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Abstract

In this thesis we propose a point-wise averaging approach for dose-
response meta-analysis of aggregated data. Relative to the common
approach of averaging regression coefficients the method proposed al-
lows for more flexibility. Recently proposed, the point-wise approach
is a new strategy to perform meta-analysis on individual patient data,
but has not been investigated in the context of aggregated data. Each
individual study is allowed to follow a different dose-response trend
using predictor transformations such as splines or fractional polyno-
mials. The predicted outcomes are then averaged across studies at
specific values of the quantitative predictor. The methodology is de-
scribed in detail and is applied to survival data from 9 Registries of
the Surveillance, Epidemiology, and End Results Pro- gram (SEER) of
the United States, involving breast cancer patients. The performance
of the method is evaluated against the dose-response meta-analysis of
individual patient data analysis. The method has been tested using
simulated studies of common dose-response relations (i.e. linear, U-
shaped, J-shaped). Overall, the point-wise approach on aggregated
data produces similar results in comparison with the same analysis on
individual patient data and comparable results with the true under-
lying shapes of simulated studies.
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Chapter 1

Introduction

Epidemiologists, clinical investigators and those working on health policy

are particularly interested in quantifying the observed exposure-outcome

relationship of disease onsets or other events, and in particular how the risk

of the outcome changes across the different levels of exposure. The term

exposure is not limited to a single definition, but instead is used to describe

different varieties of dose e.g. could be a treatment levels on a randomized

trial, the amount of intake of a certain nutrient or the actual exposure to an

environmental factor.

In recent years, as the number of studies concerning dose-response re-

lations increases, meta-analysis has become more popular and the number

of publications applying dose-response meta-analysis is rising exponentially

year by year as can be seen in figure 1.1

On a survey we conducted on the Web of Science the number of pub-

lications concerning dose-response meta-analysis rose from 30 publications

in 2004 to 222 publications in 2014. Of the 222 publications in 2014, 140

qualified for our survey, where meta-analysis was performed both on indi-

vidual patient data (IPD) and aggregated data. About 5 % (8) of those

publications concerned IPD and only 37,5 % (3) of those considered nonlin-

ear trends in the dose-response relation whether the other 62,5 % (5) did

not present a plot for the dose-response shape. Furthermore about 95 %

(132) of the publications performed meta-analysis on aggregated data and

6



out of those, 40 % (53) didn’t present the dose-response shape, while 56 %

(74) presented or considered a nonlinear trend, with only 4 % (5) assuming

a linear trend. The most popular fields where dose-response meta-analysis

is used are oncology, public environmental occupational health, nutrition

dietetics, endocrinology metabolism and general internal medicine.

Figure 1.1: The publication of papers concerning dose-response meta-
analysis over the years

Despite the increasing popularity of dose-response meta-analysis, the

methods used are not evolving accordingly. Since the method first de-

scribed by Greenland and Longnecker [1], few methodological articles have

been published on how to perform meta-analysis for non-linear dose-response

shapes, the most notable including: Bagnardi et al [2]; Orsini et al. [3];

Rota et al. [4]; Sauerbrei and Royston [5]; Shi and Copas [6]; Liu et al [7];

Gasparini et al [8] Thomas et al [9].

The aim of this thesis is to fill a gap in the literature, that is to introduce

a new more robust and flexible approach to perform dose-response meta-

analysis of aggregated data for binary outcomes. Originally proposed by
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Sauerbrei and Royston [5], the point-wise approach is a new strategy to

perform meta-analysis on IPD for continuous predictors. This approach,

however, has not been investigated in the context of aggregated data. The

need of more efficient ways to perform meta-analysis on summarized studies

arises also from the fact that in a large majority (86%) of the cases were

we observe continuous risk factors, the investigators chose to categorise the

exposure (Turner et al. [10]).

In this novel approach, instead of averaging the regression coefficients of

a common pre-specified model, we apply a point-wise averaging procedure

of study-specific trends. Each individual study is allowed to have a differ-

ent dose-response shape and predicted outcomes are then pooled at specific

values of the quantitative predictor.

In the following sections of the thesis we will outline and discuss the

proposed approach. The methodology will be implemented, using data from

9 registries of the Surveillance, Epidemiology and, End Results program

of the United States, concerning data of individual breast cancer patients

from different population-based cancer studies. A direct comparison of the

point-wise approach for individual patient data and the point-wise method

for summarized data is made, to point-out similarities and differences. The

point-wise approach is then evaluated in simulated studies of the most com-

mon dose-response relations. Finally, a short discussion is made.
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Chapter 2

Methods

The most common approach for trend estimation consists of quantifying the

dose-response relation and examining the change of the risk across exposure

levels. Summarized data are usually reported as a series of the dose cat-

egories, with their corresponding relative risks, with one of the categories

serving as reference. Here the term relative risk will be used as a generic

term for risk ratio, hazard ratio, rate ratio or odds ratio. In tables 2.1,2.2,

and 2.3, examples of aggregated data are shown in the case of a cumulative

incidence,incidence-rate, or case-control study.

Table 2.1: Example of aggregated data of a cumulative incidence study

Category Dose Cases Total Patients Relative Risk 95 % CI

Category 0 x0 A0 N0 1 (1, 1)

... ... ... ... .... (..., ...)

... ... ... ... ... (..., ...)

Category T xT AT NT RRT = eyT (lbT , ubT )
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Table 2.2: Example of aggregated data of an incidence-rate study

Category Dose Cases Person-time Rate Ratio 95 % CI

Category 0 x0 A0 N0 1 (1, 1)

... ... ... ... .... (..., ...)

... ... ... ... ... (..., ...)

Category T xT AT NT RRT = eyT (lbT , ubT )

Table 2.3: Example of aggregated data of a case-control study

Category Dose Cases Controls Odds Ratio 95 % CI

Category 0 x0 A0 B0 1 (1, 1)

... ... ... ... .... (..., ...)

... ... ... ... ... (..., ...)

