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Abstract

Reserve estimation or reserving is traditionally based on triangu-

lated aggregated loss data, i.e. payments or incurred claims which

are summed over origin periods and development periods. The goal

of this thesis is to look further into reserving from the viewpoint of

survival analysis. These models have been referred to as micro models

as they are based on detailed data from individual claims. Each claim

is treated as a process of an occurrence, reporting delay, payments and

finally a settlement. By modelling the claim’s process the complete

claim data of the outstanding liabilities is simulated. The model is

examined on a dataset from a Swedish insurance company and com-

pared to the reserve estimates obtained by the traditional chain-ladder

method. The data displays trend changes through time. The micro

model manages to capture these trend changes to a larger extent than

the chain-ladder and gives detailed information about the behaviour

of the data. The underlying assumptions of the chain-ladder method

are not fulfilled leading to a largely different estimate. Further look

is taken at the one-year reserve and premium risk, where the one-

year risk estimation is a natural extension of the micro model. We

conclude that micro models can offer multiple advantages over the

traditional methods. Such as reduced uncertainties in estimates and

detailed information about different characteristics of the data.
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1 Introduction

1.1 Background

Reserve estimation or reserving is traditionally based on triangulated aggre-
gated loss data, i.e. payments or incurred claims which are summed over
origin periods and development periods. These estimation techniques are for
example dealt with by Mack (1993) who has derived the formula for the stan-
dard error of the widely used chain-ladder reserve estimates and by England
and Verrall (2002) where a wide range of stochastic reserving models for use
in general insurance are discussed.

Whereas chain-ladder and other similar methods have been widely used
and studied, less has been published on micro reserving (or granular reserv-
ing) models where each claim or policy is the basic building block for the
model.

Arjas (1989) presented ideas on individual claims reserve estimates based
on point processes and Norberg (1993, 1999) and Haastrup and Arjas (1996)
have formulated further the mathematical framework. Based on these works
Antonio and Plat (2014) set up a likelihood and carried out an extensive case
study for which they conclude "the micro-model outperforms the aggregate
models under consideration and reveals a more realistic predictive distribu-
tion of the reserve". The present study continues from Antonio and Plat
(2014) with modifications and different data. Chapter 9 in Mikosch (2009)
contains interesting discussions and inference on similar models drawing in-
spiration from Norberg (1993).

1.2 Objective

The goal of this master thesis is to look further into reserving from the view-
point of survival analysis based on individual claims. Each claim is treated
as a process of an occurrence, reporting delay, payments and finally a set-
tlement. This corresponds to data consisting of the accident date, report-
ing date, payment and settlement dates along with corresponding payments.
Traditional reserving methods (chain-ladder, Bournhatter-Fergusson, sepa-
ration method) are based on data aggregated over accident and development
period, without considering all the detailed data available in modern insur-
ance companies. The present study encompasses the construction of a model
that simulates the complete claim data of outstanding liabilities. The model
is referred to as a micro reserving model.

The estimated reserve will be compared to the corresponding reserve es-
timated with chain-ladder method and the result discussed.
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A further look is taken into the one-year reserve risk and one-year pre-
mium risk where the risk estimation follows naturally from the model con-
struction. The risk will be compared to the risk estimated from one-year risk
models based on bootstrapped chain-ladder method.

The model is validated by comparison of the models prediction to ob-
served one-year payments as well as to the chain-ladder prediction. Sensitiv-
ity analysis of model assumptions are performed.

2 Model Outline
The claim process is modelled with the marked Poisson process previously
discussed by Norberg (1993, 1999) and Antonio and Plat (2014). Antonio
and Plat (2014) carried out a case study with a description of the likeli-
hood, parameter estimation and the simulations process. We repeat that
case study with a modification of claims which have not received a payment
and extensions to one-year premium and reserve risk. We start by giving a
short description of the reserving model and its main building blocks before
reviewing the theory in the following sections.

2.1 The Main Building Blocks

The model predicts the remaining payments of outstanding claims for histor-
ical years. The remaining payments are divided in two parts: RBNS which
stands for reported but not settled claims and IBNR which are incurred but
not reported to the insurance company claims. Four main characteristics
of the outstanding claims are estimated from historical claims and used to
simulate the outstanding payments. These are:

1. Reporting delay
The reporting delay is the time interval between an accident and the
time when the claim is reported to the insurance company. With an
estimate of this delay we predict the number of IBNR claims yet to
be reported and their reporting delay. With the addition of a simu-
lated accident date, the IBNR claims are seen as RBNS in a modelling
perspective.

2. Development process
After a claim has been reported it can receive multiple payments before
being settled. The settlement either comes with or without a payment.
The development process consists of the time-points of these events.
We predict the development process of all outstanding claims.
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3. Payments
In the development process we simulate time-points of payments. By
simulating the payments we can estimate the outstanding liabilities.

4. Probability of closing a claim without ever receiving a pay-
ment
Special measures are taken to exclude claims which have been reported
but never receive a payment. Some claims are closed without getting
any payment and these need to be adjusted for. From here on these
claims will be referred to as zero claims. The main interest is to esti-
mate the outstanding payments which gives reason to the exclusion of
zero claims from the model.

By simulating the payment process the result of the model will be an
empirical distribution of the outstanding reserve. One-year reserve and pre-
mium risk then becomes a natural extension.

3 The Likelihood of the Occurred Claims
The occurrence process is a non-homogeneous Poisson process with marked
distributions. The marked distributions consist of distributions for the delay,
time of payments and payments and settlement of the claim. For further the-
oretical background see Karr (1991) and Norberg (1993, 1999). The outline
given here is closer to that of Antonio and Plat (2014).

We will discuss the likelihood from the viewpoint of individual claims.
The process of each claim i is divided into three parts. The occurrence time
Ti, the reporting delay Ui and the development after the process has been
reported to the insurance company, Xi. Xi consists of the times, Vij, and
type of events, Eij, after the claim is reported. Payment events also include
a payment, Pij′ . Here, j runs over all events of the claim and j′ runs over
events that include a payment.

Claims are observed until time-point τ . The likelihood is constructed for
the reported claims where Ti + Ui + Vij ≤ τ . The exposure is denoted with
w(t).

3.1 The Occurrence Process

Let N(t) be the counting process for the number of claims in [0, t]. Further,
let ∆N(t) denote the number of claims on (t, t+ ∆t). The counting process
is assumed to be memoryless.
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We follow the exposition of Cook and Lawless (2007). The process is
adjusted for the reporting delay of each occurrence as well as the exposure
at time t, w(t). The intensity of the occurrence process is then defined as,

λ(t) = lim
∆t→0

P (∆N(t) = 1)P (U ≤ τ − t)w(t)

∆t
.

Assuming that only one event can occur at a given time t, the probabilities
for ∆N(t) are

P (∆N(t) = 1) = λ(t)P (U ≤ τ − t)w(t)∆t+ o(∆t),

P (∆N(t) = 0) = 1− λ(t)P (U ≤ τ − t)w(t)∆t+ o(∆t).

We consider the partition 0 = s0 < s1 < ... < sR = τ with ∆s = sr+1−sr.
As R increases ∆s→ 0. The distribution of the counting process is

P (N |λ) =
R∏
r=0

P (∆N(sr))

=
R∏
r=0

([λ(sr)P (U ≤ τ − sr)w(sr)∆sr]
∆N(sr)

×[1− λ(sr)P (U ≤ τ − sr)w(sr)∆sr]
1−∆N(sr)).

Now, ∆N(sr) = 1 on the occurrence time-points of each claim t1, ..., tn and
∆N(sr) = 0 otherwise. Using the approximation

log[1− λ(sr)P (U ≤ τ − sr)w(sr)∆sr]

≈ − λ(sr)P (U ≤ τ − sr)w(sr)∆sr,

we obtain the likelihood by dividing by
∏R

r=0 ∆s
∆N(sr)
r and letting R→∞:

L(·) =

(
n∏
i=1

λ(ti)P (U ≤ τ − ti)w(ti)

)
exp

(
−
∫ τ

0

λ(s)P (U ≤ τ − s)w(s)ds

)
Note that the limits of the integral do not change around the n events.

