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Abstract

Genetic association studies are used to find regions of the genome
that contribute to a specific disease by testing for an association be-
tween disease status and genetic variation(s). We use single nucleotide
polymorphisms (SNPs) to investigate the genetic variability. SNPs
are locations where single nucleotides differ on the DNA in at least
1% of the population. From a statistical point of view these investi-
gations are commonly performed using logistic regression techniques,
modeling disease risk as a function of markers, i.e. SNPs, but the
need for a penalized regression approach arises when many markers
are correlated. Furthermore, in genetic association studies one often
has the situation where the number of markers studied exceed the num-
ber of observations, increasing the need for a penalized approach. In
this thesis interest lies in the analysis of a genomic region, containing
highly correlated markers, in relation to breast cancer risk. We do
so by studying data on 89 050 individuals part of the Breast Cancer
Associ- ation Consortium (BCAC) and compare logistic regression and
ridge regression techniques, for localizing independent signals among
the multiple markers in said genomic region. Furthermore, we use a
data-driven method for estimation of the penalization parameter, pro-
posed by Cule and De Iorio [2013], in our ridge regression analyses.
We find that both regression approaches give similar results, deeming
markers from the same genomic region as being significantly associated
with breast cancer risk. Our analysis is the first step in a long chain
of events leading to the identification of locations that are associated
with breast cancer risk and this thesis gives an important indication
as to what region future investigations should be focusing on.
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Chapter 1

Introduction

Each year in Sweden more than 57 000 cancer cases are diagnosed, of these over 8 000 are

breast cancers. Approximately 30% of all cancers among Swedish women are breast cancers,

making it the most common cancer among women in Sweden [Cancerfonden]. Both non-genetic

and genetic risk factors are involved in the initiation and the course of the illness. The genetic

component of the disease is reflected by a tendency for it to cluster in families [Lichenstein et al.,

2000]. For example women who have a mother or sister who had breast cancer have a two to

three times higher risk than other women of developing the disease themselves [Cancerfonden].

The aim of this thesis is to analyze a highly correlated genomic region in relation to breast

cancer risk by comparing logistic regression methodology to ridge regression techniques for lo-

calizing independent associated signals among multiple markers. The analyses will be done on a

breast cancer data set containing information about 89 050 individuals disease status and their

genotypes at 3 279 markers along a genomic region. The data originates from 39 case-control

studies participating in BCAC [Breast Cancer Association Consortium].

In the first year of the new millennium it was announced that the International Human Genome

Project and Celera Genomics Corporation had both completed an initial sequencing of the

human genome [International Human Genome Sequencing Consortium, 2001]. Subsequent tech-

nological advances concerned with gene sequencing and genotyping initiatives have improved

our understanding of population specific genetic variations and enhanced our understanding

of complex diseases; often through the use of genetic association studies. Genetic association

studies are used to find regions of the genome that contribute to a specific disease by testing

for a correlation between disease status and genetic variation(s). These studies have led to the

mapping of susceptibility loci for many diseases including breast cancer [Turnbull et al., 2010];

by modeling risk of the disease as a function of investigated loci and assessing association. Large

sample sizes have, however, been needed to detect and confirm genetic variants that are associ-

ated with modest increase in risk. The Breast Cancer Association Consortium (BCAC) [Breast

Cancer Association Consortium, 2006], which was established to conduct collaborative studies,

has detected several of the currently known common variants associated with breast cancer risk

[Michailidou et al., 2015].
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Logistic regression is commonly used for modeling disease risk as a function of a marker. See

for example French et al. [2013] where the authors analyzed data from case-control studies with

regard to breast cancer, and used, among other, both univariable logistic and multivariable

stepwise logistic regression to model disease risk as a function of markers. However, using

univariable analyses for genomic data is not optimal when, for example, many genetic variants

that contribute to disease are interdependent. It would be more appropriate to use multivariable

techniques that allow for the study of combined effects of multiple markers. Furthermore, in

genetic association studies, one often has the situation where the number of covariates exceeds

the number of observations (the small n, large p problem). In such situations a penalized

regression approach, that potentially also can handle multicollinearity between markers, would

be more suitable.

As outlined above we will in this thesis analyze breast cancer data, using both logistic regression

methods and ridge regression, which is a penalized regression approach. We are interested in

comparing the methods in regard to which markers the respective methods localize. Throughout

the thesis we assume that the theory of linear regression modeling and its details is known to

the reader. For supplementary reading about the linear model consider e.g. Hastie et al. [2010,

chapter 3].

The this is structured as follows. In Chapter 2, we first provide a short description of the

structure of the human genome. In Chapter 3 some key concepts related to genetic association

studies are introduced as background for the applied work in this thesis. Logistic regression

modeling techniques for genetic association studies are introduced in Chapter 4, as well as

maximum likelihood techniques for estimation of the model parameters. Furthermore, Section

4.3 covers some theory of penalized regression modeling and logistic ridge regression in particular,

while Section 4.4 deals with the concept of principal component logistic regression. Principal

component regression techniques will come in handy in Section 4.5, where the proposed data-

driven approach, by Cule and De Iorio [2013], for estimation of the penalization parameter in

ridge regression is explained. In Chapter 5 various aspects of the breast cancer data set we

will be analyzing in this thesis are described and an initial univariable analysis is performed.

The results of the multivariable logistic regression and ridge regression analyses are presented

in Chapter 6 and the results and various other aspects of this thesis are discussed in Chapter 7.

Furthermore, Appendix A and Appendix B provide some supplementary theory.
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Chapter 2

Biological Background

Most human body cells have in their cell nucleus 23 pairs of chromosomes; 22 pairs of autosomal

(non-sex) chromosomes and 1 pair of sex chromosomes (XX or XY). Each pair comprises one

copy from each parent respectively. The two chromosomes in one autosomal pair are said to be

homologous, meaning that they comprise (nearly) the same information in the same locations

[Aerssens et al., 2001].

Each chromosome is made up of two strands of DNA (deoxyribonucleic acid) molecules, that

are wound around each other to form a double helix structure, see Figure 2.1 A. Each strand

of DNA is a single long molecule made up of four different building blocks called nucleotides

or bases. The bases are adenine (A), cytosine (C), guanine (G) and thymine (T). The two

strands of DNA are held together by binding between the opposing bases, where bonding only

occurs between A and T, and C and G respectively; referred to as complementary base pairing.

See Figure 2.1 B and C for the molecular structure of the four bases and their complementary

base pairing. The specific sequence of bases encodes the genetic information needed to create

proteins; where a stretch of DNA is called a gene if it contains said information. The gene

content is then transcribed to create another molecule called RNA. The single-stranded RNA

molecule is very similar to DNA and consists of a sequence of bases that is complementary to it’s

DNA template. This RNA is then transported from the nucleus to the cell cytoplasm where it

is translated into a protein [Thomas, 2004]. This flow of genetic information from DNA to RNA

to protein, is referred to as the central dogma of molecular biology [Genetic Science Learning

Center, University of Utah].

Surprisingly, our DNA has very little variability; more than 99% of the base sequences in the

DNA are the same in all humans. The loci, or DNA locations, that vary from person to person

are called polymorphic, where the alternate sequences found at a polymorphic locus are called

alleles. The term polymorphism is usually only used for those variations that are present in at

least 1% of the population. The most common type of polymorphisms in the human genome are

single nucleotide polymorphisms (SNPs, pronounced ’snips’), where a single base is substituted

for another [Thomas, 2004]. Up to four different substitutions are possible at each SNP location

in the genome: one for each nucleotide abbreviated as A, C, G and T [Genetic Science Learning

Center, University of Utah], see Figure 2.2.
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The two copies of a specific gene, one on each chromosome, inherited from the mother and

father respectively, are not always identical. For most genes many alleles exist. An individual’s

genotype for a specific genetic variation is the combination of the two alleles present on the

two homologous chromosomes [Aerssens et al., 2001]. For example, in humans most SNPs are

biallelic, i.e. only two alleles are present, denoted by A and a, where A, a ∈ {A, C, G, T}. The

possible genotypes in the population are thus AA (homozygote wildtype), Aa (heterozygote)

and aa (homozygote variant allele) [Thomas, 2004].

Figure 2.1: A: Double helix structure of DNA. B: Molecular structure of the four building
blocks of DNA and their complementary base pairing. C: Unwound DNA showing pairing
of the bases. Source: http://www.apsnet.org/edcenter/K-12/TeachersGuide/DNA_Easy/

Pages/Background.aspx (retrieved April 2, 2015).

Figure 2.2: SNPs are single nucleotide substitutions of one base for another. Each SNP location
can have up to four versions: one for each nucleotide A, C, G and T. Source: Genetic Science
Learning Center, University of Utah (retrieved April 1, 2015).
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Chapter 3

Genetic Association Studies

In genetic association studies the statistical association between a person’s genotype with his/her

phenotype, i.e. observable outcome or disease status, is examined [Li, 2008]. This is done to

identify those SNPs that contribute to that specific phenotype [Lewis and Knight, 2012].

The aim of this chapter is to introduce genetic association studies and some of its concepts such

as linkage disequilibrium, minor allele frequency and Hardy-Weinberg equilibrium. We look

at how genetic data from a case-control study can be summarized in a contingency table and

how the association between genotype and phenotype can be assessed from it. Furthermore, we

introduce the genome-wide association study significance level α = 5 × 10−8 which we will use

throughout this thesis.

Genetic association studies are mostly based on case-control studies. Here, a number of cases

having the disease of interest are collected together with a number of control individuals. Stan-

dard methods for collecting controls are either to use a series of individuals who have been

screened as negative for presence of the disease or to use individuals randomly selected from

the population, whose disease status is unknown [Lewis and Knight, 2012]. The frequency of

genotypes or alleles is compared between cases and controls at each SNP and a significant dif-

ference in frequency between the case and control group is suggestive of an association of that

SNP with disease [Aerssens et al., 2001].

For a single biallelic SNP tested in a case-control study we can summarize the genotype and

allele counts in a 2× 3 or 2× 2 contingency table, respectively, as seen in Table 3.1.

Genotype
AA Aa aa Total

Cases a b c ncase
Controls d e f ncont

Total nAA nAa naa n

Allele
A a Total

Cases 2a+ b b+ 2c 2ncase
Controls 2d+ e e+ 2f 2ncont

Total nAa + 2nAA nAa + 2naa 2n

Table 3.1: Genotype (left) and allele (right) counts observed for a single SNP tested in a case-
control study.

