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Abstract

A phase-type distribution is defined as the distribution of the time

until a continuous time Markov chain with a finite state space reaches

an absorbing state. These distributions are fully determined by the

infinitesimal generator matrix of the Markov chain, together with a

probability vector declaring the probability for the Markov chain to

start in a specific state. In this paper, we propose a strategy for analyz-

ing population genetics using phase-type distributions. In particular,

we consider a continuous time coalescent process tracking the ancestry

of a population sampled at present time, and apply the phase-type

approach to determine the properties for such coalescent processes.

These properties include the tree height and the total tree length, as

well as mutation probabilities. We begin by applying this strategy

to the Kingman’s coalescent, and we thereafter extend the method

to a population complication known as the symmetric island model.

The advantage of this approach is that it leads to clear and intuitive

derivations for the properties, and we show that the proposed strategy

results in a very compact matrix analytic description of the coalescent.
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T. Antonangeli

1 Introduction

Phase-type distributions have, since their introduction in 1975, been used extensively
in many fields of applied probability, such as queuing and renewal theory, as well as in
insurance risk theory [Bobbio et al., 2003, Asmussen et al., 1996]. However, they have
received little or no attention in the field of population genetics. An incitement for
extending the applications of phase-type distributions to population genetics is given
in [Hössjer et al., 2014], which briefly mentions the existence of a link between phase-
type distributions and coalescent theory with general structured populations. Another
incitement is given in [Wooding and Rogers, 2002], which motivates the use of matrix-
analytic methods when investigating population genetics with variable population size.
As will become evident, phase-type distributions and matrix-analytic methods are closely
interconnected.

The aim of this thesis is to apply a matrix-analytic framework to coalescent theory
using phase-type distributions. In particular, we will derive known results on the King-
man’s coalescent tree using a phase-type distribution approach, and we will particularly
focus on the distribution and moments of the tree height and the total tree length. More-
over, we will broaden the framework by introducing mutations, as well as by considering
a population complication known as the symmetric island model. Although these top-
ics have already been widely discussed, it is still of interest to formalize a connection
between coalescent theory and phase-type distributions, since a phase-type distribution
approach often results in elegant and compact matrix expressions.

The outline of this study is as follows: We begin by presenting phase-type distribu-
tions in Section 2, with a formal definition, and a detailed derivation of their properties,
supplemented by a few examples. Thereafter, we provide an introduction to coalescent
theory in Section 3, with emphasis on the Kingman’s coalescent, mutations and the sym-
metric island model. Finally, the two theories of phase-type distributions and coalescent
theory are joined together in Section 4. The material in sections 2 and 3 is self contained
with a thorough introduction to the subjects, and no prior knowledge in either phase-
type distributions or coalescent theory is necessary. However, for the reader interested
in a better insight in the two fields, we refer to e.g. [Latouche and Ramaswami, 1999]
or [Neuts, 1981] on phase-type distributions, and [Durrett, 2008] or [Hein et al., 2005]
on coalescent theory.

2 Phase-Type Distributions

Phase-type distributions are a class of continuous distributions1 with support on [0,∞),
which describe the time until a continuous time Markov chain with a finite state space
reaches an absorbing state. Equivalently, if a distribution is of phase-type, then there

1Phase-type distributions have a discrete-time equivalent, which represents the number of transitions
until a discrete-time Markov chain reaches an absorbing state. Discrete-time phase-type distributions
will not be discussed in this study, and by a phase-type distribution, we will explicitly refer to the
continuous case.
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Table 1: Notation for selected matrix quantities.

Symbol Definition

X, x A matrix or a (column) vector
X′ Transpose of X
Xij Entry i, j of X
X:j jth column of X
X:i..j Columns i through j of X
In×n Identity matrix of order n
1n (0n) Column vector of length n, where each entry equals 1 (0)
0n×n n× n matrix, where each entry equals 0

exists an intrinsic continuous time Markov chain representation of the distribution.

We will demonstrate using matrix-analytic methods (see e.g. [Latouche and Ra-
maswami, 1999,Bellman, 1960]) that the properties of phase-type distributions, such as
the density and distribution function, as well as the moments, are fully characterized
by 1) the generator matrix of the underlying Markov chain and 2) a probability vector
stating the probabilities for the initial state. In fact, without the use of matrix notation
it is generally difficult to find simple, closed form expressions for the properties of phase-
type distributed random variables. Using the fact that a distribution is of phase-type,
awkward integral computations become convenient matrix expressions.

2.1 Definition

Consider a continuous time Markov chain (CTMC) {X(t); t ≥ 0} with a finite state
space S = {0, 1, 2, ..., n}, in which {0} is an absorbing state, whereas states {1, 2, ..., n}
are transient. In other words, {X(t); t ≥ 0} has the properties that the total time it
spends in state i ∈ {1, 2, ..., n} is almost surely bounded, and once {X(t); t ≥ 0} reaches
state {0}, it never leaves this state [Norris, 1997]. With such a state space, the generator
matrix Q for the CTMC can be block partitioned as

Q =

(
0 0′n
t T

)
(2.1)

where 0n is a column vector of order n with all entries equal to zero (for a complete
description of the matrix notation used in this study, see Table 1), and t is a column
vector of order n in which the ith entry equals the conditional intensity for the chain to
enter the absorbing state {0}, when the chain is in the transient state {i}. Moreover, T
is an n × n matrix in which the entries Ti,j 6=i, i, j ∈ {1, ..., n}, are the transition rates
from state i to state j and the negative diagonal elements, −Tii, are the rates for leaving
state i. Let α̃ = (α0, ..., αn)′ be the initial probability vector, i.e. the vector where αi is
the probability that the CTMC starts in state i ∈ S, and define α := (α1, ..., αn)′ as the
vector containing the initial probabilities for the transient states. Observe that, since
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the row sums of Q are zero, and since α̃ is a probability vector, the conditions

T1n + t = 0n (2.2a)

α̃′1n+1 = 1 (2.2b)

clearly hold.
Now let T be a random variable denoting the time it takes for the CTMC {X(t); t ≥

0} specified above to reach the absorbing state {0}. The distribution of T is called a
Phase-type distribution [Neuts, 1981, Latouche and Ramaswami, 1999]. This class of
continuous distributions is formalized in Definition 2.1 below:

Definition 2.1. The distribution of the time T until a continuous time Markov chain
{X(t), t ≥ 0} with a generator matrix given in Equation (2.1) reaches the absorbing
state {0} is called a phase-type distribution with representation (α,T). We write T ∼
PH(α,T).

2.2 Density and distribution

The cumulative distribution function (CDF) for the random variable T given in Defini-
tion 2.1 can, by conditioning on the initial state, be computed as

FT (t) = P(T ≤ t)
= P(X(t) = 0)

=
n∑
i=0

P(X(0) = i) P(X(t) = 0|X(0) = i)

=
n∑
i=0

αi Pi0(t) = α̃′ P:1(t)

where P:1(t) is the first column of the matrix P(t) with entries

Pij(t) = P(X(t) = j|X(0) = i), (2.3)

i, j ∈ S. The matrix P(t) satisfies the backward differential equation

d

dt
P(t) = QP(t), (2.4)

solved by

P(t) = eQt =
∞∑
k=0

1

k!
Qktk, (2.5)

which is well defined for all square matrices Q [Norris, 1997, Ch 2.10], [Resnick, 2002, Ch.
5.4]. In order to derive P(t) and P:1(t), and thus also FT (t), we make the following
proposition:

3
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Proposition 2.1. For the matrix Q defined in Equation (2.1), we have

Qm =

(
0 0′n

−Tm1n Tm

)
for m = 1, 2, ....

Proof. The proof is made by induction:

� For m = 1 we have

Q1 =

(
0 0′n

−T11n T1

)
=

(
0 0′n
t T

)
by Condition (2.2a).

� Assume the proposition is true for m = k, so that

Qk =

(
0 0′n

−Tk1n Tk

)
.

� For m = k + 1 we then have

Qk+1 = Qk ·Q

=

(
0 0′n

−Tk1n Tk

)
·
(

0 0′n
t T

)
=

(
0 0′n

Tkt Tk+1

)
=

(
0 0′n

−TkT1n Tk+1

)
=

(
0 0′n

−Tk+11n Tk+1

)
,

which completes the proof.

If we let I(n+1)×(n+1) denote the (n + 1) × (n + 1) identity matrix, the solution to
Equation (2.4) becomes

P(t) = eQt =

∞∑
k=0

1

k!
Qktk = I(n+1)×(n+1) +

∞∑
k=1

1

k!

(
0 0′n

−Tk1n Tk

)
tk

by Proposition 2.1. Inserting the sum and all the summands into the matrix yields

4
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P(t) = I(n+1)×(n+1) +

(
0 0′n

−
{∑∞

k=1
1
k!(Tt)

k
}

1n
∑∞

k=1
1
k!(Tt)

k

)

=

(
1 0′n

−
{∑∞

k=1
1
k!(Tt)

k
}

1n
∑∞

k=0
1
k!(Tt)

k

)

=

(
1 0′n

1n − eTt1n eTt

)
, (2.6)

indicating that the first column of the matrix P(t) = eQt equals

P:1(t) =

(
1

1n − eTt1n

)
.

