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Abstract

Claim frequencies in non-life insurance are typically modelled us-
ing generalised linear models (GLMs), making the assumption that
all insurance policies with the same covariates have homogeneous risk.
It is known in the insurance industry that there remains a relatively
large heterogeneity between policies in the same tariff cell. Credibility
theory is the study of how best to combine the collective prediction
for a tariff cell with the experienced claim frequency of an individual
policy, in order to obtain a more accurate policy-level prediction. In
this thesis, we consider a credibility model in the form of a gener-
alised linear mixed model (GLMM) which includes a random intercept
for each policy, allowing us to model the correlation between repeated
observations of the same policies. We compare this GLMM with a cor-
responding GLM which lacks the per-policy random intercepts. The
claim frequency models are evaluated in the setting of third party lia-
bility (TPL) motor insurance, using a representative data set from the
Swedish insurance company Trygg Hansa. The models are estimated
under the Bayesian paradigm, using Markov Chain Monte Carlo meth-
ods. The main aim of the thesis is to determine whether the predictive
performance of the GLMM model is better than that of the GLM
model. Due to the use of Bayesian inference, the predictions obtained
are not point predictions, but full posterior predictive distributions.
This allows the use of proper scoring rules to evaluate and compare
the predictive performance of the models. Using a panel of comparison
metrics, we find that the GLMM model with per-policy random inter-
cepts outperforms the reference GLM model, making it an attractive
option for use in non-life insurance pricing. The thesis also contains
a discussion on the computational difficulties encountered, and a brief
overview of possible future extensions of the GLMM model.
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Acknowledgements

I would like to thank my advisor Michael Höhle for all his advice and en-
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Chapter 1

Introduction

A non-life insurance contract involves the insured party paying a regular
premium to the insurer, in return for the insurer covering the costs involved
in any insurance claims. The claims are random events of generally un-
predictable nature, such as traffic accidents in motor insurance, or storm
damage in home insurance. The aim of this thesis is to quantify the impact
on third party liability motor insurance pricing when using the claim history
of individual policyholders to adjust their premiums. To do so, we will com-
pare a generalised linear model (GLM) tariff of the kind which is commonly
used by insurance companies to a generalised linear mixed model (GLMM)
credibility model. The models will be adjusted to and tested against data
from Trygg Hansa’s car insurance portfolio.

We will model claim frequency, i.e. the number of claims that arise from
an insurance policy during a year of insurance. Our aim is to predict with
good accuracy the number of claims a policy will generate during its next
year of insurance, using the historical data on this individual policy as well as
the other policies in the portfolio. The disposition of the thesis is as follows:

• In the rest of the introduction, we will outline what third party liability
insurance is, and discuss the basics of insurance tariffs and the adverse
selection problem that motivates a focus on improving risk premium
modelling. We will also introduce and describe the set of insurance
data from Trygg Hansa that will be used in the comparison of our
models.

• Chapter 2 contains a brief overview of Bayesian modelling, with a
discussion of a few metrics for model assessment and comparison.

• Chapter 3 goes into further detail on insurance pricing models. We
introduce the terminology and notation that will be used in this thesis,
and discuss using generalised linear models (GLMs) to model insurance
claim frequencies.
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• Chapter 4 introduces credibility theory, the branch of insurance math-
ematics that deals with the question of how to combine individual and
collective data to model insurance claims and premiums. We describe
the generalised linear mixed models (GLMMs) that we will compare
to the GLM models described in Chapter 3.

• Since the focus of this thesis is on the comparison of the GLM and
GLMM models, Chapter 5 describes a few metrics used for comparing
insurance tariffs: Lorenz curves and Gini scores, the so-called quotient
test, and a brief look at proper scoring rules.

• In Chapter 6, we define the two models that we will compare and
describe the procedure for fitting them. We apply the goodness-of-fit
measures and model comparison metrics described in Chapter 2, as
well as the more insurance-specific tariff comparisons from Chapter 5.
The data analysis is carried out on a set of third party liability motor
insurance data from the insurance company Trygg Hansa.

• Finally, Chapter 7 contains a discussion of the results from Chapter 6,
and our concluding remarks.

The theory chapters 2–5 serve to establish a context to the work, and provide
a reference for the notation and concepts used. They are not intended, nor do
they suffice, as thorough reviews of the theory of Bayesian models, non-life
insurance pricing or credibility theory. Each chapter contains references to
more thorough treatments of the topics. A reader familiar with the respective
areas may safely skim these chapters, or visit them when referred to in
Chapter 6.

1.1 The problem—using policy-level claims expe-
rience to calculate premiums

In motor insurance, third party liability insurance, abbreviated TPL, cov-
ers the costs a driver becomes liable for in case of causing an accident.
This includes both damage to property, such as other vehicles collided with,
and personal injury damage and related invalidity, such as income replace-
ment for people who become disabled in a traffic accident. TPL insurance is
mandatory in many countries, including Sweden. The premium charged for
all policies in an insurance portfolio needs to be sufficiently large to cover
the cost of all claims, the need for reserves, and the running costs of the
insurance company. In this thesis, however, we will restrict ourselves to only
the premium needed to cover the expected costs of claims. This is called the
risk premium.
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Before we move on to discuss insurance pricing further in Chapter 3, we
will introduce some key terminology and concepts in this chapter, and look
at the analysis data set we will use to evaluate our models.

Terminology of non-life insurance

To simplify for the reader, we will introduce a few key insurance terms that
are used throughout this thesis. These definitions can be found in many
entry-level texts about insurance pricing, e.g. Ohlsson and Johansson (2010).
A non-life insurance contracts involves the insured party paying a regular
premium to the insurer, in return for the insurer covering the costs involved
in any insurance claims. The claims are random events of generally un-
predictable nature, such as traffic accidents in motor insurance, or storm
damage in home insurance.

The duration or exposure of a policy is the amount of time it is in force,
and for a typical insurance policy this is one year. The measurement unit is
called risk years or policy years. The exposure of a portfolio of insurances is
the sum of the duration of each included insurance, and is typically taken
over a calendar year. The number of claims that a policy incurs while it is
in force is referred to as the claim frequency. When dealing with a portfolio,
the claim frequency is defined as the number of claims incurred, divided
by the exposure of the portfolio. Thus, the claim frequency is measured in
claims per risk year. Dividing the costs for all claims on a portfolio by the
number of claims in the portfolio gives an average cost per claim, a number
referred to as the claim severity.

If instead the costs for all claims on the portfolio are divided by the
portfolio exposure, the result is an average cost per risk year, a number re-
ferred to as the pure premium or burning cost. The pure premium is equal
to the product of claim frequency and claim severity. The amount of pre-
mium income for an insurance portfolio during a period is called the earned
premium. Premiums are commonly paid per year up front, and the premium
is considered to be earned pro rata temporis, so that 1/12 of the premium
is earned after 1 month, etc. Therefore, the earned premium is the annual
premium times the duration.The loss ratio is the total claim costs divided
by the earned premium.

Adverse selection

The need for a good risk premium model stems from competition between
insurance companies. Imagine an insurance market with two companies, A
and B, and 100 000 drivers. Each year, the 100 000 drivers generate claims
costing a total of SEK 80 million. Of the drivers, 20 000 are poor drivers,
while 80 000 are good drivers. The poor drivers generate SEK 60 million in
claim costs, while the good drivers generate only SEK 20 million. A simple
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risk premium for the market would be to divide the total claim costs per year
with the number of drivers, giving a risk premium of SEK 800 per policy. If
both A and B charge this premium, they might each get half of the market,
and so have a portfolio of 10 000 poor drivers and 40 000 good drivers each.
A and B each charge SEK 40 million in risk premium from their respective
portfolios.

Now assume that company A changes their pricing, offering a premium
of SEK 3000 to the poor drivers, and SEK 600 to the good drivers. A good
driver will now get a lower premium at company A. Assuming that price
is the only factor in the choice of insurance company, the good drivers will
move to company A. Poor drivers get lower premiums at company B, so the
poor drivers will flock there. The situation now is that A has 80 000 good
drivers in their portfolio, generating a premium of SEK 48 million and claim
costs of SEK 20 million. B instead has a portfolio of 20 000 poor drivers,
generating a premium of SEK 16 million, but claim costs of SEK 60 million.
B will be forced to increase their premiums to SEK 3000 per policy simply
to break even, while A is generating a large profit.

Company B has suffered from adverse selection. This example shows the
importance of charging each customer a correct and fair premium, that is in
line with the risk the customer presents. In other words, a good risk premium
model is essential for a good insurance tariff.

Risk premium modelling

The aim of a risk premium model is to predict the cost of an insurance
policy. To create a good risk premium model for TPL insurance, companies
gather a lot of data about the cars and drivers they insure, and use this
together with the history of claims in their portfolio to divide policies into
groups based on their risk, and predict the cost of a single policy in such
a group. To further improve the price, it is possible to use each individual
policy’s claim history to give it an individual price. The question of how to
best balance the estimated cost of the collective and the estimated cost of
the individual is the domain of what actuaries call credibility theory. This
thesis will consider one type of credibility model, a Poisson GLMM with
per-policy random intercepts, and compare it to a GLM model that only
uses information on a collective level when setting a risk premium.

Claim costs arise in a portfolio of insurance policies when different events
take place: vehicles collide, burn, are stolen, suffer engine failure, etc. The
same total cost could arise from a large number of small claims, such as many
parking lot bumps and scratches, or through a small number of large claims,
such as high-speed collisions, resulting in written-off cars and personal injury
costs. Recall from Section 1.1 that

pure premium = claim frequency · claim severity. (1.1)
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Even though the pure premium is not technically a premium, the name is
motivated by the pure premium being the risk premium we would charge,
if we had knowledge of the future. Alas, we are instead forced to use a risk
premium which is merely a prediction of our pure premium, e.g. the expected
value of the pure premium.

When creating a tariff, there are two broad approaches to the structure
of the model. Either the pure premium, the claim costs per risk year, is
modelled directly, or the model is split into two parts: a model for the
claim frequency, and a separate model for claim severity. A discussion on the
reasons for splitting the premium when modelling can be found in Brockman
and Wright (1992) and Murphy, Brockman, and Lee (2000). A prominent
reason is that the distribution of claim frequency is more stable than that
of claim severity, and having separate models allows a better ability to see if
trends in claim costs are driven by changes in severity or in the underlying
rate of events.

In this thesis, we will concern ourselves only with models for claim fre-
quency. This choice is made in order to simplify the models, and keep focus
on the comparison between models, rather than the details of frequency and
severity modelling. We consider a portfolio of N insurance policies, indexed
i = 1, . . . , N . A given policy i may have been renewed multiple times, lead-
ing us to have Ji repeated observations of this policy, indexed j = 1, . . . , Ji.
The time period for each observation is measured in risk years, wij . For
each observation indexed by a pair (i, j), we have the number of claims in-
curred, Zij , and the claim frequency Yij = Zij/wij (measured in claims per
year). As previously discussed, we are interested in predicting the number
of claims that policy i will incur during the next year, i.e. Zi,Ji+1, given the
claims experience of the policies in our data set, i.e. given all Zij and wij
for i = 1, . . . , N and j = 1, . . . , Ji.

1.2 The data—TPL motor insurance

To compare the GLM and GLMM models for claim frequency, we will apply
them on a real data set from the Swedish insurance company Trygg Hansa.
The analysis data set consists of third party liability (TPL) insurance data
for personal cars. The data set contains information about 12 000 policies
with a total of 44 186 risk years of exposure and 2 683 claims. This is a subset
of Trygg Hansa’s portfolio, obtained by taking a simple random sample of
all policies that were in force at some point between 1 January 2010 and 31
May 2014. No weighting was performed by exposure, so some of the policies
have little exposure in the data set, while some have been in force for the
full 4.5 years under consideration. The data is censored on both edges, so
that some policies will have been in force before 1 January 2010 or after 31
May 2014, or both. Due to the confidentiality of the data, this thesis does

5



not contain a full descriptive analysis of the data, but we will describe as
much as is possible.

Due to the computationally heavy nature of the MCMC methods we
will use to estimate the formulated Bayesian models, the data was split by
random division of the policies into 6 subsets of 2 000 policies each. Each
subset was split into a training and an evaluation data set chronologically,
by taking the latest 1/3 of the observations for each policy aside for evalu-
ation, e.g. for a policy with 3 observations of a risk year each, the training
data set would contain the first two, while the evaluation data receives the
third. Claims are relatively scarce events, with a claim frequency in the anal-
ysis data set of 0.061 claims per risk year. The distribution of claims over
the policies and observations is shown in Table 1.1. We see that no single
observation has more than 3 claims, and no policy has more than 5.