Category T xT AT BT RRT = eyT (lbT , ubT )

2.1 Individual trend estimation for the stud-

ies

In order to analyse the dose-response relation within each study a log-linear

regression model can be used. Let us first consider a single study, which we

index with i. We can express the model as follows:

yi = Xiβi + εi (2.1)

where yi is a Ti × 1 vector of reported log-relative risks (not including the

reference one), Xi is a Ti × p matrix of non-stochastic covariates containing

the value of exposure and/or some other transformations of it, βi is a 1 × p
vector of unknown regression coeffcients for the i-th study and εi is a Ti × 1
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vector that expresses the random errors. The variance-covariance matrix

Cov(εi) = E(εiε
′

i) is equal to the following symmetric matrix

Cov(εi) = Σi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
11

. ⋱

.

σ2
t1 σ2

tt

.

. ⋱
σ2
Ti1

... σ2
Tit

... σ2
TiTi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The model in equation 2.1 has no intercept, assuming that the exposure

variable has value 0 at the reference category and the log relative risk at

the reference category is set to 0 (the relative risk is 1). If we consider an

exposure with non-zero reference category, such as BMI or energy intake,

we can center the levels of exposure such that the reference value becomes

zero. The goal is to estimate the coefficients βi for the log-linear model i.e.

the change in the natural logarithm of the relative risk per unit of exposure

within each study. The βi’s are estimated using generalized least squares

regression as proposed by Greenland and Longnecker [1].

2.2 Generalized least squares regression

Under the assumption that the variance-covariance matrix is known the

trend or regression coefficients can be efficiently estimated using the general-

ized least squares regression. Referring to Σi, the covariance matrix between

the log-relative risks, the method requires minimizing (yi−Xβi)
′)(Σ−1

i )(yi−
Xβi) with respect to βi. The estimator β̂i of the trend coefficients βi is fi-

nally:
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β̂i = (X′

iΣ
−1
i Xi)−1X

′

iΣ
−1
i yi (2.2)

where the estimated covariance matrix of βi, Vi is

Vi = (X′

iΣ
−1
i Xi)−1 (2.3)

2.3 Estimating the covariance using the Green-

land and Longnecker method

As mentioned before, published dose-response data are typically reported

as a series of dose specific relative risks, with one category serving as the

common referent group. Therefore, the elements of yi are not independent

and the off-diagonal elements of Σi are not zero. This section describes the

method and formulas needed to estimate all the elements of Σi.

If we let At be the number of cases at each exposure level t; Bt, the

number of controls (for case-control data) at each exposure level t; and Nt,

the total number of subjects (for cumulative incidence data) or the total

person-time (for incidence rate data) in exposure level t,where the range of

t is 0 (referent group) to T (the number of non-reference exposure levels).

Examples of data from case-control studies, cohort studies (incidence rate

data) and for cumulative incidence studies can be found in tables 2.1,2.2

and 2.3.

The Greenland-Longnecker method to estimate the elements of the co-

variance matrix assumes that the correlation between the crude log(RR)

risks are approximately equal to the correlation of the adjusted log(RR).

The method to estimate efficient point estimators and consistent variance

estimators for a series of reported log-relative risks comprises of the following

steps:
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1. Given the adjusted log(RR) and the total number of cases and non-

cases at each exposure level t of each study, solve for the fitted cell

counts in each data table. This method requires a simple fitting algo-

rithm based on the Newton method.

2. The next step is to approximate the correlation among the log(RR) for

t other than l, as stl = s0/(stsl)1/2, where s0 is the common covariance

while st and sl are the variances of the log(RR). The equations to

calculate the covariances and the variances differ from study to study.

For a case-control study we have: s0 = ( 1
A0
+ 1
B0

) and st = ( 1
At
+ 1
Bt
+

1
A0
+ 1
B0

), for incidence-rate studies s0 = ( 1
A0

) and st = ( 1
A0
+ 1
At

) and for

cumulative incidence studies s0 = ( 1
A0
− 1
N0

) and st = ( 1
At
− 1
Nt
+ 1
A0
− 1
N0

).

3. Approximate the multivariate asymptotic covariances between the ad-

justed log relative risks as σtl = rtl × (σtσl)1/2, where rtl represent the

correlations estimated in the previous step while σt and σl are the

variances of the adjusted log relative risks, (the diagonal elements of

matrix Σi), defined as the length of the confidence interval on the log

scale divided by the square of the (1-α/2) - level standard normal de-

viate for all t different than l. This method relies on the assumption

that the correlation matrix of the unadjusted and adjusted relative

risks are nearly the same. In other terms, it is valid when there is

no confounding (or at least slight) by other model covariates in the

published results of each study included in the meta-analysis.

2.4 Predictions for each study using the log-

linear model

Based on the trend coefficients extracted from the individual i = 1, ..., I stud-

ies, we use the log-linear model in equation 2.1 in order to make predictions

for the response variable ŷi = Xiβ̂i (predicted outcomes), given the desired

range j = 1, ..., n of the exposure values. If the exposure is modeled using

transformations to allow for a non-linear relation of the dose-response curve
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(Crippa and Orsini [11]; Bagnardi and al. [2]), β̂i would be a vector of

s = 1, ..., p coefficients, the length of which depends on the choice of trans-

formation (splines, polynomials), and X would be a n × p matrix, where

the first column identifies the exposure variable and the other p-1 columns

could represent transformations of the exposure, based on the modeling of

β̂i (Orsini et al., [12]; Berlin et al. [13])

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 ... x1s ... x1p

. . .

. . .

xj1 ... xjs ... xjp

. . .