Consequently, the CDF for the time until absorption equals

FT (t) = α̃′ P:1(t)

= α0 + (α1, α2, ..., αn)(1n − eTt1n)

= α0 + (α1, α2, ..., αn)1n − (α1, α2, ..., αn)eTt1n

which, by applying Condition (2.2b) simplifies to

FT (t) = 1−α′eTt1n (2.7)

for t ≥ 0 and α′ = (α1, ..., αn). Note that for the derivation of FT (t) it is of no concern
whether or not we assume that α0 = 0, although this generally is the case. For an
alternative derivation of FT (t) see e.g. [Neuts, 1981].

Taking the derivative of Equation (2.7) with respect to t and using Condition (2.2a)
gives the probability density function (PDF) for T ∼ PH(α,T) as

fT (t) = α′eTtt, (2.8)

for t ≥ 0.

2.3 Laplace transform and moments

In order to derive the Laplace transform of a phase type distributed random variable,
we begin by making the following proposition:

Proposition 2.2. If the matrix T given in Equation (2.1) is invertible, then limt→∞ e
Tt =

0n×n, where 0n×n is the n× n matrix with all elements equal to zero.

5
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Proof. [Latouche and Ramaswami, 1999].

Suppose that the matrix T is invertible and define ξ(t) = (ξ1(t), ..., ξn(t))′ = eTt1n, i.e.
ξ(t) is a column vector of order n containing the row sums of eTt. Since the row sums
of (2.6) equal 1, it follows that the row sums in eTt are in [0, 1] for all t ≥ 0. Therefore,

0 ≤ ξi(t) ≤ 1 (2.9)

for all i = 1, ..., n, and for all t ≥ 0. Furthermore,

eTt = In×n +

∫ t

x=0
TeTx dx, (2.10)

since

d

dt
eTt =

d

dt

∫ t

x=0
TeTx dx,

and since eTt
∣∣
t=0

= In×n. Multiplying both sides of Equation (2.10) by T−1 from the
left and by 1n from the right, we obtain

T−1eTt1n = T−1
(

In×n +

∫ t

x=0
TeTx dx

)
1n

=⇒ T−1ξ(t) = T−1In×n1n + T−1T

(∫ t

x=0
eTx dx

)
1n

=⇒ T−1ξ(t) = T−11n +

(∫ t

x=0
eTx dx

)
1n. (2.11)

Since by assumption of invertibility |T−1ij | < ∞ for all i, j = 1, ..., n, and since (2.9)
holds, the entries in the column vector on the left hand side of Equation (2.11) are
bounded for all t ≥ 0. However, due to the fact that the entries in eTx are non-negative,
the entries in ∫ t

x=0
eTx dx

are increasing in t ≥ 0, but bounded, since the left hand side is bounded and T−11n is
constant in t. Consequently, since eTx is a linear combination of exponential functions,
we have

lim
t→∞

eTt = 0n×n.

6
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The Laplace transform for T ∼ PH(α,T), where T is assumed to be invertible, is
defined as

LT (s) = E
[
e−sT

]
=

∫ ∞
t=0

fT (t) e−st dt

for s ≥ 0, which equals

LT (s) =

∫ ∞
t=0

α′eTtt e−st dt

= α′
∫ ∞
t=0

e(T−sIn×n)t dt t

= α′(T− sIn×n)−1
[
e(T−sIn×n)t

]∞
t=0

t

= α′(T− sIn×n)−1
[
eTte−sIn×nt

]∞
t=0

t.

Note that since the real part of each eigenvalue of T is negative [Latouche and Ra-
maswami, 1999, p.44], the inverse (T − sIn×n)−1 exists for all s ≥ 0. By Proposition
2.2, we have

lim
t→∞

eTte−sIn×nt = 0n×n

for s ≥ 0, whereas eTte−sIn×nt
∣∣
t=0

= In×n. Hence, the Laplace transform for a phase-
type distributed random variable T equals

LT (s) = α′(sIn×n −T)−1t, s ≥ 0.

The derivative of LT (s) with respect to s is given by

dLT (s)

ds
= α′

d

ds

{
(sIn×n −T)−1

}
t

= −α′(sIn×n −T)−1
d

ds

{
sIn×n −T

}
(sIn×n −T)−1t

= −α′(sIn×n −T)−1 In×n (sIn×n −T)−1t

= −α′(sIn×n −T)−2 t,

and it is readily checked that

dkLT (s)

dsk
= (−1)kk! α′(sIn×n −T)−k−1 t (2.12)

7



A phase-type distribution approach to coalescent theory

for k ≥ 1. Thus, by Equation (2.12) we obtain The kth moment of T as

E[T k] = (−1)k
dkLT (s)

dsk

∣∣∣∣
s=0

= (−1)kk! α′ T−k1n (2.13)

for k ≥ 1.

2.4 Examples

Example 2.1. Exponential distribution

Consider a CTMC {X(t), t ≥ 0} with state space {0, 1} and with a generator matrix

Q =

(
0 0
λ −λ

)
, (2.14)

where λ > 0, and assume that the initial state is {1} with probability 1, i.e. that
α̃′ = (0, 1), and hence α′ = (1). The matrix Q can be partitioned according to Equation
(2.1) with T = (−λ) and t = (λ). Furthermore, let T be the time it takes for the Markov
chain to reach the absorbing state {0}, so that T ∼ PH(1,−λ). The distribution, density
and expected value of T are given by equations (2.7), (2.8) and (2.13) respectively:

FT (t) = 1−α′eTt11 = 1− e−λt, t ≥ 0,

fT (t) = α′eTtt = λe−λt, t ≥ 0,

E[T ] = (−1)1 1! α′T−111 = 1
λ .

We recognize these as defining properties of the exponential distribution with an in-
tensity parameter λ, that is, T ∼ Exp(λ). We conclude that the exponential distribution
is a phase-type distribution with an inherent CTMC representation.

Example 2.2. Erlang distribution

Consider a CTMC {X(t), t ≥ 0} with state space {0, 1, ..., n} and with a generator
matrix

Q =



0 0 0 0 . . . 0
0 −λ λ 0 . . . 0
0 0 −λ λ . . . 0
...

...
...

. . .
. . .

...
0 0 0 . . . −λ λ
λ 0 0 . . . 0 −λ


, (2.15)

and assume that the initial state is {1} with probability 1, i.e. that α̃′ = (0, 1,0′n−1)
and hence α′ = (1,0′n−1). The matrix T in this case equals

8
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T =


−λ λ 0 . . . 0
0 −λ λ . . . 0
...

...
. . .

. . .
...

0 0 . . . −λ λ
0 0 . . . 0 −λ

 ,

whereas t′ = (0′n−1, λ). It is easy to verify that

α′Tkt = (−1)k+n−1
(

k

n− 1

)
λk+1

for k = n − 1, n, n + 1, ... and 0 otherwise. By Equation (2.8), the density function for
the time it takes for the CTMC {X(t), t ≥ 0} to reach the absorbing state {0} thus
equals

fT (t) = α′
∞∑
k=0

1

k!
(Tt)k t

=

∞∑
k=n−1

1

k!
(−1)k+n−1

(
k

n− 1

)
λk+1tk

=
∞∑

k=n−1

1

k!
(−1)k+n−1

k!

(n− 1)!(k − n+ 1)!
λk+1tk

=
λ

(n− 1)!

∞∑
k=n−1

(−1)k+n−1
1

(k − n+ 1)!
(λt)k.

Shifting the summation index by setting l = k − n+ 1 gives

fT (t) =
λ

(n− 1)!

∞∑
l=0

(−1)l+2(n−1) 1

l!
(λt)l+n−1

=
λn

(n− 1)!
tn−1

∞∑
l=0

(−1)l
1

l!
(λt)l

=
λn

(n− 1)!
tn−1 e−λt

for t ≥ 0, which we recognize as the density function of an Erlang distribution with
parameters n and λ. Thus we conclude that, just as the exponential distribution, the
Erlang distribution is of phase-type, with an underlying CTMC representation.

9
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2.5 Multiple absorbing states

In this section we will demonstrate that the theory of phase-type distributions discussed
in sections 2.2 and 2.3, can be extended to the case where the underlying Markov chain
possesses m ≥ 2 absorbing states. Consider thus a CTMC {X(t); t ≥ 0} with a finite
state space S = {1, 2, ...,m+n}, such that the first m states are absorbing, whereas the
remaining n states are transient. The state space S can therefore be partitioned into
the set of absorbing states S = {1, ...,m} with |S| = m, and the set of transient states
S = {m+ 1, ...,m+ n} with |S| = n. Consequently, with multiple absorbing states, the
corresponding intensity matrix can be block partitioned as

Q =

(
0m×m 0m×n

t T

)
,

where t is an n×mmatrix, in which element tij , i = 1, ..., n, j = 1, ...,m is the conditional
intensity for the Markov chain to enter the absorbing state {j}, when the Markov chain
is in the transient state {i}. T in turn, is an n × n matrix where the entries Tk,l 6=k,
k, l ∈ S, are the conditional intensities for transitions between the transient states, and
where the negative diagonal entries −Tkk are the intensities for leaving state k ∈ S. We
assume for our purposes that T is invertible.