Analyses could be done on either the genotype or allele counts as presented in Table 3.1. Sasieni

[1997] recommends that SNP data should be analyzed by genotype rather than by alleles, since
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analyses of the 2 × 2 table above are only valid when the combined case-control population is

in Hardy-Weinberg equilibrium (see definition in Section 3.1.3). In other words, analyses of

genotype data are more robust to departures from Hardy-Weinberg equilibrium.

There are a number of different methods available to asses the association between genotype and

phenotype. One is to use Pearson’s chi square test to asses departure from the null hypothesis

that cases and controls have the same distribution of genotype counts. On the 2 × 3 table of

genotype counts, the test statistic has a chi-squared distribution with two degrees of freedom

[Lewis and Knight, 2012].

Furthermore, logistic regression is commonly used to model the disease risk of each individual

given their genotype, see detailed description in Section 4.2. More recently, penalized regression

approaches, such as ridge regression, have been utilised to enable the analysis of several, possibly

correlated, SNPs at once [Cule and De Iorio, 2013].

In genome-wide association studies (GWAS) usually a large number of statistical tests are com-

puted, one for each SNP, which requires a definition of a genome-wide threshold of significance

that accounts for test multiplicity and guards against false positive results that will occur by

chance when performing a large number of tests at a standard significance level α. When esti-

mating a threshold of significance, false discoveries can be controlled by using, for example, the

simple and conservative Bonferroni correction α∗ = α/p, where p is the number of tested SNPs.

The Bonferroni correction’s assumption of independent tests will, however, be violated if there

is a dependence between the SNPs. To take into account the dependence between SNPs, permu-

tation procedures and estimation of an effective number of tests, which is the equivalent number

of independent SNPs along the genome, have been proposed, then choosing the significance level

as α∗ = α/k, where k is the number of effective tests [Jannot et al., 2015]. For example, Pe’er

et al. [2008] used permutation procedures to show that one million tests is the effective number

of tests genome-wide in Europeans, based on the data collected by the International HapMap

Consortium. This yields a significance level α∗ = 5 × 10−8, which, as shown by Jannot et al.

[2015], has become the standard genome-wide significance threshold in GWAS.

3.1 Concepts in Genetic Association Studies

3.1.1 Linkage disequilibrium

Linkage disequilibrium (LD) is defined as the tendency for two alleles at two loci to be associated

with each other in the population more than would be expected by chance. This may be the

result of co-inheritance of particular alleles at neighboring loci and can lead to a correlation

between SNPs in the population [Ardlie et al., 2002].

If we denote two adjacent biallelic loci by A and B with alleles A and a, and B and b respectively,

then each of the 22 = 4 different combinations of alleles are called a haplotype. The classical
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definition of the LD coefficient is

D = pAB − pApB, (3.1.1)

where pAB denotes the observed haplotype frequency for the haplotype that consists of alleles A

and B and pApB denotes the expected haplotype frequency, where pA is the frequency of allele A

at the first locus and pB is the frequency of allele B at the second locus. Hence, D measures the

deviation between the haplotype frequency and its expectation under independence [Langefeld

and Fingerlin, 2007].

There are two other common measures of LD, namely D′ and r2, that both range between 0

(linkage equilibrium) and 1 (complete LD) [Ardlie et al., 2002]. Thus as D′ and r2 approach 1

the correlation between the loci increases. We have that [Thomas, 2004]

D′ =
|D|
Dmax

Dmax =

min(pApb, papB) if D ≥ 0

min(pApB, papb) if D < 0.
(3.1.2)

The measure r2 is the square of Pearson’s correlation coefficient for the two loci, i.e.

r2 =
D2

pApBpapb
. (3.1.3)

Only when D′ = 1 and the allele frequencies at the two loci are identical, will r2 be 1 [Langefeld

and Fingerlin, 2007] and this is referred to as perfect LD [Ardlie et al., 2002].

3.1.2 Minor allele frequency

The frequency of the allele that is present in no more than 50% of a population, i.e. the less

common allele at a variable site, is called the minor allele frequency (MAF) [Foulkes, 2009]. As

an example consider the SNP for which AA is present in 75% of the population, Aa in 20% and

aa in 5%. The frequency for the A and a allele respectively, is then estimated as

freq(A) =
(2 · 75 + 20)%

2
= 85% (3.1.4)

freq(a) =
(2 · 5 + 20)%

2
= 15%. (3.1.5)

In this case the minor allele frequency, i.e. the frequency of the a-allele, is 15% [Foulkes, 2009].

Theorem. When the genotypes G are encoded as 0, 1 and 2 for the number of a-alleles present,

i.e.

G =


0 if genotype AA,

1 if genotype Aa,

2 if genotype aa,
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and ’a’ is the minor allele, the minor allele frequency at a specific SNP can be calculated as

MAF =

∑n
i=1Gi
2n

=
G

2
,

where n is the number of individuals we have genotyped.

Proof.

MAF = freq(a) =
2 · naa + 1 · nAa + 0 · nAA

2n

=
2 ·
∑n

i=1 I(Gi = aa) + 1 ·
∑n

i=1 I(Gi = Aa) + 0 ·
∑n

i=1 I(Gi = AA)

2n

=

∑n
i=1Gi
2n

=
G

2
,

where I(·) is the indicator function taking value 1 if its condition is fulfilled and value 0 other-

wise. We see that
∑n

i=1 I(Gi = aa) counts the number of individuals with genotype aa, thus

multiplying this with 2 yields the sum of all Gi = 2, while
∑n

i=1 I(Gi = Aa) yields the sum of

all Gi = 1 and 0 ·
∑n

i=1 I(Gi = AA) yields the sum of all Gi = 0.

3.1.3 Hardy-Weinberg Equilibrium

The Hardy-Weinberg equilibrium (HWE) states that under specific assumptions (random mat-

ing, no new mutations, no migration or selection) the allele and genotype frequencies in a popu-

lation, after enough time, will remain constant from generation to generation, see Langefeld and

Fingerlin [2007]. That is, all subsequent generations will have the same genotype frequencies

unless there are violations of these assumptions. Furthermore, the genotype probabilities of

AA, Aa and aa are under HWE p2, 2pq and q2 respectively, where p and q = 1 − p are allele

probabilities for A and a respectively. In practice, HWE is highly robust to departures from

all of the assumptions except for random mating relative to the locus of interest [Langefeld and

Fingerlin, 2007].

Lewis and Knight [2012] state that controls in a case-control study should be in HWE, provided

the population they were selected from fulfills the above assumptions. Furthermore, departure

from HWE in controls also commonly implies genotyping errors or a population substructure

and a test for a statistical difference between the expected and observed genotype counts in each

SNP separately can thus be performed in the beginning of the analysis as a quality control check,

discarding the SNPs not in HWE. For this test the chi-squared goodness-of-fit test statistic is

calculated for each SNP by summing over the possible genotypes

X2 =
∑

G∈{AA,Aa,aa}

(observed countG − expected countG)2

expected countG
,
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and here X2 has an asymptotically chi-squared distribution with (3 − 1) − 1 = 1 degree of

freedom. The expected genotype probabilities are calculated as in (3.1.4) and (3.1.5) and the

expected counts as ncontp
2 (AA), 2ncontpq (Aa) and ncontq

2 (aa), where ncont is the total number

of controls in that specific SNP [Langefeld and Fingerlin, 2007].
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Chapter 4

Theory & Methods

In this chapter we introduce the methods we will be using in this thesis, and the theory behind

them. We start by introducing the logistic regression model in Section 4.2. The model is

introduced in general and applied to the analysis of case-control studies to estimate the covariate

(SNP) effect on the prospective odds ratio, as described in Chapter 3. Furthermore, in Section

4.3 we introduce penalized regression models, in particular the logistic ridge regression model,

which are useful in data situations where the covariates are highly correlated or when the number

of covariates exceeds the number of observations. In these situations, which both arise commonly

in genetic association studies, the parameters in the model cannot be uniquely estimated. If

instead a penalized regression approach is utilized, (biased) parameter estimates can be obtained.

Maximum likelihood (ML) techniques for estimation of the model parameters are discussed and

the ML estimators in the logistic and ridge regression models are derived. Methods for estimating

the penalization parameter in ridge regression are discussed in Section 4.3.2, in particular the

method suggested by Cule and De Iorio [2013] since we will be utilizing it. Their approach is

based on principal component regression and hence the principal component logistic regression

model is also introduced in Section 4.4.

Furthermore, in Section 4.6, we introduce two methods used in meta-analysis for pooling p-values

from several different studies: Fisher’s method and Stouffer’s weighted Z-score method.

4.1 Prospective vs. retrospective odds ratio

Returning to the 3×2 contingency table, described in Chapter 3, of genotype counts given disease

status resulting from a case-control study, we write the assumed conditional probabilities for the

events as in Table 4.1b. Here, for example, P (x = 2 | y = 1) = φ12 and P (x = 2 | y = 0) = φ02

denote the probabilities of having genotype 2 when being a case or control, respectively. These

probabilities are estimated by their observed proportions, a/ncase and b/ncont respectively.

In the following we show the equivalence of the prospective and retropective odds ratios, following

Lachlin [2011, chapter 5]. Throughout the thesis, genotype AA, denoted by 0, will serve as the

reference genotype group, meaning that when we talk about the odds of genotype x = 1 or 2, it

12



y
Case Control

Genotype 1 0 Total

aa 2 a b naa
x Aa 1 c d nAa

AA 0 e f nAA
Total ncase ncont n

(a) Table of observed genotype counts.

y
Case Control

Genotype 1 0

aa 2 φ12 φ02
x Aa 1 φ11 φ01

AA 0 1− φ12 − φ11 1− φ02 − φ01
Total 1 1

(b) Table of assumed conditional probabilities.

Table 4.1: Contingency table of (a) observed genotype counts given samples of ncase cases and
ncont controls and (b) the corresponding assumed conditional probabilities.

is always in relation to genotype 0. The retrospective OR of genotype aa given disease is

ORretro,20 =
P (x = 2 | y = 1)/P (x = 0 | y = 1)

P (x = 2 | y = 0)/P (x = 0 | y = 0)
=
φ12/(1− φ12 − φ11)
φ02/(1− φ02 − φ01)

=̂
af

be
, (4.1.1)

where ’=̂’ in the last step means ’estimated as’. ORretro,20 is thus the odds of having genotype

aa when diseased vs. not diseased. Interest is however, in the prospective OR of being diseased

given genotype aa:

OR20 =
P (y = 1 | x = 2)/P (y = 1 | x = 0)

P (y = 0 | x = 2)/P (y = 0 | x = 0)
.