The occurrence process of the occurred claims is a Poisson process with
intensity λ(t)P (U ≤ τ − t)w(t).
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3.2 The Reporting Delay

The observed claims all have T + U ≤ τ . We denote the density of the
distribution P (U ≤ u|T + U ≤ τ) with fU(u|T + U ≤ τ). The likelihood of
the observed delays is

L(U |T + U ≤ τ) =
n∏
i=1

fU(ui|Ti + Ui ≤ τ)

The relationship between the conditional density fU(ui|Ti + Ui ≤ τ) and
the density of the delays from all claims (observed and unobserved), denoted
with fU(ui), is discussed further in section 4.2.

3.3 The Development Process

Each claim can have multiple payments before being settled with or without
a final payment. Let E = {sep, se, p} where p stands for payment, sep for
settled with a payment and se settled without a payment.

The development process thereby contains recurrent events of multiple
types. The derivation of the likelihood is similar to that of the occurrence
process. See Cook and Lawless (2007) for further theoretical background.

Let Nie(t) be the counting process for number of events e ∈ E on [0, t]
for claim i and ∆Nie(t) the number of events in (t, t+ ∆t).

The development process is assumed to be memoryless. The hazard rates
are defined by

he(t) = lim
∆t→0

P (∆Nie(t) = 1)

∆t

for all e ∈ E. As for the occurrence process we assume that only one event
can happen at a given time-point. Therefore,

P (∆Nie(t) = 1) = he(t)∆t+ o(∆t), ∀e ∈ E
P (∆Ni.(t) = 0) = 1−

∑
e

he(t)∆t+ o(∆t).

With a partition 0 = s0 < s1 < ... < sR = τi, where ∆s = sr+1 − sr,
τi = min(τ −Ti−Ui, Vi) and Vi is the time from notification until settlement.
We get
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P (N |h) =
R∏
r=0

∏
e

P (∆Nie(sr))

=
R∏
r=0

∏
e

[he(sr)∆sr]
∆Nie(sr)[1− he(sr)∆sr]1−∆Ni.(sr).

By using the same approximation as for the occurrence process we get

L(·) ≈
n∏
i=1

((∏
j=1

∏
e

he(vij)

)
exp

(
−
∑
e

∫ τi

0

he(s)ds

))

=
n∏
i=1

(∏
j

hδij1sep (vij)h
δij2
se (vij)h

δij3
p (vij)

)
exp

(
−
∫ τi

0

(hsep(s) + hse(s) + hp(s))ds

)
where vij is the time passed from notification until event j and n is the
number of claims.

The likelihood of the payments is

L(·) =
n∏
i=1

∏
j′

fP (ui + vij′),

where ui is the delay and vij′ is the time passed from notification until pay-
ment j′ and fP is the density for the payments. This is a slight modifica-
tion from Antonio and Plat (2014) where the likelihood of the payment is∏n

i=1

∏
j′ fP (vij′).

We do not consider the possibility of reopening closed claims. This situ-
ation could be approached by adding new claims.

4 Estimation
The complete likelihood of the claims reported before τ is
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L(·) =

(
n∏
i=1

λ(ti)P (U ≤ τ − ti)w(ti)

)
exp

(
−
∫ τ

0

λ(s)P (U ≤ τ − s)w(s)ds

)
×

n∏
i=1

fU(ui|Ti + Ui ≤ τ)

×
n∏
i=1

(∏
j

hδij1sep (vij)h
δij2
se (vij)h

δij3
p (vij)

)
exp

(
−
∫ τi

0

(hsep(s) + hse(s) + hp(s))ds

)

×
n∏
i=1

∏
j′

fP (ui + vij′)

Estimation of parameters is carried out via maximum likelihood. No ro-
bustness analysis of the parameters was performed but to include parameter
uncertainty of the delay and payment distribution we use the asymptotic
normality of the maximum likelihood estimator, θ̂, according to Casella and
Berger (2002). That is, we use that

√
n(θ̂ − θ) d−→ N(0, ν(θ)),

and as an approximation to ν(θ), the variance of θ̂, we use

V ar(θ̂) ≈ − 1

Î(θ̂)
,

were Î(θ̂) is the observed information number, i.e. the negative second deriva-
tive of the log likelihood. Other possibilities of including parameter uncer-
tainty is to apply bootstrap methods and Bayesian assumptions. Due to how
computationally heavy the model is, the normal assumption is applied.

We use the Akaike information criteria, or AIC, to select from the fitted
distributions, see Akaike (1973):

AIC = 2k − 2 log(L),

where k is the number of estimated parameters and L is the likelihood of the
distribution. The distribution with the lowest AIC is chosen.
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4.1 Intensities

The exposure and the intensities for the occurrence process are assumed to be
constant on intervals [dl−1, dl) where l = 1, ...,m. Let N oc(l) be the number
of occurrences on [dl−1, dl). Then by maximizing

L(·) =

(
m∏
l=1

(λlwl)
Noc(l)

)(
n∏
i=1

P (U ≤ τ − ti)

)

× exp

(
−

m∑
l=1

λlwl

∫ dl

dl−1

P (U ≤ τ − s)ds

)
,

the maximum likelihood estimator of the intensity for the process of occurred
claims becomes

λ̂l =
N oc(l)

wl
∫ dl
dl−1

P (U ≤ τ − s)ds
.

The intensity estimators λ̂l are dependent on the estimation of the delay
distribution.

4.2 Delay Distribution

The observed data is biased towards shorter delays since we cannot see the
complete data, see Parodi (2014). The observed data comes from the distri-
bution

P (U ≤ u|T + U ≤ τ).

The true underlying distribution, P (U ≤ u), is needed for the model. The
relation between the densities of these distribution is

fU(u|T + U ≤ τ) =
P (T + U ≤ τ |u)fU(u)

P (T + U ≤ τ)

=
P (T ≤ τ − u)fU(u)

P (T + U ≤ τ)
.

We assume that P (T ≤ τ − u) is distributed according to the exposure on
the interval [0, τ ], i.e.
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P (T ≤ τ − u) =

∫ τ−u
0

w(s)ds∫ τ
0
w(s)ds

.

The exposure is here assumed to be constant on yearly intervals. One could
for example add seasonal effects and make more sophisticated assumptions.

The denominator, P (T + U ≤ τ), is difficult to estimate. However, in
this case it is only a normalizing factor so derivation of the function is not
needed. The parameters of the delay distribution, P (U ≤ u), are estimated
by maximizing

n∏
i=1

∫ τ−ui
0 w(s)ds∫ a

0 w(s)ds
fU(ui)

P (T + U ≤ τ)
, u < τ.

Numerical methods are used to estimate the parameters of the distribution.
Since no delay larger than τ has been observed, P (U ≤ u) is undefined for
u ≥ τ . We will assume the same estimated parametric distribution for all u.

4.3 Hazard Rates

We assume that the hazard rates are constant on intervals, l, of length k on
[0, τi], where τi = min(τ − ti−ui, vi) and vi is the time from notification until
settlement. The likelihood of the development process is

L(·) =
n∏
i=1

(∏
j

h
δsepij
sep (vij)h

δseij
se (vij)h

δpij
p (vij)

)

× exp

(
−
∑
l

∫ min(kl,τi)

min(k(l−1),τi)

(hsep(s) + hse(s) + hp(s))ds

)
=

∏
l

h
Noc
sep(l)

sep (l)hN
oc
se (l)

se (l)h
Noc
p (l)

p (l)

× exp

(
−

n∑
i=1

∑
l

∑
e

he(l)

∫ min(kl,τi)

min(k(l−1),τi)

ds

)

where δeij is equal to 1 if event j for claim i is of type e and zero otherwise
and N oc

e (l) is the number of events of type e on interval l. The likelihood is
maximized with estimates
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ĥe(l) =
N oc
e (l)∑n

i=1

∫ min(kl,τi)

min(k(l−1),τi)
ds
.

where
∫ min(k(l+1),τi)

min(kl,τi)
ds can be interpreted as the time under risk for event i

on interval l. As further discussed in section 5.1, n changes each simulation
to take account for claims which have been reported but have not received
a payment. For simplification we take ĥe(l) to be the mean of all its values
for the number of simulations performed. Notice that the hazard rates are
assumed independent of the delay.