As in the case with only one absorbing state, we let α̃ = (α1, ..., αm+n)′ be the initial
probability vector, i.e. the vector where element αi is the probability that the initial
state for the Markov chain is {i}. Furthermore, we define α := (αm+1, ..., αm+n)′ as the
initial probability vector for the transient states. We note that Conditions (2.2a) (2.2b)
modify to

T1n + t1m = 0n (2.16a)

α̃′1m+n = 1 (2.16b)

since the rows of Q sum to 0, and since α̃ is a probability vector.

Suppose, as before, that the random variable T denotes the time it takes for {X(t); t ≥
0} to reach S, assuming that the initial state is given by the probability vector α̃. The
CDF for T equals

FT (t) = P(T ≤ t) = P(X(t) ∈ S).

By conditioning on the initial state X(0), we obtain

10
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FT (t) =
∑
j∈S

P(X(0) = j) P(X(t) ∈ S|X(0) = j)

=
∑
j∈S

∑
k∈S

P(X(0) = j) P(X(t) = k|X(0) = j)

=
∑
j∈S

∑
k∈S

αj Pjk(t)

= α̃′ P:1..m(t) 1m,

where P:1..m(t) denotes the matrix consisting of the first m columns of the matrix P(t)
with elements Pij(t) defined in Equation (2.3). In order to derive P:1..m(t), we note that

Qk =

(
0m×m 0m×n
Tk−1t Tk

)
. (2.17)

The proof of Equation (2.17) is done analogously to the proof of Proposition 2.1 and
will therefore be omitted.

The matrix P(t) is, according to Equation (2.5), obtained as

P(t) = I(m+n)×(m+n) +
∞∑
k=1

1

k!
Qktk.

Using Equation (2.17) we obtain

P(t) = I(m+n)×(m+n) +

∞∑
k=1

1

k!

(
0m×m 0m×n
Tk−1t Tk

)
tk

= I(m+n)×(m+n) +

(
0m×m 0m×n∑∞

k=1

{
1
k!T

ktk
}

T−1t
∑∞

k=1

{
1
k!T

ktk
})

=

(
Im×m 0m×n(

eTt − In×n
)
T−1t eTt

)
, (2.18)

and we recognize that the first m columns of P(t) thus equal

P:1..m(t) =

(
Im×m(

eTt − In×n
)
T−1t

)
.

Therefore we obtain

11
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FT (t) = α̃′ P:1..m(t) 1m

= α̃′


1
...
1(

eTt − In×n
)
T−1t1m



= α̃′


1
...
1(

In×n − eTt
)
1n


= α1 + · · ·+ αm + (αm+1, ..., αm+n)

(
In×n − eTt

)
1n

= 1−α′eTt1n,

which agrees with Equation (2.7). Hence, T ∼ PH(α,T) as before. However, since
Condition 2.2a is no longer valid, the density function for T is not identical to Equation
(2.8) when the number of absorbing states is m ≥ 2, but rather

fT (t) = α′eTtt1m, (2.19)

by Equation (2.16a). Computing the Laplace transform similarly as in Section 2.3, by
using Equation (2.19) instead of Equation (2.8), it is easy to verify that the moments of
T are still given by Equation (2.13).

2.6 Absorption probabilities

For the purpose of this study, when the number of absorbing states is m ≥ 2, it is also
of interest to derive the absorption probability vector φ, with entries

φj = P(X(T ) = j)

for j ∈ S, that is, the vector in which the jth entry is the probability that the CTMC
{X(t); t ≥ 0} is absorbed into state j. To do this, we note that for a transient state
i ∈ S and an absorbing state j ∈ S, we have by Equation (2.18)

Pij(t) =

[ (
eTt − In×n

)
T−1t

]
ij

,

and since

d

dt

(
eTt − In×n

)
T−1t = eTt T T−1t = eTtt,

we have

12
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P ′ij(t) =
[
eTtt

]
ij
.

Thus we can write

φj =
∑
i∈S

αiδij +
∑
i∈S

αi

∫ ∞
t=0

P ′ij(t) dt

= αiI(j ∈ S) +
∑
i∈S

αi

∫ ∞
t=0

[
eTtt

]
ij
dt

= αiI(j ∈ S) +
∑
i∈S

αi

[∫ ∞
t=0

eTtdt t

]
ij

, (2.20)

where I(·) denotes the indicator function. By Proposition 2.2, the integral in (2.20)
reduces to ∫ ∞

t=0
eTtdt = −T−1,

implying that

φj = αiI(j ∈ S)−
∑
i∈S

αi
[
T−1t

]
ij
. (2.21)

In matrix notation, Equation (2.21) can for all j ∈ S be written as

φ = (α1, ..., αm+n)

(
Im×m
−T−1t

)
,

and in particular, if we set αi = 0 for all i ∈ S, i.e. discarding the possibility for the
Markov chain to start in an absorbing state, we remain with the simple form

φ = −α′T−1t. (2.22)

3 Coalescent theory

3.1 Preliminaries

This section (3.1) provides a brief introduction to the concepts and terminology in pop-
ulation genetics that are needed in this study. For a more detailed account on basic
genetics, see e.g. [Khoury et al., 1993, Section 1] and [Durrett, 2008, Chapter 1.1].

The DNA (deoxyribonucleic acid) contains the hereditary information of an organ-
ism. It can, for our purposes, be viewed as a non-random sequence of four different
nucleotides; adenine (A), guanine (G), cytosine (C) and thymine (T). This sequence is

13
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contained mainly2 in the chromosomes of the organism, which in turn lie within the
nucleus of a cell. The DNA contains distinct genetic loci, that is, subsequences of nu-
cleotides which have the specific task of producing enzymes or structural proteins. These
subsequences will for simplicity be referred to as genes. The length of the DNA sequence,
and the number of genes within the DNA, varies for different organisms. For instance,
the human DNA is made up of approximately 3 · 109 nucleotides, and the subsequences
within genes consist of a few thousands or ten thousands of nucleotides.

Haploid organisms contain one single copy of its genetic material, and reproduce in
such way that the DNA is copied to the offspring from one and only one parent. These
are typically more primitive, single-cell organisms such as bacteria. More complex organ-
isms, such as humans, are diploid. Diplod organisms require two parents for reproduction
and thus contain two sets of genetic information, one from each parent. Some plants
are polyploid, meaning that they contain multiple sets of DNA. In this study we will for
simplicity restrict ourselves to haploid organisms, although it is not difficult to extend
the modeling to the diploid case [Durrett, 2008, Ch. 1.2] [Hein et al., 2005, Sect. 1.4].

The objective of coalescent theory is to trace the ancestry of a gene throughout gen-
erations backwards in time, by means of stochastic modeling [Hein et al., 2005]. More
precisely, one considers a particular genetic locus within the DNA of distinct individuals
sampled from a large population at present time. Thereafter, given some probabilis-
tic population dynamics such as variations in offspring size, the theory examines the
behaviour of the corresponding genealogies, until the most recent common ancestor
(MRCA) of the sampled genes is found.

In the modeling, we will initially consider a population of haploid individuals with
non-overlapping generations of equal size N . This population is assumed to lack any
kind of social or geographical structure, and in each generation the individuals are all
assumed equally likely to survive and to produce offspring. These assumptions provide
a model for population genetics known as the Wright-Fisher model, introduced by S.
Wright and R. Fisher in the early 1930’s [Hein et al., 2005]. Although highly idealized,
the Wright-Fisher model is very appealing and widely used in mathematical modeling due
to its simplicity. For instance, under the Wright-Fisher model, k individuals randomly
selected from generation g share a common parent in generation g − 1 with probability
1/Nk−1.

In section 3.2, we will closely examine the properties of the genealogical tree that
results from sampling n genes in generation 0 (present time), and thereafter tracing their
parental genes throughout preceding generations, assuming a Wright-Fisher model. In
particular, we will demonstrate that when the tree is observerd in continuous time,
it manifests exponentially distributed times until the lineages of two genes meet. The
continuous time tree that arises from the Wright-Fisher model is known as the Kingman’s
coalescent.

After the Kingman’s coalescent has been presented, Section 3.3 introduces mutations
as a component in the coalescent process. A mutation will be assumed to be a random
interchange of one nucleotide into another within a gene, and this interchange occurs as

2Excluding mitochondrial DNA (mtDNA), residing in the mitochondria.
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an error when the haploid organism copies its DNA in order to produce offspring. If the
alternation in nucleotides changes the type of enzyme or structural protein that the gene
is coded for, the mutation is said to be nonsynonymous, thus altering a characteristic
of the organism. We will demonstrate how the exponential distribution plays a key role
also in the occurrence of mutations.

Finally, in Section 3.4, we will introduce a population complication known as the
symmetric island model, where the organism population is subdivided into distinct is-
lands. The organisms are then assumed to migrate between the islands according to some
random process. Although the Wright-Fisher model is in itself no longer valid, since the
Wright-Fisher model assumes the absence of geographical structure, it is assumed that
the conditions for the Wright-Fisher model within each island are met.