Claims 0 1 2 3 4 5

Policies 9 813 1 792 314 65 12 4
Observations 47 366 1 585 73 3 0 0

Table 1.1: Distribution of claims over policies and observations in the Trygg
Hansa analysis data set.

The first seven rows of the data are shown in Table 1.2, and an expla-
nation of the five tariff rating factors included in the data set are shown
in Table 1.3. An observation in the data set has the identifying variables
of policy number and j, which indexes the repeated observations for a sin-
gle policy. Each period has an associated exposure, measured in risk years,
which is the period of time spanned by the observation. An insurance con-
tract normally covers a one-year period, but an observation in the data set
does not necessarily cover a full contract period. There are several events

obs.
no.

policy
no.

j expo-
sure

no.
claims

for-
dar

fve-
hic

kkarb ko-
rstr

ztrkof

1 526 0 1.000 1 24 25 61 10 83
2 526 1 1.000 1 26 26 61 10 83
3 526 2 0.419 0 27 27 61 10 83
4 1416 0 0.833 0 9 10 53 5 27
5 1416 1 1.000 0 10 11 54 5 27
6 1416 2 1.000 0 11 12 55 5 27
7 1416 3 0.167 0 12 13 56 5 27

Table 1.2: The first seven rows of the analysis training data set, showing
repeated observations of two policies.
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that causes an observation to be less than a full year long. The policy can end
earlier than contracted due to the vehicle being sold, scrapped or temporar-
ily de-registered. An event may also occur which causes the rating factors
to change and a new premium to be calculated, such as the policy holder
moving to an area with different geographical risk factors.

Factor Description Type

fordar Vehicle age in years, 0–90. The highest class
contains all vehicles 90 years and older.

Numerical,
0–90

fvehic A vehicle related parameter. 52 classes from
1–52, where class 52 contains all higher values.

Ordinal, 52
classes

kkarb Number of years the customer has possessed a
driving licence (class B). The highest class
contains those that have had their licence for 61
years or more.

Numerical,
0–61

korstr Distance travelled per year, in intervals of 5 000
km. E.g. class 1 represents a distance of 0–5 000
km, class 2 a distance of 5 001–10 000 km.
Truncated at class 6, representing 25 001 km
and upwards.

Ordinal,
intervals of
5 000 km
per year

ztrkof Geographical risk zone for collision events. The
classes go from 1, with the lowest risk, over 50
with average risk up to 100 with highest risk.

Ordinal, 100
classes

Table 1.3: Rating factors included in the analysis data.

The first policy in Table 1.2, policy number 526, is renewed twice. The
first two observations are full years, while the last is only 0.419 years long.
The first two years have one claim each, the last has none. The second policy,
number 1416, begins with an observation of duration 0.833 risk years, due to
left-censoring, and is then renewed twice. The last observation is also shorter
than a year. No claims are observed for this policy. Note that several of the
rating factors change at the time of renewal. This is due to a year having
passed by the time the policy is renewed, so that the vehicle is one year
older and the customer has had their driving licence for another year.

To get an idea of how the claim frequency depends on the rating factors,
we include Figures 1.1–1.5 on pages 8–10. Each figure consists of two panels.
The lower panel is a histogram which shows how the exposure in the data
set is distributed over the different values of the rating factors. The upper
panel shows how the claim frequency varies over the different values of the
rating factor, including a loess smoothing line. To make it easier to get a feel
for how much the claim frequency varies for a rating factor, and to facilitate
comparison between rating factors, the claim frequency line is normalised so
that the value of the rating factor with the most exposure is set to 1, and
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freq

exp

0.0

0.5

1.0

0

500

1000

1500

2000

0 10 20 30 40
fordar

Figure 1.1: Lower panel: histogram of the distribution of the rating factor
fordar in the data. Upper panel: relative claim frequency as a function of for-
dar, normalised against the value with the most exposure. A loess smoothing
line has also been added.

the other values are scaled accordingly. As an example, in Figure 1.2 (p. 9),
the value fvehic = 1 has the most exposure, so the relative claim frequency
there is set to 1. When fvehic = 5, the relative claim frequency is 0.8, i.e.
20 % lower than when fvehic = 1.

1.3 Notes on software used

The statistical analysis in this thesis was performed in the statistical software
R (R Core Team, 2014), using the RStudio integrated development environ-
ment (RStudio Team, 2012). The models were estimated using JAGS v. 3.4.0
(Plummer, 2003), and the rjags package (Plummer, 2014). The graphs were
created using the excellent ggplot2 package (Wickham, 2009), and much
of the data manipulation was performed with the plyr package (Wickham,
2011). I am deeply grateful for the enormous amount of work that has been
put into making these excellent software programs and packages available
to use for free.
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Figure 1.2: Exposure and relative claim frequency plot of the rating factor
fvehic.
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Figure 1.3: Exposure and relative claim frequency plot of the rating factor
kkarb.

9



freq

exp

0.50

0.75

1.00

1.25

1.50

0

2500

5000

7500

10000

12500

5 10 15 20 25 30
korstr

Figure 1.4: Exposure and relative claim frequency plot of the rating factor
korstr.
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Figure 1.5: Exposure and relative claim frequency plot of the rating factor
ztrkof.
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Chapter 2

Bayesian models

The GLM and GLMM models for claim frequency prediction that will be
implemented and compared in this thesis are considered within the Bayesian
statistical framework. This chapter begins with a cursory introduction to
Bayesian models and a short discussion of model fitting. This is followed by
an overview of metrics used to assess the goodness-of-fit of these models, and
metrics for comparing models. The chapter is intended mostly to provide a
reference for the notation and concepts that will be used in Chapter 6. A
more thorough treatment of Bayesian statistics is available in Carlin and
Louis (2009), or in any number of textbooks on the topic.

2.1 Bayesian statistical modelling

Assume that we have some observed vector of data y = (y1, . . . , yn)′ that
we wish to model. We begin with a sampling model depending on some
parameters θ, typically given in the form of a probability distribution f(y|θ).
The probability distribution function is perceived as a function of the data
y with a parameter vector θ. It can also be considered a function of the
parameters θ. Under this interpretation, it is often written L(θ; y) and called
the likelihood function.

In the frequentist framework, we consider θ to be a fixed but unknown
quantity, that we typically estimate by the value θ̂ which maximises L(θ; y).
This is known as the maximum likelihood estimator (MLE) for θ.

In the Bayesian framework, we instead consider θ to be a random variable
as well. To do so, we specify a prior distribution for θ which incorporates
any information about it that we have independently of the data y, e.g. prior
to conducting the experiment where y is gathered. This prior distribution
will itself depend on some vector of hyperparameters η, which we can either
assume to be known, or to in turn be random with its own prior distribution.
The latter case leads to the class of hierarchical models.

Assuming for now that η are known, we write for the prior distribu-
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tion π(θ) = π(θ|η). Inferences about θ can now be made by calculating
the posterior distribution, which is obtained by weighing together the prior
distribution and the information about θ that is carried in the data y via
the likelihood function f(y|θ) = L(θ; y).

This is performed using Bayes’ theorem, and the posterior distribution
p(θ|y) is given by

p(θ|y) =
p(y,θ)

p(y)
=

p(y,θ)∫
p(y,θ)dθ

=
f(y|θ)π(θ)∫
f(y|θ)π(θ)dθ

. (2.1)

The posterior distribution of θ is the product of the prior and the likelihood
of the data, renormalised to be a proper distribution function.

The prior distribution contains our prior information about the distribu-
tion of the parameters θ. This can be subjective information, such as expert
opinions or results from data assumed to be similar to that under study.
There is also the possibility of using so-called non-informative priors. These
are prior distributions that do not in themselves favour any specific value of
θ, which leads to the posterior distribution depending only on the data.

Non-informative priors are easy to find in some situations, such as for
discrete and finite probability spaces, where a uniform distribution on all
values of θ is considered to be non-informative. In continuous and unbounded
cases, however, a uniform distribution would be of the form p(θ) = c, c > 0
for all θ ∈ R, but such a function p is not a probability density function,
as it has an unbounded integral. Bayesian inference is however still possible
as long as the integral of the likelihood function f(y|θ) with respect to θ is
finite. This is not always the case, and so care must be taken when using
improper priors.

In this thesis we are concerned with the problem of predicting a claim
frequency based on historical data, so the question of how to make a predic-
tion based on a Bayesian model is of interest. Once a posterior distribution
p(θ|y) has been obtained, it is possible to predict a future observation yn+1

by the posterior predictive distribution:

p(yn+1|y) =

∫
p(yn+1,θ|y)dθ (2.2)

=

∫
p(yn+1|θ,y)p(θ|y)dθ (2.3)

=

∫
p(yn+1|θ)p(θ|y)dθ. (2.4)

The last equality holds because of the assumption that yn+1 and y are
independent conditional on the parameters θ.

A good feature of a Bayesian model is that we get not just point predic-
tions of yn+1, but a predictive distribution from which we can calculate any
quantity of interest regarding yn+1, e.g. the mean, median or quantiles.
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2.2 Estimating Bayesian models

The multiple integral in equation (2.1) above is simple enough in theory, but
depending on the dimensionality of the parameter vector θ and the form of
the likelihood function f(y|θ) and prior distribution π(θ), it is typically too
complicated to calculate without resorting to numerical methods. This is
the case for the GLM and GLMM models we use in this thesis.

There are several different numerical methods for calculating the poste-
rior distribution in complex Bayesian models. The most common approach
are Markov chain Monte Carlo methods (MCMC), provided for example
by the software package JAGS (Plummer, 2003). These work by sampling
from a Markov chain which has been designed to have a stationary distribu-
tion that is precisely the joint posterior distribution of the parameters θ. A
common implementation is the Gibbs sampler together with the Metropolis-
Hastings algorithm, see Carlin and Louis (2009).

MCMC methods have the advantage of being applicable for a very wide
variety of Bayesian models, but there are drawbacks. Most importantly,
they are computationally intensive, as there is a need to first simulate and
discard enough samples for the Markov chain to converge on its stationary
distribution (“burn in”), and then to draw a large number of samples in
order to well approximate the posterior distributions of the parameters.

Another approach to Bayesian model estimation is via integrated nested
Laplace approximation (INLA), introduced in Rue, Martino, and Chopin
(2009). The INLA method avoids simulation by instead using deterministic
numerical methods. The posterior marginal distributions of the parameters
θ are evaluated in a number of points by means of numerical integration
and Laplace approximations. We will not here delve into the rather ex-
tensive details, but instead refer the reader to Rue et al. (2009) for a full
treatment. Owing to the use of deterministic numerical integration instead
of simulation, the INLA method is less general than MCMC, but has major
computational advantages, being frequently orders of magnitude faster than
MCMC. INLA is applicable to a class of additive regression models called
latent Gaussian models (LGMs) by Rue et al. (2009). Both the GLM and the
GLMM are latent Gaussian models, and can therefore be estimated using
INLA.

Once the posterior distributions of a model have been obtained by some
method, it is important to verify that the model is a good fit of the data,
which is the topic of the next section.

2.3 Model assessment

A generally common approach to model validation is to split the data vector
y = (y1, . . . , yn)′ into a training data set z = (z1, . . . , zk)

′ and a validation
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data set u = (u1, . . . , um)′, y = (z,u), and then to compare the model’s
predictions of the validation data with the observed data.

Carlin and Louis (2009) describe in Chapter 2 a number of metrics for
assessment of model fit and comparison of models. We will here give a brief
overview of those that we will apply to our models in Chapter 6, in order to
introduce the concepts and notation. We begin with considering Bayesian
residuals, defined as

ri = ui − E [Ui|z] , i = 1, . . . ,m. (2.5)

These residuals may be plotted against the fitted values to identify if as-
sumptions such as normally distributed errors or homogeneous variance fail
to hold. We can remove the effect of the scale of the data on our residuals
by standardising them. The standardised residuals are given by

di =
ui − E [Ui|z]√

Var (Ui|z)
, i = 1, . . . ,m. (2.6)

By summing the absolute values and squares of the standardised residuals,
we get metrics that can be used to assess the goodness-of-fit of the model.
Carlin and Louis (2009) suggest that an observation can be considered an
outlier if its standardised residual has an absolute value greater than 1.5.

Another useful goodness-of-fit metric is the Bayesian p-value, which
hinges on the discrepancy measure

D(u,θ) =
m∑
i=1

[ui − E [Ui|θ]]2

Var (Ui|θ)
. (2.7)

To calculate the Bayesian p-value, pB, we compare the distribution ofD(u,θ)
for the observed validation data u, with the distribution of D(u?,θ) for a
future observation vector u?. Specifically, we consider the probability that
new data would have a higher discrepancy measure D than the observed:

pB = P [D(u?,θ) > D(u,θ)|z] =

∫
P [D(u?,θ) > D(u,θ)] p(θ|z)dθ. (2.8)

A small pB-value then indicates a lack of fit, since there is a low probability
that new data would be less well fit than the training data. In other words,
the model fits the training data poorly enough that new data is likely to be
better fit by the model.