To obtain the OR above one also needs to account for the prevalence of the disease in the

population from which the cases and controls arose: P (y = 1) = δ. In that case we have, using

Bayes theorem, that

P (y = 1 | x = 2) =
P (x = 2 | y = 1)P (y = 1)

P (x = 2)

=
P (x = 2 | y = 1)P (y = 1)

P (x = 2 | y = 1)P (y = 1) + P (x = 2 | y = 0)P (y = 0)

=
φ12δ

φ12δ + φ02(1− δ)

P (y = 1 | x = 0) =
P (x = 0 | y = 1)P (y = 1)

P (x = 0)

=
P (x = 0 | y = 1)P (y = 1)

P (x = 0 | y = 1)P (y = 1) + P (x = 0 | y = 0)P (y = 0)

=
(1− φ12 − φ11)δ

(1− φ12 − φ11)δ + (1− φ02 − φ01)(1− δ)
.

Together this yields

OR02 =
P (y = 1 | x = 2)/P (y = 1 | x = 0)

P (y = 0 | x = 2)/P (y = 0 | x = 0)

=
P (x = 2 | y = 1)/P (x = 0 | y = 1)

P (x = 2 | y = 0)/P (x = 0 | y = 0)

= ORretro,02. (4.1.2)
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Equation (4.1.2) shows that the retrospective and prospective OR are equivalent, i.e. the odds

of having genotype aa when diseased compared to when not diseased is the same as the odds

of disease when having genotype aa compared to when having genotype AA. The same can be

showed for when x = 1, i.e. the genotype is Aa. Thus we have showed that the OR of genotype

status given disease from a retrospectively sampled case-control study also provides an estimate

of the prospective OR of disease given genotype status.

This suggests that logistic regression can be applied to the analysis of case-control studies to

estimate and asses the covariate effects on the prospective OR.

4.2 Logistic regression

The theory in this chapter can be found in Agresti [2013], unless otherwise indicated.

Let X be an n × (p + 1) matrix of covariates, with rows xi = (xi0, xi1, . . . , xip), setting xi0 =

1 for an intercept term, and let Y = (Y1, . . . , Yn) be a random vector of binary outcomes,

i.e. Yi ∈ {0, 1}. In our case, X is the covariate matrix with genotype information for each

individual i, i = 1, . . . , n, at each SNP j, j = 1, . . . , p, meaning that xij ∈ {0, 1, 2} depending

on the number of a-alleles in individual i’s genotype at SNP j. Furthermore, Y is the vector of

phenotypes where 1 denotes a case and 0 a control.

In this setup, where Yi is a Bernoulli distributed random variable with success probability π(xi),

the logistic regression model is given as

π(xi) = P(Yi = 1 | xi) =
exp{xiβ}

1 + exp{xiβ}
=

exp{
∑p

j=0 βjxij}
1 + exp{

∑p
j=0 βjxij}

, (4.2.1)

where β = (β0, β1, . . . , βp)
′ is the vector of coefficients. Equivalently, the log odds has the linear

relationship

logit
(
π(xi)

)
= log

(
π(xi)

1− π(xi)

)
= xiβ =

p∑
j=0

βjxij . (4.2.2)

When it comes to interpreting the coefficients, we have that exp(βj), where j = 1, . . . , p, is the

multiplicative effect on the odds for disease obtained from a 1-unit increase in the jth covariate

when keeping the levels of all other covariates fixed.

4.2.1 Maximum likelihood estimation of the logistic regression model

The likelihood of the above described logistic regression model, where the Yi’s are conditionally

independent given the xi’s and Yi = yi ∼ Bernoulli(π(xi)), i = 1, . . . , n, is

L(β) =

n∏
i=1

πyii (1− πi)1−yi , (4.2.3)
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where πi = π(xi), as in (4.2.1). The log likelihood is thus

l(β) =

n∑
i=1

{yi log(πi) + (1− yi) log(1− πi)}. (4.2.4)

Note that the density of y characterized by 4.2.3 belongs to an exponential family with canonical

statistic

t(y) =

 n∑
i=1

yi,

n∑
i=1

yixi1, . . . ,

n∑
i=1

yixip

 ,

canonical parameter β = (β0, . . . , βp) and a(β) =
∏n
i=1

[
1 + exp{xiβ}

]−1
.

This implies that the logistic regression model belongs to the class of generalized linear models

(GLMs). The link function, that connects the mean value, E[Yi] = πi, to the linear predictor,

ηi = g(πi) = xiβ, is the canonical logit link, i.e. g(πi) = log
[
πi/(1− πi)

]
= logit(πi), as in

(4.2.2).

We use maximum likelihood estimation to get an estimate of β. Differentiating l(β) and setting

equal to zero, yields the likelihood equations

n∑
i=1

x′i [yi − π̂i] = X′[y − π̂] = 0, (4.2.5)

where π̂i = exp{xiβ̂}/
[
1 + exp{xiβ̂}

]
is the probability obtained from plug in of the maximum

likelihood estimator β̂ and π̂ is the vector of π̂i’s. Since these p + 1 equations are non-linear

in β they require an iterative solution, for example the Newton-Raphson algorithm or Fisher

scoring, which are asymptotically equivalent for the logistic regression model.

For the estimation of the regression coefficients and the covariance matrix of β̂, the observed

information matrix, or equivalently the Fisher information matrix, since they are identical here

due to the canonical logit link, is required. We have that the Fisher information matrix is

I(β) = E

[
−∂

2l(β)

∂β∂β′

]
=

n∑
i=1

xix
′
iπi(1− πi) = X′WX, (4.2.6)

where W = diag[πi(1− πi)] is the diagonal weight matrix. We recall that Var(Yi) = πi(1− πi),
so W is the variance-matrix of Y.

Given a starting value β(0), the Fisher scoring algorithm iteratively updates

β̂
(t+1)

= β̂
(t)

+ I−1(β̂
(t)

)U(β̂
(t)

)

= β̂
(t)

+

[
X′Ŵ

(t)
X

]−1
X′
[
y − π̂(t)

i

]
, t = 0, 1, 2, . . . (4.2.7)

where I(·) and U(·) are the expected Fisher information matrix and score function respectively.

The iterations will be stopped once a convergence criterion is met, for example the relative

convergence criterion ‖β̂
(t+1)

− β̂
(t)
‖/‖β̂

(t)
‖≤ ε, where ε > 0 is a pre-defined number and ‖β‖

15



denotes the length of vector β, then β̂
(t)

is the maximum likelihood estimator [Fahrmeir et al.,

2013].

The ML estimators have an asymptotic normal distribution with variance-covariance matrix

equal to the inverse of the Fisher information matrix, which is estimated by plug in of the ML

estimator β̂, i.e.

V̂ar(β̂) =
[
X′ŴX

]−1
. (4.2.8)

The existence of the ML estimates depends on the configuration of the sample points in the

observation space. There are three mutually exclusive and exhaustive categories: complete

separation, quasi-complete separation and overlap [Albert and Anderson, 1984]. Complete sep-

aration refers to the situation when a hyperplane can pass through the space of explanatory

variables such that on one side of that hyperplane Y = 1 for all observations whereas Y = 0 for

all observations on the other side. When at least one observation from each response group is

exactly on the hyperplane we have quasi-complete separation. When neither of these separations

exists there is an overlap of observations and the ML estimates exist and are unique [Agresti,

2013].

4.2.2 Forward selection

Having covered the theory of logistic regression models in the previous sections, we move on

to model selection. Forward selection is a variable selection procedure that starts with only an

intercept in the model and then adds variables sequentially. At each stage it selects the variable

giving the greatest improvement in fit according to some criterion. The procedure stops when

further additions do not significantly improve the fit [Agresti, 2013].

The inclusion criterion we will be looking at is the Akaike information criterion (AIC), which

balances the goodness of fit of the model, as measured by the log likelihood, with its complexity,

and the model with minimum AIC value is the preferred one. Altogether, the AIC of a model

is, in the logistic regression setting, defined as

AIC = −2
(
l(β̂)− dim (β)

)
,

where l(β̂) is the maximized log likelihood. Denoting the maximized likelihood of the model

with L and the dimension of the parameter vector, i.e. the number of parameters in the model,

with p, the information criterion can be written as IC = −2 log(L) + kp, where setting k = 2

yields AIC.

If we consider two models, M0 with p parameters and M1 with p+ 1 parameters, we will choose

M1 over M0 if AIC1 < AIC0. With Li denoting the maximized likelihood of model i = 0, 1, we
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have that

AIC1 < AIC0

⇐⇒ −2 log(L1) + k(p+ 1) < −2 log(L0) + kp

⇐⇒ −2 log(L0/L1)︸ ︷︷ ︸
=X2

> k. (4.2.9)

We recognise the left hand side as the likelihood ratio (LR) test statistic X2, also called deviance,

which has a χ2-distribution with (p+1)−p = 1 degree of freedom. The probability of X2 taking

a value larger than k = 2 is approximately 16%, i.e. P(X2 > 2) ≈ 0.16. Thus AIC is equivalent

to a LR test at significance level α ≈ 0.16, when assessing a single variable at a time. The

significance level of the test can be adjusted by changing the value of k. For example choosing

k = 10.83, yields a LR test at α ≈ 10−3, while k = 29.72 yields a LR test at GWAS significance

level α ≈ 5 × 10−8. We will denote the forward selection procedure as forward likelihood ratio

inclusion at significance level α.

4.3 Penalized regression

In the situation when the number of covariates exceeds the number of observations in a regres-

sion model, i.e. the small n, large p problem, or when the covariates are highly collinear, the

parameters in the model cannot be uniquely estimated. In the logistic regression model this is

due to the (near) singularity of the matrix X′WX when estimating the maximum likelihood

estimates of the model, see Equation (4.2.7), making the inversion of this matrix impossible.

By applying a penalty to the diagonal of X′WX, its inversion is made possible but this in-

troduces high bias in the coefficient estimates of the regression model, whereas the ordinary

logistic regression coefficient estimates are unbiased. On the other hand, the penalization yields

coefficient estimates with lower variances than in the unpenalized model. Weighting bias and

variance of the coefficient estimates against each other in the penalized and unpenalized mod-

els is referred to as the bias-variance trade-off and can be described by for example the mean

squared error (MSE); where one is interested in having a lower MSE in the penalized model

than in the unpenalized [Fahrmeir et al., 2013].

If we consider an arbitrary parametric model with parameter vector β and log likelihood function

l(β), then the penalized likelihood estimator of β maximizes the penalized log likelihood

lP (β) = l(β)− λ Pen(β), (4.3.1)

where Pen(·) > 0 is a penalty function and λ > 0 is a penalization parameter controlling the

strength of the penalty term [Fahrmeir et al., 2013].