3.2 Kingman’s coalescent

The genealogy of n genes can, under the Wright-Fisher model, be portrayed as follows:
Each sampled gene in generation g = 0,−1,−2, ... “chooses” its parent uniformly at
random from the genes in generation g − 1. When j ≥ 2 genes choose the same parent,
they coalesce, meaning that the genes have found their MRCA, and at this point the
sample size reduces to n−j+1. Starting from generation 0, and repeating the procedure
throughout generations backwards in time, until all n genes have coalesced, results in a
discrete-step coalescence tree, an example of which is illustrated in Figure 3.1.

Figure 3.1: A coalescence tree with n = 5 sampled genes. The genes are sampled at generation
0 (present), and we observe the lineages backwards in time. A gray circle indicates a sampled
gene, and a black circle indicates a coalescence event between two genes. For instance, genes 2
and 3 coalesce in generation -1, and all 5 genes have coalesced in generation -4.

In order to investigate the behaviour of such a coalescence tree under the Wright-
Fisher model, we begin by closely examining the transition from generation 0 to gener-
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ation -1, assuming a sample of n genes from generation 0, and a total population of N
genes per generation. Throughout this study, n is assumed to satisfy n� N .

Define a coalescence event as the event that two or more genes choose the same parent
in one generation shift backwards in time. Thereafter define πnk as the probability that
one single coalescence event takes place, such that exactly k genes choose the same
parent. Furthermore, let M be the event that more than one coalescence event occurs.
The probability πn that any coalescence event will occur in the transition from generation
0 to generation -1 hence equals

πn = πn2 + πn3 + · · ·+ πnn + P(M).

Proposition 3.1. πn satisfies

πn = πn2 + o(N−1) =

(
n

2

)
· 1

N
+ o(N−1),

where o(N−1) satisfies limN→∞ o(N
−1)N = 0.

Proof. Let Mij be the event that genes i and j have the same parent, whereas all other
genes have different parents. Then all Mij , i, j = 1, ..., n are disjoint events with equal
probability, so that

πn2 =
∑

1≤i<j≤n
P(Mij)

=

(
n

2

)
P(M12)

=

(
n

2

)
· 1

N2
·N ·

(
1− 1

N

)(
1− 2

N

)
· · ·
(

1− n− 2

N

)
=

(
n

2

)
· 1

N
+ o(N−1),

whereas, under the assumption that n� N , we have

0 < πnn < πn,n−1 < · · · < πn3 =

(
n

3

)
· 1

N3
·N ·

(
1− 1

N

)(
1− 2

N

)
· · ·
(

1− n− 3

N

)
≤
(
n

3

)
· 1

N2
= o(N−1).

Now, define M̃ as the event where two distinct coalescence events take place, where two
genes choose the same parent. It is clear that M ⊂ M̃ , and thus

0 < P(M) ≤ P(M̃) =

(
n

2

)
· 1

N2
·N ·

(
n− 2

2

)
1

(N − 1)2
· (N − 1)

=

(
n

2

)
·
(
n− 2

2

)
· 1

N(N − 1)
= o(N−1).

16



T. Antonangeli

Therefore,

πn =

(
n

2

)
1

N
+ o(N−1).

A natural question that arises is, given that we have a sample of n genes in the current
generation of size N , what is the distribution of the number of generations backwards in
time before we observe a coalescence event? To answer this, we note that the associated
repeated experiment has a memoryless characteristic; the probability for a coalescence
event remains unchanged in the following generation shift, if no coalescence occurred in
the current one. This leads us to the conclusion that Jn – the number of generation
shifts that need to occur until the first coalescence event is observed, given n sampled
genes – has a “First Success” distribution with success probability πn, i.e.

P(Jn > k) = (1− πn)k (3.1)

for k = 1, 2, .... If we now instead let tn = Jn/N indicate one unit of time, we obtain

P(tn > t) = P(Jn/N > t)

= P(Jn > Nt)

= (1− πn)bNtc

by Equation (3.1). Under the assumption that N � 1 we have that 0 < πn =
(
n
2

)
1
N +

o(N−1)� 1, and hence we can approximate 1− πn by e−πn . This yields

P(tn > t) ≈
(
e−πn

)Nt
=
(
e−(n2)

1
N
−o(N−1)

)Nt
= e−(n2)t−o(N

−1)Nt

−→ e−(n2)t, as N −→∞.

The conclusion is that the rescaled time tn = Jn/N , until a coalescence event oc-
curs in the lineages of n genes, converges in distribution to an exponential distribution
with intensity parameter

(
n
2

)
, as N grows large. Furthermore, by Proposition 3.1, the

probability that the coalescence event is of the type where only 2 of the n lineages coa-
lesce, converges to 1. The resulting continuous time coalescence tree can be illustrated
with the Kingman’s coalescent, in which the tree is depicted in the rescaled continuous
time, and the horizontal movement of a lineage between generations seen in Figure 3.1
is disregarded. An example of a Kingman’s coalescent for an initial sample of 4 genes is
illustrated in Figure 3.2.
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Figure 3.2: A Kingman’s coalescent tracking the ancestral lineages of n = 4 genes. The time
ti when the number of ancestral lineages equals i (i = 2, 3, 4) is exponentially distributed with
rate

(
i
2

)
. A black dot (·) signifies the coalescence of two genes.

3.3 Mutations

The Wright-Fisher model can be extended by allowing mutations to occur when the
gene makes a transition between generations. Thus, let 0 < u � 1 be the probability
that a mutation occurs in one gene during the transition from one generation to the
previous, and define θ = 2Nu. Just as the number of generation transitions until a gene
for the first time coalesces with another, the number µ∗ of generation transitions until a
mutation occurs within a gene, has a First succes distribution with success probability
u, i.e. µ∗ ∼ Fs(u) with

P(µ∗ > k) = (1− u)k

for k = 1, 2, .... By letting µ = µ∗/N , we obtain

P(µ > t) = (1− u)bNtc,

and, since under the assumption that 0 < u� 1 we have 1− u ≈ e−u, we immediately
obtain

P(µ > t) ≈ e−
θ
2
t,
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which means that the time until the first mutation within a lineage occurs is approxi-
mately exponentially distributed with rate θ/2.

When a mutation has taken place, the number of transitions until the following
mutation occurs has again a First Success distribution with success probability u, and
hence the process restarts from the beginning. By this argument, it is easy to see that
within one lineage, the time between any two subsequent mutations is exponentially
distributed with rate θ/2. This implies that on each vertical line on the Kingman’s
coalescent, as exemplified in Figure 3.2, the mutations form a homogeneous Poisson
process where the expected number of occurrences equals θ/2 multiplied by the length
of the vertical line.

On the Kingman’s coalescent, one can rearrange the vertical lines, or branches, by
stacking one after the other, to form a single line of length τ =

∑n
j=2 jtj . We call

τ the total tree length. Assuming that the coalescent consists of b distinct branches,
the interval [0, τ ] can be partitioned into b subintervals, along which mutations occur
according to a homogeneous Poisson process with intensity θ/2. It is then easy to show
that the mutations within the subintervals form a homogeneous Poisson process with
intensity θ/2 on the whole interval [0, τ ]. In particular, if we let Sn denote the total
number of mutations on the tree3, we have

Sn|τ = x ∼ Po

(
θx

2

)
. (3.2)

A hypothetical realization of a Kingman’s coalescent with mutations is illustrated in
Figure 3.3.

3.4 Symmetric island model

Consider a set of k islands; I1, I2, ..., Ik, each containing equally large gene populations of
size N , constant throughout nonoverlapping generations, and suppose that we sample ni
genes from Ii, i ∈ {1, ..., k}. Within each island Ii, i ∈ {1, ..., k}, the reproduction of the
individuals occurs according to the rules of the Wright-Fisher model, that is, each of the
organisms of generation l chooses its parent uniformly at random with replacement from
the N parents in generation l− 1 within the same island, and all organisms choose their
parent independently of each other. When shifting to continuous time, the resulting
genealogy within each island can be represented with Kingman’s coalescent, so that the
rate at which coalescence occurs within an island, when the number of ancestral lineages
within the island is ni, equals

(
ni
2

)
.

What we refer to as “island” represents a geographically isolated region. In particu-
lar, this geographical isolation implies that the genealogies of two genes can not coalesce
when the genes are on separate islands. However, we do allow for an occasional migra-
tion to occur from one island to another. We quantify this migration with the set of

3In population genetics, Sn is normally referred to as the number of segregating sites when working
with the infinite sites model, see e.g. [Durrett, 2008, Hein et al., 2005] for details. However, for our
purposes it is sufficient to consider Sn simply as the the total number of mutations on a Kingman’s
coalescent.
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Figure 3.3: A Kingman’s coalescent with n = 4 and with mutations (marked with �) allowed.
The time between mutations is exponentially distributed with rate θ/2 along each branch, and
thus the mutations form a Poisson process on the tree. The number of branches in this illustration
is b = 6.

migration probabilities {mij}, such that mij is the probability that an individual in Ii
is a descendant of an individual in Ij ; i, j ∈ {1, ..., k}. For simplicity, let

mii = 1−m, and (3.3a)

mij = m/(k − 1) (3.3b)

for i 6= j, and for some m satisfying 0 < m � 1. This means that in each Ii, i ∈
{1, ..., k}, and in each generation transition, a gene migrates to some Ij 6=i with some
small probability m, and the gene chooses the island to which it migrates uniformly at
random. With probability 1−m the parent gene is from the same island as the offspring.
This design leads to a model widely used in population genetics known as the symmetric
island model [Durrett, 2008, Ch. 4.6].