4.4 Payment Distribution

The payment distribution PP (u+v) is dependent on the time passed the from
accident, u+v. The amount paid tends to increase as the claim gets older. In
order to keep the model simple, we estimate the parameters of the payment
distribution separately on k different time-intervals. For u + v larger than
the first k − 1 periods we assume constant parameters. Other possibilities
could include dependence on time passed since the claim was reported or a
mixture thereof.

5 Predicting RBNS and IBNR claims
For estimating the reserves we have to estimate the RBNS (reported but
not settled) claims as well as the IBNR (incurred but not reported) claims.
For the IBNR we need to predict the occurrence process, the corresponding
delays and the development process, but for the RBNS claims the occurrence
process and the delays are already known.

Open claims that have not received a payment need to be considered first
since they could be closed without ever receiving payment (become a zero
claim). No special interest is taken in modelling zero claims so we therefore
adjust for them separately.

5.1 Logistic Regression

The probability of a claim i closing without a payment is modelled with
logistic regression. We let

Si =

{
1 if the claim will ever receive a payment,
0 if otherwise.
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Further, Si is assumed to be dependent on the time since the claim was
reported, i.e. τ − (Ti + Ui). The logistic regression model is

P (Si = 1|Ti + Ui ≤ τ) =
exp(β0 + β1(τ − (Ti + Ui)))

1 + exp(β0 + β1(τ − (Ti + Ui)))
+ εi,

where β0, β1 ∈ R. For simplicity we assume that εi ∼ N(0, σ2). Iteratively
re-weighted least squares are used to estimate the maximum likelihood es-
timators β̂0, β̂1, see Nelder and Wedderburn (1972). All claims are used for
the estimation.

Each one of the only reported claim has a predicted probability ŝi of
getting closed without a payment. By drawing u ∼ U(0, 1) the only reported
claims will either be settled directly or become a part of the other RBNS
claims.

The number of only reported claims that will continue into the develop-
ment process will both have an effect on the reserves for the RBNS claims
and on NIBNR, and thereby, the reserves for IBNR claims.

As previously discussed, the occurrence process where the zero claims are
excluded is assumed to be a Poisson process. This process can be seen as a
thinned Poisson process where all claims also make up a Poisson process.

5.2 Occurrence

In section 3.1 we saw that the occurrence process of the observed claims on
[dl−1, dl) is assumed to follow a Poisson distribution with intensities

λlwl

∫ dl

dl−1

P (U ≤ τ − s)ds.

In the same way the occurrence process of the IBNR claims on [dl−1, dl) is
assumed to be a Poisson process with intensity

λlwl

∫ dl

dl−1

1− P (U ≤ τ − s)ds.

Since the maximum likelihood estimator of λ is

λ̂l =
N oc(l)

wl
∫ dl
dl−1

P (U ≤ τ − s)ds
,

the occurrence process of the IBNR claims becomes

NIBNR(l) ∼ Poisson

N oc(l)

∫ dl
dl−1

1− P (U ≤ τ − s)ds∫ dl
dl−1

P (U ≤ τ − s)ds

 .
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Notice that the process is not dependent on the exposure since it cancels
out. The occurrences, Ti ∈ [dl−1, dl) where i = 1, ..., NIBNR(l) are assumed
to have the distribution

P (Ti = ti) =
P (Ui ≥ τ − ti)∑dl−1

k=dl−1
P (Ui ≥ τ − k)

,

on each interval [dl−1, dl). This is a modification from Antonio and Plat
(2014) were the occurrence times are assumed to be uniformly distributed on
each interval [dl−1, dl). Here, [dl−1, dl) is taken to be one year.

5.3 Delay

The delays of the observed claims come from the distribution

P (U ≤ u|T + U ≤ τ),

while the delays of the IBNR claims come from

P (U ≤ u|T + U > τ).

For each IBNR claim, with simulated occurrence time ti we draw pi ∼ U(0, 1).
Since we have estimated P (U ≤ u) (see section 4.2) we simulate ui by in-
verting

P (U ≤ ui|ti + U > τ) = pi,

⇒ P (U ≤ ui)− P (U ≤ τ − ti)
P (U > τ − ti)

= pi,

⇒ P (U ≤ ui) = piP (U > τ − ti) + P (U ≤ τ − ti).

5.4 Development

The development process is the most computationally heavy part of the whole
prediction process. For each claim the following steps are carried out:

1. Simulate vnext. Then, ti +ui + vnext is the time-point of the next event.

2. Simulate the type of event, se, sep or p.

3. If event includes a payment, simulate payment.

4. If event is not closed, start again from step 1.
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For simulating vnext, we start by looking at the distribution of P (V ≤ vnext).
The cumulative distribution function can be written as a function of the
cumulative hazard function

P (V ≤ vnext) = 1− exp

(
−
∫ vnext

0

∑
e

he(s)ds

)
.

However, the time-point of the next event depends on c, the time passed
since the report date, so we draw vnext from the distribution

P (V ≤ vnext|V > c).

For the first event of the IBNR claims we therefore have c = 0. To simulate
from P (V ≤ vnext|V > c) we invert it by drawing p ∼ U(0, 1) and get

P (V ≤ vnext|V > c) = p,

⇒ P (V ≤ vnext) = P (c ≤ V ) + pP (V > c),

⇒ 1− exp

(
−
∫ vnext

0

∑
e

he(s)ds

)
= P (c ≤ V ) + pP (V > c),

⇒
∫ vnext

0

∑
e

he(s)ds = − log(1− (P (c ≤ V ) + pP (V > c))).

Now the equation can be solved for vnext. We calculate the vector

(vnext,

∫ vnext

0

∑
e

he(s)ds),

for a large set of vnext. When the events are simulated we draw p ∼ U(0, 1)
and calculate log(1 − (P (c ≤ V ) + pP (V > c))). Thereafter, we search for
vnext in the vector.

The type of event is determined by the probability of each event at that
particular time-point

he(vnext)∑
e he(vnext)

.

If e ∈ {sep, p} a payment is drawn from the payment distribution, PP (ui + vij′).
The process continues until all claims are settled.
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5.5 Best Estimate

Summing over all the simulated payments from the RBNS and IBNR claims
we get an estimate of the corresponding reserves, RRBNS and RIBNR respec-
tively. RRBNS and RIBNR are simulated M times to obtain an empirical
distribution for the total reserve

Rj = RRBNS,j +RIBNR,j.

In each iteration before the model is recalculated we:

1. Predict which of the claims that have only been reported will be clas-
sified as RBNS claims.

2. Draw new parameters from the delay distribution (normality assump-
tion, see section 4).

3. Draw new parameters for the payment simulation (normality assump-
tion, see section 4).

The best estimate is then given by:

B̂E =
1

M

M∑
j=1

Rj.

Standard deviation and other risk measures can be calculated from the
empirical distribution of the best estimate. In this process, we have accounted
for both process and estimation variance. One could though consider param-
eter uncertainty to a larger extent by looking at the uncertainty of the hazard
rates and the logistic regression. Moreover, we have not discounted the best
estimate and not considered inflation. The expense reserve is not included
in the best estimate.

6 Risk
From the model we obtain a distribution of the best estimate, see section 5.5.
In the Solvency II directive the solvency capital requirement (SCR) for the
standard formula is based on the metric set as 99, 5% Value-at-Risk (VaR)
over a one-year horizon. We therefore look at the one-year reserve risk and
the one-year premium risk. We use the definition of one-year reserve risk
presented in Ohlsson and Lauzeningks (2009) and apply the same method to
the premium risk. See also Merz and Wüthrich (2008) for further discussion.
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6.1 One-year Reserve Risk

The reserve risk concerns the risk in the run-off result from outstanding
claims from past years. That is, the risk that the ultimo cost will deviate
from earlier estimations. The one-year reserve risk measures the deviation
from the ultimo cost estimated at time t from the ultimo cost estimated one
year later, at t+ 1, for claims occurring up to t.

