to in this thesis as Bayesian predictive distributions, but sometimes referred to as posterior predictive
distributions. Bayesian predictive distributions, unlike point estimators based ones, have a direct interpretation of
representing one’s belief in future outcome, given the data seen so far, under the assumption of a known distributional
class with fixed unknown parameters.

In this first section, the introduction, we present the contents of the following sections along with the
acknowledgements. The second section presents the notation, prerequisite theory, definitions that will be used, and a
technique to calculate the Bayesian predictive distribution from the normalization constant of the posterior distribution.
It also contains a large sample size asymptotic distribution independent result, for the average KL divergence, provided
by one of my supervisors. The third section provides theoretical motivation for the superiority of the Bayesian
predictive distribution over the ML predictive distribution, in the case of an exponential model. In this section we also
provide a derivation of it and the maximum likelihood estimator. The fourth section provides theoretical motivation for
of superiority of the Bayesian predictive distribution over the ML predictive distribution, in the case of a normal model
with unknown mean and known variance. In this section we also provide a derivation of the Bayesian predictive
distribution for a normal model with unknown mean and unknown variance. The fifth section concludes the thesis
summarizing the results.

Acknowledgements

Special thanks goes to my supervisors Ola Hossjer & Johannes Heiny who not only allowed me to go ahead with
the ideas I pitched, but also greatly helped me to untangle what notation to use to minimize confusion. They also
helped me to find sources which enabled me to obtain key results analytically, and more.



2. General Theory

For a random variable X with parameter A, with Ay being the unknown true value, and sample xy., = (xq, ... x,)
of size n, the following notation will be used through out the thesis:

flx|A) = Density function

F(x|\) = Cumulative distribution function

ny(A) = Prior distribution of A

n(A|x;.,) = Posterior distribution of A

g(x|x;.,) = Bayesian predictive density function
Glx|x,.,) = Bayesian predictive distribution function

I(\) = Fisher information

2.1. Maximum Likelihood

The method of maximum likelihood estimation (MLE) creates, for an unknown fixed parameter A, an estimator
Az as the solution to the equation

n d N
0= g{ (dk log(ﬂxkp\'ML)))

where 7 is the sample size of an i.i.d. sample, so that x; are observations of independent identically distributed random
variables X}, with density function f{x|A) for som parameter A. In other words Ay is the point estimator maximizing
the chance to obtain the given sample. By substituting the true unknown parameter Ay with ?A\.ML we obtain the density
ﬂxl?A»ML) as the density function of the ML predictive distribution.

Since the MLE is the value of A with maximizes the sum of the empirical log-likelihoods

n

Z (log(f(kaML))j

k=1

by definition, it follows that it minimizes

u 1
nt Y | log| ———
k=1 FoxrlAasz)

~——

and therefore also minimizes

n! i log 7]‘(9%!7&0)
k=1 JEALYYS)

which means it asymptotically as n — oo it minimizes

~—

h fxlho)
x|Ag) lo - x
xj[ﬂ & i [f(XMML) J

which can, from the definition of KL divergence in section 2.6, be seen to be the KL divergence between the true
density and the ML predictive density. The is MLE therefore asymptotically optimal in this regard.

2.2. Fisher Information

The Fisher information of a, univariate, parameter A is defined for a random variable X with density function
fx|A), supported on (x_, x,), where —oo < x_ < x, < oo, as follows:



Xy d )
I = _[ﬂxl%)[d?\, log(f(x|7\.))j dx
and when Fisher’s regularity conditions hold it can also be calculated through
Xy dz
_Iﬂx MO)(W log(flx W)jdx

assuming log(f{x|A)) is twice differentiable with respect to A.

2.3. Jeflreys’s Prior

Within a Bayesian framework, the Jeffreys’s prior is a well known prior distribution, defined as the square root of
the determinant of the Fisher information. In other words ry(A) = [I(A)|Y2. It is noteworthy that Jefferys’s prior is an
equivariant prior, meaning that if we change the parametrization of the distribution of the random variable, and
recalculate the posterior, it will be the same had we simply reparameterized the posterior. This means that Jefferys’s
prior represents the same prior information independent of parametrization.