The genealogy of n =
∑k

i=1 ni sampled genes can, in discrete time, be depicted
similarly as the genealogical tree for the general Wright-Fisher model illustrated in Figure
3.1. The main difference is that the total population of kN genes needs to be partitioned
into separate regions representing the islands. A schematic example of such a discrete
time tree is shown in Figure 3.4 for the special case k = 2, with N = 4, n1 = 3 and
n2 = 2.
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Figure 3.4: A hypothetical discrete time coalescent tree for a symmetric island model with
k = 2 islands; I1 and I2. Genes 1,2 and 3 are sampled from I1, whereas genes 4 and 5 are
sampled from I2. A dashed line indicates a gene migration. For instance, Gene 3 is a descendant
of a parent gene from I2, and hence Gene 3 migrates from I2 to I1 between generations -2 and
-1. Finally, the complete sample of 5 genes coalesces in generation -6.

Equations (3.3a) and (3.3b) imply that, for one gene in Ii, the number ν∗ of genera-
tions backwards in time until it migrates to any other island is Fs(m), so that

P(ν∗ > x) = (1−m)x

for x = 1, 2, .... As before, let ν = ν∗/N , that is, count continuous time in units of N
generations. This implies

P(ν > t) = (1−m)bNtc .

Now define M = 2Nm. This, together with the assumption that 0 < m� 1 yields

P(ν > t) ≈ e
M
2
t, (3.4)

i.e. the time until a gene from Ii emigrates is approximately exponentially distributed
with rate M/2. Since the genes choose the island to which they migrate uniformly at
random with repetition, Equation (3.4) also implies that a gene migrates from Ii to Ij 6=i
with rate M

2(k−1) . Further, when the sample from Ii consists of ni genes, a migration

from Ii to Ij 6=i occurs with rate Mni
2(k−1) .
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The symmetric island model can obviously be extended by allowing mutations to
occur along the genealogies. Recall from Section 3.3 that mutations, which are assumed
to take place independently of migration, occur according to a Poisson process with
rate θ/2 along the coalescent tree. By the memoryless property of the exponential
distribution we thus conclude that, under the symmetric island model, the lineage of a
gene is constantly susceptible to 3 possible events:

1. coalescence, which occurs after an exponential time with rate 1,

2. mutation, which occurs after an exponential time with rate θ/2, and

3. migration, which occurs after an exponential time with rate M/2.

A continuous time coalescent tree for the symmetric island model with k = 2, n1 = 4
and n2 = 2, with mutations allowed, is exemplified in Figure 3.5.

Figure 3.5: A hypothetical continuous time coalescent tree for a symmetric island model with
k = 2 islands, with mutations. The tree traces the ancestry of 6 genes sampled at time t = 0.
Genes 1,2,3 and 4 are sampled from I1, whereas genes 5 and 6 are sampled from I2. A circle
(�) indicates a mutation, whereas a dot (·) indicates a coalescence of two genes. A dashed line
indicates a gene migration between the two islands.

4 The phase-type coalescent

The relationship between coalescent theory and phase-type distributions is evident by
the persistency of the exponential distribution throughout Section 3. Indeed, in this
section we will establish that many problems in coalescent theory can be tackled using
a phase-type distribution approach. We begin by demonstrating in Section 4.1, that
the basic properties of the Kingman’s coalescent are readily derivable using phase-type
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distributions; the tree height will be analyzed in Section 4.1.1, and thereafter we extend
the applications of phase-type distributions to mutations in Section 4.1.2.

Finally, in Section 4.2, we will investigate two special cases of the symmetric island
model presented in Section 3.4, using phase-type distributions as a starting point. Firstly,
we will analyze the case where the number of islands is held fixed at k = 2, whereas the
initial sample size is allowed to be an arbitrary number n. Secondly, we will examine
the case where the number of islands is allowed to be an arbitrary k, whereas the initial
sample is held fixed at n = 2 genes.

4.1 Properties of the Kingman’s coalescent

4.1.1 Tree height

Section 3.2 demonstrated that on the Kingman’s coalescent (as exemplified in Figure
3.1), the time it takes for a coalescence event to occur when the number of ancestral
lineages equals i, is asymptotically exponentially distributed with rate

(
i
2

)
, when the

total population size N becomes large. It therefore becomes intuitive to regard the
continuous time coalescent as a CTMC on [0,∞) with a state space consisting of the
integers 1, ..., n; that is, the state of the Markov chain denotes the number of ancestors
of the sample at any given time t ≥ 0.

Thus, with the notation used in Section 2, let {X(t); t ≥ 0} be a CTMC with
state space S = {1, 2, ..., n}, where X(t) represents the ancestral size of the sample at
time t on the Kingman’s coalescent. In this case states {2, ..., n} are transient, since by
Proposition 3.1, the Markov chain makes a transition from state i to state i − 1 with
probability 1 for all 2 ≤ i ≤ n. When the Markov chain is in state {1}, it means that no
more coalescence events can take place, making {1} an absorbing state. The generator
matrix Q for {X(t); t ≥ 0} thereby equals

Q =



0 0 0 . . . 0(
2
2

)
−
(
2
2

)
0 . . . 0

0
(
3
2

)
−
(
3
2

) ...
...

. . .
. . . 0

0 . . . 0
(
n
2

)
−
(
n
2

)


, (4.1)

which can be block partitioned into

Q =

(
0 0′n−1
t T

)
,

where t′ = (1,0′n−2) and
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T =



−
(
2
2

)
0 0 . . . 0(

3
2

)
−
(
3
2

)
0 . . . 0

0
(
4
2

)
−
(
4
2

) ...
...

...
. . .

. . . 0

0 0 . . .
(
n
2

)
−
(
n
2

)


. (4.2)

Furthermore, since with probability 1 the initial sample consists of n genes, we have
the initial probability vector for the transient states α′ = (0′n−2, 1).

Let Tnh be the time it takes for {X(t); t ≥ 0} to reach the absorbing state {1}. In
terms of the coalescent, Tnh thus represents the time at which the lineages of an initial
sample of n genes have coalesced, which corresponds to the height of the coalescent.
According to Definition 2.1, Tnh ∼ PH(α,T), and the CDF and the PDF for Tnh are
explicitly given by equations (2.7) and (2.8) respectively. Their graphs are illustrated in
figures 4.1a and 4.1b by a computer implementation of (2.8) and (2.7), for initial sample
sizes n = 3, 7, 20, 100. By equations (4.1) and (2.14), the case with n = 2 results in the
exponential distribution with rate 1.

(a) PDF of Tnh. (b) CDF of Tnh.

Figure 4.1: The PDF and the CDF of the height Tnh of a Kingman’s coalescent when the initial
sample consists of n = 3, 7, 20, 100 individuals.

It is easy to verify that the negative inverse of the matrix T given in Equation (4.2)
equals the lower triangular matrix
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−T−1 =



(
2
2

)−1(
2
2

)−1 (
3
2

)−1(
2
2

)−1 (
3
2

)−1 (
4
2

)−1
...

...
...

. . .(
2
2

)−1 (
3
2

)−1 (
4
2

)−1
. . .

(
n
2

)−1


,

which can be used to determine the moments of Tnh by Equation (2.13). In particular,
with t′ = (1,0′n−2) and α′ = (0′n−2, 1), we immediately obtain

E[Tnh] =
∑

2≤i≤n

(
i

2

)−1
= 2− 2

n
,

which agrees with existing literature (see e.g. [Durrett, 2008, Sect. 1.2.1]).

4.1.2 Mutations

The model can be extended by introducing mutations, which, according to the results
obtained in Section 3.3, occur along each lineage after an exponentially distributed time
with rate θ/2, with θ = 2Nu, and where 0 < u � 1 is the probability that a mutation
occurs in one gene during the transition from one generation to the previous. This
means that on the Kingman’s coalescent, when the number of ancestral lineages equals
i, a mutation occurs with rate iθ/2. We therefore consider the CTMC {X(t); t ≥ 0}
on the state space S = {0, 1, ..., n}, that is, the same state space as before, but with an
additional absorbing state {0}, such that X(t) = 0 if a mutation has occurred at time t.
The corresponding intensity matrix for this extended model equals

Q =



0 0 0 0 . . . 0

0 0 0 0 . . . 0
2θ
2

(
2
2

)
−σ2 0 . . . 0

3θ
2 0

(
3
2

)
−σ3

...
...

...
. . .