In one-year the ultimo cost will consist of payments made in (t, t + 1],
denoted with Ct+1, and the reserve evaluated at t+ 1, Rt+1. The SCR of the
reserve is the 99, 5% quantile of the loss distribution

E[Rt]− (Ct+1 +Rt+1).

We take the expected value of Rt since the opening reserve is not consid-
ered stochastic, as in Ohlsson and Lauzeningks (2009). E[Rt] is estimated
with B̂E as in section 5.5. In all following sections, we simplify the notation
by not distinguishing between the stochastic variables Rt, Ct+1 and Rt+1 and
their respective simulated estimates as it is clear from the context which of
them is referred to. Both Ct+1 and Rt+1 can be calculated from the reserving
model by the following 3 steps.

1. We start by estimating Rt as before.

2. From the simulation of Rt we calculate Ct+1 that consists of all pay-
ments which occur before t+1. Then we have a new set of open claims
and the number of claims observed, Noc.

3. Using new parameters for the delay and payment distributions, the
reserve, Rt+1, is estimated standing at time-point t+ 1.

In step 3, when estimating Rt+1, it would be optimal to re-evaluate the
model by estimating all model components again (distributions, intensities,
logistic regression etc.) using all information available at t + 1. We do
not re-evaluate the model here due to how computationally heavy it would
be. Instead, parameter uncertainty is taken into account by drawing new
parameters (from their asymptotic normal distributions, see section 4) for
the delay and payment distributions to give more spread in the result. No
correlation is assumed between the parameters used to estimate Ct+1 and
Rt+1.

The way of calculating Ct+1+Rt+1 is consistent with the calculation of Rt.
Iterating M times gives an empirical distribution of E[Rt] − (Ct+1 + Rt+1).
Now, the one-year VaR can be calculated along with other risk measures and
statistics.
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6.2 One-year Premium Risk

Premium risk is the risk that the cost from next years written polices and
costs from unexpired contracts will be larger than expected. In a one-year
horizon this implies that the payments of the first year, Ct+1 and the out-
standing reserves Rt+1 are not larger than E[Rt].

Since premium risk measures the risk for next year, all claims are IBNR.
Noc(t+ 1) = 0 and NIBNR(t+ 1) needs to be forecasted. We use the approx-
imation

NIBNR(l + 1) ∼ Poisson

(
w(l + 1)N oc(l)

w(l)

(
1 +

∫ dl+1

dl
1− P (U ≤ τ − s)ds∫ dl+1

dl
P (U ≤ τ − s)ds

))
,

where l+ 1 denotes the segment (t, t+ 1]. The number of claims is expected
to change proportionally with the exposure. One could also use historical
data further back to predict NIBNR(t + 1), however last years exposure is
here assumed sufficient for the prediction. This is just an illustration of
the technique and other more sophisticated ways of modelling w(t) would be
used in practice. The following steps are carried out to calculate Ct+1 +Rt+1.
Observe that steps 3-4 are identical to steps 2-3 in the reserve risk calculation.

1. Draw number of claims for next year NIBNR(l + 1) from the Poisson
distribution.

2. Estimate Rt with the new NIBNR(l + 1).

3. From the simulation of Rt we calculate Ct+1 which consists of all pay-
ments that occur before t + 1. We have a new set of open claims and
the number of claims observed, N oc.

4. Using new parameters for the delay and payment distributions, the
reserve, Rt+1, is estimated standing at time-point t+ 1.

As for the reserve risk the optimal way would be to estimate the new pa-
rameters in step 4 from data until time-point t + 1. To include correlation
between reserve risk and premium risk one could simulate Ct+1 simultane-
ously for both the reserve risk and the premium risk and then re-evaluate
the model. Due to computation time that was not done. The parameters
are drawn from their distribution assuming no correlation between Rt+1 and
Ct+1 or between reserve and premium risk. By iterating steps 1-4 M times
we obtain an empirical distribution for Ct+1+Rt+1. Thereafter, risk statistics
easily follow.
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7 Chain-Ladder
The following section on the chain-ladder method is only supposed to give
a short description of how the chain-ladder algorithm works. For further
information, see Mack (1993). Classical reserving methods are based on
aggregated data triangles. Data is aggregated by accident period i and de-
velopment period j where i, j = 1, ..., I. An example of an aggregated data
triangle is

C1,1 C1,2 C1,3

C2,1 C2,2

C3,1

where Ci,j is the accumulated total payment from accident period i payments
until development period j. The accident periods are assumed to be inde-
pendent. The underlying assumption of the chain-ladder method is that the
same percentage of payments are paid out in each development period, i.e.

E[Ci,j+1|Ci,1, ..., Ci,j] = Ci,jfj,

for 1 < i < I, 1 ≤ j ≤ I − 1. The development factors, f̂j, are calculated as

f̂j =

∑I−j
i=1 Ci,j+1∑I−j
i=1 Ci,j

, j = 1, ..., I − 1.

By using the development factors we can estimate the final cumulative
payment for each claim year,

Ĉi,n = f̂j · · · f̂n−1Ci,j,

and the reserve R̂ =
∑

i Ĉi,n − Ci,i.
An underlying variance assumption of the chain-ladder method by Mack

(1993) is

Var[Ci,j+1|Ci,1, ..., Ci,j] = σ2
jCi,j (1)

for 1 < i < I, 1 ≤ j ≤ I − 1.
The mean square error (MSE) of the estimator of the reserve R̂i (also

called mean square error of prediction, MSEP) is derived analytically in
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Mack (1993). The MSE consists of the process variance and the estimation
variance,

MSE[R̂i] = Var[Ci,I |D] + (E[Ci.I |D]− Ĉi,I)2

where D = {Ci,j|i+ j ≤ i+ 1} is the observed data.
Various stochastic versions of the chain-ladder have been proposed, see

England and Verrall (2002). Here, we will bootstrap Mack’s model to obtain
an estimate of the uncertainty, see England and Verrall (2006).

From equation 1 we have for the individual development factors, fi,j =
Ci,j+1/Ci,j, that

E[fi,j|Ci,j−1] = fj,

Var[fi,j|Ci,j−1] =
σ2
j

Ci,j−1

.

For an estimate of σj we use the unbiased estimator from Mack (1993)

σ̂2
j =

1

I − j − 1

I−j∑
i=1

Ci,j(
Ci,j+1

Ci,j
− f̂j)2,

for 1 ≤ j ≤ I − 2 and

σ̂2
I−1 = min(σ̂4

I−2/σ̂
2
I−3 min(σ̂2

I−3, σ̂
2
I−2)).

See Mack (1993) for justification of σ̂2
I−1. The scaled Pearson residuals of the

model are

ri,j =

√
Ci,j(fi,j − f̂j)√

σ̂j
.

For simplicity we do not consider any bias adjustments as suggested in Eng-
land and Verrall (2006). Further the residual r1,n is excluded from the sim-
ulations, since it is only zero. By bootstrapping the residuals rbi,j we obtain
the individual development factors

f bi,j = rbi,j
σ̂j√
Ci,j

+ f̂j.

From f bi,j we can estimate the bootstrap development factors
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f̂ bj =

∑n−j+1
i=1 Ci,jf

b
i,j∑n−j+1

i=1 Ci,j
.

To obtain the predictive distribution we need to add a forecasting step to
include the process error. England and Verrall (2006) suggests

C∗i,n−i+2|Ci,n−i+1 ∼ Normal(f̂ bjCi,n−i+1, σ̂
2
jCi,n−i+1) (2)

for i = 2, ..., n and

C∗i,j|C∗i,j−1 ∼ Normal(f̂ bjC
∗
i,j−1, σ̂

2
jC
∗
i,j−1)

for i = 3, .., n and j = n− i + 3, ..., n. With a normal assumption there is a
possibility for simulating negative claims. When estimating the one-year risk
we later assume a log-normal distribution. Therefore, we will instead of the
normal assumption assume a log-normal distribution with estimates derived
from the assumed mean and variance under the normal assumption.

From the simulated C∗ we calculate the bootstrap estimates of the reserve
Û b and obtain an empirical distribution of the estimated reserve.

An analogous measure of the MSEP is the variance of the bootstrapped
simulated distribution, see discussion in England and Verrall (2006).

