Supervised Outlier Detection via Binary
Classification: A Simulation Based Analysis

Arvand Jourabian

Kandidatuppsats 2026:1
Matematisk statistik
Februari 2026

www.math.su.se

Matematisk statistik
Matematiska institutionen

Stockholms universitet
106 91 Stockholm

& W, . .

BT O Mathematical Statistics

% @OI Stockholm University
N+ S

Bachelor Thesis 2026:1

Stockholm http://www.math.su.se

University

Supervised Outlier Detection via Binary
Classification: A Simulation Based Analysis

Arvand Jourabian®

February 2026

Abstract

Detecting outliers is important in many applications and often re-
quires problem specific solutions. A common framing is as binary clas-
sification. In this study, we compare Support Vector Machines (SVM),
Random Forest (RF) and k-Nearest Neighbors (kNN) across four sim-
ulated scenarios, with known class labels. The scenarios are designed
to vary class separability through cluster overlap, heavy-tailed out-
liers, outlier spread and boundary overlap. Models are trained in a
supervised setting and evaluated using the Area Under the ROC Curve
(AUC), F1-Score (F1) and Balanced Accuracy (BA). Overall, Random
Forest is the most robust, kNN performs weakest in the most difficult
settings and SVM is often competitive but shows high variability. As
overlap increases or outliers become less extreme, the performance de-
clines, suggesting that method choice and tuning are task dependent.

*Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: arvand.j@hotmail.com. Supervisor: Ola Hossjer, Johannes Heiny, Daniel Ahlberg.

Acknowledgments

I would like to thank my supervisor, Daniel Ahlberg, for guidance and feed-
back, and for dedicating time to support the completion of this thesis. I
also thank Johannes Heiny and Ola Hdéssjer for their support, feedback and
initial guidance during the earlier stage of the thesis. I further acknowl-
edge the use of ChatGPT for assistance with language proofreading, LaTeX
formatting, and for troubleshooting and optimizing R code.

Contents

1__Introduction| 4
2 Background| 4
[3 Theoretical Background| 5
B.I Classification] 5
13.2 Outlier Detection as Binary Classification| 6
3.3 k-nearest neighbors (kNN)[. 6
3.4 Support Vector Machines (SVM)| 7

3.5 Random Forest (RF)|. 9
B6 Anomalied 10
3.7 Fvaluation Metrics| oo 11

[4 Simulation Study Design| 12
I Overviewl oo vt 12
4.2 Classification Methodsl 13
4.3 FEwvaluation Setup| o oo 14
4.4 Scenarios Overviewl o 14
[5__Simulation Scenarios| 14
5.1 Scenario 1: Two Clusters| 15
[5.2 Scenario 2: Heavy-Tailed Outliers|. 16
b3 Scenario 3: Uniform Outlier Noisel 16
[5.4 Scenario 4: Nonlinear Boundary] 17

6 Results 18
0.1 OVerview] o v vt e e 18
6.2 Results Scenario 1| Lo 18
6.3 Results Scenario 2| L. 20
6.4 Results Scenario 3 o oL 22
6.5 Results Scenario 4l o oL 24
(7__Discussionl 26
[7.1 Summary and overall conclusions| 26
[7.1.1 Scenario difficulty|] 26

[7.1.2 Scenario 1: Effect of overlapo|. 27

[7.1.3 Scenario 2: Eftect ot degrees of freedom | 27

[7.1.4 Scenario 3: Effect of noise spread L. 27

[7.1.5 Scenario 4: Eftect of boundary overlap 7|. 27

[r2 Dimitations o 28
[7.3 Suggestions for further simulations| 28

1 Introduction

The need and ability to detect outliers, also referred to as anomalies, arises
across a wide range of applications including finance, industrial processes,
scientific research and medical diagnostics. Because anomaly detection is
a broad and loosely defined problem, there are many ways to approach it.
For example, methods for monitoring continuous real time sensor streams in
manufacturing differ from methods for identifying disease in periodic med-
ical screening data. As a result, an extensive set of techniques is available
depending on the problem scope, the attributes of data and computational
resources. Some techniques are statistical models, whereas others are dis-
tance or density based. Classification based techniques and reconstruction
based methods are also commonly used. The following chapter provides
details on selected methods

In this paper the performance of three commonly used methods for
anomaly detection is evaluated in the context of a binary classification task.
For example, in credit card fraud detection, transactions confirmed as fraud-
ulent are labeled to class y = 1 and legitimate transactions to class y = 0.
Supervised classifiers are then trained and evaluated under large class im-
balance, since fraud is rare [1]. Our simulations mirror this binary framing
and enable controlled supervised comparisons. One class represents the nor-
mal data and the other class represents anomalous observations. Here, the
"normal” class refers to a larger class of observations in the initial data gen-
erating process, and the "anomalous” comprises a smaller class generated
under different parameters. A supervised setting using simulated data with
known class labels allows for a controlled setting in which the primary focus
is on comparison of performance. The three models selected are Support
Vector Machines (SVM), Random Forests (RF), and k-Nearest Neighbors
(kNN) chosen for their widespread usage in classification and anomaly de-
tection but also for their differing learning paradigms and properties [2].

The paper is conducted as a simulation study which allows full control
over the data, the nature of the outliers, and the dimensionality of the feature
space. The models are evaluated using standard performance metrics such
as the area under the ROC curve (AUC), F1-Score (F1), and Balanced
Accuracy (BA), and are compared across several simulated scenarios.

2 Background

Outlier detection is a field firmly rooted in statistics. Early work is wide
ranging with some approaching outliers with statistical tests, where an out-
lier is considered as either belonging to a heavy tailed distribution or a sep-
arate ”contaminating distribution” [3]. Other approaches use leverage and
residual analysis to find types of multivariate outliers [4]. Methods based on

distance and density such as assigning a measure to detect outliers, Local
Outlier Factor (LOF) [5], are examples of unsupervised approaches that do
not require labels but may struggle with high dimensional data. With access
to labels the task is somewhat simplified, since there is some representation
or ground truth to draw from. The approach to finding labels varies from
synthetic generation to domain specific expertise to identify and compile
class labels, which may be an arduous task in fields such as finance and
fraud detection [6]. The idea to explore different framings and approaches
to an outlier detection task is common. For example exploring synthetic
data as labeled outliers to be able to use supervised learning in acoustic
anomaly detection [7]. In outlier detection using classification, the framing
of one class versus binary classes has been examined with one class showing
better performance for high class imbalance [8].