The three methods commonly mentioned in relation to penalized regression are Lasso (least

absolute shrinkage and selection operator), ridge regression and Elastic net. In Lasso regression,

proposed by Tibshirani [1996], the penalty function is the L1-norm, i.e. Pen(β) =
∑p

j=1

∣∣βj∣∣,
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while in ridge regression [Hoerl and Kennard, 1970a,b] it is the L2-norm Pen(β) =
∑p

j=1 β
2
j . The

Elastic net penalty [Zou and Hastie, 2005] is a combined penalty of lasso and ridge regression

penalties, where a parameter determines how much weight should be given to either of the two.

In this thesis we will focus on the use of ridge regression in the setting of logistic regression

models.

4.3.1 Logistic ridge regression

The penalized method we will be using in this thesis is ridge regression (RR). Here the penalty

function is the squared L2-norm:

Pen(β) =

p∑
j=1

β2j = β′β.

The degree of penalization depends on the parameter λ in Equation (4.3.1). Increasing λ yields

greater shrinkage of the parameter estimates towards zero [Agresti, 2013]. Note however, that

ridge regression does not perform variable selection, meaning that parameter estimates are only

shrunk towards zero and never exactly equal to zero.

For the logistic ridge regression model, the penalized log likelihood to be maximized, takes the

form

lRR(β) = l(β)− λ β′β

=

n∑
i=1

{yi log(πi) + (1− yi) log(1− πi)} − λ β′β, (4.3.2)

where πi is as in (4.2.1). Typically, we do not want to penalize the intercept in RR, meaning

that β0 should be excluded from the penalty function. In the linear ridge regression setting this

can be achieved by centering the response and all covariates, so that the mean of Y is zero and

the mean of each covariate Xj , j = 1, . . . , p is zero, which results in β̂0 = 0. In the logistic

regression model this is not possible, instead we could modify the penalty of the logistic ridge

regression to be

Pen(β) = β′Kβ, (4.3.3)

where K = diag(0, 1, . . . , 1) is a (p+ 1)× (p+ 1) penalty matrix that excludes the intercept but

remains the identity matrix for the rest of the coefficient vector [Fahrmeir et al., 2013].

Maximum penalized likelihood estimates, β̂RR, are obtained by maximizing (4.3.2) with penalty

given by (4.3.3), using an iterative algorithm, for example Newton-Raphson.

The score function, i.e. the first derivative of lRR(β), is

URR(β) = U(β)− 2λKβ

= X′ [y − π]− 2λKβ. (4.3.4)
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The matrix of negative second derivatives of lRR(β), i.e. the Fisher information, is

IRR(β) = I(β) + 2λK

= X′WX + 2λK. (4.3.5)

In the above equations, U(β) and I(β) are the score function and Fisher information matrix

respectively, from the usual logistic regression model as explained in Section 4.2.1 and W is a

diagonal matrix with elements πi(1− πi), i = 1, . . . , n.

Given a starting value β̂
(0)

RR, the Newton-Raphson algorithm iteratively updates

β̂
(t+1)

RR = β̂
(t)

RR + I−1RR

(
β̂
(t)

RR

)
URR

(
β̂
(t)

RR

)
= I−1RR

(
β̂
(t)

RR

)[
β̂
(t)

RRIRR

(
β̂
(t)

RR

)
+ URR

(
β̂
(t)

RR

)]

= I−1RR

(
β̂
(t)

RR

)[
U

(
β̂
(t)

RR

)
+ β̂

(t)

RRI

(
β̂
(t)

RR

)]

=

[
X′Ŵ

(t)
X + 2λK

]−1
X′Ŵ

(t)

[
Xβ̂

(t)

RR +

(
Ŵ

(t)
)−1

(y − π̂)(t)

]
, t = 0, 1, 2, . . .

(4.3.6)

until a preselected convergence criterion is fulfilled and the maximum penalized likelihood esti-

mator is then β̂
(t)

RR. The variance-covariance matrix is then estimated as

V̂ar(β̂RR) = V̂ar

([
X′ŴX + 2λK

]−1
X′Ŵ

[
Xβ̂RR + Ŵ

−1
(y − π̂)

])

=
[
X′ŴX + 2λK

]−1
V̂ar

(
X′Ŵ

[
Xβ̂RR + Ŵ

−1
(y − π̂)

])[
X′ŴX + 2λK

]−1
=
(
X′ŴX + 2λK

)−1 (
X′ŴX

)(
X′ŴX + 2λK

)−1
. (4.3.7)

If λ = 0 in (4.3.7), we see that we get the expression for the estimated variance-covariance matrix

in Equation (4.2.8), in the usual logistic regression model. Furthermore, if X′ŴX is singular

and thus cannot be inverted, the matrix X′ŴX + 2λK, we get by adding λ to the diagonal of

X′ŴX, can.

4.3.2 Choice of penalization parameter

There are a number of different ways the penalization parameter λ can be chosen. When ridge

regression was introduced by Hoerl and Kennard [1970a,b], the authors interest was in finding a

penalization parameter for which the mean squared error (MSE) for the coefficients in a linear

ridge regression model was smaller than the MSE of the respective ordinary least squares (OLS)
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estimates. Based on this, Hoerl et al. [1975] proposed the penalization parameter

λHKB =
pσ̂2

β̂
′
β̂
, (4.3.8)

where σ̂2 = (Y − Xβ̂)′(Y − Xβ̂)/(n − p), with p the number of covariates and β̂ the OLS

estimates.

Schaefer et al. [1984], introduced the ’Ridge type’ estimator in the logistic ridge regression

situation, with penalization parameter

λSRW =
p

β̂
′
β̂
, (4.3.9)

and, following the approach of Hoerl and Kennard [1970a,b], showed that, when the covariates

are collinear, it will result in coefficient estimates with smaller mean squared error than the

maximum likelihood estimates. In (4.3.9), p is the number of covariates and β̂ are the maximum

likelihood estimates of the logistic regression coefficients.

The two penalization parameters above, however, are not defined when p > n, since neither

the ordinary least squares regression coefficients nor the maximum likelihood estimates of the

logistic regression model are defined in this case. As a consequence Cule and De Iorio [2013]

propose a data driven method for estimating λ, based on (4.3.8) and (4.3.9), that is also valid

when p > n. This is the method we will use to estimate the penalization parameter when doing

our analyses and it is more thoroughly described in Section 4.5. The proposed method by Cule

and De Iorio [2013] is closely related to principal component regression modeling and therefore

the theory of principal component analysis and regression will be briefly discussed in Section

4.4.

Furthermore, visual methods have been suggested for the selection of λ. For example Hoerl

and Kennard [1970a,b] introduced the ’Ridge trace’, a plot of the ridge regression coefficient

estimates against λ as it increases from zero, and propose choosing λ corresponding to the

region on the plot at which estimates no longer change significantly as λ increases further. Cule

et al. [2011] introduced the ’p-value trace’, which plots the p-values of the regression coefficients

against λ as λ increases from zero, and enables the visualization of the change in p-values with

increasing shrinkage.

Choosing λ using cross-validation (CV) based methods is also common, here the data is parti-

tioned into a training set for parameter estimation and an evaluation set to asses the quality of

the model. In k-fold-cross-validation the data set is randomly split into k subsets (the folds) of

similar size. First off the first subset is used as an evaluation set and the remaining k−1 subsets

are together used as a training set. This is repeated k times, with each of the folds used once

as evaluation set [Fahrmeir et al., 2013].

As an example, the package penalized [Goeman, 2010] in R uses likelihood CV to compare

the predictive ability of different values of the penalization parameter. The CV log likelihood

is calculated with default leave-one-out-CV, which is the same as k-fold-CV when k = n, and
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n being the number of observations. Denoting the log likelihood by l(β) and letting l(−i)(β)

denote the log likelihood with the ith individual eliminated, the contribution of individual i

to the log likelihood is li(β) = l(β) − l(−i)(β), i = 1, . . . , n. Maximizing l(−i)(β) yields the

estimates β̂(−1). The cross validated log likelihood is then calculated as

cvl =

n∑
i=1

li

(
β̂(−i)

)
,

see Van Hoewelingen and Le Cessie [1990]. The function optL2 can be used to optimize the

CV log likelihood with respect to the penalization parameter and is best used in combination

with profL2, which profiles the CV log likelihood between two specified λ-values. The drawback

with using leave-one-out-CV based methods is that it becomes computationally infeasible with

increased size of the data [Cule and De Iorio, 2013].

4.4 Principal component regression

Principal component analysis (PCA) is a technique used for explaining a set of correlated vari-

ables by a reduced number of uncorrelated variables having maximal variance, where the uncor-

related variables are called principal components (PCs) [Aguilera et al., 2006].

Principal component regression refers to the use of principal components as covariates in a

regression model instead of the original p variables. Since the PCs are uncorrelated, this is

a possible way to deal with multicollinearity in the covariates. If all PCs are included in the

regression, the resulting model is equivalent to the original one and the large variances of the

estimated regression coefficients due to multicollinearity are still present. If some PCs are

excluded from the regression model, retaining only the PCs which explain most of the variation,

the variances of coefficient estimates can be greatly reduced, but the estimates are usually biased

[Jolliffe, 2002].

For details on principal component analysis and how the principal components are constructed,

see Appendix A.1. Furthermore, principal component linear regression is explained in Appendix

A.2. Below we explain principal component regression in the logistic regression setting, denoted

by PCLR.

4.4.1 Principal component logistic regression

In the logistic regression situation, we have a binary response vector Y = (Y1, . . . , Yn) and a

n × (p + 1) matrix X of covariates, with rows xi = (xi0, xi1, . . . , xip), where xi0 = 1 captures

the intercept term. As explained in Section 4.2, we model πi = π(xi) = P(Yi = 1 | xi), or

equivalently, the log-odds

logiti = logit (πi) =

p∑
j=0

xijβj . (4.4.1)
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Assume that the covariates X1, . . . , Xp have been centred and standardized, i.e. subtracted by

their means and divided by their standard deviations. The log-odds (4.4.1) can now be expressed

in terms of all PCs as [Aguilera et al., 2006]

logiti = logit (πi) =

p∑
k=0

zikγk, (4.4.2)

where zik, i = 1, . . . , n, k = 0, . . . , p, are the elements of the principal component matrix

Z = XA with A being the (p+ 1)× (p+ 1) orthogonal matrix

A =

 1 0′

0 A


where the columns of A are the eigenvectors of the matrix X′X, denoted by aj , j = 1, . . . , p.

Furthermore, 0 is a p× 1 vector of zeros and γk =
∑p

j=0 ajkβj , k = 0, . . . , p. For details on the

construction of the PCs we refer to Appendix A.1.