2.4. Bayesian predictive distribution

The predictive distribution of a random variable corresponds to our believed distribution given our model
assumptions and the data we have seen so far. The Bayesian predictive distribution is fundamentally different from
point estimator based predictive distributions in that it corresponds to a weighted average. More specifically, if

n

f(xlznp\') = Hﬂxkl}\‘)

k=1
is the likelihood of the data, and with n(Alx;.,) as the posterior, defined as:

n(Alxy.,) = M

[ fxrmoyan

A

then the Bayesian predictive density function is defined as:
Ay

gloli,) = [ Axlnhls, ),

A

where —oo < A_ < A, < oo are the lower and upper bounds for the parameter. The Bayesian predictive distribution
function, similar to the cumulative distribution function, is defined as:

G(x|xl:n> = jg(tlxlzn)dt)

with G(x_|x;.,) =0, and G(x,|x.,) = 1.

n
If the dataset x;., has a sufficient statistics of the form s, = Y h(x;) for some h(x), there exist another way to
k=1
compute the density of the Bayesian predictive distribution. Calculate as a function of the sufficient statistics:

7\'+
pln,5) = [ foxraWm (R,
A

where 7 is the sample size. We then get the density of the Bayesian predictive distribution as



pn+1,5,+ h(x))
P(”; Sh)

conveniently parameterized in terms of the sufficient statistics. This will be the way we calculate the Bayesian predictive
densities later.

glxln, ) =

A proof of this is easily seen using the definition of the predictive density. Start with the definition of the
predictive density:

Ay
glalx,) = [ foxlbr(hlx, )
A

then expand the posterior distribution into

_ f(xl:np\‘)no(}")
H(}»le;y,) - p(i’l, Sh)

where p(n, ;) can be moved out of the integral, because it is independent of A, to obtain

Ay
[ oMy (R

g(x|x1:n) =

P(n, S}y)

where the numerator is rewritable to p(n+ 1, s, + h(x)) and finally get
pln+1,s,+ h(x))
(xlx :ﬂ) =

£ p(n,5)

which is better expressed as g(x|n, s;).

2.5. Bernstein-von Mises Theorem

The Bernstein-von Mises Theorem connects the MLE with the Bayesian posterior distribution. Specificly it
states that the posterior distribution converges, asymptotically in total variation distance, to a normal distribution
centered at the maximum likelihood estimator, and with a variance based on the Fisher information.

(-1 = Nygz, (1)) D7 — 0

This means that the posterior distribution asymptotically converges to a distribution of a single point P(A = Ag) = 1, and
therefore the Bayesian predictive density, g(x|x;.,), asymptotically converges to the true density, f{x|Ay).

2.6. KL Divergences
The Kullback-Leibler (KL) divergence between two density function hy(x) and b (x) is defined as:

/90 (x) »
by (x)

KLGu(3, ) = | ) g

and it can in information theory be interpreted as the average additional information needed to encode the outcome
from a random variable with density hy(x) when assuming it instead have the density b;(x).

Using the KL divergence between the true and the ML or Bayesian predictive distribution, we define for a
specific sample

DKLy, = KL(ﬂxMO), ﬂxliML)j



DKLB = KLKﬂxlkO))g(xlxl:n)j

where the first letter D emphasizes that both KL divergences are functions of a sample and therefore have a sampling
distribution in the context of repeated sampling. For repeated sampling we define

Xlint
EKLy.(n) = J- DKLy, flix.|A)dxy.,,

X1n—

EKLg(n) = J-DKLB foxcrlho)dxy .,

X_

as functions of the sample size n. They correspond to the expected KL divergence between the true distribution and
the ML and Bayesian predictive distributions respectively.