Building on this prior work, the aim of this paper is to compare three
widely used supervised algorithms: SVM, kNN and Random Forest, across
four controlled scenarios by using a binary classification approach.

3 Theoretical Background

The theory in this section is taken from [9],[10] and [11].

3.1 Classification

Classification is a supervised learning task in which a model assigns a d-
dimensional observation vector & = (1,...,24) € R% to one of K discrete
categories, also called classes, y € {1,..., K}. Given a labeled training set
{(zs,yi)};=, the aim is to learn a decision rule h(-) which minimizes the
probability of misclassification on future data. By contrast, unsupervised
methods attempt the same goal without class labels in the training data
and is often used in circumstances where labels are unavailable. Subsequent
sections describe the three supervised classification algorithms ex-
amined in this paper: k-Nearest Neighbors, Support Vector Machines and
Random Forest.

Let (X,Y) be random variables, then the theoretical optimum of a clas-
sifier is the Bayes classifier:

*
h*(z) = argke?ﬁ?fK}P (Y =k|X =2).

The Bayes classifier minimizes the probability of misclassification when all
errors are penalized equally. The resulting minimum is called the Bayes
error rate. Because the conditional probabilities are often unknown in prac-
tice, learning algorithms approximate h* by modeling the probabilities or by

estimating the decision boundary that separates the classes. Performance
is typically summarised in a confusion matriz of true positives (TP), false

positives (FP), false negatives (FN), and true negatives (TN). With this,
metrics such as Accuracy, Recall and the true-positive rate can be derived.
The metrics are detailed in a subsequent section

When the set of possible classes is restricted to two, K = 2, the task is
referred to as binary classification.

3.2 Outlier Detection as Binary Classification

In many outlier detection tasks, also known as anomaly detection, the fram-
ing can be done as a binary classification problem in which one class repre-
sents rare or abnormal observation and the other class represents the preva-
lent behavior. In this paper we will refer to the classes as outlier and inlier
classes.

Two characteristics distinguish this framing from ordinary balanced clas-
sification. First, the outlier class often constitutes a smaller subset of the
data leading to a severe class imbalance. Second, the cost of failing to flag
an outlier is therefore usually considered higher than a false positive. As
a result, evaluations such as the F1-Score that account for imbalance is of
more importance; see Section

In this paper the outlier class is labeled in all simulations which enables
the use of supervised learning algorithms while having full control of the
prevalence, separation and distribution of the outlier class. This is used to
highlight how different classifiers respond to rare but contextually important
observations, under controlled conditions

3.3 k-nearest neighbors (kNN)

The k-Nearest Neighbors (kNN) classifier is an instance-based non-parametric
method, meaning it is based on distances. The method assigns a test point
xg the most common class label among its k closest training observations,
where distance is usually measured in the Euclidean norm. More specifically;
for a test point x, let Ni(zo) denote the set of its k closest training obser-
vations using the Euclidean distance d(xo, z;) = ||xo — z;||2. kNN assigns xg
to the most common class among those neighbors,

A

G(z9) = majority{ y; : i € Ni(xo)},

in other words, whichever label appears most frequently in N (z0).

The neighborhood size k governs model complexity: small k gives a
highly flexible (low-bias, high-variance) decision boundary, whereas large k
produces a smoother (high-bias, low-variance) boundary

As the feature dimension increases, the size of a local neighborhood
grows rapidly and all points become nearly equidistant. This devalues the
information of N (z¢) and therefore leads to poor performance.

Prediction is done by calculating distances from the test point to all n
training points. This can result in a high computational cost along with high
memory usage. Although this can be mitigated with different techniques
and methods such as tree based search structures or approximate nearest-
neighbor algorithms, these are beyond the scope of this study.

In the context of outlier detection, kNN is expected to perform well when
outliers are isolated from inliers in feature space but may falter under large
class imbalance or in high dimensional settings.

3.4 Support Vector Machines (SVM)

Suppose we have a d-dimensional hyperplane
Bo+ /i X1+... +B4Xq=0.

Where f3y are constants and X = (X1, Xo,..., Xy)? is a point on the plane.

This hyperplane can be used to classify test data into two classes y1,...,yn €
{—1,1} depending on what side of the hyperplane the data is on, by calcu-
lating its sign.

This an intuitive way of classifying, by drawing a line. However with
perfectly separable classes an infinite amount of hyperplanes can be con-
structed. This is solved by choosing the hyperplane that has the farthest
minimum perpendicular distance to training observations. This distance is
called the margin of the hyperplane and is maximized by:

max M
B

d
subject to 25]2 =1, (1)
j=0

yi (Bo + Brair + -+ Bazia) > M, i=1,....n.

Where the margin M is maximized over the S constants while keeping the
observation on the correct side of the hyperplane and also not on M. The
resulting plane is called the Maxzimal margin hyperplane and again the test
observation is classified by determining its sign.

While this hyperplane handles perfectly separated classes, this scenario
is not always the case. When classes overlap a soft margin is needed since
a strict margin cannot be maintained. Slack variables €1, ..., €, cohering to
a chosen budget C' are added to allow flexibility in the constraints of the
optimization problem (|1)). This results in some observations being allowed
to be inside the margin or being assigned the wrong class. This is called a
soft margin and is defined similarly to as thus:

max M
B?e

d
subject to ZBJQ =1,
= 2)
Yi(Bo + Prizin + -+ - + Bazia) > M(1—¢), i=1,...,n

n
€ >0, ZQ’ <C.
i—1

The main difference in this soft margin classifier is the added slack variables.
For instance if C' is set to 0 then we have the previous shown Maximal margin
classifier. If the ith observation is on the correct side of the hyperplane then
its slack variable ¢;, = 0. If ¢; > 0 or ¢; > 1 then the observation is inside the
margin or on the wrong side of the hyperplane, respectively. This impacts
the budget set by C. In the soft margin classifier it is only these observations
that make up the support vectors and therefore determine the hyperplane.
This leads to C' being the parameter that controls the bias-variance trade-
off and is often tuned by cross validation. The soft margin classifier is also
known as support vector classifier.