. . .

xn1 ... xns ... xnp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using equation 2.1 for each study, together with the vector β̂i = (β̂i1, .., β̂ip)
of the estimated trend coefficients and X we acquire the study-specific esti-

mated log-relative risks.The corresponding standard errors of the predicted

log relative risks are calculated as

si =
√
diag(X × cov(β̂i) ×X

′) (2.4)

From the performed procedure, two vectors of values are obtained for each

study, one with the predicted outcomes (log relative risks at each level of

the exposure) and one with the corresponding standard errors.
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2.5 Point-wise dose-response meta-analysis

Having acquired the predicted outcomes for each study for the range of the

exposure, the final step of the approach is to perform the point-wise meta-

analysis. Two matrices, Ŷ and S with n× I dimensions can be constructed,

using as rows the vectors described above

Ŷ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŷ11 ... ŷ1j ... ŷ1n

. . .

. . .

ŷi1 ... ŷij ... ŷin

. . .

. . .

ŷI1 ... ŷIj ... ŷIn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11 ... s1j ... s1n

. . .

. . .

si1 ... sij ... sin

. . .

. . .

sI1 ... sIj ... sIn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where ŷij is the predicted outcomes of i study at each level j of the ex-

posure and sij the respective standard errors. The columns of the Ŷ matrix

each correspond at a different level of the exposure and represent the re-

spective log relative risk estimates of the different studies acquired at that

level, I different estimates, for I number of studies.

Treating the values of the predicted outcomes at each level of the quan-

titative predictor (the columns of the Ŷ matrix) as a distribution about a

certain mean, it is our intention to estimate that mean.

Different weighs are assigned to each study and the combined effect of

the studies at a specific level of the exposure is given as the weighed average

across the different studies, the weights at each level being computed as the

inverse-variance of each estimate at that specific level of the exposure as

described by Borenstein and al. (2010) [14].

With this application at each column of Ŷ, the matrix will be reduced

into a vector of values M = (M1, ...,MJ , ..,Mn), j=1,..,n for the levels of the

exposure, that yields the dose-response relation, with each element of M
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representing the estimated log-relative risk of the outcome, compared to a

reference value of the exposure. The elements of the vector M for the I

number of different studies are computed as

Mj =
∑Ii=1Wij ŷij

∑Ii=1Wij

(2.5)

Where ŷij is the different effect sizes of the I studies at the value j of the

exposure and Wij is the respective weight assigned to each of the I studies

at the value j of the exposure. The weights are calculated as

Wij =
1

Vij + T 2
j

(2.6)

Where Vij is the variance of each study I at the level j of the exposure

(calculated from the standard error sij) and Tj is the between study variance

at each point j of the exposure, which is common to all studies. The formula

in equation 2.6 considers a random effects model, whether in the case of a

fixed effects model, T 2
j would be 0. For each of the estimates of the M vector

the corresponding standard error is calculated, creating a vector of standard

errors SEM = (SEM1 , .., SEMj
, .., SEMn) analogous to M, where

SEMj
= 1√
∑ki=1Wji

(2.7)

so that the lower and upper bounds of the point-wise confidence intervals

can be constructed as

CIMj
= (Mj −Za/2SEMj

,Mj −Za/2SEMj
) (2.8)
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where a is derived from the confidence level of the intervals and is 0.05 if

we choose 95 % confidence intervals. The Z value follows the cumulative

normal distribution function and Za/2 would be 1.96 in the case where a

equals 0.05

2.6 Point-wise heterogeneity

One of the main issues in meta-analysis, is addressing the question, if there

is a significant statistical heterogeneity between the studies and to quantify

the level of heterogeneity. The Q statistic at the j-th exposure level can be

defined as

Qj =
I

∑
i

Wij(Yij −Mi)2 (2.9)

derived here to fit the point-wise approach and measure the Q value at each

point of the exposure level. Under the null hypothesis, Q has approximately

a χ2 distribution with I − 1 degrees of freedom where I is the total number

of studies. If the p-value derived from this statistic is small, we may infer

that there is some problem with the model; e.g., perhaps statistical hetero-

geneity is present or there is some unaccounted-for bias. If, however, the

p-value is large, we can conclude only that the test did not detect any sig-

nificant heterogeneity in the analysis, not that there is no heterogeneity at

all. Q statistic (like most fit statistics) has low power; i.e., its sensitivity to

model problems is limited. Higgings and Thompson [15], derived a statistic

to measure heterogeneity independently of the number of studies. The I2

statistic is defined as

I2j =max{0, (Qj − df)/Qj} (2.10)
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that can be used to calculate the percentage of the variance of the study

estimates explained by heterogeneity between the studies.

Based on the approach we are proposing, we can extend the concept of

heterogeneity between studies, not only to a single statistic, but to a vector

of statistics I2 = (I21 , .., I2j , .., I2n) for each point of the quantitative predictor.

One can inspect the heterogeneity across the range of the exposure and

identify patterns, for example if the heterogeneity increases or decreases at

a certain levels of the exposure.

2.7 Background in fractional polynomials and

spline regression models

In this section we briefly discuss the use of Fractional Polynomial and Spline

regression to model the exposure

2.7.1 Fractional polynomial regression

The fractional polynomials of order P are expressed as a family of model

functions of the single continuous and positive covariate x, in our case the

exposure. The model

y =
P

∑
p=1
βpx

pp (2.11)

represents log(RR) or the relative risk on the normal scale, if we choose so,

as a function of power transformations of the exposure variable x, where βp

is the vector of coefficients as described before and pp are the elements of

vector p, the power vector of the transformation. As stated by Bagnardi and

al. [2], it is efficient to only consider the family of second order polynomials,

to allow for non-monotonic curves of the dose-response relation and also
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because the second order families offer great flexibility. More precisely, if we

let p1 and p2 belong to the set of values P=(-2,-1,-0.5,0,0.5,1,2,3), the model

y =
⎧⎪⎪⎨⎪⎪⎩

β1x
p1 + β2xp2 if p1 ≠ p2,

β1x
p + β2(xplog(x)) if p1 = p2 = p.