When estimating the reserve with the chain-ladder method, we take the
accident and development period to be one year and use B = 10 000 simula-
tions.

7.1 One-year Reserve Risk

As in section 6.1 we follow the definition of one-year reserve risk given by
Ohlsson and Lauzeningks (2009). We also follow the description of how the
one-year risk can be calculated. Again, we want to estimate the distribution
of

E[Rt]− (Ct+1 +Rt+1).

In Ohlsson and Lauzeningks (2009) several possibilities are suggested to
simulate the new diagonal, Ct+1 =

∑n
i=2(Cn−i+2,i−Cn−i+1,i). One of them is

to simulate next years payment from a log-normal distribution with a mean
given by the chain-ladder estimate and the variance given by equation 1.

B estimates of f̂ bj are simulated by bootstrapping the triangle as described
in 7. In each simulations, a new diagonal is simulated using equation 2 giving
an estimate of Ct+1 and with the new diagonal the chain-ladder factors are
re-estimated giving the values of Rt+1.
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7.2 One-year Premium Risk

The premium risk cannot be estimated in the same way as in section 6.2 since
Rt cannot be simulated directly with the chain-ladder method. Instead, we
follow the simplified premium risk definition of Ohlsson and Lauzeningks
(2009),

P − E − (Ct+1 +Rt+1)

where P is the earned premium expected and E is the operating expenses
which both are considered non-random. Since P and E are considered con-
stant we only look at the distribution of the predicted claim cost,

Ct+1 +Rt+1.

In Ohlsson and Lauzeningks (2009), several possibilities are suggested to sim-
ulate Ct+1. One of them is to use the corresponding loss ratio with volatility
estimated as in QIS4. For simplicity, and to keep consistency between the
reserve and premium risk estimation, we assume a log-normal distribution
for the payments, Ct+1. The mean and variance are estimated by fitting lin-
ear regression through the historical loss ratios. Unlike the reserve risk the
mean and variance of Ct+1 is constant for all simulations. Having drawn B
estimates of Ct+1 we can calculate Rt+1 by using the B development factors
simulated as in section 7.

8 Data
The claim-data comes from a subset of a portfolio and insurance contracts
from a Swedish insurance company. The original claim data is not described
further as it is not necessary for this type of analysis. The data consists
of claim payments for 9 consecutive years. In the dataset there are around
11 000 unique claims. The claims can both be settled directly as well as
receive multiple payments before being settled. In total the dataset contains
around 22 000 events. In extensions to these claims we also use information
from around 4 000 zero claims. The results are presented in a fictional cur-
rency for reasons of confidentiality. Trends in the data are viewed as changes
in percentage for the same reasons.

Table 1 includes a short description of the data variables. Corresponding
stochastic variables are denoted with capital letters, Ti, Ui etc.

The data has been modified beforehand to adjust for negative payments.
If a negative payment occurs and there exists a payment with a matching
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positive amount the payments are cancelled out. The latest payment with
a matching positive amount is cancelled out. If no payment matches the
negative amount the amount is subtracted from previous payments. The
data is not inflation adjusted.

Table 1: Variables used from claim records. Corresponding stochastic vari-
ables are denoted with capital letters, Ti, Ui etc.

Variable Description
ti Time of occurrence of claim i.
ui Delay from the time of occurrence until the insurer is notified.
vij Time from notification of claim i until event j.
eij Type of event j for claim i.
pij′ Payment of event j′ for claim i.
w(t) Exposure, gross earned premium.

9 Results
We start by stating the assumptions and distribution choices made for the
model and present an analysis of trends in the data. We show the result of
a study on the amount of simulations needed in order to reach convergence.
The results from the model are compared to results from the chain-ladder
method. For further validation of the model we back-test the model by com-
paring predicted one-year payments with observed payments and perform a
sensitivity analysis of the assumptions and model choices made in the be-
ginning. Finally, we present the results of the one-year reserve and premium
risk.

9.1 Model Assumptions and Estimation

We make the following model assumptions:

1. Logistic regression
A plot of the logistic regression is displayed in Figure 1. In each simu-
lation, each claim which has only been reported but has not received a
payment is either classified as RBNS claim or a zero claim.

2. The delay distribution
For simplification, the only reported claims (which have never received
any payment) are not used for the estimation of the delay distribution.

26



0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time in days

P
ro

ba
bi

lit
y 

of
 E

ve
nt

s 
w

ith
 P

ay
m

en
t

Figure 1: A plot of the logistic regression. The x-axis depicts the time
from reporting until either an event including a payment (1) or closing of a
claim without a payment (0). The plot also includes the events the logistic
regression is estimated from.

The only reported claims are around 3% of the claims in each simula-
tions. The mean and standard deviation of their delays do not show
large deviation from the delays of the other reported claims.

We assume a log-normal distribution for the delays. The log-normal
distribution gives the lowest Akaike information criterion (AIC) of the
Weibull, exponential and gamma distributions, which were the tested
distribution. Due to the heavy tail of the log-normal distribution we
apply a 30 year cap on the reporting delay.

Numeric problems occur for the fitting of the gamma distribution which
lead to exclusion from the distribution choices. A plot of the fitted
distribution is displayed in Figure 2.

3. Intensities
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Figure 2: A histogram of the observed claims. The estimated distribution
is also plotted. The estimated distribution is, as discussed in section 4.2,
adjusted for the bias in the observed data. We here only view the plot for
delays shorter than 1000 days to get a clearer plot.

The intensities depend on the delay distribution and the number of
RBNS and closed claims. The intensities are stochastic because in
each simulation the number of RBNS claims changes to adjust for zero
claims and we draw new parameters for the delay distribution from
their asymptotic distributions (see section 4). The ratio of the means
λ̂i/λ̂1 are displayed in Figure 3a.

4. The payment distribution
The payments are assumed to be log-normally distributed. Weibull
and gamma distributions were even tested but gave a higher AIC. The
distributions are constant on intervals of 365 days with the same dis-
tribution after 4 intervals. Numerical problems occur with the fitting
of the gamma distribution which lead to exclusion from distribution

28



choices.

5. Hazard rates
The hazard rates are assumed to be constant on intervals of 60 days.
After 20 intervals we assume no further changes in the hazard rates.
See further discussion on the estimation in section 4.3. The hazard
rates are displayed in Figure 3.

9.2 Trends in the Data

By investigating how the estimated parameters change when the underlying
data is constrained to shorter time-intervals, we gain understanding of un-
derlying trends in the data. We look at the delay, hazard rate and payment
amount. We also take a look at and their amounts and number of open and
closed claims.

In Table 2 we see the change in mean delay by occurrence and reporting
year. The means have been normalized by the mean from the first reporting
year of occurrence year x. The average reporting delay has decreased visibly
for the claims that are reported the first year. Trends during later years are
not obvious.

Table 2: The change in mean of the delay depending on occurrence year
and reporting year. The delays have been normalized by the mean from the
first reporting year of occurrence year x. The average reporting delay has
decreased visibly for the claims that were reported the first year. Trends
during later years are not as visible.

Reporting year
Occur- 1 2 3 4 5 6 7 8 9
rence
year
x 1.00 3.39 11.66 17.56 24.32 34.71 37.93 43.53 50.39
x+ 1 1.00 4.29 11.75 18.85 24.00 30.15 36.20 43.90
x+ 2 1.02 3.47 11.58 17.83 25.12 30.80 37.46
x+ 3 1.00 3.81 11.58 17.86 23.83 29.58
x+ 4 0.97 3.78 12.27 17.31 24.03
x+ 5 0.92 4.20 11.63 18.31
x+ 6 0.76 3.95 12.14
x+ 7 0.73 3.53
x+ 8 0.75
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(b) Settled without a payment.
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(c) Settled with a payment.
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(d) Payment.

Figure 3: Figure 3a displays the ratio of the intensities, λ̂i/λ̂1. Figures 3b-
3d display the estimated hazard rates. The hazard rates are assumed to be
constant on 60 days. After 20 periods we assume no further changes in the
hazard rates.

The results from analysing the change in payment amounts are presented
in Table 3. The results are normalized in the same way as the delay. We see
an increasing trend with longer time passed from the accident. There is not
a clear trend across occurrence years.