To handle nonlinear boundaries between classes we can enlarge the fea-
ture space while still maintain linearity. For example the hyperplane g +
B1 X1+ B2 X = 0 with expanded features (X1, Xo, X3) gives us By + 1 X1 +
BaXo + B3 X3 = 0.

This concept, along with the fact that the solution to only involves
inner products of observations, leads to the linear soft margin classifier being
written as

n
f(x) = Po+ Z a; (T, x;). (3)

€S
Here S is the set of indices for the support vectors of the training obser-
vations. This is because the parameter «;, for which there is one for every
observation, is only non-zero for the support vectors. Since this is the form

for a linear classifier we can replace the inner product with a general form
K called kernel:

n
f@)=Bo+) aiK(z,). (4)
€S

When the kernel K is replaced we perform the change in feature space as
discussed earlier and allows for many different mappings. This extension of
is a Support Vector Machine (SVM). Commonly used kernel choices in-
clude linear, polynomial, and Gaussian radial basis function (RBF) kernels.

The kernel we use in this paper is the RBF kernel and is defined as

d
K (i, 1) = exp (Z Tij — Tkj)?), (5)

where o sets the kernel width. A smaller o gives smoother large-margin
boundaries, and larger o yields more flexible local ones. The euclidean
distance between x; and xj is what causes the impact on the predicted class
label to highly depend on local behavior.

Both hyper-parameters mentioned, C and o, therefore influence the per-
formance and suitable values can be selected by evaluating the models with
different values. The method of selecting parameters for the simulation is
outlined in sectiond.2]

SVMs often perform well in high dimensional spaces because predictions
depend only on the support vectors, a subset of training points. However,
when classes overlap heavily or when C' and ¢ are poorly selected the margin
may grow to include too many points, resulting in degraded accuracy and
performance.

3.5 Random Forest (RF)

Random Forest is an ensemble method that combines the predictions of
many classification trees, each grown on a bootstrap sample of training
data. It leverages randomness by using random subsets of the data and
in the feature selection when splitting individual trees. This makes the
individual trees less correlated and such averaging their votes greatly reduces
the variance. The final class prediction is obtained by majority vote across
the ensemble of trees.

A decision tree is a model that uses a tree structure and is based on
dividing the predictor space X = (X1, ..., Xy) into regions by Binary splits.
At the starting region, the root node, a variable X, is split according to
some threshold ¢ into left child node {x : x; < t} and right child node
{z : z; > t}. Repeated splitting results in regions R,, which are distinct
and non-overlapping and belong to the mth node. Decision trees can be
used for regression and classification tasks, for regression the split is chosen
by minimizing the mean squared error.

However when constructing a classification tree, the most simple metric
is the classification error rate, the fraction of training observations in the
region that do not belong to the most common class. A more commonly
used alternative, and the one used in this study, is the Gini index

K
G= Zﬁmk(l - ﬁmkz)a (6)
k=1

where p,,i is the proportion of training observations in the mth region from
the kth class. Nodes deeper in the tree, large m, hold fewer points and

therefore G tends to be smaller since p,,x is larger. The Gini index provides
a measure of total variance across the K classes.

A bootstrap dataset is obtained by randomly sampling the training data
with replacement to the same size. This is done to produce B bootstrap
datasets. The averaging over some estimate from these sets is known as
bootstrap aggregation (bagging) and reduces variance.

In Random Forest a bootstrap sample is drawn from the training data
and a tree T}, is recursively grown, until a minimum node size Ny, is reached,
according to the following procedure:

i. Select my,, variables randomly from p total features.
1. Pick the best split-point among the myy,,.

141. Split the node into two child nodes.

The split point in (7¢) is chosen to minimize the weighted average Gini index
@ of the two child nodes. This is the same as maximizing the Gini decrease.
If myy = p the algorithm reduces to bagging, since every split considers all
features. This procedure is done for all bootstrap samples b=1,..., B and
produces an ensemble of trees {73}f. When classifying an observation z,
the prediction of the ensemble is summarized by a majority vote,

C’g(x) = majority vote {C’b(x)}jlg (7)

using the individual class predictions C’b(x) of the bth random forest tree.

The hyper-parameters of the algorithm control the structure of the in-
dividual trees (depth, node size) or the ensemble (the number of trees B).
Commonly tuned parameters are randomly selected variables my.,, node
size of the trees and total number of trees B.

3.6 Anomalies

Anomalies (outliers) are observations that deviate from the behavior and
distribution of the majority (inliers). Although it can be challenging to
provide a strict universal definition generally, an anomaly can be described
as a pattern that does not follow expected normal behavior [2].

A conceptual way to formalize this idea is to define a Normal region in
the feature space of our working domain and consider everything outside this
region as an outlier. In practice this approach can be difficult to apply. A
true normal region is hard to specify because of what counts as normal can
be diverse. The boundary of the normal region may be a challenge to define
since observations may belong to either region when overlap or extreme
outliers exist. In many cases the concept of normality can also be seasonal
or evolve to not be of representative behavior in the future. Applications of
anomaly detection that are focused on fraud or intrusion detection also face

10

difficult hurdles in defining normal behavior. In these cases malicious actors
may try to mimic normal data to deliberately avoid being outside a normal
region. Many similar challenges, unique to each application and industry,
exist which require definitions of normality to depend on their domain. For
example small deviations in medical data may be of highly anomalous while
the same magnitude of fluctuations in stock market data may be considered
normal. A large and always present obstacle with anomalies are the data
challenges. Often availability of labeled data for training and validation of
models is a concern which may require a solution in itself. Class imbalance,
since anomalies are rare, is also an important aspect which differentiates it
from other classification tasks.