In matrix form, where L = (logit1, . . . , logitn)′ denotes the n× 1 vector of log-odds, we have

L = Xβ = ZA′β = Zγ. (4.4.3)

Therefore, the estimates of the ordinary logit model can be obtained from the estimates of the

PCLR model as β̂ = Aγ̂.

Assume that the PCs are ordered such that the first PC has the largest variance, the second

PC the second largest variance and so on. In a reduced PCLR we model, in terms of the first s

PCs,

πi,(s) =
exp{

∑s
j=0 zijγj}

1 + exp{
∑s

j=0 zijγj}
, i = 1, . . . , n, (4.4.4)

where the subscript (s) indicates how many PCs were used in the PCLR model. Equiva-

lently, we can express the above in matrix form in terms of the vector of log-odds L(s) =

(logit1,(s), . . . , logitn,(s)) with components logiti,(s) = logit(πi,(s)) as

L(s) = Z(s)γ(s) = XA(s)γ(s) = Xβ(s). (4.4.5)

Thus the maximum likelihood estimation of this PCLR model will provide an estimation of the

original parameters β as β̂(s) = A(s)γ̂(s).

The main difference between principal component regression in the linear setting and the logistic

setting is that in the latter

γ̂(s) = (γ̂0,(s), γ̂1,(s), . . . , γ̂s,(s))
′ 6= (γ̂0, γ̂1, . . . , γ̂s)

′,

i.e. the estimator γ̂(s) in terms of the first s PCs is not the vector of the first s components of

the estimator γ̂ in terms of all the PCs.
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4.5 Automatic choice of the ridge parameter - an approach pro-

posed by Cule and De Iorio (2013)

Cule and De Iorio [2013] propose a data-driven method to estimate the penalization parameter

which is also valid when there are more covariates than observations in the model which often

is the case with genetic data. Their motivation behind the proposed method is to choose a

penalization parameter so that the ridge regression model performs at least as well as, and

often better than, a principal component regression model with the same degrees of freedom in

prediction problems. Cule and De Iorio [2013] have implemented this method in the R package

ridge, for both continuous and binary outcomes. We will make use of the package in our

analyses, using the method in the logistic regression setting with binary outcomes. In Section

4.5.1 the proposed method is summarized in the logistic regression setting, following the article

by Cule and De Iorio [2013]. For a summary of the method when applied in linear regression

settings, see Appendix A.3. In Section 4.5.2 we explain how the significance of each parameter

estimate in the ridge regression model is assessed. In Section 4.5.3 we give details of some of

the R functions we will use.

Consider n individuals having been genotyped at p SNPs each. X is the covariate matrix with

genotype information for each individual i, i = 1, . . . , n, at each SNP j, j = 1, . . . , p, meaning

that xij ∈ {0, 1, 2} depending on the number of a-alleles in individual i’s genotype at SNP j.

Each Xj , j = 1, . . . , p, i.e. each column of X, is centered and standardized, meaning each

observation in Xj is subtracted by its column mean and divided by its standard deviation. The

sample covariance matrix is given by S= X′X/(n− 1), thus if we divide each observation in X

by
√
n− 1 we get that S = X′X, where diag(S)= 1p and 1p is a p-length vector of ones. We

denote this as S being in correlation form and the off-diagonal elements describe the correlations

between the SNPs, which, if squared, also give the measure r2 of the linkage disequilibrium as

described in Section 3.1.1.

Y= (Y1, . . . , Yn)′ is the response vector of phenotypes, where Yi ∈ {0, 1}, i = 1, . . . , n, and 1

denotes a case and 0 a control.

We also define the so called ’hat’ or projection matrix H that relates the fitted outcomes of a

regression model to the observed ones, i.e. Ŷ = HY. The specific form of H is specified in the

next section.

Note, previously we denoted the penalization parameter by λ, but here we denote it by k since

λ is reserved for the eigenvalues.

4.5.1 Estimation of the penalization parameter in logistic ridge regression

The first steps of the proposed approach by Cule and De Iorio [2013] are to calculate the principal

components (PCs) of X and the PC logistic regression (PCLR) coefficients as described in

Section 4.4.1. Now, for a PCLR using r = 1, . . . , t PCs, where t = min(n, p) is the maximum
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number of non-zero PCs possible, the penalization parameter kr is computed as

kr =
r

γ̂ ′(r)γ̂(r)

, (4.5.1)

where γ̂(r) is the r-dimensional vector of estimated PCLR coefficients. The next step is to

calculate the effective degrees of freedom for the variance of the ridge logistic regression model,

fitted using kr as the penalization parameter. The effective degrees of freedom are here defined

as tr(H′H), where H is the ’hat’ matrix as explained previously. In logistic RR, the hat matrix

is H = (X′WX +krI)−1X′WX, where W = diag(π̂i(1− π̂i)) and π̂i are the fitted probabilities.

Now the number of PCs to use in the calculation of the penalization parameter, r∗, are chosen

such that the difference between r and the calculated tr(H′H) is minimized. After choosing r∗,

the final step is to use the chosen penalization parameter kr∗ in a logistic ridge regression model

fitted on the full data set. The fitting of the model is done using the CLG algorithm, a cyclic

coordinate descent algorithm for penalized logistic regression. The details of the algorithm can

be found in Cule and De Iorio [2013, Supplementary Appendix C].

4.5.2 Assessing significance of parameters

Cule et al. [2011] have developed a test of significance for ridge regression coefficients based on an

approximation of the distribution of said coefficients under the null hypothesis H0 : β̂j,RR = 0,

where β̂j,RR is the estimate of the jth regression coefficient in a ridge regression model. The

proposed test is based on the Wald test that can be used to asses significance in multiple

linear or logistic regression models. The Wald test statistic follows a Student t-distribution

under H0 : β̂j = 0, where β̂j is the jth coefficient estimate in the multiple regression model.

Asymptotically the Wald test statistic follows a standard normal distribution. The test statistic

proposed by Cule et al. [2011] is

Tj =
β̂j,RR

ŜE(β̂j,RR)
, (4.5.2)

where β̂j,RR is the estimate of the jth regression coefficient under the ridge linear or logistic

regression model and SE(β̂j,RR) is an estimate of the standard error. In Chapter 4, Section

4.3.1, the variances of the coefficient estimates in the logistic ridge regression model are derived.

Again it is assumed that under H0 : β̂j,RR = 0, Tj
asy∼ N(0, 1) and the normal distribution is

used to test the significance of the ridge regression coefficients.

Using simulation studies, Cule et al. [2011] compare the above approximate test to a permutation

test. The permutation test is viewed as a benchmark since it gives an estimate of the null-

distribution of the parameter estimates. The authors show that the performance of their test is

comparable to that of a permutation test, but at a much reduced computational cost.
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4.5.3 ridge package in R

Cule and De Iorio [2013] have implemented their method for choosing the penalization parameter

in both linear and logistic regression settings in an R package called ridge which we will be

utilizing. Since we will be fitting logistic ridge regression models we describe below the two

functions that can be used for this model. For more details on the functions below and other in

the package we refer to the package documentation, see Cule [2014].

logisticRidgeGenotypes: This function fits logistic ridge regression models for SNP data

using the method by Cule and De Iorio [2013] for estimation of the penalization parameter

as default. For data sets that are too large to read into R directly, this function provides

code written in C and takes file paths, to files with the SNP and phenotype informations, as

arguments. Furthermore, a ’thinning’ file path is also taken as argument. This file should

contain information about the SNPs name, which chromosome it is on and which position it

has on said chromosome. This file is used to thin the SNP data by SNP position, meaning that

at each multiple of a predefined distance, a SNP is removed. Unfortunately there is no closer

information as to the size of this distance. The estimation of the penalization parameter is then

based on this thinned data set, after which the ridge regression model is fitted on the whole data

set. One restriction that this function has is that the genotype information has to be coded as

0, 1, 2. The function returns the coefficient estimates as default and if the argument ’verbose’ is

set to TRUE the estimated penalization parameter is returned to the R workspace. Furthermore,

if specified, output files containing the fitted coefficients and approximated p-values for each,

calculated as explained in Section 4.5.2, are returned.

logisticRidge: This function fits a logistic ridge regression model, with the penalization

parameter estimated using the method by Cule and De Iorio [2013] as default. In contrast to

logisticRidgeGenotypes the data is read directly into R and the function takes a formula of the

form ’response ∼ covariates’ as argument. In this function a restriction is put on the maximum

number of PCs used for the computation of the penalization parameter; the maximum number

of PCs t is such that at least 90% of the variation in the data is explained. The output from

this function contains among other the fitted coefficients, their standard errors and p-values, the

chosen penalization parameter and the number of PCs used to compute it.

4.6 Combining p-values in meta-analysis

In this section we introduce two methods often used in meta-analysis, to combine the results

from K hypothesis tests into one: Fisher’s method and Stouffer’s weighted Z-score method.

These will be used to combine the results from several ridge regression models in Chapter 6, the

’Results’ part of this thesis.

The two procedures for combining p-values, Fisher’s and Stouffer’s method, both assume that

the p-values come from K independent tests of the same null hypothesis, and test whether they
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collectively can reject this common hypothesis [Zaykin, 2011]. In our case this null hypothesis

is H0 : βj = 0, j = 1, . . . , p or in other words there is no association between the jth SNP and

disease.

4.6.1 Fisher’s method

Fisher’s method combines the p-values from K independent tests into one test statistic [Whit-

lock, 2005]:

X2 = −2
K∑
k=1

log(pk), (4.6.1)

where pk is the p-value of the kth hypothesis test. Under the null hypothesis, X2 follows a

χ2-squared distribution with 2K degrees of freedom, this can be used to estimate an overall

p-value.

One major drawback with using Fisher’s method is that it treats small and large p-values

asymmetrically, being more sensitive to small p-values. This asymmetry can thus result in bias

when combining results from multiple tests of the same null hypothesis [Whitlock, 2005].

Fisher’s method is implemented in the R package MADAM, in the function fisher.method, which

as argument takes a matrix or data frame containing the p-values from the single tests and

returns the value of the test statistic X2, the number of p-values used to calculate X2 and an

overall p-value.