Both DKL, and DKLy can however be split into two parts, with the differential entropy as a common term,
and a separate cross entropy term. The differential entropy is defined as

J o tog st i

and the cross CIltI'Opy terms as

- J‘f(x|7\.0) log (ﬂxliML) jdx

for the ML predictive distribution and

- [ thy tog ) i

for the Bayesian predictive distribution respectively.

A distribution independent asymptotic result for both EKLy; (n) and EKLg(n), courtesy of my supervisor Ola,
states that for a parameter vector A = (Ay,...,A,):

EKL . (n) = Zﬁn +o(1/n)

EKLg(n) = 2%1 +0(1/n)

where o(1/n) — 0 as n — oo and p = dim(A), which for univariate A means p = 1. Proof is provided in the appendix.
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3. Exponential Model

The density and distribution functions using the A rate parametrization are:
SfxIA) = Aexp (—Ax)
F(x|A) =1 —exp (—Ax)

where x_ = 0 and x, = co.

3.1. Maximum Likelihood

The MLE XML is ns;'. To see this, we look for the solution of the likelihood equation
0= Zn‘. (XA/}L - xk)
k=1
which in terms of the sufficient statistic s;, were h(x) = x', is
XML = "Sfl
3.2. Fisher Information and Jeffreys’s Prior

The Fisher information is given by /(A) = A2, To see this we calculate

Aexp (—Ax)

e ®

I(A) =T
0

were the denominator can be moved out of the integral since it does not depend on x, to trivially obtain the solution A2
knowing the density integrates to 1.

From the above Fisher information we get Jeffreys's prior ry(A) = I(\)2 = A7,

3.3. Posterior Distribution and Normalizer

Using Jeffreys’s prior as our prior distribution, mj(A), the posterior becomes a gamma distribution with a0 = » and
B =s;. To see this we calculate the unnormalized posterior

e W) = 17! kn hexp (“Ax) = A7 exp (<51
-1

whose integral, the posterior normalizer p(n, 5), is T'(n)s;".

Proof: Since the density f(z|0, B) of a gamma distributed random variable Z with parameters o and B integrates
to 1, we get

oo

1= JB"ZOH exp (B2)I' (o) L dz.

0
We multiply both sides with T'(c)B™, and substitute z =4, 0. = n, B = 5, to get

['(n)s" = J.K"_l exp (—s;A)dA
0

and by dividing flx;.,,)no(A) by p(n, 5;), the previous gamma distribution can be obtained as the posterior distribution.

3.4. Bayesian Predictive Distribution

Knowing the posterior normalizer p(n,s;) = I'(n)s", we have p(n+ 1,5, +x) =T(n+ 1)(s; + x) D We divide
them to get the desnisty function of the predictive distribution:
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pn+1,s +x) 3 T(n+1)(s; + )~
p(n,s1) F(n)sz(")

a special case of the generalized Pareto distribution sometimes called a Lomax distribution, but rarely written in this
form since it can be simplified to something much more intuitive.

glxln, s1) =

Since sample sizes cannot be non-integers we can use k! = I'(k + 1), and rewrite s;" as slsI(”H), to get
n(s; + %)Y
glelny s1) = —— 57—
5151

which can be further simplified into

n x —(n+1)
S =|—|1+—
g(xln ) (flI 51)

or in terms of the maximum likelihood estimator A,

—(n+1)

S

7LA4L:€

g(xln, M) = Ay 1+

where it can easily be seen that g(x|n, A;;;) converges to the true density flx|Ag) as n — oo since

—(n+1)

A
MLY | g exp (—hox) = flxlg)

1iIIl ﬁﬂﬂl[, 1+

n—oo n

using the well known theorem

n—oo0

2 (n+1)
lim (1 + j = exp (2).
n

and applying exp (—z) = exp (z)”! with the substitution z = XMLx.