Because of these issues, most anomaly detection methods employ solutions
tailored to the data type, label availability and anomaly definition of their
problem domain. The simulation scenarios introduced in Chapters 4 and 5
are designed to reflect some of these challenges.

3.7 Evaluation Metrics

In supervised classification performance is often summarized in a confusion
matrix that contains counts of outcomes. These counts are detailed in Ta-
ble [l and are the basis of classifier evaluation metrics. For a classifier that
outputs a probability score p(z) = P(Y =1 | X = z), varying the decision
threshold ¢, for which the prediction is compared against, impacts our met-
rics. A Bayes classifier, as described in Chapter 3.1, assumes a threshold of
0.5 and this is also usually the default value.

Table 1: Confusion matrix terminology.

Outcome Description

True Positive (TP) Outlier correctly classified as outlier

False Negative (FN) Outlier incorrectly classified as normal

False Positive (FP) Normal observation incorrectly classified as outlier
True Negative (TN) Normal observation correctly classified as normal

The most intuitive is Accuracy which is simply the proportion of correctly
classified observations from the whole

TP + TN
TP +FP +FN + TN’

Accuracy =

However in our case the Negative outcomes will be by far the highest counts
due to the inherent class imbalance. As a consequence this metric will be
inflated and the differences between Accuracy may only provide us with
some insight. An alternative metric that addresses this issue is Balanced

11

Accuracy which averages the True-Positive Rate (TPR) and True-Negative
Rate (TNR) as

1 1 TP TN
Bal d A = —(TPR+TNR) = = .
alanced Accuracy = g (+) 5 (TP TN t N n FP>
This makes Balanced Accuracy less dependent on the class prevalence and a
more informative choice for imbalanced classes. Two other metrics; Precision
(positive predictive value) and Recall (sensitivity) are the basis of many
other metrics and are defined as

Procisi TP
recision = ————
TP + FP’
TP
e —
Recall = F5=3%

These two metrics can be used to define the F1-score

2 - Precision - Recall

Fl-score = Precision + Recall
which is a harmonic mean of Precision and Recall and provides a more
weighted measure. The F1-Score is widely used when assessing classifier per-
formance with imbalanced datasets but may still suffer in large imbalances
for example with 1% positives[12]. A measure that has shown to perform
well under these circumstances|13] is the Receiver Operating Charactersitic
(ROC) Curve which uses True-Positive Rate and

FP

False-Positive Rate (FPR) = P+ TN
When plotting TPR against FPR we get the ROC curve which for random
guessing follows the diagonal and good performance shows the curve hugging
the left upper corner. To summarize the information from the ROC curve,
the Area Under the (ROC) Curve (AUC) is used and gives a single number.
An AUC of 1 is a perfect ranking and 0.5 means no better performance than
guessing.

The metrics used to determine performance in this paper are AUC, F1-
Score and Balanced Accuracy.

4 Simulation Study Design

4.1 Overview

In the simulations, data is generated from known probability distributions
to generate multivariate numerical observations belonging to two classes: a
normal class and an outlier class. Both classes are labeled which allows for

12

a supervised learning setting. This structure enables a controlled evaluation
of model performance across different scenarios and parameters.

The outlier class is designed to have attributes similar to real-anomalies,
it is therefore a smaller subset of the whole data set. This class imbalance
is intentional and an important aspect since this affects model behavior and
mirrors realistic conditions.

Simulation also allows control over class ratios, dimensionality, data
spread and noise. This provides the tools to design scenarios where the
classification methods may respond differently. A key motivation for this
approach is reproducibility and interpretability.

4.2 Classification Methods

The three classification methods kNN, SVM and RF were chosen due to
their wide usage in classification and anomaly detection. They represent
different learning paradigms which will allow for comparison of how these
three methods handle different types of models with outliers and unbalanced
data.

For the Support Vector Machine (SVM) a Radial Basis Function (RBF)
kernel, a commonly used Gaussian kernel, is used due to its ability to model
non-linear decision boundaries and requiring few hyperparameters. The pa-
rameters can be chosen to get a behaviour similar to linear and polynomial
kernels. This allows for flexibility across data structures. The RBF kernel
can perform well in high dimensional spaces but may be sensitive to noise
or class overlap. The two main tunable parameters are C' (regularization)
and o (width of kernel).

For Random Forest (RF) the tunable parameters are the number of trees
ntree and the number of variables randomly selected at each split mtry.
Since RF is an ensemble of decision trees that uses bagging and random
feature selection it is robust to noise and nonlinearities and it is generally
less sensitive to parameter tuning than the other models.

The non-parametric method k-Nearest Neighbors (kNN) is arguably the
simplest and most interpretable model. It assigns class labels based on
majority class among the k closest training points in feature space. This
makes it sensitive to class imbalance and curse of high dimensionality. It is
therefore highly dependent on appropriate choice of the parameter k.

Models are implemented and trained in R with the caret package for
model training and tuning. SVM, kNN and Random Forest were imple-
mented using the €1071, class and randomForest packages, respectively.
AUC was computed using pROC and data generated with MASS (mvtnorm
in Scenario 2). Cross-validation (5-fold) is used during the parameter tuning
and the tuning grid is chosen manually. The aim is to provide some opti-
mization for each scenario but not to the point of an exhaustive parameter
search for individual scenarios.

13

4.3 Evaluation Setup

In each simulation labeled data are generated (N = 500 observations) and
split into training and test sets according to a 70/30 ratio, so that the
number of training data points is n = 350. To preserve class proportions
of normal and outlier (10%) observations, stratified sampling is used, with
35 (15) outliers among training (test) data. Each simulation scenario is re-
peated multiple times (30 times) to reduce variability and obtain an averaged
performance estimate. The performance of each model is evaluated using
Balanced Accuracy, F1-Score and Area Under the ROC Curve as metrics.