. . . 0
nθ
2 0 . . . 0

(
n
2

)
−σn


=

(
02×2 02×(n−1)

t T

)
,

where σk = −
[
kθ
2 +

(
k
2

)]
for k = 2, ..., n. Consequently, we have

t =


2θ
2

(
2
2

)
3θ
2 0
...

...
nθ
2 0

 (4.3)
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and

T =



−σ2 0 0 . . . 0(
3
2

)
−σ3 0 . . . 0

0
(
4
2

)
−σ4

...
...

. . .
. . . 0

0 . . . 0
(
n
2

)
−σn


. (4.4)

Let T be the time it takes for the CTMC to reach one of the absorbing states {0}
or {1}. Observe that since mutations have been introduced, the random variable T no
longer equals the height of the coalescent tree. Nonetheless, according to the results from
Section 2.5 where phase-type distributions with multiple absorbing states were studied,
we have T ∼ PH(α,T), with α = (0′n−2, 1) and T given by Equation (4.4). The CDF
and the PDF of T are given by equations (2.7) and (2.19), respectively. These functions
are illustrated in Figure 4.2 for some selected values of n and θ that correspond to
different forms of the PDF of T .

The probability that a mutation occurs before the complete coalescence of a sample of
n genes is explicitly given by Equation (2.22): Recall that the ith entry in φ = (φ0, φ1),
i ∈ {0, 1}, is the probability that the CTMC {X(t); t ≥ 0} is absorbed into state i,
and note that absorbtion into state {0} implies that a mutation occurs before complete
coalescence. These quantities can be considered particularly important, since φ0 = 1−φ1
is the probability that the n initially sampled genes are identical, i.e. the gene has been
passed from the MRCA to the sampled individuals throughout generations, without the
occurrence of a mutation in the genealogies. In particular, φ0 is given by

φ0 = −α′T−1t:1, (4.5)

where α′ = (0′n−2, 1), T is given by Equation (4.4), and

t′:1 =

(
2θ

2
,
3θ

2
, ...,

nθ

2

)
is the first column in the matrix t given in Equation (4.3). To put Equation (4.5) into
practice, we generate φ0 as a function of θ for some selected values of n, by a computer
implementation of Equation (4.5) (Figure 4.3). It is clearly seen that the probability
that a mutation occurs before the complete coalescence of the sample converges to 1 with
increasing mutation rate, and that the convergence is more rapid with a larger initial
sample size.

With the introduction of mutations, computing the expected total tree length, E[τ ]
(where τ was described in Section 3.3), with a phase-type distribution approach becomes
straightforward: By recalling Equation (3.2) and by conditioning on τ , we have
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(a) PDF of T , n = 5, θ = 0.05, 0.25, 0.5, 1. (b) CDF of T , n = 5, θ = 0.05, 0.25, 0.5, 1.

(c) PDF of T , n = 20, θ = 0.05, 0.25, 0.5, 1. (d) CDF of T , n = 20, θ = 0.05, 0.25, 0.5, 1.

Figure 4.2: The PDF (left), and the CDF (right) for T , computed according to equations (2.19)
and (2.7) respectively.

φ0(θ) = P(Sn = 0)

=

∫ ∞
x=0

P(Sn = 0|τ = x)fτ (x) dx

=

∫ ∞
x=0

e−
θx
2 fτ (x) dx (4.6)

and thus
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Figure 4.3: The probability φ0 that a mutation occurs before the complete coalescence of n
sampled genes, as a function of θ.

φ0(θ) = Lτ (θ/2),

where Lτ (·) denotes the Laplace transform of τ . Hence, by evaluating the kth derivative
of φ0(θ) at θ = 0 we obtain the kth moment of τ as

E[τk] = (−2)k
dk

dθk
φ0(θ)

∣∣∣∣
θ=0

, (4.7)

where φ0(θ) is defined in Equation (4.5). In particular, by Equation (4.7), the expected
value of the total tree length equals

E[τ ] = 2α′T−1
(
dt:1
dθ
− dT

dθ
T−1t:1

)∣∣∣∣
θ=0

,

with dt:1
dθ =

(
2
2 ,

3
2 , ...,

n
2

)′
and
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dT

dθ
=



−2
2 0 0 . . . 0

0 −3
2 0 . . . 0

0 0 −4
2

...
...

...
. . . 0

0 0 . . . 0 −n
2


.

4.2 Symmetric island model

4.2.1 Two islands, arbitrary sample size

Consider the special case of k = 2 in the symmetric island model discussed in Section
3.4. That is, suppose that a hypothetical target population is divided into 2 distinct
islands, I1 and I2, each containing a total population of N haploid organisms, and that
in continuous time, a gene migrates from one island to the other with rate M/2. Also,
allow for mutations to occur according to the rules stated in Section 3.3. The objective
in this section is to use phase-type distributions to analyze the genealocical tree of a
sample of n = n1 + n2 genes, where ni, i ∈ {1, 2} is the number of genes sampled from
island Ii.

To do this, define a CTMC {X(t); t ≥ 0} on the two dimensional state space
S = {(i, j) ∈ N2 : 0 ≤ i + j ≤ n}, where X(t) = (i, j), i + j 6= 0, signifies that
there are i ancestral lineages on I1 and j ancestral lineages on I2 at time t ≥ 0. If
X(t) ∈ {(i, j) : i+j = 1}, then clearly either i = 1 and j = 0, or i = 0 and j = 1, meaning
that there is only one lineage left at time t, and no more coalescence events can take
place. Therefore we define (1, 0) and (0, 1) as absorbing states. Furthermore, let state
(0, 0) be an absorbing state representing a mutation, in the sense that if X(t) = (0, 0),
then a mutation has taken place along some lineage at some time t ≥ 0, before all
lineages have coalesced. The transition intensities for the CTMC are the following:

i. For any state (i, j), such that i+j ≥ 2, the transition (i, j) −→ (0, 0), corresponding

to a mutation along some lineage, occurs with intensity (i+j)θ
2 .

ii. When i ≥ 1, j ≥ 0 and i+ j ≥ 2, the transition (i, j) −→ (i− 1, j + 1) occurs with
intensity iM

2 . This transition corresponds to a migration for one gene from I1 to I2.
Similarly,

iii. when i ≥ 0, j ≥ 1 and i + j ≥ 2, the transition (i, j) −→ (i + 1, j − 1) occurs with
intensity jM

2 . This transition corresponds to a migration for one gene from I2 to I1.

iv. The transition (i, j) −→ (i − 1, j) occurs with intensity
(
i
2

)
, provided that i ≥ 2,

j ≥ 0. This transition corresponds to a coalescence event in I1. Similarly,

v. the transition (i, j) −→ (i, j − 1) occurs with intensity
(
j
2

)
, provided that j ≥ 2,

i ≥ 0. This transition corresponds to a coalescence event in I2.
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In the large N limit, all other transitions are impossible and thus occur with rate 0.

Figure 4.4 illustrates two hypothetical realizations of the discrete time transitions
between states made by the CTMC {X(t); t ≥ 0} on the state space S, until an absorbing
state is reached. The illustration in Figure 4.4a shows that the CTMC is absorbed into
state (0, 0) from state (2, 1), indicating that a mutation occurs on one of the lineages on
the coalescent at a time when there are 2 lineages in I1 and 1 lineage in I2. Figure 4.4b
on the other hand, shows a path which is absorbed into state (0, 1) from state (0, 2),
meaning that all lineages coalesce before a mutation occurs, and the final coalescence
event occurs in I2. Note however that these examples do not take into account that
{X(t); t ≥ 0} progresses in continuous time, and thereby merely depict which transitions
are made, and not when the transitions are made. In other words, Figure 4.4 illustrates
two realizations of the discrete time Markov chain embedded in the CTMC.

(a) Absorption into (0, 0). (b) Absorption into (0, 1).

Figure 4.4: Two examples of the path taken by {X(t); t ≥ 0} before reaching an absorbing
state. The initial state (marked with a black circle) is in both examples X(0) = (4, 2), indicating
that the initial sample sizes from I1 and I2 are n1 = 4 and n2 = 2 respectively. The absorbing
states (0, 0), (0, 1) and (0, 0) are marked as squares, a black square indicating which state the
CTMC is absorbed into.

To determine the generator matrix Q for {X(t); t ≥ 0}, one first needs to specify
a convenient ordering of the states in S. With a given order, one can then obtain an
explicit generator matrix Q by applying the transition intensities specified in i-v above.
We propose the following ordering: For (i, j), (k, l) ∈ S, let (i, j) < (k, l) if i+ j < k+ l,
or if i+ j = k+ l and i < k. In other words, the states are ordered as (0, 0), (0, 1), (1, 0),
(0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), and so on. As an example, with this ordering,
and for the special case n1 + n2 = 3 the generator matrix would equal
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Q =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
2θ
2

(
2
2

)
0 −σ(0,2) 2M

2 0 0 0 0 0
2θ
2 0 0 M

2 −σ(1,1) M
2 0 0 0 0

2θ
2 0

(
2
2

)
0 2M

2 −σ(2,0) 0 0 0 0
3θ
2 0 0

(
3
2

)
0 0 −σ(0,3) 3M

2 0 0
3θ
2 0 0 0

(
2
2

)
0 M

2 −σ(1,2) 2M
2 0

3θ
2 0 0 0

(
2
2

)
0 0 2M

2 −σ(2,1) M
2

3θ
2 0 0 0 0

(
3
2

)
0 0 3M

2 −σ(3,0)


(4.8)

where σ(i,j), (i, j) ∈ S, is determined so that the rows of Q sum to 0. For larger values of
n, the generator matrix is obtained similarly, by applying i-v. Note however, that since

|S| =
n+1∑
k=1

k =
(n+ 1)(n+ 2)

2
, (4.9)

the dimension of the intensity matrix is O(n2), and thus Q rapidly becomes very large.