2.4 Model comparison

Given two competing models, M1 and M2 for some data y, we would like a
way to determine which model better fits the data. A favoured tool for this
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is the Bayes factor and its more robust version, the partial Bayes factor.
Another popular metric is the deviance information criterion (DIC). As in
Section 2.3, we give here only a brief overview to introduce the metrics and
notation. For a fuller treatment, refer to Carlin and Louis (2009).

Consider the two competing models M1 and M2, and let πi(θi), i = 1, 2
be the prior distributions of their respective parameter vectors θ1,θ2. Inte-
grating out the parameters give the marginal distributions of y under the
two models:

p(y|Mi) =

∫
f(y|θi,Mi)πi(θi)dθi, i = 1, 2. (2.9)

We can now apply Bayes’ theorem to calculate the posterior probabilities of
the models, P (M1|y) and P (M2|y) = 1 − P (M1|y). The Bayes factor, BF,
is defined as the ratio of the posterior odds of M1 to the prior odds of M1’:

BF =
P (M1|y)/P (M2|y)

P (M1)/P (M2)
(2.10)

=

[
p(y|M1)P (M1)

p(y

]
/
[
p(y|M2)P (M2)

p(y

]
P (M1)/P (M2)

(2.11)

=
p(y|M1)

p(y|M2)
, (2.12)

which is the ratio of the observed marginal densities of the two models,
see (2.9) above. If the Bayes factor is greater than 1, then the evidence is
in favour of model M1, while if it less than 1, then it is in favour of M2.
Kass and Raftery (1995) give a table for the strength of the Bayes factor,
suggesting that BF > 3.2 is substantial evidence in favour of M1, BF > 10
is strong evidence in favour, and a BF > 100 is decisive.

The Bayes factor does have its drawbacks. It is sensitive to the prior
distributions πi(θi), and worse, if an improper prior is used, as is common
for non-informative priors, then the Bayes factor is not well-defined. For a
more in-depth treatment of Bayes factors, see Lavine and Schervish (1999).

One way to deal with the problem of improper priors in the Bayes factor
is by using the partial Bayes factor. This is done by splitting the data y
into two parts, y = (y1,y2) and using the first portion to obtain posterior
densities p(θi|y1), i = 1, 2 and then using these as priors in the equation for
the Bayes factor, while using y2 as the data there. This is the partial Bayes
factor

BF(y2|y1) =
p(y2|y1,M1)

p(y2|y1,M2)
. (2.13)

The partial Bayes factor is easily calculated in cases where the models have
been trained against part of the available data, while some data has been
held off for validation purposes, such as in in Chapter 6.
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The deviance information criterion (DIC), introduced in Spiegelhalter,
Best, Carlin, and van der Linde (2002) and treated in Carlin and Louis
(2009), is a generalisation of the familiar Akaike information criterion (AIC).
The DIC is based on the deviance statistic, defined as

D(θ) = −2 log f(y|θ) + 2 log h(y), (2.14)

where h(y) is some standardising function of the data alone. Since h(y)
does not depend on the model, it has no impact on model selection, where
we consider differences in DIC, and so can be assumed to be zero for our
purposes. The DIC has a part rewarding good fit of the model to the data,
and another part which penalises model complexity. The fit is measured by
the posterior expectation of the deviance,

D = Eθ|y [D] , (2.15)

and the complexity is measured by the effective number of parameters, pD.
This metric is typically less than the total number of parameters in the
model, and is defined as the expected deviance minus the deviance evaluated
at the posterior expectation of θ:

pD = Eθ|y [D]−D(Eθ|y [θ]) = D −D(θ). (2.16)

The deviance information criterion itself is then defined as

DIC = D + pD = 2D −D(θ). (2.17)

Smaller values of the DIC indicate a better fitting model, and to compare
two models M1 and M2, we consider the difference in DIC between them.
Carlin and Louis (2009) suggests that the difference should be at least 3
to 5 in order to be of interest. The DIC is easily obtained when a model is
estimated using MCMC simulation, by sampling the deviance D(θ) together
with θ itself.

This concludes our discussion of Bayesian models. We will now move on
to a brief overview of non-life insurance pricing and tariff models.
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Chapter 3

The basics of non-life
insurance pricing

3.1 Risk premiums and tariffs

In non-life insurance, the price of an insurance policy is dependent on a num-
ber of rating factors, which determine the risk level of the policy, and thus
the appropriate price to charge for it. The pricing begins with a statistical
model to calculate an expected cost of the policy in terms of the insurance
claims it is expected to bring. This is the risk premium, and is the premium
that we will be concerned with in this thesis.

Beyond the direct claim costs, the premiums for a portfolio of insur-
ance policies also need to cover the running costs of the insurance company
(claims handling costs, customer acquisition costs, salaries and office rents,
etc.) as well as a cost of capital or profit margin. On top of this, the in-
surance company may adjust the price for individual customers for various
reasons, such as rebates given to acquire new business, or extra high mar-
gins for price-insensitive customers. At the end of this process, the market
premium is what is eventually presented to a prospective customer.

However, as mentioned, we shall limit our discussion to the risk premium,
and will discuss the form of tariffs that are standard in most non-life insur-
ance companies. For a more thorough discussion of pricing, refer to Ohlsson
and Johansson (2010).

The model that determines which risk premium is assigned to an insur-
ance policy is called a tariff. The tariff classifies policies based on a number
of rating factors, which can be either numerical, such as the engine power
of a vehicle; ordinal, such as a geographic risk classification; or categorical,
such as the fuel type used in a vehicle.

For practical reasons, not infrequently related to the capabilities of the
software systems used, it is very common to divide numerical rating factors
into a number of classes. As an example, consider a simple tariff for motor
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hull insurance. As rating factors, we use the car’s fuel type (petrol or diesel),
the engine power (0–100, 101–200, 201–400, 400+ hp), the vehicle’s age (0–
5, 6–10, 11–20, 21–30, 30+ years) and the age of the driver (18–25, 26–35,
36–45, 46–55, 56–65, 65+ years).

The outcome of this classification is that the policy is placed in a tariff
cell, which is a unique combination of all the factors, e.g. a diesel car of
101–200 hp, 6–10 years old and with a driver aged 36–45 years. The tariff
cell k then has an expected claims cost, or risk premium, µk.

3.1.1 Multiplicative tariffs

A desirable feature of an insurance tariff is that it be multiplicative. That is
to say that if diesel cars have a higher expected claims cost than petrol cars,
then this should be a fixed percentage higher, rather than a fixed amount
higher.

As an example, if an additive model was used, it could be that a diesel
car premium is SEK 200 higher than that for a petrol car with all other
rating factors the same. But if one petrol car has a premium of SEK 400,
then the diesel version of this car is 50 % more expensive, while for a petrol
car with a premium of SEK 4000, the corresponding diesel is only 5 % more
expensive. In practice, it has been found that a multiplicative tariff better
fits the observations. Further discussion of the reasons for multiplicative
tariffs can be found in Brockman and Wright (1992).

Let us consider a multiplicative tariff with 4 rating factors. We can iden-
tify a tariff cell k by the quadruple (l,m, n, p), where l is the fuel type class
(numbered 1 for petrol, 2 for diesel), m the engine power class (numbered
1 for 0–100 hp, 2 for 101–200 hp, etc.), and so on. The risk premium µk of
tariff cell k = (l,m, n, p) under the multiplicative tariff is given by

µk = γ0γ1lγ2mγ3nγ4p, (3.1)

where γ0 is the base premium, the risk premium of a defined base cell, and
γqr is the relative risk of the q-th rating factor for class r, which is the class
of this factor in tariff cell k. The γ-s are called relativities, since they give
us the risk of a rating factor class relative to the risk of the base cell’s class.

For simplicity, assume that the base cell is k = 1 and has classes (1, 1, 1, 1).
We let γ11 = γ21 = γ31 = γ41 = 1, so that µ1 = γ0 in this cell.

An example will be helpful in making this all clearer. Table 3.1 shows
the relativities of our example tariff. If we also know the risk premium of
the base cell, say γ0 = SEK 500, then we can calculate the risk premium of
any policy. For instance, let the policy fall in tariff cell (1, 3, 3, 2). Then, the
premium is

µi = γ0γ11γ23γ33γ42 = 500 · 1.0 · 1.6 · 0.6 · 0.7 = SEK 336. (3.2)
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Rating factor Class Class number Relativity

Fuel type Petrol 1 1.0
Diesel 2 1.2

Engine power 0–100 hp 1 1.0
101–200 hp 2 1.2
201–400 hp 3 1.6
400+ hp 4 2.0

Vehicle age 0–5 years 1 1.0
5–10 years 2 0.8
11–20 years 3 0.6
21–30 years 4 0.5
30+ years 5 0.3

Driver age 18–25 years 1 1.0
26–35 years 2 0.7
36–45 years 3 0.5
46–55 years 4 0.4
56–65 years 5 0.4
65+ years 6 0.3

Table 3.1: Relativities of a simple motor hull insurance tariff.
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Tariff Fuel Engine Vehicle Driver Risk
cell type power age age Relativity premium

1 1 1 1 1 1.00 500
2 1 1 1 2 0.70 350
3 1 1 1 3 0.50 250
4 1 1 1 4 0.40 200
5 1 1 1 5 0.40 200
6 1 1 1 6 0.30 150
7 1 1 2 1 0.80 400
8 1 1 2 2 0.56 280
...

...
...

...
...

...
...

239 2 4 5 5 0.29 144
240 2 4 5 6 0.22 108

Table 3.2: Simple motor hull insurance tariff on list form.

A handy way to show a tariff in a table is what Ohlsson and Johansson
(2010) call list form, which is simply the way the data would be represented
in a database. We enumerate all the combinations (l,m, n, p) and assign
them tariff cell numbers k = 1, . . . ,K, and for each tariff cell calculate the
relativity from the base class, as well as the risk premium. An abridged list
form of the example tariff is shown in Table 3.2. In this format, it is easily
seen that there are a large number of tariff cells, in this case K = 240,
despite the tariff only including four different rating factors, and each with
only a few classes. A full tariff of the kind used in industry may include a
couple of dozen rating factors, some with dozens of levels.

3.2 Pricing with generalised linear models

We have seen a brief overview of the structure of a non-life insurance tariff.
We now turn our focus to the method by which such tariffs are created.
The industry standard way is to use generalised linear models (GLMs) to
accomplish this.

Generalised linear models (GLMs) are a class of regression models that
extend linear regression to situations where the response follows any distri-
bution from the exponential dispersion models family of probability distri-
butions, and where the mean does not need to be linear in the covariates,
but can instead be a function of a linear combination of the covariates.

We will provide here a brief overview of GLMs, specifically the cases of
interest in non-life insurance pricing, structured on the exposition in Ohlsson
and Johansson (2010).
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3.2.1 Exponential dispersion models (EDMs)

Exponential dispersion models (EDMs) are models where the distribution
of the random variables belong to the exponential family of probability dis-
tributions, and are the distributions used in generalised linear models.

Consider a vector of key ratios Yi, observations yi and corresponding
weights wi, where i = 1, . . . , N . The key ratio could be either the claim
frequency or claim severity. In the former case, the weights wi are exposure,
while in the latter, they are the number of claims.

The key ratios Yi belong to the exponential dispersion model if their
probability density functions can be written on the form

fYi(yi) = exp

{
yiθi − b(θi)

φ/wi
+ c(yi, φ, wi)

}
. (3.3)

In this formula, θi and φ are parameters, and b, c are known functions. θi
is a location parameter which can depend on i, while the scale parameter
φ > 0 is taken to be constant for all i. The cumulant function b is twice
continuously differentiable, with invertible first derivative. The function c is
a normalising function.

The mean and variance of an EDM are characterised by the parameters
θi, φ, weight wi and cumulant function b:

E [Yi] =µi = b′(θi), (3.4)

Var (Yi) =σ2i = b′′(θi)
φ

wi
. (3.5)

It is convenient to rewrite the variance as a function of the mean µi via the
variance function, v:

θi = b′−1(µi) (3.6)

⇒ Var (Yi) = b′′(b′−1(µi))
φ

wi
(3.7)

⇒ Var (Yi) = v(µi)
φ

wi
, (3.8)

where the variance function is defined as

v(µi) = b′′(b′−1(µi)). (3.9)

Thus, the variance of an EDM is a function of the mean multiplied by a
scaling and weighting factor φ/wi.