(2.12)

can account for a prosperous set of dose-response shapes, including the likes

of J-shape, U-shape and most positive and negative dose-response associa-

tions. Using the Box-Tidwell transformation, in the case where pi = 0, xpi

reduces to log(x) and remains xpi otherwise. For all the possible combina-

tions from the set of P, 36 models can be considered in total. The model

with the best fit across the models generated, can be defined as the one with

the highest likelihood or lowest deviance. In the analysis performed in this

thesis, we choose the models minimizing the Akaike information criterion

(AIC), as suggested by Rota et al. [4]. Broadly, non-nested models may

be compared using this statistic. Letting L be the maximized value of the

likelihood function and k the number of estimated parameters in the the

model the AIC value is defined as: AIC = k − 2log(L)

2.7.2 Spline regression

A spline function is a smoothly piecewise polynomial of order q. The ob-

served range of the exposure is categorized based on a number of K knots

and a spline model is fitted within the categories corespondent to the number

of knots. The cubic spline models have the most common use in the litera-

ture, because they offer great flexibility for data fit. Dividing the exposure

into categories, a third order polynomial can be fitted in each category and

the model

y =
3

∑
z=1
β0zx

z (2.13)
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can be used to describe the dose-response association in a single category.

One key assumption for the model in equation 2.13 is that the function is 2

times continuously differentiable in the range of the exposure. Fitting the

model in all categories of the exposure would lead to the single function of

the scalar variable x

y =
3

∑
z=1
β0zx

z +
K

∑
k=1
βk3(x − lk)3 (2.14)

where lk are the positions of the knots k = 1, ..,K. In order to avoid odd

behaviour of the fitted curve in the tails, the cubic spline can be restricted

to be linear there, leading to the restricted cubic spline regression model

y = β01x+
K−2
∑
k=1

βk3[(x−lk)3−
(x − lK−1)3(lK − lk)

lK − lK−1
+(x − lK)3(lK−1 − lk)

lK − lK−1
] (2.15)

as described by Durrleman and Simon (1989) [16] and Desquilbet and Mari-

otti (2010) [17]. That model would yield K-1 coefficients describing the expo-

sure. For notation reasons we can describe the model in equation 2.15,when

modelling with three knots as

y = β1x + β2f(x) (2.16)

which is a model with two coefficients and a function containing the tran-

formation of the exposure as seen in equation 2.15. A key issue with spline

regression is the selection of the number and the position of the knots in the

range of the exposure. Since we force the function to be linear in the tails,

we choose the position of those knots not to be too far from the extremes,

depending on the number of total knots. Choosing predefined knots at fixed

percentiles of the exposure’s distribution, is a good approach as it ensures
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that enough points are available in each interval. Recommended equally

spaced quartiles can be found on Harrell [18],although the location of the

knots is not very important in practice which is one of the main advantages

when working with splines.

2.8 Cox regression

In the analysis performed in later chapters, the Cox regression model is used

to model the survival data. A key reason for the popularity of the Cox model

is that good estimates of regression coefficients and hazards ratios of interest

can be obtained for a wide variety of data situations. Furthermore, the Cox

model is preferred over the logistic model when survival time is available and

there is censoring. That means that the Cox model uses more information

that the logistic model.

2.8.1 The formula for the Cox model

The standard notation for the Cox regression model is given in the equation:

h(t,X) = h0(t)e∑
p
i=1 βiXi (2.17)

where the vector X = (X1, ...,Xp) contains the explanatory variables of the

model. The formula implies that the hazard at time t is a product of two

quantities. The first one, h0(t) is called the baseline hazard function, because

if all the explanatory variables become 0, then the formula would reduce to

h0(t), in other words the baseline hazard. This quantity is non-parametric.

The second quantity of equation 2.17 is an exponential expression e to the

linear sum of βiXi over the explanatory variables, which is fully parametric

and the is the reason that the Cox model is called semi-parametric.
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2.8.2 Maximum likelihood estimators for the Cox PH

model

As in usual regression models the ML estimates of the cox model parameters

are derived by maximizing the a likelihood function, denoted as L. The

likelihood function is a mathematical expression which describes the joint

probability of obtaining the data observed on the subjects in the study

as a function of the unknown parameters (the coefficients) in the model

being considered. The formula for the Cox model is actually called a partial

likelihood function, because it considers probabilities only for the subjects

that fail, and does not explicitly considers probabilities for the subjects that

are censored.

Once the likelihood function is formed for a given model, the next step

would be to maximize the function. An appropriate way to do so is to to

solve

lnL

dβi
= 0 (2.18)

for all i = 1,...,p the number of the parameters

2.8.3 Hazard ratio

The hazard ratio is defined as the hazard for one individual over the hazard

for a different individual. The two individuals compared are usually dis-

tinguished by their values for the set of the predictors, that is the vector

X. If we denote the set of predictors for an individual as X and the set

of predictors for a different individual as X∗, the expression for the hazard

ratio is

ĤR = ĥ(t,X
∗)

ĥ(t,X)
= ĥ0(t)e

∑p
i=1 β̂iX

∗

i

ĥ0(t)e∑
p
i=1 β̂iXi

= e∑p
i=1 β̂i(X

∗

i −Xi) (2.19)
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2.8.4 The proportional hazards assumption

One of the most basic assumptions of the Cox regression model is the one of

the proportional hazards, which requires that they are constant over time, or

equivalently, that the hazard for one individual is proportional to the hazard

for any other individual, where the proportionality constant is independent

of time. That would mean the expression 2.19 would reduce to

ĥ(t,X∗)
ĥ(t,X)

= θ̂ (2.20)

where θ̂ is a constant over time. The variables for which the PH assumption

holds are called time-independent variables whether the variables for which

the PH assumption does not hold are called time-dependent variables. If

time dependent variables are considered then a variant of the Cox regression

model might still be used, but such a model no longer satisfies the PH

assumption, and is called the extended Cox model.
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Chapter 3

Results

3.1 Individual patient data

We illustrate the point-wise average approach here using survival data of

breast cancer patients from 9 Registries of the Surveillance, Epidemiology,

and End Results Program (SEER) of the United States (http://seer.cancer.gov),

which contains individual patient data from different population-based can-

cer studies. The dataset contains information about 712.319 breast cancer

patients from nine registries: San Francisco-Oakland, Connecticut, Metropoli-

tan Detroit, Hawaii, Iowa, New Mexico, Seattle (Puget Sound), Utah and

Metropolitan Atlanta, which will be treated as different studies. Based on

suggestions from Hung and al. [19] and Tai et al. [20] for the same dataset,

we selected only the female patients, without previous history of cancer.