4.6.2 Stouffer’s weighted Z-score method

Stouffer’s Z-score method combines the p-values from K independent tests into one test statistic

[Whitlock, 2005]

ZS =

∑K
k=1 Zk√
K

, (4.6.2)

where Zk = Φ−1(1−pk), Φ and Φ−1 denote the standard normal cumulative distribution function

and its inverse respectively, and pk is the p-value of the kth hypothesis test. Under the null

hypothesis, ZS then follows a standard normal distribution, which can be used to calculate an

overall p-value. Furthermore, one can introduce weights to the Z-score, the weighted Z-score

then takes the form [Whitlock, 2005]

Zw =

∑K
k=1wkZk√

w2
k

, (4.6.3)

and, under the null hypothesis, Zw follows a standard normal distribution. Zaykin [2011] rec-

ommends using either the square root of the study size as weight, i.e. wk =
√
nk, where nk is
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the total number of individuals in study k, or the inverse of the standard error of the estimated

coefficient, i.e. wk = 1/σ̂k, k = 1, . . . ,K.

Note that Stouffer’s method assumes that the individual p-values are one-sided, while our result-

ing p-values are two-sided. Since the test statistic we used for calculating the ridge regression

p-values is assumed to be standard normal, we can use the symmetry of the normal distribution

to convert our two-sided p-values to one-sided p-values prior to combining, by

pone−sided =

ptwo−sided/2 if H1 : βj > 0, j = 1, . . . , p

1− ptwo−sided/2 if H1 : βj < 0, j = 1, . . . , p.

Here there are two possible one-sided p-values depending on the alternative hypothesis, i.e. ei-

ther H1 : βj > 0 or H1 : βj < 0 for j = 1, . . . , p. Due to the symmetry of the normal distribution

the direction of the alternative hypothesis can be chosen arbitrarily, as long as it is the same H1

for all studies. Once these one-sided p-values are combined, the result can be converted back to

two-sided as [Whitlock, 2005]

ptwo−sided =

2pone−sided if pone−sided < 1/2

2(1− pone−sided) otherwise.
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Chapter 5

Data Description & Initial Analysis

The case-control studies investigated, as mentioned in the introduction, originate from studies

participating in BCAC [Breast Cancer Association Consortium], as part of the Collaborative

Oncological Gene-Environment Study [COGS] which aims to evaluate genetic variants associated

with risk of breast, ovarian and prostate cancer. Genotyping was conducted in the same manner

for all studies, using the iCOGS array. It comprises around 200 000 SNPs, where standard

quality control was performed and SNPs with a deviation from Hardy-Weinberg equilibrium

(HWE) at significance level 10−5 were excluded [COGS].

The data analyzed in this thesis was provided by Karolinska Institutet and consists of 89 050

individuals phenotype information, i.e. if the individual had breast cancer or not, and his/her

genotype information at each of 3 279 SNPs, as well as the individuals study affiliation, where an

individual can belong to one of 39 case-control studies of varying sizes participating in BCAC.

The genotype information comes from SNPs across a genomic region that spans over 990 kb

(kilo-base = unit of length for DNA equal to 1 000 nucleotides) on a specific chromosome. The

89 050 individuals consist of 42 600 controls and 46 450 cases in total, and are all Europeans.

Prior to us receiving the data, missing genotypes had been imputed with Impute2 [Howie et al.,

2009] using the worldwide 1000 Genomes Project variant data as reference [The 1000 Genomes

Project Consortium, 2010]. Thus the received data set contains both genotyped and imputed

SNPs. Our data set contains 2 765 imputed SNPs and thus 514 genotyped SNPs. Other

epidemiological variables where available but their information considered as classified and were

thus not included in the data set provided for the analysis of this thesis. As mentioned, the 39

case-control studies the data originates from are of varying sizes, the smallest study consisting of

around 100 individuals and the largest of around 17 000 individuals, with about 50% cases and

50% controls in each of the 39 studies. Figure 5.1 shows a histogram over the study sizes of the

39 studies, where 28 studies out of the 39 studies consist of under 2 000 individuals each, while

8 studies consist of between 2 000 and 5 000 individuals. Two studies are large, consisting of

around 10 000 and 17 000 individuals respectively. Since all individuals are considered to come

from the same population, it is assumed that the SNP effects are the same between studies.
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Figure 5.1: Histogram of the study sizes for the 39 case-control studies investigated in this thesis.

5.1 Variable coding

In our data an individual’s observed phenotype yi, i = 1, . . . , 89 050, is coded as yi = 1 if

individual i is a breast cancer case and yi = 0 if not.

Individual i’s genotype at a specific genotyped SNP j, j = 1, . . . , 3 279, is in our data set coded

as xij = 0 for genotype AA, xij = 1 for genotype Aa or xij = 2 for genotype aa. If individual

i’s genotype at SNP j has been imputed, the missing genotype is replaced in the style of allele

dosage, as defined below, and thus xij ∈ [0, 2]. Altogether, the design matrix X is thus the n×p
matrix with observed and imputed genotype information, where n = 89 050 and p = 3 279.

Let us take a closer look at the genotype information of an individual provided by the imputation

algorithm: Let genotype G be a random variable, describing the genotype of a specific individual

at a specific SNP, taking values in {0, 1, 2}. The imputation algorithm provides probabilities

P(G = x) for each of the three possible genotypes, x = 0, 1, 2, at each SNP and for each

individual, where as before x = 0 denotes genotype AA, x = 1 denotes genotype Aa and x = 2

denotes genotype aa. One option is to use the most probable genotype, where the genotype

is chosen as the one for which the imputed probability is the largest and over a pre-specified

threshold ξ > 0 [Marchini and Howie, 2010], i.e.

G = arg max
{x∈{0,1,2}: P(G=x)≥ξ}

P(G = x).

If the imputed probability is not over the pre-specified threshold, the SNP is removed from the

data set. In our data set the genotype information at imputed SNPs is completed in the style
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of allele dosage. The allele dosage is also known as the mean genotype and is defined as

E[G] =
2∑

x=0

xP(G = x) = P(G = 1) + 2P(G = 2),

and takes values between 0 and 2 [Marchini and Howie, 2010].

5.2 Correlation between SNPs

In our data the 3 279 SNPs are denoted by SNP1, SNP2,. . . , SNP3279 and are positioned on the

chromosome in that order, making it easy to keep track of which SNPs are in close proximity

to each other in reality. Linkage disequilibrium (LD) is, in genetic association studies, used to

describe the correlation between SNPs. The most common measure of LD between two SNPs

is, as described in Section 3.1.1, the square of the Pearson correlation coefficient, denoted by

r2. Note that r2 ranges from 0 to 1, where the correlation between the SNPs increases as r2

approaches 1. Figure 5.2 shows a heatmap of the r2 measures between all of the 3 279 SNPs in

our data set. The SNPs are ordered such that SNP1 is in the bottom left corner of the heatmap

and SNP3279 in the upper right corner. We see that there are regions where the correlations

between SNPs are very high, i.e. close to 1. This is for example the case in the region from

around SNP500 up to SNP850 and from around SNP1900 up to around SNP2600. The heatmap

is created using the package LDheatmap in R [Shin et al., 2006].

5.3 Single-SNP association with disease

To asses the association of each SNP individually with breast cancer risk we fit for each of the

3 279 SNPs seperately a logistic regression model. Thus for each SNP j, j = 1, . . . , 3 279, we

model

logit(πi) = β
(j)
0 + β

(j)
1 xij , (5.3.1)

where πi = P (Yi = 1 | xij) and i = 1, . . . , 89 050. The influence of β
(j)
1 , i.e. of an association

of the jth SNP with disease, is investigated using the likelihood ratio test between the above

model and the null model with only an intercept, which has a χ2-distribution with 1 degree of

freedom. Furthermore, the minor allele frequencies among the controls are calculated for each

SNP.

Table 5.1 shows the result for the 10 most significant SNPs, which we will denote by ’Top 10’,

from such an analysis, with estimated coefficients, standard error and likelihood ratio test p-

value, their estimated odds ratios (OR) for disease when genotype status is 1 (Aa) compared to

0 (AA), the corresponding 95% confidence interval (CI) and the minor allele frequency (MAF)

in controls.

Of the 3 279 SNPs, 326 have a significant association with disease at the significance level 10−5,
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SNP LR test p-value Wald test p-value β̂1 ŜE ÔR (95% CI) MAF

SNP2540 8.42E-15 8.51E-15 -0.083 0.011 0.92 (0.90, 0.94) 0.292

SNP2429 1.24E-14 1.25E-14 -0.083 0.011 0.92 (0.90, 0.94) 0.305

SNP2580 5.01E-14 5.05E-14 -0.078 0.010 0.92 (0.91, 0.94) 0.301

SNP2584 6.43E-14 6.49E-14 -0.079 0.010 0.92 (0.91, 0.94) 0.301

SNP2479 6.74E-14 6.79E-14 -0.078 0.010 0.92 (0.91, 0.94) 0.301

SNP2519 6.74E-14 6.80E-14 -0.078 0.010 0.92 (0.91, 0.94) 0.301

SNP2501 7.12E-14 7.18E-14 -0.078 0.010 0.93 (0.91, 0.94) 0.301

SNP2502 7.17E-14 7.23E-14 -0.078 0.010 0.92 (0.91, 0.94) 0.300

SNP2572 7.47E-14 7.53E-14 -0.079 0.011 0.92 (0.90, 0.94) 0.282

SNP2496 7.66E-14 7.72E-14 -0.078 0.010 0.93 (0.91, 0.94) 0.301

Table 5.1: Univariable logistic regression results for the 10 most significant SNPs.

and all of these SNPs have a minor allele frequency > 2% among the controls. As can be seen

the OR for all of the Top 10 SNPs is close to one, but slightly below, meaning that for example

for SNP2540, the odds for disease among the heterozygote (Aa) individuals is 0.92 times the

odds for disease among the homozygote wildtype (AA) individuals in that SNP. We see that the

Top 10 SNPs all are from the same region, as indiciated by their position numbering (SNP25xx),

and their OR estimates and their confidence intervals are all very similar, suggesting strong LD

in this region.

We also investigate if inclusion of the individual’s study affiliation as covariate in each of the

above regression models influences the model significantly. The study affiliation is included as

a factor meaning that the model for each SNP j, j = 1, . . . , 3 279, can be written as

logit(πi) = β
(j)
0 + β

(j)
1 xij + γ

(j)
2 studyi,2 + γ

(j)
3 studyi,3 + . . .+ γ

(j)
39 studyi,39, (5.3.2)

where

studyi,k =

1 if individual i belongs to study k, k = 2, . . . , 39

0 otherwise

and study 1 is the reference group. We compare model (5.3.2) to model (5.3.1) by performing a

likelihood ratio test between the models, testing the null hypothesis H0 : γ2 = γ3 = . . . = γ39 = 0

against the alternative H1 : at least one γk 6= 0, k = 2, . . . , 39. The test has a χ2-distribution

with 38 degrees of freedom and is significant, with p-values of magnitude 10−16, for all of the

3 279 tests, indicating that there is a significant difference in effect between the studies for each

of the 3 279 SNPs. On the other hand, it turns out that when study affiliation is included as

a dummy-coded covariate, the estimated odds ratios either do not differ from the estimates in

Table 5.1 at all or the difference is only visible from the third decimal and onwards. Furthermore,

the Wald p-values for the β1 coefficients differ approximately with a factor 10 between the two

models for all of the SNPs, the p-value being smaller in the model without study as covariate.