Table 4 shows the relative changes in the hazard rates. The hazard rates
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Table 3: The mean of the payments depending on occurrence year and devel-
opment year. The payments have been normalized by the mean from the first
reporting year of occurrence year x. We see an increasing trend with longer
time passed from the accident. There is not a clear trend across occurrence
years.

Reporting year
Occur- 1 2 3 4 5 6 7 8 9
rence
year
x 1.00 1.76 3.4 3.55 1.76 6.54 1.17 6.96 2.56
x+ 1 0.92 2.05 3.49 3.57 5.52 4.37 5.43 2.69
x+ 2 1.22 2.35 3.7 3.1 4.7 4.02 3.12
x+ 3 1.32 2.06 3.29 2.81 4.47 3.07
x+ 4 1.61 1.96 2.72 3.58 3.59
x+ 5 1.16 2.19 3.1 2.85
x+ 6 1.09 2.06 2.74
x+ 7 1.6 2.34
x+ 8 1.25

are estimated with data from the different occurrence years and here we
assume no further changes in the hazard rates after 5 intervals (whereas in
the model it is 20 intervals). The hazard rates have been normalized by the
corresponding hazard rates from occurrence year x and the first hazard rate
period. The hazard rates for settled with a payment events have increased
while the other types do not show as clear a trend.

Another interesting characteristic of the dataset being analysed is the
amount of open and closed claims throughout occurrence and development
years. In Table 5 we present an overview of the amount of open and closed
claims. We see significant changes between the years. More claims are settled
earlier which leads to less open claims. A large deviation is observable in the
year x + 8. Note that the table values have not been adjusted for changes
in exposure. Zero claims have been adjusted for (this is only one possible
outcome as the number of open claims changes each simulation).
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Table 4: Relative changes in the hazard rates. The hazard rates are estimated
with data from the different occurrence years and here we assume no further
changes in the hazard rates after 5 intervals. The hazard rates are normalised
with he(1) estimated on occurrence year x. The hazard rates for settled with
a payment events have increased while the other types do not show as clear
a trend.

Hazard rate period
Type Occur- 1 2 3 4 5

rence year
Se x 1.00 2.04 1.94 1.41 4.98

x+ 1 1.18 1.95 1.19 1.92 5.14
x+ 2 1.38 1.51 2.05 3.15 5.06
x+ 3 1.50 1.69 0.83 1.57 4.65
x+ 4 1.08 1.32 1.15 1.19 4.18
x+ 5 0.61 1.89 2.87 1.54 4.54
x+ 6 0.89 2.55 3.34 1.37 4.28
x+ 7 1.95 6.56 5.04 3.49 2.93
x+ 8 4.00 16.89 14.06 4.38 6.54

Sep x 1.00 0.14 0.08 0.02 0.11
x+ 1 0.84 0.13 0.08 0.03 0.11
x+ 2 0.92 0.12 0.06 0.08 0.13
x+ 3 1.42 0.20 0.12 0.06 0.12
x+ 4 1.83 0.18 0.09 0.06 0.10
x+ 5 2.22 0.21 0.07 0.03 0.11
x+ 6 2.32 0.29 0.14 0.06 0.11
x+ 7 3.53 0.37 0.20 0.11 0.10
x+ 8 6.57 0.91 0.40 0.22 0.13

P x 1.00 0.41 0.19 0.09 0.13
x+ 1 1.06 0.36 0.16 0.11 0.12
x+ 2 0.96 0.37 0.15 0.08 0.12
x+ 3 1.00 0.41 0.18 0.13 0.14
x+ 4 0.99 0.38 0.18 0.09 0.11
x+ 5 0.98 0.35 0.19 0.11 0.10
x+ 6 0.84 0.47 0.22 0.12 0.10
x+ 7 0.95 0.39 0.17 0.09 0.10
x+ 8 0.83 0.57 0.30 0.10 0.10
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Table 5: The number of settled and open claims. Here, we see a significant
change between the years. More claims are settled earlier which leads to less
open claims. A large change is observable the year x + 8. Note that the
table values have not been adjusted for changes in exposure. Zero claims
have been adjusted for (this is only one possible outcome as the number of
open claims changes each simulation).

Development year
Occur- 1 2 3 4 5 6 7 8 9
rence
year

Settled claims
x 1.00 1.72 1.95 0.93 0.34 0.29 0.43 0.13 0.17
x+ 1 1.18 1.70 2.34 0.97 0.47 0.60 0.19 0.18
x+ 2 1.08 2.30 1.93 1.41 0.66 0.72 0.20
x+ 3 2.29 1.81 3.09 1.96 0.93 0.66
x+ 4 3.00 2.82 2.56 3.32 1.37
x+ 5 4.75 3.16 3.33 4.19
x+ 6 5.76 3.89 5.13
x+ 7 8.69 6.53
x+ 8 13.41

Open claims
x 1.00 0.65 0.34 0.19 0.15 0.11 0.04 0.03 0.01
x+ 1 1.16 0.82 0.38 0.25 0.20 0.07 0.04 0.02
x+ 2 1.16 0.77 0.44 0.26 0.16 0.04 0.02
x+ 3 1.37 1.14 0.59 0.29 0.16 0.06
x+ 4 1.71 1.41 1.00 0.427 0.21
x+ 5 2.00 1.63 1.07 0.32
x+ 6 2.06 1.64 0.70
x+ 7 2.03 1.21
x+ 8 0.97
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9.3 Determining the Number of Simulations

As previously mentioned, the model is computationally heavy. We aim to
have enough simulations for a stable model and to diminish simulation error.
We run the model multiple times for an increasing number of simulations,M ,
and then examine for which M the best estimate and the standard deviation
start to stabilize. A new simulation seed is set for each choice of M to
eliminate dependent results. Figure 4 shows how the results are stabilized at
M = 10 000. We use 10 000 simulations in all following calculations.
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Figure 4: An analysis of the amount of simulations needed for the study.
After 10 000 simulations both the mean and the standard deviation have
stabilized.

9.4 Comparison to Chain-Ladder

The reserve estimated with the micro model is compared to the reserve
estimated with the chain-ladder method. Chain-ladder is widely used for
benchmarking. However, in practice one might chose another method for
estimating the reserve.

In Table 6 we see the reserve and its standard deviation estimated with
both the micro reserving model and chain-ladder method. The chain-ladder
estimate is considerably larger than the estimated reserve from the micro
reserving model. These two models have large structural differences, which
with a closer look explains the different outcomes.
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Table 6: The estimated reserve and its standard deviation of the micro reserv-
ing method and chain-ladder. There are large structural differences between
the methods which lead to the different estimated reserves.

Micro model Chain-ladder
RBNS 157 963 799 x
IBNR 148 427 303 x
Reserve 306 391 102 553 542 901
Standard deviation 40 638 609 65 032 603
99.5% quantile 469 387 749 753 818 599
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(a) The reserve, micro model.
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(b) The reserve, chain-ladder.

Figure 5: Figure 5a shows the empirical density of the reserve estimated
with the micro model. The expected value is 306 millions. Figure 5b shows
the empirical density of the reserve estimated with the chain-ladder method
which has expected value 554 millions. The densities show large differences.

The underlying assumption of the chain-ladder that the same percentage
of payments are made each development period between accident periods is
not fulfilled. Both reporting time and the time from reporting to settlement
have decreased during the observed period. With the micro model the de-
lay distribution and the hazard rates are estimated from individual claims.
Volume changes are captured with the micro reserving model, while with the
version of the chain-ladder used that is not the case. With the increasing
volume, earlier years do not have as a large effect as later years.
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As seen in section 9.2 there are large changes in the number of open
and settled claims towards the end of the observed period. The chain-ladder
only takes into account the total sum paid out, and not how many claims
are open. The micro reserving model takes this into account as well as how
many claims are settled. The last development year has a large decrease in
the number of open claims compared to the other years. This directly affects
the size of the RBNS reserve of the micro model. The large number of settled
claims increases the number of IBNR claims estimated by the model.