Additional criteria for the selection of the subjects were: the patients

had cancer directed surgery where the type of surgery was either partial/less

than total mastectomy or modified radical/total (simple) mastectomy. Ra-

diotherapy status was known and reported as delivered or not delivered after

the surgery. The invasive type of carcinoma was histologically confirmed.

The patient’s size of the primary tumor was known and was smaller than 50

mm. The laterality, was specified on the reports as either right or left origin

of primary. At each of the surgeries, axillary dissection had been performed,

with known number of nodes examined and number of positive nodes. For
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all the patients, no known internal mammary node(s) was involved and there

were no distant metastases.

Subjects were excluded, when their race or the month of their diagnosis

were unknown and when the reporting source was other that a hospital.

Subjects were also excluded when their reported number of positive nodes

surpassed the number of examined nodes.

The only event of interest is defined as death from breast cancer before

the cut-off date of 31 December 1999. After refining the data with the cri-

teria described above, there were a total of 84.404 patients that qualified,

with 8520 total events. The distribution of the patients within each study

is shown in table 3.1.

Table 3.1: Number of individuals and number of events ,of each study with
the median follow up time

Study Individuals Events (%) Follow-up

San Francisco-Oakland 14270 1399 9,8 6

Connecticut 11863 1177 9,9 6

Metropolitan Detroit 13939 1603 11,5 6

Hawaii 3895 291 7,4 6

Iowa 12409 1296 10,4 6

New Mexico 4705 470 9,9 6

Seattle (Puget Sound) 13474 1166 8,7 6

Utah 3118 334 10,7 6

Metropolitan Atlanta 6731 784 11,6 6

To highlight the approach, in connection with chapter 2, in the analyses

we perform, we treat the death of breast cancer as the outcome of interest,

and the number of positive nodes found in the patients as the exposure. For
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all the analyses, the statistical program R was used, with the implementation

of the packages survival, dosresmeta, metafor and rms.

3.1.1 Description of the Cox model

We used a Cox regression model to estimate the log hazard rations of the

dose-response relation. Although, we treated the number of positive nodes

as the exposure of interest, but also adjusted for other factors: age, race,

marital status, histological confirmed cancer, grade of the cancer, tumor size,

radiation sequence after the surgery and the presence or not of estrogen or

progesterone receptors, following the suggestions of Sauerbrei and Royston

[5]. The final model was:

h(t,X1,C1, ..,C9) = h0(t)e(β1f1(X1)+β2f2(X1)+∑9
i=1 βCi

Ci) (3.1)

where the exposure of interest X1 is transformed using two functions either

with restricted cubic splines or second order fractional polynomials, as de-

scribed in chapter 2.7. In the case of restricted cubic splines f1(X1) will

reduce to X1. The rest of the explanatory variables in the model 2.18, noted

as Ci represent the confounding factors of the model and could for each

adjusting factor have length of 1 (linear or binary variable), 2 (quadratic

form of a continuous variable) or 3 (variable with 4 categories), with their

corresponding coefficients. The C′
is are described as follows:

• C1: Whether or not the invasive carcinoma was histologicaly con-

firmed, positive or negative.

• C2: Whether or not the subjects where married.

• C3: The grade of the tumor. Could vary between 1,2 or 3. For this cat-

egory, missing values were allowed and they were coded as a different

category.
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• C4: The age of the patient at diagnosis. It was given a quadratic form.

• C5: Endocrine receptor positive or negative. They grow in response

to the hormone estrogen.

• C6: Endocrine receptor positive or negative. They grow in response

to another hormone, progesterone

• C7: The radiation sequence before or after the surgery, treatment or

no treatment. It was forced into the model, since it has a treatment

effect.

• C8: Race of the subjects. Coded as a binary variable, white and Other.

• C9: Tumor size, continuous variable.

In order to built the Cox regression model the proportional hazards assump-

tion was tested for the number of positive nodes, which is the exposure of

interest. The null hypothesis was

• H0 ∶ The hazard is proportional for the range of the exposure

The proportionality test, yielded a p-value of 0.851, meaning that we cannot

reject the null hypothesis and the hazards are proportional for the exposure.

3.2 Meta-analysis on IPD

In the Cox model, when using the IPD, modelling the exposure with re-

stricted cubic splines, we chose three knots and estimated two coefficients

describing the risk on the outcome. The position of the knots were at 0,2

and 15 positive nodes for the range of the exposure. These points were

chosen based on the distribution of the positive nodes, that featured about

90% of the subjects having up to 5 positive nodes and only 1046 with more

than 15 positive nodes. After acquiring the two coefficients for each study,
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describing the dose-response relation for the exposure of interest, the studies

were allowed to follow their own shape and study-specific predictions were

made for a selected range of the exposure, 0 to 50. The studies were then

pooled at each level. To allow for heterogeneity the random effect model was

considered. In figure 3.1 the dose-response shape for the 9 studies can be

seen along with the overall shape acquired from the point-wise meta-analysis

of the studies.

Figure 3.1: Dose-Response relation of the IPD in the nine registries (dashed
lines) overlaid with the overall curve from the point-wise meta-analysis, mod-
elled with restricted cubic splines

The same analysis for the dose-response relation was also replicated using

second order fractional polynomials to model the exposure, estimating two

coefficients describing the risk on the outcome. The Cox regression model
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was used, stratifying by studies, and the overall best choice of p1, p2 was

selected. All the possible 36 combinations of p1, p2, were considered and the

model with the lowest AIC value was chosen. In figure 3.2 the study-specific

shapes can be seen along with the overall shape acquired from the point-wise

meta-analysis of the studies, considering a random effects model.