This has as consequence that 293 SNPs have a significant association with disease at significance
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level 10−5 when the univariable analysis of each SNP is done with the inclusion of study as

covariate, in contrast to the 326 significant SNPs when not including study as covariate. Since

the different case-control studies are, as mentioned before, assumed to be samples of the same

population and since the interest at this stage is to identify a SNP or a region of SNPs that are

deemed as having an association with disease and not the specific effect estimates, we decide to

make further analyses without including an individual’s study affiliation as covariate. Hence,

the SNPs that will be analyzed in the next chapter using multivariable logistic regression and

ridge regression will be the 326 SNPs having a significant association with disease at significance

level 10−5 when analyzed using the univariable model (5.3.1) without study as covariate.

Figure 5.3 shows a heatmap of pairwise linkage disequilibrium r2 measurements for the 326 SNPs

identified from the above mentioned univariable analyses, i.e. the ones having a univariable

p-value below 10−5 when modelled using (5.3.1). We see that there seem to be three regions

where the SNPs are in very high linkage disequilibrium, indicated by the triangle shapes. Note

that not all SNPs are denoted by name in the plot, due to lack of space. The 326 SNPs are

sorted according to their number and thus according to their actual positions on the specific

chromosome. All significant SNPs are thus between SNP1834 and SNP2712.

Note here that these 326 SNPs are chosen based on their p-values, this is one possible method

of filtering SNPs to reduce the initial set of SNPs down to a much smaller group in which it is

probable that the SNPs having a true association with disease, or being in linkage disequilibrium

(LD) with the true causal SNP, remain. Spencer et al. [2014] mention a number of other methods

for filtering SNPs, among other the relative likelihood filter, which includes ranking the SNPs

according to their (log) likelihood and retaining those SNPs that have likelihoods within a

prespecified ratio of the highest likelihood, and some other filters based on the LD structure of

the SNPs.

In summary, the univariable analysis points to an association with disease at SNPs coming from

roughly the same region, where the SNPs are highly correlated. Furthermore, the inclusion

of individual’s study affiliation as a factor in the univariable analyses does yield significant

likelihood ratio tests when compared to the model without study affiliation; however the SNP

effects were only changed marginally. Therefore, we will disregard study affiliation as covariate

in further analyses in this thesis.
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Chapter 6

Results

In this chapter the results of the statistical analysis of the breast cancer data set described in

Chapter 5 are presented and described. In Section 6.1, we fit multivariable logistic regression

models to our data, using the SNPs as covariates that fulfill two criterions: The first criterion

is that the SNP has a minor allele frequency > 2% among the controls, and the second is

that the SNP showed an association with disease at significance level 10−5 in the univariable

analyses done in Chapter 5. The 326 SNPs that fulfill these two criterions are thus included

in a logistic regression model, where variable selection is done with forward selection at three

different significance levels, α = 10−3, 10−7 and GWAS level 5× 10−8. In Section 6.2, the same

326 SNPs are included as covariates in a logistic ridge regression model, where the method by

Cule and De Iorio [2013] is used for estimation of the penalization parameter. As mentioned

before, the data comprises individuals from 39 different case-control studies of varying sizes. The

ridge regression model was initially fit on all individuals at once, but due to convergence issues

when using the method by Cule and De Iorio [2013], the data has to be split up into 39 subsets,

one for each study and a logistic ridge regression model was fitted on each subset, again using

the method by Cule and De Iorio [2013] to estimate the penalization parameter for each model.

The resulting p-values for the coefficients from each of the 39 models were then combined into

one p-value per covariate using Fisher’s method and Stouffer’s weighted method for combining

p-values, see Section 4.6.

The aim of the analysis is to compare the results from the multivariable logistic regression

analysis with the results from the logistic ridge regression analysis, by investigating if the same

SNPs or SNPs coming from the same genomic regions are selected as having an association with

disease.

6.1 Multivariable logistic regression

The 326 SNPs that fulfill the inclusion criterions: Has a minor allele frequency in controls > 2%

and showed an association with disease at significance level 10−5 in the univariable analyses

done in Section 5.3; are included as covariates in a multivariable logistic regression model where
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we choose which of the 326 SNPs to retain trough a forward likelihood ratio inclusion criterion

at three different significance levels. Forward selection is done since many of the 326 SNPs are

correlated, as we saw in Chapter 5 Figure 5.3, and inclusion of them all would lead to parameter

estimates with very high variances. By doing variable selection we want to find the SNPs that

are the most ’important’, i.e. that are deemed as having the strongest association with disease,

that may contribute together or independently to disease.

In the forward selection procedure, explained in Section 4.2.2, a covariate (SNP) is included

in the model if the likelihood ratio test of the test H0 : βj = 0 vs. H1 : βj 6= 0 rejects the

null hypothesis at the given level of significance. We conduct this procedure at three different

significance levels α = 10−3, 10−7 and GWAS level 5× 10−8. The model fitting is done with the

step function in R, where the significance level for inclusion can be adjusted by changing the

argument k of the function. The resulting models include 2 SNPs when using level α = 10−3

for inclusion and 1 SNP when using α = 10−5 or GWAS level 5× 10−8. Table 6.1 and Table 6.2

show summaries of the results.

SNP p-value β̂ ŜE ÔR (95% CI)

SNP2540 4.41E-08 -0.443 0.081 0.64 (0.55,0.75)

SNP2603 7.20E-06 0.354 0.079 1.42 (1.22,1.66)

Table 6.1: Resulting forward selection model, when likelihood ratio inclusion is done at signifi-
cance level α = 10−3.

We see that with forward likelihood ratio inclusion at significance level α = 10−3, two SNPs

are included in the model, the first one being among the Top 10 significant SNPs from the

univariable analyses in Chapter 5. Looking at the linkage disequilibrium (LD) r2 measurement

between these two SNPs we see that they are in very highly LD with an r2 of 0.98.

SNP2540 has, as in the univariable analysis, an OR below one, but in the model after the forward

procedure substantially lower. When keeping the other covariate, SNP2603, fixed, the odds for

disease among the individuals with genotype Aa is 0.64 times the odds for disease among the

ones with genotype AA at SNP2540, while the odds for disease among individuals with genotype

aa is exp(2 × −0.443) = 0.413 times the odds for individuals with genotype AA. SNP2603, on

the other hand, has an OR estimate above one, meaning that the odds for disease among the

individuals with genotype Aa is 42% higher than among those with genotype AA at SNP2603,

while keeping the other covariate fixed. This also means that the odds for disease for individuals

with genotype aa is exp(2× 0.354) = 2.029 times the odds for individuals with genotype AA at

SNP2603, when keeping the other covariate fixed.

SNP p-value β̂ ŜE ÔR (95% CI)

SNP2540 8.51E-15 -0.083 0.011 0.92 (0.90, 0.94)

Table 6.2: Resulting forward selection model, when likelihood ratio inclusion is done at signifi-
cance level α = 10−7 or GWAS significance level α = 5× 10−8.

When decreasing the significance level for foward inclusion, to 10−7 or GWAS level 5 × 10−8,
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only the SNP with the smallest univariable p-value is selected after the forward selection pro-

cedure; SNP2540, resulting in the same logistic regression model as described in the context of

univariable analyses in Chapter 5, where the odds for disease among individuals with genotype

Aa is 0.92 times the odds among individuals with genotype AA at SNP2540.

In Figure 6.1, − log10 of the p-values of the univariable analyses for each of the 3 279 SNP are

plotted. Furthermore, the chosen SNPs from the forward selection procedure, at significance

level α = 10−3, are marked in the figure. Figure 6.2 shows the − log10 of the p-values of

the univariable analyses for each of the 3 279 SNPs together with the forward selection SNP

chosen at significance level 10−7 and GWAS level 5 × 10−8. All SNPs with p-value above the

dotted line were included in the forward selection procedure. The figures also shows which SNPs

were imputed. Recall that the numbering of the SNPs describes their position on the specific

chromosome in relationship to each other, meaning for example that SNP2000 is positioned in

between SNP1999 and SNP2001.

6.2 Logistic ridge regression

Using the 326 SNPs, fulfilling the two criterions as explained above, as covariates, a logistic

ridge regression model is fitted using the function logisticRidgeGenotypes from the ridge

R package [Cule and De Iorio, 2013]. This function does not read the data directly into R,

as explained in Section 4.5.3, as it uses an underlying C function as work horse. However,

when using logisticRidgeGenotypes to fit the ridge regression model using all individuals, the

method by Cule and De Iorio [2013] for estimating the penalization parameter does not converge

and hence this approach does not give any results. Instead we use the function logisticRidge

from the same package which performs the same model fitting and estimates the penalization

parameter in the same manner, but reads the data set directly into R. However, as a consequence

we have to split up our data set due to its size. The difference between the two functions with

regard to the penalization estimation, is that logisticRidge sets the maximum number of

principal components r, used in the calculation of the penalization parameter, such that these

first r principal components together explain at least 90% of the variation in the data. See

Section 4.5 for further details on the estimation of the penalization parameter.

As mentioned before, the data comes from 39 different case-control studies. We thus split

the data into these 39 subsets and fit to each subset a logistic ridge regression model using

logisticRidge, which implements the method of Cule and De Iorio [2013] to estimate the

penalization parameter.

Since the method for estimating the penalization parameter by Cule and De Iorio [2013] is

applied once for each study, all the resulting ridge regression models have been fitted using

different estimated penalization parameters. The estimated penalization parameters vary quite

substantially between studies, from λ̂ = 3.74 up to λ̂ = 22785.26, with an overall average value

at λ̄ = 1382.192 and standard error SE(λ̂) = 4406.598. Due to the different penalization it

is hard to compare anything other than the p-values for each coefficient between the separate
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Figure 6.3: Ridge trace plot of the estimated ridge regression coefficients against the penalization
parameter λ used. The dashed vertical line indicates the λ chosen by the method by Cule and
De Iorio [2013].

models. However, since our primary interest at this stage is to identify which SNPs that show

strong association with disease and not their individual effects, this hopefully does not pose an

inconvenience. Recall that the penalization parameter controls the degree of shrinkage towards

zero of the parameter estimates. To glimpse this shrinkage effect of the ridge penalization, we

look closer at one of the 39 studies in our data set, comprising approximately 1000 individuals.