From Equation (4.8), it is evident that for a total sample size n, the matrix Q can
be written as

Q =

(
03×3 03×δ

t T

)
where δ := (n+1)(n+2)

2 − 3, and hence for our purposes, the far more important matrices
t and T are easily extracted from Q. The dimensions of t and T are δ × 3 and δ × δ
respectively.

The ordering of the states plays an important role when one wishes to determine the
initial sample sizes as well. One obtains the initial sample size n1 and n2 by setting the
kth entry in the initial probability vector equal to 1, and the remaining entries equal
to 0, where k is the number corresponding to state (n1, n2) in the specific ordering
scheme. Also, since n1 + n2 = n, the initial sample size implicitly determines the size of
the intensity matrix Q by Equation (4.9). As an example, with the ordering proposed
earlier, the initial sample size n1 = 4 and n2 = 2 corresponding to the initial state (4, 2),
equals the 26th entry. One appoints this initial sample by setting the initial probability
vector α̃′ = (0′25, 1,0

′
2). The initial probability vector for the transient states is then

α = (0′22, 1,0
′
2). Since n1 + n2 = 6, the matrix Q in this case has dimension 28× 28.

As is well established by now, phase-type distributions provide a complete description
of the time T ∼ PH(α,T) it takes for the CTMC to reach one of the absorbing states.
In this section the Markov chain describes the genealogies of a sample of n1 + n2 genes
taken from the two islands, and the absorbing states correspond either to the complete
coalescence of the genealogies, or a mutation. If one wishes to exclude mutations from
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the model, it is of no restriction to set θ = 0, and in this case, the time until absorption
would represent the height of the coalescent. The distribution- and density functions,
as well as the moments of T are obtained by applying equations (2.7), (2.19) and (2.13)
respectively. Moreover, Equation (2.22) allows us to examine the probability that the
genealogy of an initial sample of genes contains a mutation before complete coalescence
of the sample is reached, as well as the probability that the complete coalescence occurs
on a specific island.

As an example, we consider the initial sample sizes n1 = 4, n2 = 2, and n1 = 6,
n2 = 0, and thereafter illustrate the density function fT for these initial values. We select
some values of the migration rate M , and fix the value of the mutation rate to θ = 0.05.
Moreover, we illustrate the probabilities for the absorbing states as a continuous function
of M . These illustrations are produced by a computer implementation of the methods
and results provided in this section, and are shown in Figure 4.5. It can be seen that
the PDF, as well as the absorption probabilities are strongly influenced by the selection
of the initial conditions.

4.2.2 Arbitrary number of islands, sample of size 2

In theory, it is possible to extend the model considered in Section 4.2.1 to the case where
the number of islands is k, by letting the state space consist of all (i1, i2, ..., ik) ∈ Nk,
such that k ≥ 2 and 0 ≤

∑
j ij ≤ n. The difficulty with such a state space, however,

is that the resulting intensity matrix would quickly become inconveniently large. To
avoid this complication we thus proceed by restricting ourselves to the case where the
initial sample consists of precisely 2 genes, and by recognizing the convenient symmetries
that follow. Indeed, by assuming that a migrating gene “chooses” the island to which
it migrates uniformly at random, the size of the state space can be reduced by simply
considering whether the 2 genealogies are on the same, or on different islands.

Excluding mutations

For the moment, exclude mutations from the model, and consider a CTMC {X(t); t ≥ 0}
on the state space S = {C,S,D}, where the states signify the following:

X(t) =


C if the 2 lineages have coalesced at time t.
S if the 2 lineages are on the same island at time t
D if the 2 lineages are on different islands at time t

(4.10)

We define state C as an absorbing state.
Coalescence of the lineages is possible only when the lineages are on the same island,

and in particular the transition S −→ C occurs at rate
(
2
2

)
= 1. Furthermore, since both

lineages leave their current island at rate M/2, the transition S −→ D occurs at rate M ,
and since it is assumed that a lineage chooses the island to which it migrates uniformly
at random, the rate at which the transition D −→ S occurs is M/(k − 1). The possible
transitions, and the corresponding transition rates are summarized in Figure 4.6.

Ordering the states C, S, D results in the generator matrix

32



T. Antonangeli

(a) (b)

(c) (d)

Figure 4.5: The PDF ((a) and (c)) of the time until {X(t); t ≥ 0} reaches one of the
absorbing states (0,0), (0,1) or (1,0), for varying values of the migration rate M . Figures (b)
and (d) illustrate the probabilities of absorption into the states in question, as a function of M .
In figures (a) and (b), the initial state X(0) equals (4, 2), whereas in figures (c) and (d), the
initial state X(0) equals (6, 0). In all figures, θ is kept at a constant value of 0.05. Note the
change in scale in both axis in figures ((a) and (c)).

Q =

0 0 0
1 −(M + 1) M

0 M
k−1 − M

k−1

 , (4.11)
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Figure 4.6: An illustration of the state space S. An arrow between two states indicates that a
transition between the states in the direction of the arrow is possible, and the rate at which the
transition occurs is indicated alongside the arrow.

and thus we have t′ = (1, 0) and

T =

(
−(M + 1) M

M
k−1 − M

k−1

)
.

The initial probability vector for the transient states, α, determines whether the
two initially sampled genes reside on the same island or on different islands; α′ = (1, 0)
indicates that X(0) = S, whereas α′ = (0, 1) indicates that X(0) = D. The matrix
T, together with the vectors t and α determine the PDF and the CDF, as well as
the moments for the time until the CTMC reaches the absorbing state C, according to
equations (2.8), (2.7) and (2.13) respectively. This time, Th, thus represents the time it
takes for the two sampled genes to reach their MRCA, or in other words the height of
the coalescent. The PDF of Th is illustrated in Figure 4.7, for different values of k and
M , as well as for the initial conditions determining whether the two genes are sampled
from the same island or from different islands.

The simplicity of the intensity matrix given in Equation (4.11), allows us to explicitly
determine the expected value of Th as a function of the migration rate M , for a model
with any given number k of islands. Since the determinant

det(T) =
M(M + 1)

k − 1
− M2

k − 1
=

M

k − 1
,

it follows that

−T−1 =
k − 1

M

(
M
k−1 M
M
k−1 M + 1

)
=

(
1 k − 1

1 (M+1)(k−1)
M

)
,

and thus that

−T−112 =

(
1 k − 1

1 (M+1)(k−1)
M

)(
1

1

)
=

(
k

kM+k−1
M

)
. (4.12)

By Equation (4.12), and by recalling that the moments of a random variable T ∼
PH(α,T) are given by Equation (2.13), the expected value of Th is given by
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(a) PDF with k = 2. (b) PDF with k = 3.

(c) PDF with k = 5. (d) PDF with k = 10.

Figure 4.7: The PDF of the time Th until coalescence of two genes in the symmetric island
model with k islands, computed according to Equation (2.8). The functions in gray indicate that
the two genes are sampled from different islands, whereas the functions in black indicate that
the two genes are sampled from the same island.

E[Th] =

{
k if the initial sample is taken from the same island,

k + k−1
M if the initial sample is taken from different islands.

(4.13)

The first part of Equation (4.13) agrees with Strobeck’s theorem, implying that the ex-
pected time until the coalescence of two genes sampled from the same island in the sym-
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metric island model is independent of the migration rate, see [Durrett, 2008, Sect. 4.5.1]
and [Strobeck, 1987]. Notice also that the second part can be obtained from the first by
applying Theorem 4.13 in [Durrett, 2008]. Figure 4.8 illustrates the expected value of
Th as a function of the migration rate M for k = 2 and k = 5. Furthermore, it is easy
to check that

(a) k = 2. (b) k = 5.

Figure 4.8: The expected value of the tree height Th as a function of M , for the two cases
k = 2 (left) and k = 5 (right). The dashed line is the expected value given that the two genes are
sampled from the same island, which by Equation (4.13) equals k for all M > 0. The continuous
line is the expected value given that the initial sample is taken from different islands.

(−T−1)212 =

 k k − 1 + (M+1)(k−1)2
M

1 + (M+1)(k−1)
M k − 1 + (M+1)2(k−1)2

M2

(1

1

)

=

 2k − 1 + (M+1)(k−1)2
M

k + (M+1)(k−1)
M + (M+1)2(k−1)2

M2

 ,

and thus by Equation (2.13) one eventually obtains

Var[Th] =


Mk2+2(k−1)2

M if the initial sample is taken from the same island,

k2(M+1)2−2k(2M+1)+2M+1
M2 if the initial sample is taken from different islands.