EDMs encompass many common probability distributions, but not all
are useful in insurance pricing. For a distribution to be suitable for insurance
pricing, it needs to be scale invariant, in other words it must hold that if Yi
has some distribution, then for any constant p, pYi has the same distribution,
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with different parameters. If this were not true, then the choice of measure-
ment unit would affect the distribution. Clearly this is unacceptable, as the
choice of currency unit should not affect the distribution of claim severity
in any other sense than scale, nor should the distribution of claim frequency
be affected if we measure it in percent or per mille.

The subclass of exponential dispersion models that is scale invariant is
called the class of Tweedie models. These are characterised by their variance
function being a power of the mean:

v(µi) = µpi , p ≤ 0 or p ≥ 1. (3.10)

Some well known examples of Tweedie distributions are the Normal dis-
tribution (p = 0, v(µi) = 1), Poisson distribution (p = 1, v(µi) = µi) and
Gamma distribution (p = 2, v(µi) = µ2i ).

Since this thesis will investigate the effect of using individual policy data
to improve the prediction of claim frequencies, we now go on to look at the
specific EDM which is commonly used to model claim frequency in non-
life insurance: the Poisson distribution. For a more thorough discussion of
EDMs, refer to Jørgensen (1997), and for a discussion of their application
in non-life insurance pricing, see Ohlsson and Johansson (2010).

3.2.2 Claim frequency modelling: Poisson distribution

Third party liability motor insurance claims are rare events that occur ran-
domly, and are therefore frequently modelled as Poisson processes, so that
the number of claims for a policy or portfolio of policies can be modelled
by a Poisson distributed random variable. Other distributions can also be
considered, notably the negative binomial distribution, but the Poisson dis-
tribution remains a popular choice for insurance tariff modelling, see Ohls-
son and Johansson (2010), Jørgensen and De Souza (1994) and Denuit,
Maréchal, Pitrebois, and Walhin (2007).

Consider a tariff cell i over a period of time in which the exposure was
wi risk years. Let the number of claims that occurred during this time be Zi,
and let µi be the expected number of claims when wi = 1. Then, Zi follows
a Poisson distribution:

fZi(zi;µi) = e−wiµi
(wiµi)

zi

zi!
, zi = 0, 1, 2, . . . (3.11)

We typically seek to study the claim frequency Yi = Zi/wi rather than
the number of claims Zi. This follows a distribution which Ohlsson and
Johansson (2010) call a relative Poisson distribution. This can be written

22



on exponential family form as

fYi(yi;µi) =P [Yi = yi] = P [Zi = wiyi] = e−wiµi
(wiµi)

wiyi

(wiyi)!

= exp {wi [yi logµi − µi] + c(yi, wi)}

= exp
{
wi

[
yiθi − eθi

]
+ c(yi, wi)

}
,

(3.12)

where we have introduced θi = logµi and φ = 1, b(θi) = eθi .

3.2.3 Generalised linear models (GLM)

We are now ready to characterise generalised linear models as used in non-
life insurance pricing.

Let Yi, i = 1, . . . , N be the dependent variables, with observations yi,
weights wi. Further, let xik, k = 0, . . . ,m be the value of independent vari-
able k for observation i.

In our case, Yi is the claim frequency for tariff cell i, and the independent
variables xik are either numerical variables or dummy variables coding for
the different rating factors and their classes. For the dummy variables, a
given xik is either 1 or 0, telling us if tariff cell i belongs to the rating factor
class coded for by k.

We assume that Yi ∼ EDM(θi, φ) for some EDM, and that the mean µi
depends on the covariates xik by the formula

g(µi) = ηi =
m∑
k=1

xikβk. (3.13)

The values ηi are called the linear predictors, and the monotonous, differen-
tiable function g is the link function.

In ordinary linear regression, the response distribution is the normal
distribution, and the link function is the identity function, so that µi =
ηi = x′iβ. In insurance pricing, we typically wish for a multiplicative model,
leading to the choice of g(µi) = log µi = ηi. This gives

µi = exp{ηi} = exp
{
x′i
}

=

m∏
k=1

exikβk , (3.14)

which is on the multiplicative form of Section 3.1.1. The relativities are
obtained as γk = eβk . The base class is coded for by letting xi0 = 1 for all
i, so that β0 is a model intercept which captures the base cell expectation
µ0 = eη0 = eβ0 . In our notation from earlier, we would say β0 = log γ0.

The regression coefficients, βk, are estimated using maximum likelihood
estimation. A description can again be found in Ohlsson and Johansson
(2010). In practice, these models are fitted to data using statistical software.
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In the industry, this is frequently SAS, or specialised pricing software, such
as Towers Watson’s Emblem. The use of R is increasing, and this thesis used
R and JAGS, see Section 1.3.
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Chapter 4

Credibility theory

Insurance tariffs of the kind described in Chapter 3 assume that all policies
in the same tariff cell have the same expected claim frequency. In practice,
this risk homogeneity assumption is not valid, and significant within-group
heterogeneity still remains due to the rating factors failing to capture some
relevant information. As an example, certain intersections are more danger-
ous than others, but it is infeasible to require the customer to supply the
insurer with information on which routes they drive on a daily basis.

Each policy belongs to a tariff cell, which holds a collective of policies
with similar risk characteristics, but each policy is also different from the
others. The history of claims for an individual policy is valuable in determin-
ing the risk, but there is likely too little information from a single policy to
rely entirely on it. The problem is especially clear when dealing with a new
policy, where there is no historical data available at all. On the other hand,
the data for all risks in the collective is statistically reliable to determine the
overall risk level of the collective, but is not specific enough to an individual
policy to correctly assess its risk.

This leads to actuaries needing to tackle the question of how to optimally
assess a policy’s risk using both the collective and individual data available.
This is the topic of the field of credibility theory. A good overview with a
focus on applications is available in Bühlmann and Gisler (2005).

Credibility theory has a rich history in the insurance industry, with roots
going back to the early 20th century, and active development of the ideas
from the 1940s on. The seminal Bühlmann-Straub method was published in
Bühlmann and Straub (1970), and its familiarity and ease of computation
has led to great popularity with actuarial practitioners. The method is still
in common use for pricing in the insurance industry today, see Bühlmann
and Gisler (2005) and Ohlsson and Johansson (2010).

We will not perform a thorough review of credibility theory, but rather
consider an illuminating example before we move on to look at the specific
credibility model that we are using in this thesis, namely the generalised
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linear mixed model, or GLMM.

4.1 An example—fleet TPL insurance

To illustrate the need for and use of credibility theory, we give a somewhat
contrived example inspired by Bühlmann and Gisler (2005).

We consider an artificial portfolio of nine insurance contracts, each one
covering third party liability insurance for a company’s fleet of vehicles.
We have data for the last 5 years, during which the premium for contracts
1, 4, and 7 was SEK 30 000, the premium for contracts 2, 5, and 8 was
SEK 300 000, and the premium for contracts 3, 6, and 9 was SEK 3 000 000.
Figure 4.1 shows the loss ratios for the nine contracts. The average loss ratio
over the 5 years is 60 % for contracts 1–3, 100 % for contracts 4–6 and
140 % for contracts 7–9. Note that each group of three contracts with the
same average loss ratio contains one contract with a low premium, one with
a medium premium, and one with a high premium.

We now wish to adjust the premiums for next year. A well adjusted
risk premium should lead to a loss ratio which averages 100 %. If we take
the entirely collective point of view, we could assume that all differences
between the contracts are due to random chance, and that since the entire
group averages to a loss ratio of 100 %, no adjustment is needed. If we
instead take the individual policy view, we find that policies 1–3 deserve
a premium decrease, while policies 7–9 should receive a premium increase.
Credibility theory studies how to balance between these two extremes.
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Figure 4.1: Loss ratios of nine fleet insurance contracts averaged over 5 years.
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Now let us consider the policies by grouping them by their premium.
The contracts with low premiums are likely fleets with fewer vehicles, while
the higher premiums cover more vehicles. Therefore, we may expect to see a
higher variance in observed yearly loss ratios in the group with a premium
of SEK 30 000 than in the group with a premium of SEK 3 000 000.

Figure 4.2 shows the loss ratios for each of the 5 years in our data set for
policies 1, 4 and 7, which all have a premium of SEK 30 000. The dark line
shows the 5-year average loss ratio. The variation in loss ratio from year to
year is very high, so that we may rightfully question whether the difference
in average loss ratios here is more than just random chance. Figure 4.3 shows
the loss ratios for the policies with a premium of SEK 300 000. Here the
variation is much lower, leading us to believe more in the average loss ratio,
but there is still significant variation between years. Finally, Figure 4.4 shows
the loss ratios for the policies with a premium of SEK 3 000 000. The yearly
variation here is small, so that we may put a lot of faith in these average
loss ratios.
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Figure 4.2: Loss ratios of policies with premium SEK 30 000: policies 1, 4
and 7.

If we again look at Figure 4.1 and consider policies 7–9, all three have
an average loss ratio of 140 %, but our analysis suggests that we don’t give
them all the same premium adjustment. For policy 7, we believe the data
tells us little about the risk, and we use the average over all nine contracts,
100 %, as our forecast for next year’s performance. For policy 9, we believe
strongly in our data, and so we forecast that next year’s loss ratio will also be
140 %, and increase the premium accordingly. For policy 8, we believe that
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Figure 4.3: Loss ratios of policies with premium SEK 300 000: policies 2, 5
and 8.

we are in an in-between situation. We make a forecast that lies somewhere
between 100 % and 140 %, and increase the premium, but by less than for
policy 9.

This example shows why, intuitively, we wish to combine both collective
and individual experience in insurance ratemaking. Credibility theory gives
a solid mathematical foundation for how to do this, and in the section that
follows, we shall look at a regression based way to handle it.

4.2 Generalised linear mixed models (GLMM)

Recall from Section 3.2.3 that in the GLM model, the predicted claim fre-
quency for a policy i is determined by its tariff cell, in other words by its
vector of rating factors. All policies that fall under the same tariff cell will
receive the same predicted claim frequency, regardless of their claim history.

From a credibility perspective, we would like to take into account the
specific experience we have of each policy in order to adjust this prediction.
Assume that we have 4 years of history on two policies in the same tariff
cell, where the predicted claim frequency is one claim per year. The first
policy has had 6 claims during these 4 years, while the other has had only
2 claims. We would like to give the first policy a higher predicted claim
frequency than the GLM model indicates, while the second policy should
receive a lower prediction. The generalised linear mixed model (GLMM)
allows us to do precisely this.
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Figure 4.4: Loss ratios of policies with premium SEK 3 000 000: policies 3,
6 and 9.

Generalised linear mixed models extend the GLM by allowing inclusion
of random effects in the linear predictor. This allows estimation of the het-
erogeneity between policies within the same tariff cell. The use of GLMMs
in actuarial pricing is discussed in Antonio and Beirlant (2007), and here we
follow their exposition. A more extensive overview of GLMMs can be found
in, for instance, McCulloch and Searle (2001).

In the GLM model, all observations that have the same rating factors are
part of the same tariff cell and are considered independent of each other. In
reality, we have repeated observations of the same policies, in other words:
we have so called longitudinal data. The GLMM model allows us to add a
policy-level random effect that helps model the association in the data that
occurs due to the same policy being observed multiple times.

Let i = 1, . . . , N index the individual policies, and j = 1, . . . , Ji index the
subsequent observations for the policy i. We introduce the vector ui of ran-
dom effects for policy i. Given ui, the repeated measurements Yi1, . . . , YiJi
are assumed independent, and distributed according to an exponential fam-
ily distribution with density function

f (yij |ui, β, wij , φ) = exp

{
yijθij − b(θij)

φ/wij
+ c(yij , wij , φ)

}
, j = 1, . . . , Ji.

(4.1)

29



Similar to the GLM case described in Section 3.2.3, it holds that

µij =E [Yij |ui] = b′(θij), (4.2)

Var (Yij |ui) = b′′(θij)
φ

wij
, (4.3)

g(µij) = ηij = x′ijβ + z′ijui. (4.4)

As in the GLM case, β is a vector of parameters for the so called fixed
effects, determining the effect of each tariff cell, and xij is the vector of
covariate information for subject i, observation j. New in the GLMM is
zij , a vector of random effects covariate information, as well as the random
effects vector ui itself.

We assume the random effects ui, i = 1, . . . , N to be mutually indepen-
dent and identically distributed with density f (ui|α), where α is a vector
of unknown parameters in this density. Typically, the random effects are
taken to be (multivariate) normally distributed with mean zero and covari-
ance matrix determined by α. The motivation for assuming a zero mean is
that the overall mean is included in the model as an intercept, so that the
random effects are policy-level deviations from the group means supplied by
the intercept and other fixed effects.