The cumulative distribution function, parameterized by the sufficient statistic and MLE respectively are

Gxln,s) = 1— (1 + x)‘"

$1
N —Nn
AQWILQC

Gleln, Ayyr) = 1— [1 + ,

n

which is easily seen by taking their derivatives to obtain the above density, and noting it is 0 for x_ =0 and 1 for

X4 = oo.

3.5. Resulting KL Divergences

Now knowing the MLE and the density of the Bayesian predictive distribution, we can compare them in terms of
KL divergence, but first we calculate the common differential entropy term of DKL,,; and DKLp:

[Axino) 10g [ﬂxmo) jdx - f(xmo)(log (ho) - xox}zx = log (hg) [ fixlAa)de = 2y [ fixlh)dx = log (Ao) ~ 1
0 0 0 0

having separated the two integrals and moved out the terms independent of x, the final step uses the fact the density
integrates to 1, and the expectation value of Ag'.
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With the common differential term known, the calculation of DKL,,; becomes
DKLy =log(Ag) —1 —J-ﬂxpno) log (XML exp (—XMLdex
0

which can be simplified to

DKL, = —log[x;\\‘/m]— 1 +Jﬂx|k0)(iMLx)dx
0
0

and futher into

DKLy = —1og[7“}i“]— 1+ %
0 0

and by shifting back into sufficient statistics

DKLyg = log| 225 |- 14+ -
ML = Og n 7\.051
and through a substitution #; = Ays; get
tl n
n tl

where #; for an unrealized sample would follow a Gamma distribution with & = » and g = 1.

With the common differential entropy term known, the calculation of DKLy becomes

n

o . —(n+1)
DKLg =log (Ag) — 1 —Jﬂxl%o) log XML[l + )\MLx] x
0

which can be simplified into

DKLy = —1og[7”;fLJ— 1+ (n+ 1)Jﬂx|K0) log[l " A an},x
0 0

and by switching to sufficient statistics, substituting z = Agx and using a different normalized sufficient statistic #; = Ags;

DKLy = 1og(:)— 1+ (n+ 1)ff(z|1) log(l + Z)dz
0

As a next step we expand the density function f{z|1), an exponential random variable with unit rate parameter, so that
the Bayesian KL divergence becomes

DKLy = log (tl]— 1+(n+1) fexp (—2) log (1 + fjdz
n 1
0
After solving the integral, using a proof in the appendix , the Bayesian KL divergence, finaly becomes

DKLg =log (tl)— 1+ (n+ 1) exp (¢)I7(0, )
n

were (0, z) =Jexp(—z)/z dz is the upper incomplete gamma function, see Abramowitz & Stegun (1964) page 262

t
(6.5.15) for more details.
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3.6. Average KL Divergences

Knowing the formula for DKL), and DKLy, written in terms of n and #;, for a specific sample, we would like to
know their repeated sampling behavior, specifically their average.

In repeated sampling #; will be a gamma random variable with & =7 and g = 1. Using here f{¢;) as its density
function, we have

EKLML = J-DKLML (tl )ﬂtl)dtl
0

EKLB = J‘DKLB(tl)ﬂtl)dtl
0
from the definitions in section 2.

Starting with EXL,,; we immediately expand DKL,,; and get
T n
EKLML = jﬂtl)(log(tl) — log(n) -1+ t]dtl
1
0

where f{#;) is the density. We can split the integral and substitute the logarithmic and inverse moments, see the proof
in the appendix, to get
n(n—1)
[(n)
Knowing that sample sizes can only take integer values lets us simplify the last expression into
EKLy;r = w(n) —log(n) + .

n—1

with y(n) =I",(n)/T'(n) representing the digamma function, see Abramowitz & Stegun (1964) page 258 (6.3.1) for
more details.