With shortening delays it can be a fact that the main mass of the claims
will have a shortened reporting time while the claims with a really long
reporting time represent different kind of claims where we do not expect a
drastically shortened reporting time. In the micro model we have violated
the assumptions of independent observations since there is a downward trend
in the reporting time. These trends are smoothed out by using a single
fitted distribution. However, separate modelling of the delays increases the
flexibility of the model and allows for special adjustments from experts.

Another fact which needs to be taken into consideration is that the hazard
rates are assumed to be independent of the delay. To analyse if that is the
case we assume that the hazard rates are constant after 5 intervals, and look
at the hazard rate estimates estimated from disjoint subsets of the data. The
data is split up depending on the reporting day with splitting points being
50, 300 and 800 days. In Table 7 we see the results. We see trends with
an increasing delay in the data. However since there are also trends across
time in the data it is not possible to conclude whether these are because of
shortened settlement time or because of a dependency between delay and
payment pattern. The payments, however, are dependent on the time passed
since the accident. That is not a case in Antonio and Plat (2014). With this
data, it gave poor results to have the payment distributions only dependent
on the reporting time. Having the payment distribution only dependent on
the reporting time lead to an underestimation of the IBNR reserve when the
results were back-tested.

The comparison to the chain-ladder is to some extent naive since one may
for example adjust for the trend changes by excluding less relevant years
when estimating the development factors or base the analysis on incurred
data triangles. The micro reserving method on the other hand is a model
which, by estimation of the parameters of the micro reserving method on
different time intervals of the underlying data, gives detailed information
about the characteristic changes of the reserve. The development factors of
the chain-ladder method only give information about the percentage of the
reserve paid in a specific period, while the micro model delivers information
about reporting delay, payment amounts and payment pattern.
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Table 7: The hazard rates are assumed to be constant after 5 intervals and
are estimated on disjoint subsets of the data. The data is split up depending
on the reporting day with splitting points being 50, 300 and 800 days. We
see trends with an increasing delay in the data. However, since there are
also trends across time in the data it is not possible to conclude whether
these are because of shortened settlement time or because of a dependency
between delay and payment pattern. The hazard rates are normalized with
he(1) estimated on u ≤ 50.

Hazard rate period
Type Delay 1 2 3 4 5
Se u ≤ 50 1.00 1.92 1.61 1.06 3.10

50 < u ≤ 300 0.80 2.36 1.85 1.39 3.62
300 < u ≤ 800 1.76 3.90 4.28 3.23 4.70
u > 800 2.33 3.95 4.80 4.84 4.21

Sep u ≤ 50 1.00 0.09 0.03 0.02 0.04
50 < u ≤ 300 0.91 0.08 0.04 0.02 0.05
300 < u ≤ 800 0.96 0.19 0.12 0.07 0.08
u > 800 0.95 0.33 0.22 0.12 0.06

P u ≤ 50 1.00 0.35 0.16 0.08 0.10
50 < u ≤ 300 0.88 0.35 0.17 0.10 0.11
300 < u ≤ 800 0.69 0.62 0.28 0.20 0.15
u > 800 0.60 0.70 0.41 0.18 0.12

In Antonio and Plat (2014), the micro reserving model was compared to
three versions of the chain-ladder. Antonio and Plat (2014) conclude that
the tested aggregate methods tend to overestimate the reserve. However,
Antonio and Plat (2014) do not discuss the reason for this or investigate the
underlying trends in the data that lead to this result.

9.5 Back-testing

To validate the model further we look at the performance of the model when
τ is set equal to prior years and then compare payment outcomes with true
outcomes. We want to emphasize that true outcome may have been some-
what unexpected. We test three variants. First we use the whole dataset to
estimate the parameters. Secondly, the parameters are estimated with data
until τ . As a simplification, the logistic regression is always estimated with
the whole dataset. The third variation is the same as the first scenario with
the exception of a cap on each payment. The IBNR claims is sensitive to the
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estimate of the delay distribution since it affects the number of IBNR claims
as well as whether they will be reported within one year. The results are
presented in Table 8. The micro model gives us an empirical predictive dis-
tribution for the RBNS, IBNR and the total one-year payment. In addition
to looking at the expected one-year payments from the models we look at
in which percentile of the empirical predictive distribution the true outcome
and the chain-ladder prediction lie. Notice that the year x + 7 had a low
one year payment compared to previous years so an extreme percentile is not
unexpected. For both the micro model and the chain-ladder method we can
see from the second variant that the trends in the data lead to overestimated
one-year payments. The predictions are of course closer to the observed pay-
ments when the whole dataset is used. A cap on the payments for the micro
model has little effect.

9.6 Sensitivity Analysis

The micro model requires certain assumptions about distributions and other
parameter choices. A sensitivity analysis examines how the results vary when
these assumptions are altered. It gives information about where further
analysis is required as well as information about which factors are possible
risk drivers of the reserve estimation. In Table 9, we see the results from the
sensitivity analysis on the distributions chosen for the delay and the payment
distributions. The top line gives the result of the model choices. The reserve
vary largely with the different choices. The difference is clearest for the two
tested payment distribution.

9.7 Risk

We compare the one-year reserve and premium risk for the micro reserving
method and the chain-ladder. When estimating the premium risk we have
not estimated Rt with the chain-ladder method. We compare the distribu-
tion of Ct+1 + Rt+1 instead. In addition, distribution of Rt is compared to
the one-year risk. In Table 10 we see the results the reserve risk and in ta-
ble 11 we see the results for the premium risk. In table 10, the standard
deviation of E[Rt] − (Ct+1 + Rt+1) are lower for the micro model than the
chain-ladder. This is not unexpected since the micro model uses richer data
for all estimation. However, VaR is similar for both models. We did not
re-estimate the parameters for the micro model, due to how computation-
ally heavy it is, which can lead to an underestimation. We have taken the
parameter uncertainty into consideration by drawing new parameters from
the asymptotic normal distribution of the delay and payment parameters.
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Table 8: Comparison of predicted payments for the next year to true out-
comes. We test three variants. 1. The whole dataset is used for parameter
estimation. 2. The parameters are estimated with data until τ , with an ex-
ception of the logistic regression. 3. The same as 1 except with a cap on each
payment. In addition to looking at the expected one-year payments from the
models we look at in which percentile of the empirical predictive distribution
of the micro model the true outcome and the chain-ladder prediction lie.

True outcomes from the data, ·103

τ RBNS IBNR Total
x+ 3 64 491 18 810 83 301
x+ 4 76 384 25 272 101 657
x+ 5 85 754 26 082 111 836
x+ 6 111 458 40 097 151 554
x+ 7 92 203 43 688 135 890
1. All data used for the estimation
τ RBNS (%) IBNR (%) Total (%) Chain-ladder(%)
x+ 3 56 843 (81%) 17 981 (67%) 74 824 (80%) 76 700 (64%)
x+ 4 78 862 (51%) 23 214 (74%) 102 076 (57%) 108 254 (72%)
x+ 5 94 535 (32%) 29 218 (37%) 123 753 (27%) 120 075 (48%)
x+ 6 112 706 (55%) 33 744 (85%) 146 450 (67%) 133 253 (26%)
x+ 7 137 213 (0%) 37 463 (84%) 174 676 (1%) 180 945 (68%)
2. Limited data used for the estimation
τ RBNS (%) IBNR (%) Total (%) Chain-ladder(%)
x+ 3 79 103 (16%) 18 521 (63%) 97 624 (19%) 93 538 (47%)
x+ 4 107 719 (1%) 23 972 (69%) 131 691 (3%) 126 008 (44%)
x+ 5 120 642 (1%) 30 787 (25%) 151 429 (1%) 133 448 (19%)
x+ 6 133 497 (11%) 34 217 (85%) 167 714 (24%) 137 435 (5%))
x+ 7 152 235 (0%) 39 023 (80%) 191 258 (0%) 196 284 (65%)
3. All data with cap
τ RBNS (%) IBNR (%) Total (%) Chain-ladder(%)
x+ 3 55 829 (82%) 17 834 (67%) 73 663 (82%) 76 700 (65%)
x+ 4 77 306 (51%) 22 924 (74%) 100 230 (58%) 108 254 (75%)
x+ 5 92 793 (33%) 28 841 (37%) 121 635 (27%) 120 075 (49%)
x+ 6 110 674(56%) 33 382 (85%) 144 057 (70%) 133 253 (27%)
x+ 7 134 384(0%) 36 905 (84%) 171 289 (1%) 180 945 (72%)
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Table 9: A sensitivity analysis of the delay and payment distributions. A
log-normal distribution gave the lowest AIC for the both the delay and the
payment distribution and was the model choice. The reserve is sensitive to
the tested distribution choices.