In the specific GLMM model that we will use, we have a single random
intercept ui for each policy, letting zij = 1, so that we have

g(µij) = ηij = x′ijβ + ui. (4.5)

Note that the fixed effects parameters β are the same for all policies,
while the random effects are specific to each policy i. However, the param-
eters β cannot generally, as in the GLM case, be seen as the effect of the
covariates on the population average. Instead, they represent the effect of
the covariates on the response, conditional on the random effects ui. In the
GLM,

E [Yij ] = g−1(x′ijβ), (4.6)

but in the GLMM, it generally instead holds that

E [Yij ] = E [E [Yij |ui]] = E
[
g−1(x′ijβ + z′ijui)

]
6= g−1(x′ijβ). (4.7)

However, there are special cases where the marginal interpretation is valid.
In the linear mixed model, where g is the identity link function g(x) = x, it
does hold

E
[
g−1(x′ijβ + z′ijui)

]
= E

[
x′ijβ + z′ijui

]
= x′ijβ, (4.8)

since E [ui] = 0.
Predicting the claim frequency Yi,Ji+1 of an insurance policy over the

next year of insurance is simple using this GLMM model, as the predictive
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distribution of Yi,Ji+1 can be obtained from the same MCMC sampler that is
used to estimate the model. The question arises of how to predict the claim
frequency of a new policy, for which there is no historical data to estimate
the random intercept ui. However, since E [ui] = 0, the fixed effects serve as
group-level means, and so a predictive distribution will still be possible to
obtain, effectively using ui = 0 for this future observation.

4.3 Ratemaking with the GLMM model

From the perspective of a pricing actuary, the GLMM model described in
Section 4.2 has both advantages and disadvantages compared to the GLM
model of Section 3.2.

The policy level random intercept ui in the GLMM model is a way to
capture those differences in risk profile between policies that are not captured
by the rating factors. There are many such factors, for different reasons.
Some are difficult to quantify, such as aggressive driving style; others are
difficult to measure with high data quality, such as abstinence from alcohol.
Yet others simply incur too high an administrative load to measure, such as
the myriad of different safety equipments a car may be fitted with (adaptive
cruise control, automatic lane keeping, sleep detectors, automatic braking
systems, etc.).

The GLMM model thus has the opportunity to improve prediction of
claim frequencies for individual policies by using the data available on each
policy. As more data becomes available over time, the predictions should
improve. On the other hand, to receive a prediction from the GLMM model
for a policy i, the random effect ui needs to be known. Insurance companies
have large portfolios of policies which may begin on any given day of the year.
When a policy nears the end of its term, the insurance company will calculate
a new premium and send the customer an offer to renew the policy for
another year. In order to correctly calculate this new premium, the GLMM
model needs to be re-estimated so that the ui’s are updated. This leads to
a situation where the tariff needs to be re-estimated on at least a monthly
basis, which incurs an administrative cost for the insurance company.

Another drawback for a practitioner is that while GLM tariffs are in-
dustry standard and supported by any statistical software that an insurance
company may use, GLMM models are less well supported by software, and
so may be more difficult to integrate into company processes.
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Chapter 5

Tariff comparison metrics

To determine which of two alternative insurance tariffs is the better, one
needs good comparison metrics that capture the desirable properties sought
in a tariff.

Determining the level, e.g. the total number of claims to expect during a
period for a portfolio of insurances, or the total costs of the claims, is not the
main goal of the insurance tariff itself. The level is estimated based on his-
torical data, and is adjusted by reserving and catastrophe models. Instead,
we seek metrics that allows us to quantify the tariff’s ability to differentiate
between the high and low risk policies. As mentioned in Section 2.3, it is
common to split the data into a training data set and a validation data set.
Given models that have been estimated using the training data set, they
are not necessarily well calibrated against the validation data set. Thus, the
first step when evaluating tariffs using an evaluation data set is to adjust
the predictions so that the total sum of predicted claims is equal to the
observed number of claims in the validation data set. This allows all tariffs
to compete on an even footing.

Note that we will discuss predicted number of claims and claim frequen-
cies, as this is what we are modelling, but that all these methods work
equally well when modelling pure premium.

We will consider three different metrics to compare our tariffs: Lorenz
curves and corresponding Gini scores, the quotient test, and proper scor-
ing rules. Both the Lorenz curves and the quotient test hinge on ordering
policies based on a ratio between the two competing models’ predictions.
To calculate this ratio, the predictive distribution needs to be reduced to a
point prediction of some sort, in our case the expected value. This reduc-
tion of the full predictive distribution to a point prediction means that a
wealth of information is discarded, and means that we are missing out on
one large advantage of using Bayesian models. The proper scoring rules have
the advantage of considering the full predictive distributions instead of point
predictions only.
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5.1 Lorenz curves and Gini scores

Lorenz curves are known from welfare economics as a way to illustrate in-
equality in distribution of income over a population. However, they can be
easily extended to other situations where comparisons of distributions are
useful. Frees, Meyers, and Cummings (2011) introduce “ordered” Lorenz
curves and apply them to the problem of comparing insurance tariffs. This
implies comparing premiums, but the methodology can just as easily be
applied to any predictive quantity, in our case the claim frequency.

Consider an evaluation data set of K policies for which we know the
observed claim frequencies Lk, k = 1, . . . ,K. Let Pk,ref be the reference
model’s point prediction of the claim frequency Lk, and Pk,alt the alternative
model’s point prediction. We define Rk as the ratio between these,

Rk =
Pk,alt
Pk,ref

. (5.1)

We now wish to order the policies by Rk, such that Rπ1 ≤ Rπ2 ≤ · · · ≤ Rπk
for some permutation of the indices k = 1, . . . ,K, i.e. π1 is the value in
{1, . . . ,K} such that Rπ1 = mink Rk; π2 is the index with the second small-
est Rk, and so forth. The Lorenz curve is defined by the pairs (xk, yk),
k = 0, . . . ,K, where (x0, y0) = (0, 0) and

xk =

∑k
l=1 Pπl,ref∑K
l=1 Pπl,ref

, (5.2)

yk =

∑k
l=1 Lπl∑K
l=1 Lπl

. (5.3)

The interpretation of this is that the policies are ordered from the one
where the alternative prediction is the smallest compared to the reference
prediction, to the one where the alternative prediction is the largest com-
pared to the reference prediction. On the x-axis of the Lorenz curve we show
the proportion of total predicted claims that has been summed up, with the
point prediction used being that of the reference model, i.e. Pk,ref . The y-
axis shows the cumulative proportion of total observed claims. Figure 5.1
illustrates this; the figure is based on the simulations described in Chap-
ter 6. The dashed 45◦ line indicates a break-even line, where equal amounts
of predicted and observed claims have been accumulated for each point.

At the beginning of the curve, we have the policies where the alternative
model believes that the reference model has overestimated the number of
claims. Therefore, if the alternative model is correct, the curve should fall
below the 45◦ line, as the reference predictions are higher than the observed
claims. Conversely, if the reference model is more accurate, then the curve
will go above the 45◦ line, as the alternative model mistakenly places higher-
risk policies to the left. In Figure 5.1, the alternative model is slightly worse
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Figure 5.1: Lorenz diagram of alternative vs reference model.

in detecting the lowest-risk policies, but is an improvement on the reference
model on the most part.

The Gini score is a summary statistic of the Lorenz curve, and is defined
as two times the area between the Lorenz curve and the 45◦ line, with a
Lorenz curve below the line giving a positive Gini score, and a Lorenz curve
above the line giving a negative score. The Gini score is thus calculated as

1−
K∑
l=1

(
Pπl,ref − Pπl−1,ref

) (
Lπl + Lπl−1

)
. (5.4)

As an example, the Gini score of the Lorenz curve in Figure 5.1 is 0.093,
indicating that the alternative model is an improvement on the reference
model.

5.2 Quotient test

The quotient test is based on the same ratio (5.1) between the alternative
and reference model predictions as is used in the Lorenz curves. Again, we
consider an evaluation data set of K policies for which we know the observed
claim frequencies Lk, k = 1, . . . ,K and can compare the ratios Rk.
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In the quotient test, the policies are divided into two groups: those for
which Rk > 1, i.e. those where the alternative model implies an increase
in predicted number of claims, and those for which Rk ≤ 1, i.e. where the
alternative model decreases the prediction compared to the reference model.
For each group, the quotient between observed claims and predicted number
of claims in the evaluation data is calculated for both models, and these are
then tabulated for comparison. The formulae are Lk/Pk,ref and Lk/Pk,alt.

The two groups can be seen as those for which the alternative model
prescribes an increased prediction relative to the reference model, and those
for which it prescribes a decreased prediction. If the alternative model is an
improvement on the reference model, it should then have predictions which
are closer to the observed outcomes for these groups than the reference
model does. In other words, the quotients should be closer to 1.

Table 5.1 shows an example taken from the simulations in Chapter 6.
For the policies where the alternative model has a lower prediction than
the reference, the reference model overestimates the number of claims, with
ratio of observed to predicted claims of 0.94. The alternative model has a
better prediction, with a ratio of observed to predicted claims of 1.04, which
is closer in magnitude to 1. Similarly, for the policies where the alternative
model has a higher prediction than the reference, the reference model under-
estimates the number of claims, having a ratio of observed to predicted of
1.16. The alternative tariff instead has a ratio of 0.93, which again is closer
to 1. Switching from the reference model to the alternative model here then
improves the predicted number of claims in both these groups. Note that
in both cases, the alternative model has “overshot the target” in the sense
that it has gone from a group where claims are underestimated to one where
they are overestimated, but by a smaller margin, and vice versa.

Change in prediction from Ratio observed/predicted
reference to alternative Alternative Reference Winner

alternative pred. lower 1.04 0.94 alt
alternative pred. higher 0.93 1.16 alt

Table 5.1: Quotient test example, with alternative model outperforming the
reference.

As an aside, the quotient test has another feature of interest to a prac-
titioner: it can give some insight into the effect on sales of changing tariffs.
The group which is given a lower premium by the alternative tariff are likely
to be more inclined to purchase policies after the tariff change, while the
group which receives increased premiums are less likely to. By comparing
the amount of exposure in the two groups, the effect on the portfolio can be
estimated.
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5.3 Proper scoring rules

The previous two methods for model comparison have been based on point
predictions. However, our Bayesian models yield full posterior predictive
distributions, and a good tool for comparing those are proper scoring rules.
Scoring rules allow comparison of predictive distributions by assigning a
score to a prediction based on the prediction itself and the observed out-
come. The scores are taken to be positive rewards in the sense that a higher
score indicates a better prediction. The calibration of a predictive distri-
bution is a measure of the statistical consistency between the predictive
distribution and the observed outcomes, which means that calibration is a
joint property of prediction and outcomes. The sharpness of a predictive
distribution is a measure of how concentrated the predictive distribution is
over the possible outcomes, and thus is a property of the prediction only.
Gneiting and Raftery (2007) suggest that the goal of probabilistic forecast-
ing is to maximise the sharpness subject to calibration. Proper scoring rules
assign scores that increase for a given outcome if the predicted probability
of the outcome increases. This rewards both sharpness and calibration in
the sense that a more concentrated probability mass will lead to a higher
score for observations, if the predictive distribution is well calibrated to the
outcomes.

Gneiting and Raftery (2007) give a thorough introduction to scoring rules
for continuous prediction, interval and quantile prediction and categorical
predictions, and we will follow their exposition here. Technically, we are
modelling claim count data, which means that the predictive distributions
are defined on N = {0, 1, 2, . . .}. Czado, Gneiting, and Held (2009) study
proper scoring rules for such count data. However, in practice the low inci-
dence of claims means that the observations, and thus (hopefully) also the
predictive distributions, are overwhelmingly skewed towards zero and the
low integer counts, such that they can be considered to have the support
{0, 1, 2, 3, 4, 5}. We will therefore use scoring rules for such finite discrete
distributions to evaluate our models. Note that our data is not categorical,
but ordinal, so that we may use scoring rules that depend in some way on
this, an example being the ranked probability score.