Figure 3.2: Dose-Response relation of the IPD in the nine registries (dashed
lines) overlaid with the overall curve from the point-wise meta-analysis, mod-
elled with second order fractional polynomials
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3.3 Summarized data

In addition to the analysis performed for the IPD, the dataset was also sum-

marized for the 9 studies. The exposure of interest was divided into the

following categories based on its distribution: 0-1 positive nodes, 2-4 pos-

itive nodes, 5-24 positive nodes and 25-50 positive nodes. Using the same

Cox model as in the last setting, but in this case without a transformation

for the exposure, the risks for the 4 categories were obtained, relative to

the first category, along with the median of each category and the respec-

tive standard errors and confidence intervals for the estimates of the relative

risks. Using these, we created the usual tabular form as we would expect

from a published study. A snapshot of the aggregated data for one study is

seen in table 3.2.

Table 3.2: Cumulative Incidence data of the San Francisco-Oakland study
on positive nodes and breast cancer mortality rate

Positive nodes Dose Cases Total Patients Person Years Rate log(HR)

0-1 0.0 713 11419 75734.67 0.007 0.00

2-4 2.0 276 1624 9960.42 0.047 0.82

5-24 8.0 393 1198 6517.25 0.060 1.45

25-50 28.0 17 29 129.17 0.131 2.23

3.3.1 Meta-analysis using restricted cubic splines

In the analysis of the aggregated dataset, we used the log-linear model from

equation 2.1. The position of the knots was chosen to be the same for both

the IPD and the aggregated data for comparison reasons, although, that

the same justification clearly applies for the choice of the knots. For the

aggregated dataset the point-wise approach was implemented as described
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in section 2 of the thesis, considering a random effects model. In figure 3.3

the study-specific dose-response shapes can be observed for all 9 studies for

a selected range of the exposure overlaid with the overall shape from the

point-wise meta analysis.

The results of both the analyses, comparing the IPD with the summa-

rized data, can be seen in figure 3.4. A direct comparison of the two shapes

shows that the results drawn from summarized data, as far as the dose-

response relation is concerned, very similar to the results of the same analy-

sis on IPD. The estimated relative risks for selected points of the exposure is

shown in table 3.3 along with the confidence intervals, both for the analysis

in the IPD and the analysis on the summarized data.

Figure 3.3: Study specific curves for the nine studies included in the meta-
analysis. The number of positive nodes was modelled using restricted cubic
splines (dashed lines). The thick line represents the pooled curve of the
point-wise meta-analysis.
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Figure 3.4: Comparison of the point-wise meta-analysis on the IPD with
the point-wise meta analysis on the summarized data using restricted cubic
splines to model the exposure. The straight line represents the point-wise
meta-analysis on summarized data and the dashed line the point-wise meta-
analysis on the IPD.
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Table 3.3: Predicted relative risks (RR) of the point-wise approach of IPD
and the point-wise approach on summarized data

Dose RR from Summarized data 95% CI RR from IPD 95% CI

0 1.00 (1.00,1.00) 1.00 (1.00,1.00)

1 1.33 (1.31,1.35) 1.37 (1.35,1.39 )

2 1.74 (1.69,1.78) 1.83 (1.78,1.88 )

5 3.20 ( 3.06,3.35) 3.53 (3.36,3.71 )

10 5.30 (5.00,5.61) 5.87 (5.53,6.23 )

15 6.26 (5.71,6.87) 6.62 (6.18,7.08 )

20 7.09 (6.10,8.23) 7.06 (6.39,7.81 )

30 9.02 (6.87,11.85) 8.07 (6.70,9.71)

40 11.43 (7.66,17.07) 9.16 (6.97,12.02 )

50 14.47 (8.52,24.60) 10.36 (7.23,14.85 )

3.3.2 Meta-analysis using fractional polynomials

A second order fractional polynomial was also used to model the exposure

for the aggregated data applying it to the model from equation 2.1. The

strategy used to choose the best model for each study was the choice of

the model that minimizes the AIC value (Rota et al. [4]). In the analysis

of the summarized data, all possible 36 combinations for each study were

considered again, only that this time the p1, p2 minimising the AIC value

was selected within each study, allowing for different choice of p1, p2 for the

different studies. We can see the optimal choice of p1, p2 for each study in

table 3.4 together with the corresponding AIC value.
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Table 3.4: Overall choice of the within studies combination of p1, p2 that
minimizes the AIC value

Study p1 p2 AIC value

San Francisco-Oakland 0.5 3 -1.1368

Connecticut 0 1 -3.9950

Metropolitan Detroit -0.5 1 -3.5051

Hawaii -0.5 -0.5 -4.2395

Iowa -1 1 -0.1893

New Mexico 0 3 -3.4718

Seattle (Puget Sound) -0.5 0 -0.0244

Utah -2 0 -3.3812

Metropolitan Atlanta -2 -2 -1.5904

The dose-response relation shapes for the 9 registries can be seen in fig-

ure 3.5, together with the overall shape on the meta-analysis, considering a

random effects model. The results of the meta-analysis on the aggregated

data set, compared to the analysis on the IPD can be seen in figure 3.6

where we notice that both methods produce similar dose-response relations,

especially in low number of positive nodes, where about 90 % of the subjects

lay. In table 3.5 we can see the estimated relative risks for selected points

of the exposure. We note that both the restricted cubic splines and the

fractional polynomial regression methods to model the exposure generate

accurate results, compared to the same analysis of the IPD.