Going next for EKLy we again expand DKL and get

oo

EKLy = f f(tl)(log(tl) —log(n) — 1+ (n+ 1) exp(t,)T(0, tl))dtl

0

where we again split the integral and substitute the moments, see the proof in the appendix, to get
1
EKLpg =y(n) —log(n) + —
n
a very similar but smaller result then that of EXL,;. Specifically EKLy; — EKLg = 1/(n(n—1)).
Using the inequality (2.2) 1/(2x) < log(x) —y(x) < 1/(x), which can be found in Alzer (1997) page 374, we can

rewrite it as 0 < Y(x) — log(x) + 1/x < 1/(2x) to obtain a further result that EKLp < 1/(2n) and see that it outperforms
the distribution independent asymptotic result of 1/(2n).
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4. Normal Model

The density function using the mean and standard deviation parametrization is

—1/2

2
x—p
fxlp, 0) = | 2n0” exp| ——
o
but it will be more convenient using a different less common parametrization

Y —1/2
flxlp,v) = (2711) exp((x y}l) D

. . 2
with mean p and variance » = o”.

4.1. Maximum Likelihood, Fisher Information, and KL divergence

The maximum likelihood estimator fi,,, and 9, are the well known s, n and 2 - (Slj respectively. Notably
n \n

the marginal distribution of {1,,, is another normal with mean pg and variance vy/n.
The Fisher information matrix for the normal model is
! 0
0 @A)
with the top left element for the mean and the bottom right element for the variance.
The KL divergence between to normal densities is

T f(xhlo, v0) (}10 - }11)2 L(v Vo
| = —l—==1-=1 -
_!;ﬂxhlm o) log (/(xhlb vy) * 2v, " 2\v o8 g1

where the first one has mean iy and variance vy and the second has mean p; and variance v;.

4.2. Unknown Mean with Known Variance

From the square root of the Fisher information of the mean we have Jeffreys's prior as my(p) = v and the
posterior normalization constant as

oo o 9 i 2 \\(-172)
Pl = [ Al oo = [ (ona) eup (22N

which we can rewrite into

(-1/2)

2 2
2 e ) G
v n dp (27‘()("_1) n n n

pny sy, 5) = J (2n) ~exp [”) V'nexp [”j

n
. L. . . $1 . v, .
and seeing that the remaining integral corresponds to a normal density with mean — and variance — it integrates to 1
n n

(-1/2)

and we obtain
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(-1/2)

)

as our posterior normalization constant as a function of the sufficient statistics 5; and s,.

P, s1,5) = Q)" Dyt exp

Seeking the Bayesian predictive distribution we take
52+X2 51+X2 $ $1 ’
P(n+1,51+x,52+x2)= <2n)u(”+1jexp n+1 n+1 n n
n

p("a 51y 52) v
n+1
which while correct is not that useful so we to get

+1 22 Zoxsin+ 2 )\
gy 51 57) = ((Zn)v(n )exp (x n"—2xsin+ 5] D
n

vn(n+1)

2

1
n+1 (x n)
" exp| ~———+

g(xln) 515 52) =

which we then simplify into

glxln, s1,5) = (ZR)U(

or in terms of the maximum likelihood estimator {1,

(-1/2)

2
ntl (x - ﬁML)
g(xln, s1,5) = (ZK)U( : jexp i+ 1)

n

v

which corresponds to a normal distribution with a mean of {1,,; and variance v(n + 1)/n.

And with the Bayesian predictive density known we have everything we need to calculate DKL,,; and DKLy for
a specific sample where

oo

Sxlpo, v0) (o — i)’
DKLy = 1 =
ML jﬂx|p0) v()) Og(ﬂmeL, 1)0) X 21}0

—oo

T x|, vg) (o =1 ) 1( -1 n+1
DKLB=JﬂX|P0>Uo)10g fxti, vo )/n))dx— Ho ~ PvL + = +log ”

x|y, vo(n+1 B 200(n+1)/n 2\ n+1

thanks to both predictive densities being normal. From this we note that both KL divergences are functions of fi,,;
whose marginal distribution is a normal with mean p, and variance vy/n. Using f{f1,,;) here as the marginal density of
fi,,7, we obtain

2
° Pz, = Po)
ERLygz = | R o, vo/m)

—oo

2
2 (ﬁML - ”0) " 1 1. ((n+1) 1. ((n+1)
EKLy = ( fif / - Dhog( D 21
2= J fiva o, /) 2t 1) 2+1) 2 Og( n jd”ML 2 Og( n j

ah,, = —
2, oL 2n

—oo
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where we see that EKLp is smaller then EKL,,; for all positive integers.