Let P be a predictive distribution that we wish to score, and let x denote
the event that materialises. The score of P when x materialises is denoted
by S(P, x), where the score function S takes values in R, or possibly the
extended real line R = [−∞,∞], e.g. the logarithmic score, which may
assume the value −∞. When predicting a categorical or ordinal variable
with m+ 1 possible outcomes, a predictive distribution can be represented
by a probability vector p = (p0, . . . , pm)′ where pi ≥ 0, i = 0, . . . ,m and
p0+· · ·+pm = 1. A scoring rule for such a predictive distribution can then be
represented by m+ 1 functions S(·, i), i = 0, . . . ,m. Thus, if the prediction
p is given, and outcome i occurs, the score is S(p, i).
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Let q = (q0, . . . , qm)′ be another probability distribution. We denote the
expected value of the score of p under this distribution by

S(p,q) = Eq [S(p, ·)] =
m∑
i=0

piS(p, i). (5.5)

Assuming that our best prediction is q, we wish for a scoring rule to incen-
tivise us to quote this best judgement, i.e. we want it to hold that

S(q,q) ≥ S(p,q), (5.6)

for any predictive distribution p. If S fulfils this criteria, then it is called a
proper scoring rule. If the equality in (5.6) holds only for p = q, then S is
strictly proper.

Czado et al. (2009) note that there is no simple or automatic way to
decide what scoring rule to use to evaluate predictive distributions, but
suggest to use multiple ones to take advantage of their respective emphases
and strengths. We will therefore consider four strictly proper scoring rules:
the ranked probability score from Czado et al. (2009), and the quadratic,
spherical and logarithmic scores from Gneiting and Raftery (2007). The
ranked probability score is used for ordinal data, and is defined as

S(p, i) = −
m∑
j=0

[(
j∑

k=0

pk

)
− 1{i≤j}

]2
, (5.7)

where 1 is the indicator function that is equal to 1 if the condition is ful-
filled, else 0. The ranked probability score thus is the negative of the sum of
the squared difference between the cumulative distribution function of the
prediction and the empirical cumulative distribution of the outcome, which
is simply the step function that goes from 0 to 1 at the observed value. The
quadratic score is given by

S(p, i) = −
m∑
j=0

(δij − pj)2 = 2pi −
m∑
j=0

p2j − 1, (5.8)

where the Kronecker delta, δij , is equal to 1 when i = j, else 0. The spherical
score is defined as

S(p, i) =
pi(∑m

j=0 p
2
j

)1/2 . (5.9)

Finally, the logarithmic score is given by

S(p, i) = log pi. (5.10)

The logarithmic score is the only proper scoring rule that only depends
on the predictive distribution through the probability pi at the observed
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outcome (Czado et al., 2009). A drawback of the logarithmic score is that
it becomes −∞ if pi = 0 and i is the observed outcome. In the case of
prediction of rare events, such as the claim events modelled in this thesis, it
is possible that a sample from an MCMC algorithm will lead to an empirical
distribution where some pi = 0, and for this event to occur. In such cases,
the logarithmic score becomes difficult to interpret.

As a simple illustration of the scores we will use, we consider two pre-
dictive distributions resulting from the estimation of the GLMM model in
Chapter 6. The observed value of the first example was 2 claims, while the
observed value of the second example was 0 claims. Figure 5.2 shows the
two predictive distributions, while Figure 5.3 show the scores as function of
the observed value, with one panel for each scoring rule, and one line per
example predictive distribution. We note that the first example predictive
distribution has a higher predicted number of claims than the second. In
Figure 5.3 we see the results of this. If the observed value is 0, the second
prediction receives a higher score, but it quickly drops off for higher observed
claim counts, as it has zero probability assigned to claim counts higher than
1. We observe here also that the log score becomes −∞ where the predicted
probability of the outcome is zero.
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Figure 5.2: Example predictive distributions for two observations from the
evaluation data, generated by the GLMM model from Chapter 6.
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Chapter 6

Data analysis

To determine the effectiveness of using individual policy level data for pre-
dicting claim frequencies, we consider two models: a GLM model with fixed
effects only, as a reference model, and a GLMM model with a random inter-
cept for each policy. Both models will be estimated using the Trygg Hansa
TPL insurance data set described in Section 1.2, and then evaluated against
each other using the metrics described in Section 2.4 and Chapter 5.

6.1 Model specification

Let the individual policies be indexed by i = 1, . . . , 12000, and the repeated
observations for each policy be indexed by j = 1, . . . , Ji. We denote by Zij
the number of claims for the j-th observation of policy i, and by wij the
exposure for the period. We will model the claim counts Zij , from which the
claim frequency is calculated as Yij = Zij/wij .

Both models will use as fixed effects the five rating factors mentioned
in Table 1.3 in Section 1.2, namely fordar, fvehic, kkarb, korstr, and ztrkof.
All five rating factors are ordinal, and can be seen as discretised and right-
truncated continuous variables, e.g. fordar is the age of the vehicle measured
in whole years, and truncated at 90. As can be seen in Figures 1.1–1.5
on pages 8–10, the claim frequency’s dependence on these rating factors is
well approximated by a linear function, at least over the classes with high
exposure. We therefore include these rating factors linearly in the models.
More advanced treatments, such as generalised additive models (GAMs)
(Ohlsson and Johansson, 2010) are also possible, but are outside the scope
of this thesis.

The reference claim frequency model we will use is a standard Poisson
GLM with exposure, cf. Section 3.2.3:

Zij ∼Po(µij),

log(µij) = logwij + x′ijβ.
(6.1)
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Here µij = E [Zij |wij ,xij ] is the expected number of claims of observation j
for policy i, xij is the vector of covariates, and β is the vector of fixed effect
coefficients to be estimated, and is constant for all i, j. The parameter β0
is the intercept, while βfordar, . . . , βztrkof correspond to the 5 rating factors.
Writing the linear predictor out explicitly, we have

log(µij) = logwij + β0

+ xfordarβfordar

+ xfvehicβfvehic

+ xkkarbβkkarb

+ xkorstrβkorstr

+ xztrkofβztrkof .

(6.2)

Note that since the GLM model does not include any policy-level effects, it
would have been possible to use a single index k to enumerate all observa-
tions, instead of the dual indices i, j. However, the present form is easier to
compare to the GLMM model, which does require the dual indices.

To incorporate the individual policy claims history in the tariff, we use
a GLMM model of the kind described in Section 4.2, which extends the
reference GLM model by adding a random intercept ui for each policy i, in
addition to the fixed effects β. The model is specified as

ui ∼N(0, σ2u),

Zij |ui ∼Po(µij),

log(µij) = logwij + ui + x′ijβ,

(6.3)

where µij = E [Zij |ui, wij ,xij ] is now the expected claim frequency of the
j-th observation of policy i, conditional on the random intercept ui. Written
explicitly, the model for the linear predictor is

log(µij) = logwij + ui + β0

+ xfordarβfordar

+ xfvehicβfvehic

+ xkkarbβkkarb

+ xkorstrβkorstr

+ xztrkofβztrkof .

(6.4)

With the models specified, we will now discuss the estimation of the param-
eters β and ui, i = 1, . . . , 12000.

6.2 Model inference

Both the GLM reference model and the GLMM alternative model were esti-
mated as Bayesian models using the software JAGS (Plummer, 2003), which
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implements MCMC methods using Gibbs sampling. Due to the computa-
tionally heavy and memory-intensive nature of MCMC methods, it was not
possible to estimate the models on the entire data set consisting of 12 000
policies using JAGS. Therefore, as described in Section 1.2, the policies were
divided by simple random sampling into six subsets of 2 000 policies each.
For each such subset, the observations were divided into a training data set
consisting of 2/3 of the observations, and an evaluation data set consisting
of 1/3 of the observations, refer to Section 1.2 for the details. The models
were then estimated separately for all six subsets of the data, and our model
comparisons are performed per subset, as well as over the merged result sets.

As prior distributions for the fixed effects vector β, the GLM model
was estimated using standard maximum-likelihood methods on the entire
training data set. The resulting parameter estimates and variances were used
as the mean and variance in normal distribution priors for the parameters,
see Table 6.1 for these values. Thus, each of the six subsets of the data were
estimated using the same prior distributions for all parameters. Since we are
using the data to obtain MLE estimates of the parameters, and then using
these estimates in our prior distributions, we are using a form of empirical
Bayes method, in a sense using the data twice, both in the prior and in
the MCMC estimations. This means that care needs to be taken with the
inference, e.g. a naive credible interval for a parameter will be narrower than
is warranted due to this double use of the data. As we are concerned only
with the predictive performance of our models, this does not lead to issues
for us, and the increased speed of convergence of our MCMC simulations
is welcome. Carlin and Louis (2009) contains a chapter on empirical Bayes
methods, which discusses the adjustments necessary to Bayesian inference
in this setting.

The random effects ui are distributed as N(0, σ2u), where 1/σ2u was as-
signed the frequently used vague prior of Ga(0.01, 0.01). Gelman (2006) ar-
gues that such a prior distribution is not uninformative, especially if the
number of random intercepts N is small, or when σu is close to zero, and
recommends instead a uniform prior σu ∼ U(0, A) where A is some large
number. In our case, the number of random intercepts is large, and the
standard deviation σu is not expected to be very close to zero. Furthermore,
computational efficiency is an important concern for us, and Ga(0.01, 0.01)
is a conjugate prior, leading to faster sampling. Therefore, we choose to
proceed with the Ga(0.01, 0.01) prior.

The GLM and GLMM models were both estimated using each of the six
training data subsets. For each combination of model and data subset, two
MCMC chains were used, with the first 500 iterations per chain discarded
as a burn-in period, and subsequently 37 500 iterations per chain were used
for estimation. The parameter estimates are thus based on 75 000 samples
each. To obtain samples from the predictive distributions for the evaluation
data, each observation in the evaluation data subset was included in the
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β Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.2521 0.1362 -23.87 0.0000

fordar -0.0229 0.0042 -5.45 0.0000
fvehic -0.0168 0.0075 -2.24 0.0253
kkarb -0.0079 0.0019 -4.16 0.0000
korstr 0.0225 0.0045 4.98 0.0000
ztrkof 0.0115 0.0013 8.86 0.0000

Table 6.1: The parameter estimates, standard errors and z-test from a maxi-
mum likelihood estimation of the Poisson GLM model using the entire train-
ing dataset. These values are used as the mean and standard deviations of
normal priors in the Poisson GLM and GLMM models for each of the six
data subsets.

JAGS model, but with the outcome deleted, thus generating 75 000 samples
from the posterior predictive distributions of each of the evaluation data
observations. Generating the samples for both the GLM and GLMM models
over all six data subsets took approximately 70 hours.

The outputs from each run of the estimation procedure are samples
drawn from the posterior distributions of each of the fixed effect param-
eters β0, βfordar, . . . , βztrkof and the random intercept variance σ2u, samples
drawn from the posterior distribution of each of the 2 000 random intercepts
included in the data subset, and samples drawn from the posterior predic-
tive distribution for each observation in the evaluation data subset. Since
there are six different data subsets, the GLM and GLMM models each gen-
erate samples from six different posterior distributions for β, one per subset,
while each random intercept ui, i = 1, . . . , 12000 is only included in a single
data subset, and therefore all samples for a given ui are drawn from a single
posterior distribution.

To assess the convergence, we will now study some plots over the out-
comes of the MCMC simulations. Figure 6.1 shows plots of the samples
drawn from the two chains in the GLM model for data subset 1, with one
panel per element in β. The figure indicates that the convergence and mix-
ing are good. The corresponding plots for data subsets 2–6 look essentially
the same, and are not shown here. Figure 6.2 shows the corresponding plot
for the GLMM model, where again the convergence and mixing is good.
Figure 6.3 shows plots of the samples of σu drawn from the two chains over
each of the six data subsets. Here we see that σu does not appear to converge
as well as the other parameters do, and there is some variation between the
data subsets in how good the mixing is. It can be noted that while the values
of the parameters β are estimated on the “first level”, σu is the standard
deviation of the parameters ui, and thus is a second-level estimate. This
means that the convergence of σu is not very important to the validity of
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the posterior predictive distributions that are our main interest.
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Figure 6.1: Chain sample plots for the GLM model on data subset 1.

Next, we consider the estimated posterior distributions of the parameters
β0, βfordar, . . . , βztrkof . We estimate these posterior distributions by a Gaus-
sian kernel density estimate calculated from the posterior samples obtained
from the MCMC simulations. Figure 6.4 shows the distributions of the ele-
ments of β for the GLM model, with one panel for each combination of β and
data subset. We find that the distributions of a parameter, e.g. β0 are quite
similar for each of the six data subsets, especially in terms of variance, but
that there is some difference in the subset means. The same thing is seen in
the corresponding plot for the GLMM model, Figure 6.5. The estimated pos-
terior distributions of σu from the GLMM model are shown in Figure 6.6. It
can be seen that these differ substantially between the data subsets. Study-
ing the chain trajectories in Figure 6.3 indicates that convergence has not
been fully reached for data subsets 4 and 5, and that mixing is slow overall.
However, as mentioned previously, this is not a primary concern, as it does
not affect β much, and our aim is to predict claim frequencies rather than
understand the distribution of the ui’s. As previously mentioned, sampling
took approximately 70 hours to complete, making it infeasible to run the
models longer to improve convergence.