Furthermore, both methods yield very similar results, although the curves

in figure 3.6 using fractional polynomials not as ”steep” as when modelling

when restricted cubic splines seen in figure 3.4. In figures 3.6 and 3.4 the two

lines deviate for high levels of the exposure, something that can be explained

due to the low number of subjects and events at these levels.
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Figure 3.5: Study specific curves for the nine studies included in the meta-
analysis. The number of positive nodes was modelled using fractional poly-
nomials (dashed lines). Study-specific p1, p2 were chosen according to the
minimum AIC values. The thick line represents the pooled curve of the
point-wise meta-analysis.
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Figure 3.6: Comparison of the meta-analysis on the summarized data
(straight line) with the point-wise meta analysis on the IPD (dashed line)
using fractional polynomials to model the exposure
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Table 3.5: Predicted relative risks (RR) of the point-wise approach of IPD
and the point-wise approach on summarized data

Dose RR from Summarized data 95% CI RR from IPD 95% CI

0 1.00 (1.00,1.00) 1.00 (1.00,1.00)

1 1.72 (1.44,2.053) 1.95 (1.88,2.03)

2 2.28 (2.01,2.59) 2.53 (2.39,2.67)

5 3.42 (3.17,3.69) 3.71 (3.44,3.99)

10 4.86 (4.59,5.14) 5.04 (4.61,5.51)

15 6.19 (5.53,6.94) 6.07 (5.51,6.68)

20 7.63 (6.39,9.12) 6.94 (6.27,7.68)

30 10.77 (7.82,14.82) 8.42 (7.56,9.37)

40 14.33 (8.87,23.14) 9.69 (8.68,10.81)

50 18.39 (9.79,34.52) 10.73 (9.61,11.99)

3.4 Heterogeneity at different dose-levels

Based on the point-wise approach discussed in section 2.6, the vector I2 for

heterogeneity at each point of the exposure was also calculated for the sum-

marized dataset when modelling the exposure with restricted cubic splines.

The plotted results can be seen in figure 3.7. The values before 12-13 pos-

itive nodes might seem a bit odd, something that is explained by the fact

that I2 is forced to take positive values. As a result, for low values where

more that 95 % of the subjects lay, there is minimal heterogeneity and the

I2 value is set to 0. This can be also verified by figure 3.3, where we notice

that all the studies present similar dose-response association for low levels

of the exposure. Although for higher levels the studies present somewhat

different results, the heterogeneity reduces due to the low precision of the

study-specific predictions at those levels.
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Figure 3.7: Point-wise heterogeneity of the studies estimated when modelling
with restricted cubic splines

3.5 Simulated studies

Following the results from the analysis on the individual patient data, we

evaluated the performance of the point-wise approach in different dose-

response shapes, other than the one described in figures 3.6 and 3.4 (”plateau”

shape). The shapes considered are the most common in dose-response meta-

analysis , specifically: U-shape relation, J-shape relation and linear relation.

In order to perform the analysis in these different scenarios, we simulated

data for the different dose-response relations for the three different shapes

as follows:
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1. Define the dose-response relation (linear,J-shape, U-shape) of the pop-

ulation. The range of the exposure desired to be investigated was

defined, between 0 and 12. Then three exposure level points were

chosen, x = (x1, x2, x3), within the range. A vector of probabilities

p = (p1, p2, p3) of the outcome was chosen corresponding to the values

of x, based on the equation of a logistic regression model. Analogous

to the vector p, in connection with the logistic regression model a

y = (y1, y2, y3) vector of log(odd) was created, where each element yi

is calculated as

yi = log (
pi

1 − pi
) (3.2)

Finally having calculated the log(odds) corresponding to the proba-

bilities of the outcome the following equation was solved to estimate

the coefficients that would describe the desired dose-response relation,

given they rise from a model with a quadratic form

Y =
⎛
⎜⎜
⎝

1 x1 x21
1 x2 x22
1 x3 x23

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

β0

β1

β2

⎞
⎟⎟
⎠

(3.3)

so that with Y and X known the vector of coefficients is calculated as

β =
⎛
⎜⎜
⎝

1 x1 x21
1 x2 x22
1 x3 x23

⎞
⎟⎟
⎠

−1
⎛
⎜⎜
⎝

y1

y2

y3

⎞
⎟⎟
⎠

(3.4)

Solving the equation 3.4 the results would be a vector of three coeffi-

cients, β = (β0, β1, β2) defining the coefficients of a logistic regression

model, where the first coefficient represents the intercept of the model

and the last two the quadratic dose-response relation. Following the

calculations as depicted above, the probability of the outcome given

the dose is calculated

39



p = elog(odds)

1 + elog(odds) (3.5)

where the log(odds) at a specific value of the dose are defined as

log(odds) = β1 + β2dose + β3dose2 (3.6)

2. Draw exposure distributions from a lognormal distribution for 10 dif-

ferent studies. Each study was allowed to have a different number of

observations varying from 3.000 to 10.000. The number of subjects for

each study was randomly chosen.

3. Based on the exposure value, simulate the outcome based on the prob-

abilities calculated from equation 3.5. After extracting the simulated

outcome, we derive two vectors for each simulated study, one with the

level of the dose and one with the outcomes, sufficient information to

define the dose-response relation.

4. Categorize the exposure distribution randomly, into either 3 or 4 in-

tervals for each study.

5. Estimate a logistic regression model on the aggregated data and create

a summarized dose-response dataset.

6. Based on the procedure described in section 2, perform the point-

wise meta-analysis. The exposure was modeled using restricted cubic

splines with three knots placed at the 10th, the 50th and the 90th

quantiles of the distribution.

As an illustration, the dose-response U-shape relationship is presented in

figure 3.8. Since we notice that the lowest risk to experience the event is

at the dose level of 6, we use it as the reference point in the dose-response

analysis.

Meta-analysis was also performed on the IPD, running a logistic regression

model on each study to extract the study-specific trend coefficients, which
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Figure 3.8: Simulated U-shape dose-response relation

were then used for study-specific predictions. The data used were the vectors

of doses and events as defined in step 3. The studies were pooled at the lev-

els of the exposure that was also modeled using restricted cubic splines with

the same three knots as in the dose-response meta-analysis of summarized

data. It is our interest to explore whether the performance of the point-wise

approach on the summarised data would be similar to the performance of

the meta-analysis of IPD, which is considered to be the golden standard.