4.4 Scenarios Overview

Four different scenarios, with simulated data in d dimensions, are investi-
gated to reflect common challenges in anomaly detection. The first three
scenarios have data from the normal (or inlier) class drawn from a stan-
dard multivariate (d-dimensional) Gaussian distribution, whereas the struc-
ture and distribution of the outlier class varies. For the fourth scenario, a
combined data set is drawn from a standard multivariate (d-dimensional)
Gaussian distribution, and outlier labels are assigned probabilistically using
a soft radial boundary where overlap is controlled by parameter. The goal
is to evaluate performance under varying types of distance, noise structure
and overlap.

o Scenario 1: Separated Clusters Outliers form a class that is (par-
tially) separated from the normal class, simulating separated anoma-
lies.

e Scenario 2: Heavy-Tailed Outliers Outliers are drawn from a
heavy-tailed distribution (¢-distribution with varying degrees of free-
dom v, which corresponds to a Cauchy distribution for » = 1) , making
them harder to isolate.

¢ Scenario 3: Uniform Outlier Noise Outliers are spread across a
uniform region, similar to dispersed and noise-like anomalies.

e Scenario 4: Soft radial boundary (overlap) Outlier labels are
given based on their distance from origin, with overlap controlled by
a parameter, representing uncertainty near borders.

5 Simulation Scenarios

In this section we give a more mathematical description of all four simulation
scenarios. A data point from the normal and outlier classes are observations
of random variables X, orma; and Xousier respectively. The distributions of

14

these random variables for each scenario are described in the subsequent
subchapter. Each scenario varies a specific parameter between four values
and the data generation is done with a new seed. Since for each parameter
the repetition is done 30 times we end up with a total of 120 repetitions
overall for each scenario.

5.1 Scenario 1: Two Clusters

For Scenario 1, data from the normal and outlier classes will be generated
from two different multivariate normal distributions, with the same covari-
ance matrix but different expected values. More specifically, we have that

Xnormal ~ N(,Ub E)v Xoutlier ~ N(,UQ, E)

/le(o,...,O), #2:(5,...,5), Z:Id.

Varying the mean § (denoted pigyig it in figures) of the outlier class to
values § € [0.5,1,1.5,2] for 30 repetitions while all other parameters stay
fixed. Resulting in 30 repetitions for § = 0.5 and 30 for 6 = 1 and so on.
The aim of this scenario is examine how the methods perform depending on
how close and overlapping two differently sized classes are. With a larger
separation of means the performance of the methods are expected to trend
toward the trivial case of two clearly separated classes.

Overlapping Normal vs. Outliers
Cluster Overlap Scenario (1 =0.5)

V% . Class

» 9%
° ® normal

Feature 2

outlier

Feature 1

Figure 1: Visualization for d = 2 of Scenario 1, u = 0.5

In Figure [I] we see a visual representation of the 2D case with § = 0.5
where the outlier and normal class are clearly overlapping.

15

5.2 Scenario 2: Heavy-Tailed Outliers

For Scenario 2, data from the normal class are drawn from a standard normal
distribution, whereas data from the outlier class are drawn from a radially
symmetric, heavy-tailed distribution (Multivariate ¢). More specifically, we
have that

Xnormal ~ N([L, E)a Xoutlier ~ tu(ﬂ» E)

w=1(0,...,0), X =1, v =degrees of freedom.

Varying the degrees of freedom of the outlier class to be v € [1,2,5, 8].
Following the same procedure as all other scenarios, this parameter is the
only one that changes value. The expected behavior of the performance
when increasing v is for the methods to struggle more. This is due to outliers
becoming less extreme and the distribution tending to the inlier class as v
increases and overlap becomes high.

Normal vs. Outliers
Heavy-tailed outliers (Student-t = 1)

L] X
0 Y Class

normal

Feature 2

outlier

-10

-15 -10 -5 0
Feature 1

Figure 2: Visualization for d = 2 of Scenario 2 (Heavy-Tailed), v = 1.

In Figure 2| we have a visualization of the 2D case with v = 1. This is
the parameter with the most amount of extreme outliers.

5.3 Scenario 3: Uniform Outlier Noise

For Scenario 3, data from the normal class are drawn from a standard normal
distribution, whereas data from the outlier class are drawn from a rectan-
gular, uniform distribution. More specifically, we have that

Xnormal ~ N(M7 E), Xoutlier ~ Uniform([al, bl] X X [CLd, bd])

16

M:(O,...,O), EZId

Varying the size of the rectangles sides a = b, which forms the outlier class,
to values [3,4, 6, 8] while keeping other parameters and variables fixed.

Normal vs. Outliers
Rectangular Uniform

o L Class

normal

Feature 2
e

outlier

-2 0 2
Feature 1

Figure 3: Visualization for d = 2 of Scenario 3 (Uniform Noise), a = b = 3.

The aim of this scenario is to simulate uniform noise outliers and how
their spread impact method performance. Increasing the rectangular box
size seen in Figure |3| makes the outliers more distant and should lead to
improved metrics, depending on the method.

5.4 Scenario 4: Nonlinear Boundary

For Scenario 4, data is generated from a standard normal distribution and a
radial score is computed from which an outlier label is assigned probabilis-
tically from a soft radial boundary. More specifically we have that

XNN(Ov-[d)a T:HXH

where r is the computed radius in the soft radial boundary

P(Y:1|X):a<r_ro>.

T

Here Y = 0 (Y = 1) represents the normal (outlier) class, 79 controls the
location of the boundary (the radius where P(Y =1 | X) =0.5) and 7 > 0
determines the thickness in overlap. In this scenario all values are fixed,
including ro = 4, and the parameter 7 € [0.4,0.6,0.8,1.0] is varied.

17

Normal vs. Outliers
Gaussian X; soft circular boundary

Class

normal

Feature 2

0 C ! S outlier

Feature 1

Figure 4: Visualization for d = 2 of Scenario 4 (Nonlinear), 7 = 0.6.

The Figure [illustrates Scenario 4, where the outliers are more likely
at the edge of the radius. As 7 increases the boundary becomes less sharp
and the classes overlap more which should make the classification task more
difficult. This scenario is similar to Scenario 2 in that separation is mostly
radial but has labels assigned probabilistically to represent overlap and un-
certainty near the boundary.