The fact that the distributions of β differ somewhat between the different
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Figure 6.2: Chain sample plots for the GLMM model on data subset 1.

data subsets raises the question of how to obtain a single estimate of β from
the six that we receive as output from the MCMC simulations. One ad-
hoc possibility is to simply pool the samples from all six simulations. The
pooled posterior distributions for β under the GLM and GLMM models can
be seen in Figure 6.7. We note that the resulting posterior distributions are
satisfactory in that they are smooth and unimodal, with little skewness. It
can also be seen that the posterior distributions for βfordar, . . . , βztrkof under
the GLM and GLMM models are remarkably similar to each other. For
β0, there is some difference, with the GLMM model’s posterior distribution
being shifted towards lower values. This can be understood by looking at
Figure 6.8, which shows the distribution of the sample means of the random
intercepts ui, i = 1, . . . , 12000 . We see that the distribution is very skewed,
with a strong peak around zero and slightly below, but with a number of ui’s
that are significantly higher than zero. The mean of the means is just below
zero, at −4.5 ·10−4, while the median is lower, at −2.8 ·10−3. Recalling from
Table 1.1 that most policies in the data have zero claims while the rest have
1–5 claims during the entire duration of the data, the distribution of means
of ui is not too surprising. The policies with no claims have ui’s close to zero,
while those with some claims create the smaller peaks visible in Figure 6.8.
Since the most common scenario is for a policy to have zero claims, the β0
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Figure 6.3: Chain sample plots for σu in the GLMM model, one panel per
data subset.

is weighted toward this case, and so the ui’s have a skew distribution with a
heavy right tail. This indicates that the model assumption that ui ∼ N(0, σ2u)
could be improved upon by letting ui follow some distribution that more
closely resembles Figure 6.8.

6.3 Comparison metrics

After fitting the models and generating the estimated posterior predictive
distributions as well as point predictions for all observations in the eval-
uation data sets, the model comparison methods discussed in Section 2.4,
and the tariff comparison methods described in Chapter 5, were applied to
the results, in order to determine if the GLMM model is an improvement
over the reference GLM model. The Lorenz curves, Gini scores, and quotient
test rely on point predictions of the claim frequencies for the observations
in the evaluation data. As point prediction for an observation, we used the
mean of the samples drawn from the posterior predictive distribution for
this observation.

As mentioned in the end of Section 6.2, we do not have a single posterior
distribution for the parameters β, but actually one per data subset, six in
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Figure 6.4: Plots of the estimated posterior distribution of β for the GLM
model, one row per data subset. The plots show histograms with an overlaid
Gaussian kernel density estimate.

total. For the purposes of comparing the GLM and GLMM models, however,
we are interested mainly in the predictive distributions of future claims for
the policies. For this, we do not need to combine the different β vectors, as
the GLM and GLMM model for each data subset delivers predictions for the
policies included in that subset. In particular, we obtain estimates for the
posterior predictive distributions of the evaluation data subset directly from
the MCMC simulations of the models for that subset. Since the posterior
predictive samples of each observation in the evaluation data is generated by
the models for that specific data subset only, we can compare the GLM and
GLMM models over the entire dataset by simply pooling the predictions for
each subset into a total evaluation dataset.

6.3.1 Prediction

Our model comparison metrics are based on predictions of the claim counts
for the observations in the evaluation data subsets. Some of the metrics
need point predictions, while other use full posterior predictive distributions.
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Figure 6.5: Plots of the estimated posterior distribution of β for the GLMM
model, one row per data subset. The plots show histograms with an overlaid
Gaussian kernel density estimate.

The output from the MCMC simulations, however, are not the posterior
predictive distributions themselves, but rather samples drawn from them.
We will now briefly describe how to go from this output to the point and
distribution predictions we need for our model comparisons.

Let l = 1, . . . , L index the observations in one of the evaluation data
subsets, and let q = 1, . . . , Q index the iterations of the simulation. We
denote by z?l,q the sampled claim count of observation l for iteration q, i.e.
the sample realisation of Zl. Note that since the evaluation data subsets are
out-of-sample data, the actual observed value zl has not been used in the
estimation of the model. Our point prediction for the value of Zl is then
given by the mean of z?l,q:

Ẑl =
1

Q

Q∑
q=1

z?l,q =
1

75000

75000∑
q=1

z?l,q. (6.5)

An estimate of the full posterior predictive distribution of Zl is given by
the probability mass function of the samples, i.e. an estimator p̂l,m of the
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Figure 6.6: Plots of the estimated posterior distribution of σu for the GLMM
model, one panel per data subset. The plots show histograms with an over-
laid Gaussian kernel density estimate.

probability P [Zl = m] for some m = 0, 1, 2, . . . is given by the proportion of
the samples z?l,q that are equal to m:

p̂l,m =
1

Q

Q∑
q=1

1{z?l,q=m}, m = 0, 1, 2, . . . (6.6)

It can be noted that the claim counts are technically defined on the support
N = 0, 1, 2, . . ., but the reality in our case is that the sampled z?l,q are always
in {0, 1, 2, 3, 4, 5}. This is due to an observation period being a maximum
of one risk year long, and the claims being rare events, cf. Section 1.2.
Therefore, the estimated posterior predictive distribution of observation Zl
can be represented by a vector of probabilities (p̂l,0, p̂l,1, . . . , p̂l,5). As an
example, consider the GLMM estimated posterior predictive distribution of
the first observation in evaluation data subset 1, seen in Table 6.2. The point
prediction for this observation is 0.0396, while the observed value was 0.

Due to low numbers of claims in our data set, and thus also in the
samples, we may encounter a situation where for some observation l with
the outcome zl = m, there were no samples with z?l = m, which leads to the
estimator p̂l,m = 0. In other words, the probability distribution estimated
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Figure 6.7: Plots of Gaussian kernel density estimates of the posterior dis-
tribution of β for the GLM and GLMM models, with samples from all six
data subsets merged.

Claims 0 1 2 3 4 5

Samples 72 105 2 823 66 6 0 0
Probability 0.96140 0.03764 0.00088 0.00008 0.00000 0.00000

Table 6.2: Estimated posterior predictive distribution from GLMM model
for observation 1 in evaluation data subset 1, shown for illustrative purposes.

claims that the outcome observed is impossible. In such a case, the likelihood
of the data becomes 0 in the calculations of our partial Bayes factor, leading
to likelihood ratios that are either zero or undefined. To avoid this situation,
we will in such cases replace p̂l,m = 0 with p̂l,m = 1/Q, i.e. we will act as if
there was a single sample where z?l = m.

6.3.2 Partial Bayes factor and deviance information criterion

Section 2.4 describes some metrics by which Bayesian models may be com-
pared. Calculation of the Bayes factor itself is difficult based on the MCMC
simulations we use to estimate our models, but the partial Bayes factor,
defined in (2.13), is easy to calculate. Letting z1 denote the training data
set, and z2 the evaluation data set for a data group, the partial Bayes factor
of the GLMM model as alternative to the GLM model is given by

BF(z2|z1) =
p(z2|z1,MGLMM)

p(z2|z1,MGLM)
. (6.7)
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Figure 6.9: Histogram of the posterior distribution of σu, with samples from
all six data subsets merged. A Gaussian kernel density estimate is overlaid.

This is simple to calculate, as the posterior likelihood p(z2|z1,Mmodel) is
obtained from the posterior predictive distributions of the evaluation data,
and the observed values of z2. Using the notation of Section 6.3.1, we can
index the observations of our evaluation data zl, l = 1, 2, . . . , L. For each ob-
servation, we have an estimated posterior predictive distribution in the form
of a vector of probabilities (p̂l,0, p̂l,1, . . . , p̂l,5), as described in Section 6.3.1.
Given that the observed value of Zl is zl, the likelihood of this is then p̂l,zl .
Since the observations zl, l = 1, . . . , L are independent given the model, the
estimated posterior likelihood of the evaluation data z2 conditional on the
training data z1 is

p̂(z2|z1) =

L∏
l=1

p̂l,zl . (6.8)
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Calculating this for both the GLMM and GLM models for each data subset,
the ratios of the results are then the partial Bayes factors of (6.7). Table 6.3
shows the partial Bayes factors for the six subsets of data. Recalling from
Section 2.4 that a BF > 3.2 is considered substantial evidence in favour of
an alternative model, we find here that subsets 2–5 display such evidence,
while subset 6 falls slightly short of this. Subset 1 has a partial Bayes factor
less than 1, indicating that the GLM model is better than the GLMM model
there, although not by enough to meet the substantial evidence criterion.
Subset 3 has a very high partial Bayes factor. There is no obvious reason
for this, although it may be noted that group 3 will stand out in the other
metrics as well as one where the GLMM model is particularly good compared
to the GLM model.

Data subset 1 2 3 4 5 6

Partial BF 0.61 6.35 6 666.25 4.41 12.34 2.22

Table 6.3: Partial Bayes factors of GLMM model over GLM for each of the
six evaluation data subsets.

The deviance information criterion, DIC, is also easily obtained as an
output of a MCMC simulation by the method described in Section 2.4.
Table 6.4 shows the value of DICGLMM − DICGLM for each of the six data
subsets, as well as a total value obtained by the sum of the individual subset
differences. Unlike our other comparison metrics, which are all based on out-
of-sample predictive performance on the evaluation data subsets, the DIC
is a goodness-of-fit measure based on the in-sample training data. The DIC
is lower for a better fitting model, so negative differences indicates that the
GLMM model has a better fit to the data than the GLM model. Carlin and
Louis (2009) suggest that the DIC difference between two models should
be at least 3 to 5 to be of interest. Looking at Table 6.4, we find that the
GLMM model has a lower DIC for all data subsets, but that subsets 4 and 5
have small enough DIC differences that it is not significant. All other subsets
point to the GLMM model outperforming the GLM model, as does the total
DIC difference over the entire training data.

Group Overall 1 2 3 4 5 6

∆DIC -62.22 -18.46 -12.56 -15.91 -1.07 -2.44 -11.78

Table 6.4: Deviance information criterion differences between GLMM and
GLM models, for the overall training data and each of the six subsets.

We find that both the partial Bayes factors and the deviance information
criterion indicate that the GLMM model with random intercepts per policy
is an improvement over the GLM model. We will now move on to com-
pare the models using the insurance tariff comparison methods described in
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Chapter 5.

6.3.3 Lorenz curves and Gini scores

As described in Section 5.1, we can use a form of Lorenz curves to esti-
mate to what extent the GLMM model is capturing risk differentiation that
the GLM model is missing. Recall that the Lorenz curve is based on order-
ing all policies by the ratio Palt/Pref , where Palt is the alternative model’s
predicted claim frequency, i.e. the GLMM model prediction, and Pref the
reference model’s predicted claim frequency, i.e. the GLM prediction. The
Lorenz curve shows the accumulated fraction of claims as a function of the
accumulated fraction of reference predicted claims, when the policies are
ordered by the ratio. The interpretation of the plot is that the policies are
ordered from those the alternative model would lower the prediction of the
most, to those that would receive the highest increase. If the alternative
model is an improvement on the reference model, then the Lorenz curve
should fall below the dashed equality line, as more reference claim predic-
tions than actual claims is accumulated in the beginning of the curve.

Data subset Overall 1 2 3 4 5 6

Gini score 0.051 0.015 0.006 0.113 0.060 0.082 0.064

Table 6.5: Gini scores for the overall evaluation data, and each of the six
subsets.

The Gini score summarises the information in the Lorenz curve by tak-
ing two times the area between the equality line and the Lorenz curve, as
described in Section 5.1. If the curve is mostly below the line, then the al-
ternative model is an improvement on the reference, and the Gini score will
be positive. If instead the curve is mostly above the line, then the reference
model is better, and the Gini score will be negative. Figure 6.10 shows the
Lorenz diagrams for the six data subsets. For subsets 1 and 2, the curve
indicates only a slight improvement compared to the reference model, while
subsets 3–6 exhibit more clear evidence of the alternative model being an
improvement. The corresponding Gini scores are shown in Table 6.5. They
also indicate that there is overall an improvement in the risk identification
of the GLMM model over the GLM model in all six subsets of the data, but
that it is not large in subsets 1 and 2. A Gini score for the entire evaluation
data has also been calculated by simply merging all the predictions, and it
too shows an improvement. We may also note that subset 3 again stands
out, with a particularly high Gini score.
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Figure 6.10: Lorenz diagrams of GLMM model vs GLM model, one panel
per evaluation data subset.