In figures 3.9, 3.10 and 3.11 the results for the analyses can be seen. We

can notice there that both the analysis with IPD and with summarized data

(dashed line and straight line respectively) give similar results and compared

to the true risk (dotted line) the estimations of both methods are very ac-

curate.
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Figure 3.9: Comparison based on simulated studies plotted together with
the distribution of the data. The point-wise approach on summarized data
(solid line) is compared to the point-wise approach on IPD (thick dashed
line) and the true underlying shape (dotted line) for a linear trend analysis
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Figure 3.10: Comparison based on simulated studies plotted together with
the distribution of the data. The point-wise approach on summarized data
(solid line) is compared to the point-wise approach on IPD (thick dashed
line) and the true underlying shape (dotted line) for a J-shape relation
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Figure 3.11: Comparison based on simulated studies plotted together with
the distribution of the data. The point-wise approach on summarized data
(solid line) is compared to the point-wise approach on IPD (thick dashed
line) and the true underlying shape (dotted line) for a U-shape relation
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Chapter 4

Discussion

In this thesis we discuss and demonstrate the application of the point-wise

approach in the context of dose-response meta-analysis of summarized data.

This approach comprises of three main steps, which have been thoroughly

demonstrated in the analyses performed. Firstly, the trend coefficients of

each study are estimated, using either restricted cubic splines or second order

fractional polynomials to model the exposure, to allow non-linear shape of

the dose-response curve. Then, based on the coefficients extracted, study

specific predictions are made for a desired range of the exposure, estimating

the relative risks of the outcome relative on a suitable common reference

point. Finally, for each level of the exposure, the estimations of the relative

risk are averaged, with different weight according to a fixed or random effect

model.

The methodology is described in detail in chapter 2 and is applied to

survival data from the SEER registry involving breast cancer patients. A

further application was demonstrated on simulation studies with common

dose-response shapes tested. The ability of the method to fit dose-response

relations was evaluated in comparison with the meta-analysis on IPD. In

all the analyses the results of the novel method were similar to the results

obtained with the analysis on IPD, which is considered the golden standard

in meta-analysis. Such results, demonstrate that the novel approach can be

a useful tool, when access to the IPD is not possible.
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When modelling with restricted cubic splines, the positions of the knots

is chosen based on the distribution of the exposure. In our case, since the

distribution of the exposure in the SEER dataset was highly right skewed

the choice of the knots was in low values. In the simulates simulated studies

the 10th, the 50th and the 90th quantiles of the exposure distribution were

chosen as the position of the knows. When modelling with second order

fractional polynomials, the strategy for the best choice of the power vector

of the transformations, is the choice of the power vector that minimizes the

AIC value of the model.

Limitations commonly encountered in meta-analysis of summarized data

that have not been addressed in this thesis are publication bias, different

patterns of selecting subjects in each study, the ranges of the exposure ex-

amined, or confounding in observational studies.

In our analyses with the IPD the exposure was categorised in the same

way in all studies. This is not usual in practice, as studies can use differ-

ent categories. As heterogeneous exposure can be a complication, in the

simulated studies the exposure was randomly categorised. The results of

the analysis using the point-wise approach demonstrate that the number

of categories and the doses assigned does not effect the performance of the

proposed approach.

The analyses implemented were carried out in the statistical software R,

available for free on CRAN. An updated version of the dosresmeta package

will be made available to include the point-wise methodology as an alterna-

tive option for dose-response meta-analysis of aggregated data.

Based on our findings, we conclude that the proposed methodology can

give very accurate results and it can be trusted to perform dose-response

meta-analysis on summarized data. This is particularly useful when access

to the original data is not available.

In summary, we believe that the method proposed in this thesis will

improve the overall quality and practice in reporting the findings of quan-

titative reviews of summarized dose-response data. Although the results

obtained from the developed method look promising, further analyses need
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to be made and more cases need to be studied in order to improve the

precision of the method and further develop its accuracy.
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Appendix

R code

Example code to perform point-wise dose-response meta-analysis on sum-

marised data when modelling with restricted cubic splines. The example is

based on the SEER dataset to get figure 3.3.

## read the dataset

tabDataSum <- read.table("http://www.imm.ki.se/biostatistics/data/seer.txt",

header=TRUE)

## define the knots

knots <- c(0, 2, 15)

## Running spline model within each study

modiSum <- lapply(split(tabDataSum, tabDataSum$id), function(x)

dosresmeta(formula = logrr ~ rcs(dose, knots), type = "ir", cases = cases,

se = se, n = n, id = id, data = x)

)

## define the range of the exposure

newdata <- data.frame(dose = seq(0, 50, 1))

## Study specific predictions (and SE) for the range of the exposure

predSum <- lapply(modiSum, function(x)

data.frame(predict(x, newdata, expo = F, se = T)[, c(1, 3, 6)])
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)

## Dose-specific predictions (and SE) for the studies

## data to be used for meta-analysis

predDosesSum <- lapply(as.list(seq(nrow(newdata))), function(x)

data.frame(t(sapply(predSum, function(y) y[x, ])))

)[-1]

## Dose-specific meta-analysis (as many as the points in newdata)

metamodiSum <- lapply(predDosesSum, function(x)

rma.uni(y = unlist(x$pred), sei = unlist(x$se), method = "REML")

)

## Final results: Dose-specific predictions (and SE)

newpredSum <- data.frame(do.call("rbind", lapply(metamodiSum, function(x)

predict(x, transf = exp))))

## Plot of final results

par(mfrow = c(1, 1))

with(newpredSum,{

plot(newdata$dose, c(1, pred), log = "y",

type = "l", las = 1, bty = "l", col = "black", ylim = c(1, 20),

ylab = "Relative risk", las = 1,

xlab = "Number of positive nodes", lwd=3)

})

## Add study-specific shapes

lapply(modiSum, function(x)
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with(predict(x, newdata, expo = T),{

lines(get("rcs(dose, knots)dose"), pred, lty=2, type="l"

)

})

)
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