6 Results

6.1 Overview

In this chapter we present simulation results for each scenario. Perfor-
mance is evaluated using Balanced Accuracy (BA), the F1-Score (F1) and
the Area Under the (ROC) Curve (AUC), as defined in Chapter For
each scenario, we report an overall summary table with mean metric values
per method averaged over all simulation repetitions, a figure with boxplots
showing the distribution of metrics from individual simulations and a table
of mean metric values for each parameter tested in the scenario.

6.2 Results Scenario 1

In Scenario 1, with two overlapping clusters, the three methods perform
differently depending on how large the overlap is. Table [2| reports mean
AUC, BA and F1 for each method averaged over number of simulation
repetitions and all values of §. Random Forest achieves the highest average
performance across the reported metrics.

18

Table 2: Summary of averaged performance metrics of Scenario 1.

Method AUC | F1 Score | Balanced Accuracy
Random Forest | 0.801 0.436 0.677
SVM 0.727 0.365 0.644
kNN 0.776 0.410 0.666

Figure [5] shows how the distribution of AUC, BA and F1 across simula-
tions for each §. The main trend is performance gain as § increases, across all
metrics. Support Vector Machines has larger variability and lower median
performance which is most clearly seen in AUC. For § = 0.5, the boxplots
indicate a clear drop in performance.

Classifier performance by mu_shift

Balanced Accuracy F1 Score

1.0

TR S
s * A | ’jjj " m

04
05 1 15 2 05 1 15 2 05 1
mu_shift

o

o

Score

' kNN ' Random Forest ' SVM

Figure 5: Performance metrics for Scenario 1.

The mean performance of the methods for each § is presented in Table
where the overall performance gain is most clear in F1 between § = 0.5
and 0 = 1.

19

Table 3: Full summary of averaged performance metrics of Scenario 1.

delta Method AUC F1 | Balanced Accuracy
0.5 Random Forest | 0.591 | 0.096 0.519
0.5 SVM 0.570 | 0.008 0.502
0.5 kNN 0.572 | 0.044 0.509
1 Random Forest | 0.773 | 0.348 0.623
1 SVM 0.649 | 0.195 0.558
1 kNN 0.736 | 0.279 0.590
1.5 Random Forest | 0.889 | 0.553 0.728
1.5 SVM 0.791 | 0.530 0.699
1.5 kNN 0.861 | 0.577 0.735
2 Random Forest | 0.953 | 0.746 0.839
2 SVM 0.899 | 0.726 0.817
2 kNN 0.935 | 0.739 0.829
Overall | Random Forest | 0.801 | 0.436 0.677
Overall SVM 0.727 | 0.365 0.644
Overall kNN 0.776 | 0.410 0.666

6.3 Results Scenario 2

In Scenario 2 the main point of interest is how the methods behave as the
outlier distribution becomes less extreme. As degrees of freedom v (df)
increase, the heavy tails weaken for the outlier distribution thus making
the classification task harder. Table [4] reports overall mean performance
per method and shows low performance for our metrics, most notably in
F1, indicating that correctly identifying the outlier class is difficult in this
scenario.

Table 4: Summary of averaged performance metrics of Scenario 2.

Method AUC F1 | Balanced Accuracy
Random Forest | 0.600 | 0.162 0.547
SVM 0.602 | 0.135 0.542
kNN 0.553 | 0.083 0.521

Figure [6] shows the distribution of AUC, BA and F1 across repetitions
for each value of v tested. The results indicate an increase of difficulty as v
increases and for v € [5, 8] there is a large decline in BA and F1. Across v,
kNN tends to performe the worst overall with a particularly low AUC where
the lower tail of the distribution falls below 0.5 when difficulty increases.

20

Classifier performance by df

AUC BalAcc F1
08 0.6
0.70
oo $ °
0.7 0.65 .
: | 0.4 .
o
((ncj 06 I 0.60 . . .
I I 0.55 A 0-2 .
05 tlg t)4
H A 11l
0.50 gz =f~+
0.4 $ < 1 o0 - -8.
1 2 5 8 1 2 5 8 1 2 5 8

df (degrees of freedom)

‘ kNN ‘ Random Forest ‘ SVM

Figure 6: Performance metrics for Scenario 2.

Mean performance by v is presented in Table [5| where a consistently low
F1 is visible for v > 1.

21

Table 5: Full summary of averaged performance metrics of Scenario 2.

df Method AUC F1 | Balanced Accuracy
1 Random Forest | 0.645 | 0.342 0.614
1 SVM 0.657 | 0.339 0.610
1 kNN 0.619 | 0.208 0.561
2 Random Forest | 0.611 | 0.175 0.550
2 SVM 0.629 | 0.163 0.548
2 kNN 0.562 | 0.061 0.515
5 Random Forest | 0.574 | 0.076 0.516
5 SVM 0.555 | 0.023 0.505
5 kNN 0.512 | 0.031 0.504
8 Random Forest | 0.569 | 0.054 0.507
8 SVM 0.569 | 0.016 0.504
8 kNN 0.517 | 0.032 0.506
Overall | Random Forest | 0.600 | 0.162 0.547
Overall SVM 0.602 | 0.135 0.542
Overall kNN 0.553 | 0.083 0.521

6.4 Results Scenario 3

Scenario 3 has the outlier class scattered uniformly over a square area con-
trolled by the sides a = b of the region. As the length of the sides (L)
increases, the outliers spread over a wider region and classification of the
outliers generally become an easier task. Table [6] reports overall mean per-
formance per method averaged over all simulations and tested values of L.
Random Forest has the highest overall averaged performance across the re-
ported metrics.

Table 6: Summary of averaged performance metrics of Scenario 3.