4.3. Unknown Mean and Unknown Variance

From the square root of the determinant of the Fisher information matrix we have Jeffreys’s prior as
mo(p, v) = (20*)? and the posterior normalization constant as

won—2ps; + 5,

o oo o0 oo (-1/2)
p(n,s1,5,) = J Iﬂx1:n|p, v)ny(p, v)dpdy = J- J (exp( + 10g(2(2n)”v”+3))j dpdv
0 —oo 0 —oo

v

which we can split into
~1/2
2
)2
al2 -2
n n
j exp

) )

oo oo n },l - — v

= 7;/[ _ N n—1_n+2

pn,s1,5,) = JL[ exp +log (27‘( - . +log (2(27'() v n] dpdv

v
0

where the right hand part of the expression can be moved out of the inner integral leaving the left hand expression as
the typical normal density integrating to 1. With the inner integral gone we now have

o)

2v

—1

pn, sy, 5) = jexp g + 1jlog(v) + (;jlog (Z(Zn)”_ln) dv
0

which with that substitutions o = 7/2 and B = n((s,/n) — (s;/n)?/2 can be rewritten into
oo 1 -1
pn, sy, 5) = Jexp (B + (o + 1) log(v) — atlog(B) + log(F((x))j exp ((x log(B) — log(I'(o)) + log(2(2n)”1n)/2j dv
v
0

where the left hand expression corresponds to the density of an inverse-gamma distribution and the right hand side
expression does not depend on v and therefore moved out with the remaining expression within the integral integrating
to 1. Simplifying the remaining expression gives us the posterior normalization constant as a function of the sufficient

statistics s; and s,
N N n _(1/2)
p(n, sy, 5) = F( (ZJ_ (1j Lt
2 M)

from which we calculate the Bayesian predictive density

2(71+1)
n+1 (sz+x2)_[s1+x)
I
pn+ 1,5 +x,5+x7) ( 2 j ntl ntl (n+ 1)

glxln, s1,5,) = s =—7, @) 0D
P( » 1> 2) r(j [(5‘2)_(51)2]

—(1/2)

which while correct is terribly unintuitive so we simplify it into
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. n+1 5+ % [stx ¢
2 n+1 n+1
g(x|7’l,51,52) = 7
r("}w +1 2)_(%
2 n n
which is still horrible so we simplify more to get

n+1
r " , —(1/2)
ol s1,57) = ( 2 j (s —53) + x2n — 2xs, + 5, ey, (+1)7'c ) 5712
»S1 52 [‘(n)\/n+1 sn—st n+1 n n

2

—(1/2)

SSEBR0]

(n+1)

which we will continue simplifying

F(I’l-l—l

B 2 ] n+1 (x—s1/n)? n 5 5 ’
o) = F(n)‘/n+1 . n(&gj_ (51 )2 (ﬂ+ 1) " (ﬂj_(nj
2

(n+1)

n n

which we finally simplify into

) 4]
2
g(x|”;51;52) = 1+ -

rf; Je (n+1)[(52j_(slj2] [(zj_(ln

(n+1) 172

n n

Alternatively, we express the Bayesian predictive density in terms of the maximum likelihood estimators [1,,, nad 9,

)

(x 3 ﬁ )2 (n+1)
gloxlm, Pyyr, Dasr) = " (1 * (n+ 1)]\2L j o
F(Z )\/n +1 ME

which is interestingly quite similar to the density of the student ¢ distribution.