Delay distribution Payment distribution Reserve sd(Reserve)
Log-normal Log-normal 306 391 102 40 638 609
Weibull Log-normal 292 146 747 38 241 106
Exponential Log-normal 270 914 305 35 775 515
Log-normal Weibull 230 250 258 13 418 377

Interestingly, the standard deviation of Rt is larger than the standard devia-
tion of Ct+1 +Rt+1 for the chain-ladder contrary to the micro model. This is
due to how the one-year risk of the chain-ladder is constructed. The predic-
tive distribution of Rt includes a process variance while future payments of
the one-year risk include the variability of the re-estimated parameters. The
main conclusion is that the risk estimation follows naturally from the micro
model since there we simulate from a model while the bootstrapped predic-
tive estimation of the predictive distribution of the chain-ladder method does
not as naturally lead to a one-year risk model. In Figure 6 we see the density
of E[Rt]− (Ct+1 +Rt+1).

Table 10: The table shows the results for the reserve risk. The standard
deviation is lower for the micro model than the chain-ladder. This is not un-
expected since the micro model uses richer data for all estimation. The VaR
is similar for −(E[Rt]− (Ct+1 +Rt+1)). However, for the micro model we did
not re-estimate the parameters due to how computationally heavy the model
is which can lead to underestimation. We have taken the parameter uncer-
tainty into consideration by drawing new parameters from the asymptotic
normal distribution of the delay and payment parameters.

Micro reserving Chain-ladder
E[Rt] 307 016 029 577 209 139

Sd 99.5 % Sd 99.5 %
Rt 40 691 947 456 611 574 65 032 603 753 818 599
Ct+1 +Rt+1 42 485 811 471 814 802 58 883 937 739 545 155
−(E[Rt]− (Ct+1 +Rt+1)) 42 485 811 -164 798 773 58 883 937 -162 336 016
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E[R(t)]−(C(t+1)+R(t+1)), in millions
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(a) One-year reserve risk, micro model.
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(b) One-year reserve risk, chain-ladder.

Figure 6: The densities of E[Rt] − (Ct+1 + Rt+1). The micro model has a
longer lower tail, which means that unique larger losses are simulated.

In Table 11, the standard deviation and VaR of Ct+1 + Rt+1 is lower
for the micro model than the chain-ladder. As for the one-year risk this
is not unexpected due to the data usage. Due to the construction of the
risk model for the chain-ladder method, no estimates are observed for the
variables Rt and Ct+1 + Rt+1. Figure 7 shows the densities of Ct+1 + Rt+1

and E[Rt]− (Ct+1 +Rt+1).

Table 11: The table shows the results for the premium risk. The micro model
gives lower estimates of the standard deviation and VaR for Ct+1+Rt+1. Due
to the construction of the risk model for the chain-ladder method no estimates
are observed for the variables Rt and Ct+1 +Rt+1.

Micro reserving Chain-ladder
E[Ct+1 +Rt+1] 244 637 794 391 691 606

Sd 99.5% Sd 99.5%
Rt 27 357 757 348 454 139 - -
Ct+1 +Rt+1 29 568 349 357 143 562 55 489 661 556 570 023
−(E[Rt]− (Ct+1 +Rt+1)) 29 568 349 -113 605 095 - -
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C(t+1)+R(t+1), in millions
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(a) One-year premium risk, micro model.
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(b) One-year premium risk, chain-ladder.
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(c) One-year premium risk, micro model.

Figure 7: Figures 7a and 7b show the densities of Ct+1 + Rt+1. The density
is much wider for the chain-ladder whereas the micro model reaches more
extreme values. Figure 7c shows the density of E[Rt] − (Ct+1 + Rt+1). A
corresponding plot for the chain-ladder is not available for our construction
of the chain-ladder risk model.

10 Discussion
The micro reserving model with special consideration for claims which are
closed without ever receiving a payment is studied with real data. The re-
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sults are compared to the classical chain-ladder method. The two methods
give largely different results. The data shows an increase in the hazard rate
of the events settled with a payment and more claims are settled early. The
micro model estimates the RBNS reserve from reported open claims, while
the chain-ladder method does not take the number of open claims into con-
sideration. The micro reserving model has therefore a lower reserve with a
relatively low RBNS. The underlying assumption of the chain-ladder method
is that the same percentage is paid in the same development periods of the
accident year, which is clearly not fulfilled for the dataset in question.

The model is validated by one-year back-testing of true payments. The
micro model outperforms chain-ladder for the later years, since the model
takes into account to a larger extent the time trends in the underlying data.
The micro model assumptions are validated with a sensitivity analysis. The
model is sensitive to the choice of distributions. However, it also gives the
freedom to use expert knowledge for the choice of distribution or use the
different distribution for various stress analysis of the estimated reserve.

Risk estimation follows naturally from the micro reserving model. The
outstanding payments are simulated from a model which gives an empirical
distribution of the reserves. The best estimate, standard deviation and other
risk estimators are then easily calculated. In the Solvency II directive the
time horizon is one year. We therefore take special look at the one-year
reserve and premium risk. A natural way to estimate the one-year risk would
be to simulate the payments made the following year and then re-estimate
the reserve. The distribution of the original reserve, the payments and the
reserve estimated one year later gives the one-year risk. Since the model
is computationally heavy we did not re-estimate the parameters but draw
new parameters from their corresponding asymptotic normal distributions.
That does not give as large a spread in the resulting risk estimation but
is an approximation. The standard deviation is lower for the micro model,
however the risk models are largely different as the one-year risk does not as
naturally follow from the bootstrapped chain-ladder method.

Micro modelling offers large possibilities for reserving. Using a model to
simulate the reserves from is an attractive way to obtain predictive distri-
butions and detailed information about different characteristics of the data.
Compared to the traditional triangle methods, micro models in general have
the advantage of using the detailed data available. Thus, reducing the un-
certainty in the estimates. Though the model presented here may be more
complicated and computationally heavy, there are large possibilities to de-
velop micro models for use in practice.
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10.1 Future Work

In the presented model, no robustness analysis was performed on the distri-
bution assumptions. To use the model in practice one would have to include
formal tests on the assumptions made. A usual problem in reserving is that
the data does not contain enough history to estimate the reserve directly
from the data. One could investigate how different stresses on the estimated
parameters affect the reserve as well as the effect of adding a tail to the
distributions.

In the model we have, like Antonio and Plat (2014) assumed that the
hazard rates are independent of the delay. Due to poor performances the
payments are assumed to be dependent on the time passed since the accident
date. There are indications of the hazard rates being dependent on the delay,
however due to changes in the claims that was not confirmed. Modifications
to include the possible dependence would therefore be interesting.

Hazard rates are not easily interpreted and it can be difficult to relate to
their estimates. Using hazard rates to predict the future payments is also
computationally heavy. It could therefore be interesting to see if one could
avoid using them to model the payment pattern, perhaps by simulating a final
amount and afterwards spread out the payments to a less detailed extent.

Adding the probability of claims to reopen is a possible extension of the
model. That could for example be adjusted for by increasing the intensities
of the IBNR process.

Due to how computationally heavy the present model is, simplifications
were made when calculating the reserve and premium risk. Future work may
include a further look at the one-year risk where the model parameters are
re-estimated after the one-year payments.

Accident years are taken as independent in the current model. That may
be an unrealistic assumption, hence including trend estimation to the model
would be an interesting way to continue the research. Time dependent delay
distribution and hazard rates is one way to continue. Another would be
to include more covariates in the model and to examine whether parameter
estimation performs better when they are dependent on those covariates.
To base the reserving model on claim data combined with policy data has
been suggested by Gustafsson et al. (2012). Applying such a method on
real data and comparing to results from other micro models would be highly
interesting.
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