Method AUC F1 | Balanced Accuracy
Random Forest | 0.867 | 0.631 0.778
SVM 0.831 | 0.611 0.762
kNN 0.833 | 0.514 0.701

Figure [7] show the distribution of AUC, BA, F1 across repetitions for
each tested L. Overall there is a steady increase in median and a decrease
in variance as L becomes larger, for all methods. For SVM and Random
Forest, a small number of simulations at the smallest tested L yield AUC
and BA below 0.5 which is visible in the lower tail of the boxplots.

22

Classifier performance by L

A
| '3.4 R m Ie . m M H

L

‘ kNN ‘ Random Forest ‘ SVM

Figure 7: Performance metrics for Scenario 3.

The mean performance by L is shown in Table [[] In particular, an
increase in F1 is visible when L increases from 3 to 4 for SVM and kNN.

23

Table 7: Full summary of averaged performance metrics of Scenario 3.

L Method AUC F1 | Balanced Accuracy
3 Random Forest | 0.749 | 0.344 0.623
3 SVM 0.676 | 0.196 0.562
3 kNN 0.714 | 0.162 0.547
4 Random Forest | 0.844 | 0.562 0.741
4 SVM 0.801 | 0.568 0.724
4 kNN 0.810 | 0.423 0.648
6 Random Forest | 0.913 | 0.750 0.833
6 SVM 0.887 | 0.791 0.849
6 kNN 0.873 | 0.652 0.755
8 Random Forest | 0.960 | 0.868 0.913
8 SVM 0.961 | 0.889 0.913
8 kNN 0.935 | 0.818 0.855
Overall | Random Forest | 0.867 | 0.631 0.778
Overall SVM 0.831 | 0.611 0.762
Overall kNN 0.833 | 0.514 0.701

6.5 Results Scenario 4

In Scenario 4 the main point of interest is performance of classification when
there is a soft circular boundary between inliers and outliers. The overlap
between classes, which is controlled by 7, widens the region of the boundary
and results in a more difficult task. Table |[§|shows the overall mean of AUC,
F1 and BA for each method. There is an overall low F1 and BA however
RF is performing better than the other methods.

Table 8: Summary of averaged performance metrics of Scenario 4.

Method AUC F1 | Balanced Accuracy
Random Forest | 0.702 | 0.215 0.568
SVM 0.654 | 0.109 0.535
kNN 0.658 | 0.107 0.530

In Figure [§ the distribution of the metrics for the simulation show a
declining median performance as 7 increases with kNN yielding some simu-
lations with AUC < 0.5, shown in the tail of the boxplot. A sharper decline
is observed for kNN and SVM in the metrics BA and F1 when 7 > 0.4 while

RF performs better.

24

Classifier performance by tau

AUC BalAcc F1
0.85 1
0.6
0.8 . 0.75
0.4
o
8 0.65 ' .
(f) °
06 1 . . °
1 0.2 o
0.55 *
L s . ; °
T TN
0.4 - =i
0.45 0.0
0.4 0.6 0.8 1 0.4 0.6 0.8 1 0.4 0.6 0.8 1

tau

‘ kNN ‘ Random Forest ‘ SVM

Figure 8: Performance metrics for Scenario 4.

The mean performance of the methods for each 7 is presented in Table 9]
which highlights how the metrics decline when overlap increases, particularly
in F1 when 7 > 0.4.

25

Table 9: Full summary of averaged performance metrics of Scenario 4.

tau Method AUC F1 | Balanced Accuracy
0.4 Random Forest | 0.843 | 0.411 0.658
0.4 SVM 0.783 | 0.338 0.618
0.4 kNN 0.798 | 0.268 0.585
0.6 Random Forest | 0.732 | 0.244 0.574
0.6 SVM 0.647 | 0.079 0.520
0.6 kNN 0.695 | 0.067 0.515
0.8 Random Forest | 0.644 | 0.120 0.526
0.8 SVM 0.601 | 0.015 0.502
0.8 kNN 0.587 | 0.057 0.512
1 Random Forest | 0.589 | 0.087 0.514
1 SVM 0.583 | 0.004 0.501
1 kNN 0.550 | 0.035 0.507
Overall | Random Forest | 0.702 | 0.215 0.568
Overall SVM 0.654 | 0.109 0.535
Overall kNN 0.658 | 0.107 0.530

7 Discussion

7.1 Summary and overall conclusions

In the simulations we compared the methods kNN, SVM and Random For-
est, for outlier detection framed as binary classification, on four simulation
scenarios. The metrics used were BA, F1 and AUC which show Random For-
est to be slightly more stable and having higher typical performance across
the scenarios. SVM is competitive in some scenarios but shows higher vari-
ability in metrics across repetitions in harder tasks. kNN is generally weakest
and is most sensitive to class overlap when the local neighborhood structure
becomes mixed. This is reflected in lower medians and wider tails in the
more difficult settings. Overall Random Forest is the preferred method in
this study due to its more robust performance across scenarios compara-
tively. While kNN is least reliable in the most difficult regimes and SVM
slightly more competitive.

7.1.1 Scenario difficulty

The scenarios differ mainly in their approach to how they separate the inlier
and outlier classes. Scenario 1 becomes easier as ¢ increases as this corre-
sponds to larger separation between classes. Small § implies strong overlap
and a gradual performance drop as shrinks. Scenario 3 becomes easier as
L increases due to the uniformly scattered outliers being spread over a wider
region, which makes the separation from the inlier cluster larger and reduces

26

variability. In contrast, Scenario 2 becomes harder as v increases due to the
outlier distribution being less heavy-tailed and outliers less extreme. This
reduces the ability to capture outliers and leads to low F1 and declining BA.
The classes are not correctly identified. Scenario 4 is also challenging be-
cause as T increases, the transition region widens and overlap increases along
a nonlinear boundary. This results in low medians and higher variability in
distribution of metrics across runs.

7.1.2 Scenario 1: Effect of overlap ¢

The overlap changes separability which directly affects classification perfor-
mance. Performance differs strongly across é with a sharp drop in the most
difficult parameter § = 0.5 and high performance in § = 2. RF performs best
overall while SVM shows larger variability and lower medians most clearly
seen in AUC. An AUC < 0.5 indicates worse than random ranking for some
simulations for SVM in § = 0.5 and also a near zero F1 which indicates
difficulty to reliably identify outliers correctly.