(-1/2)
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5. Conclusion

We conclude this thesis by summarizing the two main results; that for single parameter exponential models and
unknown mean known variance normal models the Bayesian predictive distribution outperforms the ML predictive
distribution in terms of expected KL divergence between the true and predictive densities, and the Bayesian predictive
densities also outperform the asymptotic KL divergence result for all sample sizes. The technique of dividing posterior
normalization constants was also used to derive the predictive density for an exponential distribution and for normal
distributions, both unknown mean with known variance and unknown mean with unknown variance. It was also noted
that the Bayesian predictive density function could in all these cases be conveniently parameterized by the MLE instead
of the sufficient statistics.

Example of potential future work would be to determine the Bayesian predictive distributions for more models,
determine if the observed superiority over ML predictive distributions holds more generally, and if Jeffreys’s prior is the
optimal equivariant prior if one seeks to minimize average KL divergence. Calculating higher order cumulants, like the
variance, of the KL divergence would also be of interest.

As a final statement I will conjecture that the Bayesian predictive distribution when used with Jeffreys’s prior
always outperforms the ML predictive distribution in terms of minimizing the expected KL divergence and that
Jeffreys’s prior is the best equivariant prior for minimizing it.
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Appendix A - Complimentary Proofs

Ola’s Asymptotic Distribution Independent Result

The proof of Ola’s asymptotic result is simple to obtain using the second order Taylor expansion on the
definitions of EKL,,; nad EKLg, which by using A, ) as the marginal density of A;;;, becomes

j\"/WL+ R
| fa) 207120

v

(s, = hoddhysy

which together with the asymptotic normality with mean Ay and variance (n[(ko))(_l) becomes

@n) D YR I(h) ")

i
where the Fisher information matrices cancels each other out and the expression simplifies into 2£’ where
n

p= dim(?A»ML), the asymptotic result.

The second order Taylor expansion is however not a well know result for the Bayesian predictive distribution so
for completeness we take the definition of DKLy and the Bayesian predictive density

7A\\/ILJr A
A ) A A
DKLy(n) = Iﬂx|ko) log " SflxlAg) Az
Az J-ﬂxlx,)TC(M}A\‘ML>d7\'
A

Now we will do three thing: Replace f{x|A) with its second order Taylor expansion around A, utilise the Bernstein-von
Mises theorem to solve the inner integral using a normally distributed posterior, and simplify the above into

FalxlAg) G —ho) + (fk(pro) )2 M =2 faclho) R =)’
fxlhg) M T Rl 2 fxIh) 2

DKLg(n) = J‘ﬂxmo)[— + 0((5‘ML - xo)z)}ix

which can be solved for

) . .
1) G =) +ofChn o)

which lets us apply the above proof for the asymptotic result for EKL,,; for EKLy as well.

DKLB(”) = OALML - }\'O)T

First Predictive Distribution KL Divergence Integral

We seek to prove that
eXP (tl)r(oy Z’1) = Jexp (—Z) 10g (1 + tzyz
1
0

so we take the right hand integral and perform integration by parts to get

o ~ % 1
Iexp (—2) log (1 + tzljdz = {— exp (—z) log (1 + tzlﬂ - JCXP (—Z)(tl " Z]dz

0 0 0

with the middle part having trivial limits of 0 in both directions, so that the whole expression simplifies to
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which can be rewritten to

T 1
exp () .(I;— exp (—(t + Z>)(t1+Z jdz

and by the substitution y = #; + z results in
T 1
exp (t1) | exp (—yI )dy
Joolo 5

Through the definition of the upper incomplete gamma function the last displayed equation becomes

exp (¢)1'(0, 21)
which was to be proven, see Abramowitz & Stegun (1964) page 262 (6.5.15).

Gamma Logarithmic Moment

We seek to prove that assuming a gamma random variable Z with density f{z|c, B), we have

[ fzlow ) log (2)dz = w(@) - 1og ®),
0
where Y(x) is the digamma function defined as W(x) = I''(x)/T'(x), see Abramowitz & Stegun (1964) page 258 (6.3.1).