(4.14)
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We note that Equation (4.14) agrees Theorem 4.14 in [Durrett, 2008]. The variance of
Th, as well as the coefficient of variation

√
Var[Th]/E[Th], are illustrated in Figure 4.9, as

a function of the migration rate M , when the number of islands equals k = 2 and k = 10.

(a) k = 2 (b) k = 10

(c) k = 2 (d) k = 10

Figure 4.9: The variance (above) and the coefficient of variation (below) of Th as a function of
M , computed for the cases k = 2 (left) and k = 10 (right).

Including mutations

The model can be extended by introducing an additional absorbing state M, that is,
by considering a CTMC {X(t); t ≥ 0} on the state space S = {C,M,S,D}, where the
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states C,S, and D are as stated in Equation (4.10), and stateM signifies that X(t) =M
if a mutation has occurred at time t ≥ 0.

Since mutations occur with equal rate θ/2 on each lineage regardless of which islands
the genes reside on, and since there are two lineages at all times t before an absorbing
state is reached, we deduce that the transitions S −→ M and D −→ M both occur
at rate θ. The transition rates between the states C,S, and D remain the same as
before. The possible transitions, and the corresponding transition rates are summarized
in Figure 4.10.

Ordering the states C,M, S, D, the resulting intensity matrix for the CTMC equals

Figure 4.10: An illustration of the state space S when mutations are included in the model.

Q =


0 0 0 0
0 0 0 0
1 θ −(1 + θ +M) M

0 θ M
k−1 −

(
θ + M

k−1

)
 ,

which in turn provides the matrices

t =

(
1 θ
0 θ

)
, (4.15)

and

T =

(
−(1 + θ +M) M

M
k−1 −

(
θ + M

k−1

)
.

)
(4.16)

The PDF, the CDF, as well as the moments for the time T until the CTMC reaches
one of the absorbing states C or M are as usual obtained with the help of the matrices
T and t, as well as the initial probability vector for the transient states α. More
importantly though, the probability vector φ = (φC , φM) for the absorption probabilities
is given by Equation (2.22). Recall that the entry φC equals the probability that the
CTMC is absorbed into state C, whereas the entry φM equals the probability that
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the CTMC is absorbed into state M. In other words, with the current model including
mutations, φC = 1−φM is the probability that coalescence is reached prior to a mutation,
meaning that the two selected genes have been passed on through generations without
the occurrence of a mutation, thus making the genes identical. To obtain φ, we note
that the inverse of T given in Equation (4.16) equals

−T−1 =

 θ(k−1)+M
θ(1+θ+M)(k−1)+M(1+θ)

M(k−1)
θ(1+θ+M)(k−1)+M(1+θ)

M
θ(1+θ+M)(k−1)+M(1+θ)

(1+θ+M)(k−1)
θ(1+θ+M)(k−1)+M(1+θ)

 .

Multiplying −T−1 with the matrix t given in Equation (4.15) yields

−T−1t =

 θ(k−1)+M
θ(1+θ+M)(k−1)+M(1+θ) 1− θ(k−1)+M

θ(1+θ+M)(k−1)+M(1+θ)

M
θ(1+θ+M)(k−1)+M(1+θ) 1− M

θ(1+θ+M)(k−1)+M(1+θ)

 .

If the initial sample is selected from the same island, we have α′ = (1, 0), and thus
by Equation (2.22),

φC =
θ(k − 1) +M

θ(1 + θ +M)(k − 1) +M(1 + θ)
, (4.17)

whereas if the initial sample is taken from two different islands, we have α′ = (0, 1), and
hence

φC =
M

θ(1 + θ +M)(k − 1) +M(1 + θ)
. (4.18)

Equations (4.17) and (4.18) are demonstrated in Figure 4.11.

5 Conclusions and discussion

This study has shown that a variety of coalescent models can be analyzed in a matrix-
analytic framework, obtained by first identifying an appropriate CTMC, and thereafter
applying the theory for phase-type distributions.

Section 4.1 presents an intuitive phase-type distribution approach to the Kingman’s
coalescent, by considering the coalescent tree as a CTMC {X(t), t ≥ 0}, where X(t)
represents the number of ancestral lineages at time t. In particular, X(0) equals the
number of genes sampled at present time. In Section 4.1.1 we provide matrix expressions
for the PDF and the CDF, as well as the moments of the height Tnh of the Kingman’s
coalescent tree with an initial sample of n genes. This is done by stating the appropriate
block-partitioned generator matrix and initial probability vector, and thereafter referring
to the corresponding equations in Section 2. We then demonstrate that the resulting
expected tree height agrees with existing literature.

It is possible to distinguish a similarity between the generator matrix given in Equa-
tion (4.1) and the generator matrix given by Equation (2.15) in Example 2.2, where
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(a) θ held fixed. (b) M held fixed.

Figure 4.11: The probability φC that the two sampled genes coalesce before a mutation occurs
on the lineages, when the genes are originally sampled from the same islands (continuous line)
and from different islands (dashed line). The number of islands in the illustrations is k = 5,
and k = 15 (in grayscale). Figure (a) illustrates φC as a function of M , keeping fixed θ = 0.1,
whereas Figure (b) illustrates φC as a function of θ, keeping fixed M = 2.

the Erlang distribution was discussed. In fact, the distribution of Tnh is the generalized
Erlang distribution, or hypoexponential distribution, i.e. the distribution of a sum of
exponentially distributed random variables with (possibly) different rates [Bolch et al.,
2006]. In our case, Tnh =

∑
i ti, where 2 ≤ i ≤ n and each ti is exponentially distributed

with rate
(
i
2

)
.

Section 4.1.2 further discusses how the resulting matrix-analytic framework can be
applied to the Kingman’s coalescent, when mutations are included in the model. In
particular, we demonstrate that it is easy to obtain the probability φ0 that a gene is
passed from the MRCA to a set of individuals sampled at present time, without the
occurrence of a mutation in the genealogies. Also, the relationship between φ0 and
the Laplace-transform of the total tree length τ shown in Equation (4.6), results in
a convenient matrix expression for the moments of τ , without requiring any detailed
information on its distribution.

The application of phase-type distributions to the symmetric island model is dis-
cussed in section 4.2. In Section 4.2.1, we examine the special case with two islands
and arbitrary sample size, and the initial sample is assumed to consist of some number
of individuals from both islands. In particular, we investigate the time it takes either
to reach a mutation, or a complete coalescence of the initial sample, as well as the ab-
sorption probability distribution. What is not explicitly discussed however, are the tree
height, as well as the total tree length. These two quantities can nonetheless be easily
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obtained from the model; the time until absorption equals the height of the coalescent,
if the mutation rate is set to θ = 0. Furthermore, when θ > 0, the moments of the total
tree length can be obtained similarly as in Section 4.1 by implementing Equation (4.7).

It can be argued that the generator matrix for the CTMC in Section 4.2.1 is cumber-
some to work with, due to the relatively large matrix dimensions even for comparably
small sample sizes. It is in fact possible to reduce the corresponding state space by
merging together states that are equivalent by symmetry. This is done by considering
state (i, j) to be equivalent with state (j, i), thus diminishing the state space by approx-
imately a half. On the other hand, this reduction of the state space results in some loss
of information; for instance, it becomes impossible to deduce which island a complete
coalescence or a mutation would occur on.

Finally, in Section 4.2.2, we consider the special case of the symmetric island model
where the number of islands equals k, and where the initial sample consists of exactly
two genes. The initial sample is taken either from the same island, or from two different
islands, depending on the selection of the initial probability vector α for the transient
states. While excluding mutations, we determine the matrix forms of the density, dis-
tribution and moments of the tree height T , and from these we verify by expanding the
matrix expressions, that E[T ] and Var[T ] are consistent with the “non-matrix” forms
given in existing literature. Thereafter, when including mutations, we show how the
probability that two genes sampled at present time are identical, can very easily be
extracted from the model.

Although this study does not in itself provide new results in population genetics –
but rather contributes with a new perspective – it is interesting to ascertain that the
matrix-analytic framework that results from using phase-type distributions leads to such
a compact description of the coalescent. One advantage of our proposed strategy is that
it becomes easy to program a computer to perform the matrix calculations to obtain a
complete representation of a given coalescent model. Sufficient input variables for such
a program would be the initial sample size(s) and an initial probability vector α, as
well as a generator matrix Q – which in turn could be a function of potential migration
and/or mutation rates, depending on the structure of the coalescent. Another advantage
is that the derivation of some specific properties, such as the expectation and variance
of the tree height, becomes intuitive and clear – even without extensive experience in
population genetics. Moreover, the phase-type perspective that has been introduced,
can hopefully be extended to a wider range of population complications that have been
left out of this study. For instance, as already hinted by [Wooding and Rogers, 2002],
one could apply the framework to time-dependent population sizes. As another example,
the phase-type approach could be applied to more general population subdivisions than
the symmetric island model. Such population subdivisions, referred to as stepping stone
models [Hein et al., 2005, Sect. 4.6.3], relax the assumption that a gene migrates to any
other island with equal probability, and thus assume a more specific migration dynamic.
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