7.1.3 Scenario 2: Effect of degrees of freedom v

When v increases the heavy tails weaken and the outlier distribution be-
comes more similar to the inlier. kNN performs the weakest overall, however
the notable decline in BA and F1 for v € [5, 8] indicates that the methods
are performing close to chance level performance for these parameter values.
In the most simple setting, when v = 1, the robustness of correctly identi-
fying outliers is weak since the variability of F1 is large, even if BA shows
better performance.

7.1.4 Scenario 3: Effect of noise spread L

A larger L spreads outliers farther around the inlier cluster which improves
separability. The median increase and variability decrease in all metrics
and methods show a good overall performance. Although at L = 3 a small
number of runs fall below BA/AUC 0.5 which shows difficulty when the
outliers are close to the inlier cluster. Random Forest has the strongest
overall mean performance and there is a marked increase for L € [3,4],
easiest seen in F1 which shows more correctly classified outliers.

7.1.5 Scenario 4: Effect of boundary overlap 7

When 7 increases, the region between inliers and outliers widens, which in-
creases overlap and reduces class separability. The difficulty of the scenario
is seen with the declining median performance as 7 increases, particularly
a pronounced decline in BA and F1 when 7 > 0.4, indicating near guess,

27

or worse, performance for all methods in high overlap. Random Forest per-
forms comparatively better although variability remains high across repeti-
tions. The distribution of AUC shows some kNN runs below 0.5 indicating
occasional worse than random ranking and low separation.

7.2 Limitations

The simulations were done with 30 repetitions per parameter setting and re-
stricted to two dimensions to limit the scope of the study. As a consequence,
conclusions may not be generalized directly to all real world scenarios where
feature structure and data generation may differ. Furthermore, the choice
of parameter grids and tuning strategy has an effect on outcomes and must
typically be tailored for each task. In this study the same tuning grids were
used across scenarios which is not optimal for all settings. The variabil-
ity observed across repetitions indicates that conclusions when deciding the
strength of one method over another should be based on the distribution of
performance measures rather than the result of single runs.

7.3 Suggestions for further simulations

Since many of the scenarios have the performance drop/increase noticeably
more between some tested parameter values, it may be of interest to focus
on the interval between them. For example L € [3,4] in Scenario 3 and
7 € [0.4,0.6] in Scenario 4 could benefit from being more granular in the
parameter interval to gain more insight into when and how performance
deteriorates significantly. The area of interest would be these boundary
regions where performance between methods may diverge. Although this
may require redesigning scenarios, for example Scenario 2, since degrees of
freedom are integers in most applications.

In addition to a fixed scenario setup, several simulation parameters can
be further varied in future experiments and other scenarios can be consid-
ered:

o Dimension(d) Number of features used. Initial scenarios use d = 2,
but higher dimensions (d = 5, 10) can also be of interest.

e Outlier proportion In this study simulations use a fixed imbalance
10%, but this can be varied (3,5,15%) to study sensitivity to the pro-
portion of outliers, although this comes with more challenges in choos-
ing and interpreting metrics as outlined in Chapter 3.7.

o Cluster separation (0) This is the distance between the normal
and outlier class means when both classes correspond to multivariate
normal distributions can be further looked at. Where § quantifies the
amount of overlap between the two classes.

28

o Outlier distribution shape Heavy-tailed distribution (¢-distribution),

uniform distribution, or normal distributions with different, or similar,
covariance matrices may be of interest and can mimic real populations.

Covariance (X) Instead of using identity matrices, correlated fea-
tures could be introduced, not only for the outlier class, but also for
the normal class. This may also further simulate real instances of
problems.

Nonlinear boundary Outliers that examine how the methods handle
nonlinear boundaries could further be studied.

References

1]

Andrea Dal Pozzolo et al. “Learned lessons in credit card fraud detec-
tion from a practitioner perspective”. In: Ezpert Systems with Appli-
cations 41.10 (2014), pp. 4915-4928.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly
Detection: A Survey”. In: ACM Computing Survey (2009).

David M. Hawkins. Identification of QOutliers. Chapman and Hall,
1980.

R. Gnanadesikan and J. R. Kettenring. “Robust Estimates, Residuals,
and Outlier Detection with Multiresponse Data”. In: Biometrics 28.1
(1972), pp. 81-124. 18sN: 0006341X, 15410420.

Markus M. Breunig et al. “LOF': identifying density-based local out-
liers”. In: SIGMOD Rec. 29.2 (May 2000), pp. 93-104. 1SSN: 0163-5808.

Cédric Poutré, Didier Chételat, and Manuel Morales. “Deep unsuper-
vised anomaly detection in high-frequency markets”. In: The Journal
of Finance and Data Science 10 (2024), p. 100129. 1sSN: 2405-9188.

Paul Primus et al. Anomalous Sound Detection as a Simple Binary
Classification Problem with Careful Selection of Proxy Outlier Exam-
ples. 2020.

Colin Bellinger, Shiven Sharma, and Nathalie Japkowicz. “One-Class
versus Binary Classification: Which and When?” In: 2012 11th Inter-

national Conference on Machine Learning and Applications. Vol. 2.
2012, pp. 102-106.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The FEle-
ments of Statistical Learning: Data Mining, Inference, and Prediction.
2nd ed. Springer, 2009.

James Gareth et al. An Introduction to Statistical Learning: With Ap-
plications in R. Springer, 2013.

29

[11] Andreas Lindholm et al. Machine Learning: A First Course for Engi-
neers and Scientists. Cambridge University Press, 2022.

[12] George Forman and Martin Scholz. “ Apples-to-apples in cross-validation
studies: pitfalls in classifier performance measurement”. In: SIGKDD
Ezplor. Newsl. 12.1 (Nov. 2010), pp. 49-57. 1ssN: 1931-0145.

[13] Eve Richardson et al. “The receiver operating characteristic curve ac-
curately assesses imbalanced datasets”. In: Patterns 5.6 (2024).

30