6.3.4 Quotient test

The quotient test, described in Section 5.2, divides the policies into two
groups: those that receive a lower claim frequency prediction under the alter-
native model, and those that receive a higher prediction. The former group
is thus those that the alternative model has identified as being “overpriced”
by the reference model, while the latter group is “underpriced”. For each
group, the ratio of observed claim counts divided by predicted claim counts
is calculated for both alternative and reference models. If the alternative
model is an improvement over the reference model, then its predictions for
each group should be closer to the observed outcome, and the ratios should
be closer to 1.

Table 6.6 shows the quotient test performed on each data subset sepa-
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rately, as well as on the entire evaluation data together. For each subset,
a winning model is designated, being the one with predictions closer to
observed outcome. We see that subsets 2–6, the alternative GLMM model
has predictions closer to observed outcome than the reference GLM model.
In subset 1, it is instead the GLM model that performs better. It can be
noted that the alternative model correctly identifies the groups as over- and
underpriced, but then sometimes overcompensates in the other direction,
underpricing those that were formerly overpriced, and vice versa. We may
also note that subset 3 again stands out with the GLMM model being par-
ticularly good compared to the GLM.

Data Change in prediction from Ratio observed/predicted
subset reference to alternative Alternative Reference Winner

Overall decrease 1.01 0.94 alt
increase 0.97 1.17 alt

1 decrease 1.16 1.04 ref
increase 0.61 0.84 ref

2 decrease 1.03 0.96 alt
increase 0.94 1.13 alt

3 decrease 0.95 0.86 alt
increase 1.12 1.53 alt

4 decrease 1.01 0.97 alt
increase 0.98 1.06 alt

5 decrease 0.93 0.89 alt
increase 1.14 1.23 alt

6 decrease 1.02 0.93 alt
increase 0.96 1.24 alt

Table 6.6: Quotient test values for overall evaluation data and each subset.

6.3.5 Proper scoring rules

The quadratic, logarithmic, ranked probability, and spherical scoring rules,
described in Section 5.3, were applied to the data by calculating the score
for the GLM and GLMM models’ posterior predictive distributions of each
observation in an evaluation data subset, and then summing these scores
per model. A total score for the entire evaluation data set is obtained by
simply summing the scores for the six evaluation data subsets.

Using the notation of Section 6.3.1, we let l = 1, . . . , L index the ob-
servations in the evaluation data set, and let zl be the observed number of
claims for observation l. We denote by p̂l,m,GLMM the estimated posterior
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predictive probability that Zl = m, as predicted by the GLMM model, and
similarly with p̂l,m,GLM. The estimated posterior predictive distribution of
observation l from a given model is then represented by the vector of prob-
abilities p̂l,model = (p̂l,0,model, . . . , p̂l,5,model). The score for each model and
scoring rule on an evaluation data subset is then calculated as

Smodel,subset =
L∑
l=1

S(p̂l,model, zl). (6.9)

By then taking SGLMM,subset − SGLM,subset for each scoring rule and evalua-
tion data subset, we obtain a difference where a positive value means that
the GLMM model received a higher score, and vice versa. We are using
definitions of the scores for which a higher score represents a better predic-
tion, so positive differences indicate that the GLMM model outperforms the
GLM model. The score differences were calculated for each evaluation data
subset separately, and also added together for an overall score. The results
are presented in Table 6.7.

The table shows that the scores were unanimous in preference for the
GLMM model for subsets 3–5. For subset 1, the logarithmic and quadratic
scores indicates that the GLM model performs better, while the quadratic
and ranked probability show preference to the GLMM. For subsets 2 and 6,
only the logarithmic score prefers the GLMM model. When summed over
the entire evaluation data set, the scores all agree that the GLMM model
is the better performer. We note that the differences in score between the
GLM and GLMM models were largest for every score in subset 3, which also
stood out in the partial Bayes factor, Lorenz curves, and Gini coefficients as
the subset where the GLMM model was especially good in comparison to
the GLM model.

Group Quadratic Logarithmic Ranked probability Spherical

Overall 0.56 14.96 0.38 0.08
1 0.04 -0.49 0.12 -0.01
2 -0.11 1.85 -0.08 -0.04
3 0.65 8.80 0.32 0.17
4 0.12 1.48 0.06 0.02
5 0.37 2.51 0.23 0.09
6 -0.49 0.80 -0.27 -0.16

Table 6.7: Differences in scores between GLMM and GLM models.

6.3.6 Summary of comparisons

We have applied a variety of comparison metrics to our GLMM and GLM
models: partial Bayes factors, DIC, Lorenz curves, Gini scores, quotient test
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and proper scoring rules, and conclude that overall, the metrics agree that
the GLMM model performs better than the GLM model at predicting the
claim frequencies of our TPL motor insurance data.
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Chapter 7

Conclusion

The aim of this thesis was to study a certain form of credibility model for
non-life insurance tariffs, namely a generalised linear mixed model with a
random intercept per policy. The specific setting chosen for evaluating the
performance of this model was the prediction of claim frequencies in third
party liability motor insurance, where an analysis data set was provided by
the Swedish insurance company Trygg Hansa. A secondary aim was to use
Bayesian inference, as it allows for use of distributional predictions instead
of only point predictions. This allowed the use of proper scoring rules, which
are a powerful tool for evaluating and comparing predictive performance.

The purpose of an insurance tariff is to predict as accurately as possible
the loss due to claims that an insurance policy will generate. Certainly an
understanding of the underlying factors that drive the risk, and the methods
by which they do so, is helpful to the actuarial practitioner, but it is not the
purpose of a tariff. An example is that vehicles with a higher engine power
have increased risk of traffic accidents. This is almost certainly because en-
gine power is correlated with something that does in fact cause accidents—a
hypothesis would be that more aggressive drivers are more likely to purchase
high-powered vehicles. To understand traffic risk, one would then be better
served attempting to measure aggressiveness, as it is clear that engines do
not on their own cause accidents, even if they have the horsepower of an
entire cavalry regiment. However, to predict insurance claim costs, engine
power is a very helpful rating factor, as the data is quantifiable, easily avail-
able to use in a tariff, and, most importantly, has predictive power. Thus,
the focus of the model evaluation in this thesis is on predictive performance,
and not on inference on model parameters themselves.

A standard Poisson generalised linear model was chosen as a reference
model, and both this and the generalised linear mixed model were estimated
under the Bayesian paradigm, using Markov Chain Monte Carlo methods.
The results of this data analysis, described in Chapter 6, show that for the
third party liability motor insurance data set from Trygg Hansa, the GLMM
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model with a random intercept per policy has better predictive performance
than a GLM model with the same fixed effects, but without the policy-
level random intercepts. The models were compared using an ensemble of
metrics, mostly based on point predictions, but the Bayesian estimation of
the models also allowed the use of proper scoring rules (Section 5.3), which
compare models based on full predictive distributions.

The fact that the GLMM based credibility model outperformed the ref-
erence makes it of interest to apply it in a full scale context. Unfortunately,
implementation of such models in practice may prove difficult for several rea-
sons. We found that the JAGS (Plummer, 2003) software used for MCMC
inference was unable to deal with the entire analysis data set in one go,
forcing us to split the data into six subsets and estimate models for each
subset. Since the analysis data set is of very modest size (44 186 risk years)
compared to those common at insurance companies, this means that alter-
native means of estimation need to be considered in order to use such models
in practice. An attempt was made to estimate the models using the more
computationally efficient INLA method described in Section 2.2, but due to
time constraints and lack of documentation in the software, the attempt was
not further pursued. The promise of INLA to speed up estimation is very
attractive, and should be investigated further. It must be noted that these
are difficulties of implementation, and are not inherent to the model itself.

The advantage of the GLMM model is that it improves the predicted
claim frequency for a given policy when more data is available for that
specific policy. This means that such a tariff model is useful when insurance
policies are renewed, as the premium can then be determined for each policy
based on the most up-to-date information available for that policy, ensuring
that each policy receives a fair price.

The Trygg Hansa TPL insurance data set used contains data over a time
period of 4.5 years, and due to the low frequency of TPL claims, most poli-
cies encounter few claims during this period. Despite this, the GLMM model
is able to use the policy-level random intercepts to improve the predictive
distributions. Further studies might consider applying the GLMM model
in settings with higher claim frequencies, such as motor hull insurance, or
attempt to span over longer time frames. One way to accomplish the lat-
ter is to include a random intercept on the customer level rather than on
the policy level. A given motor insurance policy might not stay in force for
many years, but it may well be that the company has insured the same cus-
tomer multiple times previously, giving a longer time frame to estimate the
customer’s risk profile. Bayesian hierarchical models can be used in such a
setting. Another interesting topic for future study is to consider ways to cre-
ate customer risk estimates by bringing together information from multiple
insurance branches, e.g. using both motor and home insurance information
to determine the risk of a motor insurance policy.

Summing up our results, we have found that based on an ensemble of
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metrics, a Poisson generalised linear mixed model with policy-level random
intercepts improves claim frequency prediction in third party liability motor
insurance, compared to a reference Poisson generalised linear model. This
predictive improvement was demonstrated on a representative actual data
set obtained from Trygg Hansa. The GLMM model studied in this thesis is
able to perform in the claims-sparse setting of private TPL insurance, thus
offering a promising way of using credibility models in private lines motor
insurance.
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Appendix A

JAGS source code

The JAGS code used for estimation of the GLM and GLMM models is shown
here. The variable antsk is the number of claims for an observation, while
the random intercepts, called ui in the thesis, are referred to in the code as
u. Note that the indexing is slightly different; in the JAGS code we use k

to index observations in the training data set, and l to index observations
in the evaluation data set. i indexes the policies. In the thesis in general,
we use i for policies, and j for repeated observations of a given policy and
index a given observation using the combination of i and j.

Apart from the JAGS code, approximately 1 500 lines of supporting R
code were used to perform data manipulation, run the JAGS simulations,
and generate figures for the report.

Listing A.1: The JAGS code for the GLM model.

# GLM model

model

{

for (k in 1:n_obs) {

mu[k] <- riskar[k]*exp(beta0 + beta_fordar*fordar[k]

+ beta_fvehic*fvehic[k] + beta_kkarb*kkarb[k] +

beta_korstr*korstr[k] + beta_ztrkof*ztrkof[k])

antsk[k] ~ dpois(mu[k])

}

# specify distribution for fixed effects

beta0 ~ dnorm (-2.978, 1/(0.327^2))

beta_fordar ~ dnorm (-0.032, 1/(0.011^2))

beta_fvehic ~ dnorm (-0.011, 1/(0.019^2))

beta_kkarb ~ dnorm (-0.010, 1/(0.005^2))

beta_korstr ~ dnorm( 0.020, 1/(0.011^2))

beta_ztrkof ~ dnorm( 0.010, 1/(0.003^2))

# predict test data

for (l in 1:n_test_obs) {
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mu_t[l] <- riskar_t[l]*exp(beta0 +

beta_fordar*fordar_t[l] +

beta_fvehic*fvehic_t[l] + beta_kkarb*kkarb_t[l]

+ beta_korstr*korstr_t[l] +

beta_ztrkof*ztrkof_t[l])

antsk_t[l] ~ dpois(mu_t[l])

}

}

Listing A.2: The JAGS code for the GLMM model.

# GLMM model

model

{

for (k in 1:n_obs) {

mu[k] <- riskar[k]*exp(beta0 + beta_fordar*fordar[k]

+ beta_fvehic*fvehic[k] + beta_kkarb*kkarb[k] +

beta_korstr*korstr[k] + beta_ztrkof*ztrkof[k] +

u[kundnr_mapped[k]])

antsk[k] ~ dpois(mu[k])

}

# specify distribution for fixed effects

beta0 ~ dnorm (-2.978, 1/(0.327^2))

beta_fordar ~ dnorm (-0.032, 1/(0.011^2))

beta_fvehic ~ dnorm (-0.011, 1/(0.019^2))

beta_kkarb ~ dnorm (-0.010, 1/(0.005^2))

beta_korstr ~ dnorm( 0.020, 1/(0.011^2))

beta_ztrkof ~ dnorm( 0.010, 1/(0.003^2))

# specify distribution for random effects

for (i in 1:n_policies) {

u[i] ~ dnorm(0, taub)

}

taub ~ dgamma (0.01, 0.01)

# predict test data

for (l in 1:n_test_obs) {

mu_t[l] <- riskar_t[l]*exp(beta0 +

beta_fordar*fordar_t[l] +

beta_fvehic*fvehic_t[l] + beta_kkarb*kkarb_t[l]

+ beta_korstr*korstr_t[l] +

beta_ztrkof*ztrkof_t[l] + u[kundnr_mapped_t[l]])

antsk_t[l] ~ dpois(mu_t[l])

}

}
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