We take the left hand side and expand the density knowing its integral is 1

oo

1= Jexp (—Bz + (00— 1) log(Bz) + log(B))/T((x)dz

0

Then we multiply both sides by I'(®t) and take the derivative with regard to o
(o) = Tlog(ﬁz) exp (—Bz + (o0 — 1) log(Bz) + log(B) jdz
0

Then we divide both sides by I'(0) and substitute back the density

I'(o)/T' (o) = ]3 flzla, B) log(Bz)dz

0

in which we use the definition of the digamma function and splitting the logs to finaly get

y(o) — log(B) = ]if(zkx, B) log(2)dz

0

which was to be proven.

Gamma Inverse Moment

We seek to prove that assuming a gamma random variable 2Z with density function f{z|o., B), we have

I'loe—1)
I'(or)

jﬂz|0ﬂ, B)z 'dz =B
0
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We start with the left hand side integral and expand the density function into

oo

J 7! exp (-B2)z% ' BT (o) dz

0

and rewrite it into

F(OC 1) oc—2 o1
/T(o—1
B——-= @) jexp( Bz)z (00— 1)dz
witch with the substitution 0" = ot — 1 can be rewritten into
F 1
(OL ) Jﬂzl(x B)dz
with the density integrating to 1 resulting in
I'loe—1)
(o)

which was to be proven.

First Predictive Distribution KL Divergence Integral

We seek to prove that
Tf(rl)[log(tl) —log(n) — 1+ (n+ 1) exp(t,)T(0, tl)jdtl = y(n) —log(n) + ;11
0
which we will do by splitting the integral into
Tf(tl) log(t)dt; — (log(n) + 1) Tﬂtl)dtl +(n+1) Tf(tl) exp(t)I(0, £,)dt; = y(n) —log(n) + %
0 0 0
and substituting the logarithmic moment into y(n) — log(n) leaving
(n+1) Tf(tl) exp()L(0, £))dt; + y(n) — log(n) — 1 = y(n) — log(n) + %
0
which we simplify into
[0 expe)r0, ), = -
0
leaving only the above moment of #; left to prove.

To prove the last displayed formula, we begin by noting that

T F(O7 1) exp( tl)
1 -t
which is trivial to obtain using
d exp(—x)
% F(ay .X') =- Xa_l

from Abramowitz & Stegun (1964) page 262 (6.5.25) with a = 0.

Going back to the moment to prove, expand the density and simplify the integral into
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oo

J‘ 27100, )/ (n)dty

0

and performing integration by parts to get

[4T0,)]7 1 T 27t exp(—ty) "
LR L VAU I B AT

nl(n) n I'(n)
and note that the integral corresponds to f{¢;) which integrates to 1 to get
AT, )y | 1

nI'(n) - n

leaving only the left side of the expression to prove 0.

We now as the final step seek to prove [¢]T°(0, #,)]5° = 0 which we will do by proving each limit to individually be
zero.

Firstly from using the definition of I'(0, ¢;) we have for 0 < x < 1

1
IO, %) < IO, D + [ de = I0(0, 1] + log(x™)

X

from which we get
x"[T(0, )| < x"[T(0, 1) + x" log(|x~*])

where the right hand side goes to 0 as x — 0 for all positive integer n. Knowing that sample sizes are all positive
integers we use to above to see that #/|T°(0,¢)| — 0 as ¢ — 0.

For the second limit #; — oo we use again the definition of I'(0, #;) to get the inequality

oo

00, x)| < x Iexp(—t)dt = x ! exp(—x)

X

which gives us
x"|0(0, x)| < x™! exp(—x)

where the right hand side goes to 0 as x — oo which gives us a stronger result then the sought #I7(0,#) — 0 as

tl — oo.
From applying the above two results we have [£I7(0, £,)]5” = 0 which mean we finally have our sought result of
T 1
J e exper 0, )ty =
0

for proving that EKLp = y(n) — log(n) + 1/n