Figure 6.3 shows a trace plot of the ridge regression coefficient estimates against the penaliza-

tion parameter λ as it increases from zero. The vertical dashed line indicates the penalization

parameter chosen using the method by Cule and De Iorio [2013]. We see that the coefficients are

shrunken towards zero as the penalization parameter increases and the chosen λ is in a region

where the coefficient estimates do not change much anymore. Note however the y-axis of the

plot, indiciating that the coefficients here are really small regardless the choice of λ.

The ridge regression analysis of the 39 case-control studies took approximately three days to

run in R.

As we are interested in a result based on all studies combined, we combine the resulting p-values

for each coefficient from each of the 39 ridge regression models using two different methods:

Fisher’s method and Stouffer’s weighted Z-score method, as explained in Section 4.6. In the

calculation of Stouffer’s weighted Z-score we deem weights wk =
√
nk, i.e. weights equal to the

square root of study size, as being the best choice since, the 39 ridge regression models all have
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been fitted with different estimated penalization parameters, making them hard to compare with

regard to effect size or their standard error. Furthermore, the sizes of the studies differ quite

substantially, from the smallest study with around 100 individuals to the largest with around

17000 individuals, and it thus seems reasonable to take the study sizes into account.

The two procedures for combining p-values, Fisher’s and Stouffer’s method, both assume that

the p-values come from K independent tests of the same null hypothesis, and test whether they

collectively can reject this common hypothesis [Zaykin, 2011]. In our case this null hypothesis

is H0 : βj = 0, j = 1, . . . , p, or in other words there is no association between the jth SNP and

disease in any of the studies and we test against the alternative hypothesis H1 : βj 6= 0, j =

1, . . . , p.

Table 6.3 shows the 10 SNPs with the most significant associations with disease after pooling

of the results of the K = 39 studies using Fisher’s method and the weighted Z-score method,

where the weights for each study are chosen as the square root of the study size, i.e. wk =
√
nk,

where nk denotes the study size of study k, k = 1, . . . ,K.

Fisher’s method Stouffer’s weighted method

SNP p-value SNP p-value

SNP2429 7.97E-05 SNP2429 6.53E-14

SNP2416 2.85E-04 SNP2540 1.93E-13

SNP2548 3.04E-04 SNP2416 8.33E-13

SNP2518 3.09E-04 SNP2572 1.01E-12

SNP2421 3.13E-04 SNP2575 1.07E-12

SNP2438 3.25E-04 SNP2518 1.13E-12

SNP2572 3.45E-04 SNP2548 1.19E-12

SNP2465 3.58E-04 SNP2421 1.22E-12

SNP2575 3.59E-04 SNP2550 1.39E-12

SNP2422 3.71E-04 SNP2422 1.53E-12

Table 6.3: Overall p-values for the 10 most significant SNPs after combination of the K = 39
logistic ridge regression models using Fisher’s and Stouffer’s weighted method. Stouffer’s method
is used with weights wk =

√
nk, where k = 1, . . . ,K and nk is the study size of study k. The

SNPs highlighted with bold text are among the 10 most significant regardless of which method
was used to combine. The SNP in the highlighted cell had the highest association with disease
in the forward logistic regression models.

We see that SNP2429 has the highest significance after combination, regardless of which method

is used. When using Stouffer’s method with weights wr =
√
nr, SNP2540 is ranked second. This

SNP is also the one that had the smallest univariable p-value, as calculated in Section 5.3, and

which was included in each of the multivariable logistic regression models with forward selection.

All in all, when using weights equal to the square root of the study sizes, 326, 77 and 75 SNPs

have a significant association with disease at significance levels 10−3, 10−7 and GWAS level

5 × 10−8 respectively. Note that at significance level 10−3, all SNPs included in the model are

significantly associated with disease.
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In Figure 6.5 and Figure 6.4 − log10 of the univariable p-values are plotted, as estimated in

Section 5.3, and the 10 most significant SNPs of the ridge regression analysis after combination

of the p-values with Fisher’s and Stouffer’s method respectively, are marked. We see that the

ten most significant SNPs from the ridge regression analysis are all in the same region of the

plot, meaning they are also in the same genomic region.

Note that 8 of the 10 most significant SNPs in Table 6.3 are the same regardless of which of the

two methods was used for combination. Since we just saw that all of these are from the same

genomic region we investigate the correlation between them. Table 6.4 shows the matrix of r2

measures between these 8 SNPs - recall that r2 is a measure of linkage disequilibrium between 0

and 1 and approaches 1 when the correlation between SNPs increases, see Section 3.1.1. We see

that all elements of the matrix are close to one or equal to one, meaning that the SNPs are very

highly correlated, suggesting that they are detecting the same disease association. SNP2429 is

the SNP with the ’smallest’ r2 with the other SNPs, but has still high values at around 0.94.

SNP2416 SNP2421 SNP2422 SNP2429 SNP2518 SNP2548 SNP2572 SNP2575

SNP2416 1

SNP2421 0.99 1

SNP2422 0.99 1 1

SNP2429 0.93 0.94 0.94 1

SNP2518 1 0.99 0.99 0.93 1

SNP2548 0.99 1 1 0.94 0.99 1

SNP2572 1 0.99 0.99 0.93 1 0.99 1

SNP2575 0.99 1 1 0.94 0.99 1 0.99 1

Table 6.4: Matrix of r2 measures for linkage disequilibrium between the 8 SNPs that are among
the 10 most significant in Table 6.3 regardless of method used to combine the ridge regression
results.

In Section 6.1 we saw that SNP2540 and SNP2603 were included in a logistic regression model

when applying forward likelihood ratio inclusion at significance level 10−3. SNP2540 was, when

changing the significance level of the forward inclusion criterion to 10−7 or 5 × 10−8, the only

SNP included. In the ridge regression analysis SNP2540 was again among the most significant

SNPs when combining the p-values with Stouffer’s method with weights equal to the square

root of the study sizes. In summary, SNP2540 is found to be the only SNP that has high

significance in both the multivariable logistic regression analysis with forward inclusion and the

ridge regression analysis. Furthermore, as seen in the regional association plots 6.1, 6.2, 6.4 and

6.5, SNPs from the same genomic region, that are in high linkage disequilibrium with each other,

are all deemed as having an association with disease, in both the logistic regression models and

ridge regression models. This gives an indiciation that this particular genomic region should be

more thoroughly investigated in future analyses.
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Chapter 7

Summary & Discussion

In this thesis we have analyzed breast cancer data containg the disease status and genotype

information for 89 050 european individuals, coming from 39 case-control studies. The aim of

the analysis was to compare logistic regression models to ridge regression models in terms of

localization of independent associated signals among multiple SNPs. In the initial univariable

analyses done in Chapter 5, SNP2540 and SNP2429 are identified as the two SNPs most strongly

associated with breast cancer risk. All in all, 326 SNPs are found to have a significant association

with disease at significance level 10−5. Using these 326 SNPs as covariates in a multivariable

logistic regression model where variable selection was done using forward selection with a likeli-

hood ratio test inclusion criterion, SNP2540 and SNP2603 where identified, see Chapter 6. Using

the 326 SNPs again as covariates in 39 ridge regression models, one for each study, and then

combining the results, identifies SNPs all coming from the same region as being significantly

associated with disease, among them again being SNP2429 and SNP2540. Thus the analyses

done in this thesis using univariable, multivariable and ridge logistic regression all point to the

same SNP or region of SNPs as having an association with disease, namely SNP2540 and the

area around it.

These analyses are the initial steps in a long chain of analyses with the purpose to localize regions

that harbour SNPs with an association to breast cancer risk. Once the genomic regions, or SNPs,

that have a significant association with disease are identified the next step is to focus solely on

that region and explore the functional aspects of the SNPs in said region on a cellular level.

Furthermore, one could include other epidemiological variables, associated with various aspects

of the disease in question, as covariates in the regression analysis. One other important aspect

is adjusting for population substructure, particularly when dealing with a big data originating

from several studies as we have in this work. In genetic association studies one often includes

principal components (PCs) as covariates to take into account the population substructure. Here

it is important to include PCs based on the whole genome or at least a larger genomic area than

we are studying in this thesis since one otherwise only adjusts for the population structure in

the region we are currently investigating, see for example Michailidou et al. [2013].

In this thesis we used ridge regression as a penalized logistic regression approach. This was partly

done since there was an interest in exploring the ridge package in R which implements the data-
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driven method by Cule and De Iorio [2013] for estimation of the penalization parameter and

then fits a ridge regression model using this penalization parameter. According to the package

documentation, the function logisticRidgeGenotypes should have been able to analyze a

very large amount of SNP data, since it uses an underlying C function as work horse. When

conducting the ridge regression analysis on our data, we used genotype information for 89 050

individuals at 326 SNPs, thus yielding approximately 29 million data points. As explained

in Section 6.2, this analysis did not yield any results since the algorithm for estimating the

penalization parameter did not converge. The function logisticRidge in the package does the

same kind of penalization parameter estimation and model fitting as logisticRidgeGenotypes,

the difference being that it reads the data directly into R. Another difference with regard to the

estimation of the penalization parameter, is that the maximum number of PCs t used to estimate

the parameter is such that that the t first PCs together explain at least 90% of the variation.

Whereas in logisticRidgeGenotypes the maximum number of PCs used is t = min(n, p),

where n is the number of individuals and p is the number of SNPs in the analyzed data. It is

unfortunate that the analysis of all individuals at once did not work, since the ability to analyze

a large data set at once was what was attractive about the ridge package and a large data

set is often the case in genetic association studies. An interesting next step here would be to

investigate the code part of logisticRidgeGenotypes written in C to determine what exactly

the problem is when fitting.

Another difference between logisticRidge and logisticRidgeGenotypes is that the latter

only accepts genotype information coded as 0, 1, 2 for the number of a-alleles present, while the

former also allows genotype information on the form of allele dosage as explained in Chapter 5.

Thus, when the analysis was done with logisticRidgeGenotypes the imputed genotypes where

given as the most probable genotype, based on the probabilities for each of the three possible

genotypes that the imputation algorithm provides. Since this approach did not converge, the

analysis was, as explained, done with logisticRidge and the imputed genotypes where given

as allele dosage. It seems strange that two functions from the same package doing the same type

of model fitting, should accept differently coded input. It seems like logisticRidgeGenotypes

is quite limited by only allowing genotype information on the form 0, 1, 2.

As mentioned briefly in Section 4.3, there are other penalized regression methods possible as

well, such as Lasso and Elastic net. One important difference between these methods and ridge

regression is that they actually perform variable selection, meaning they can estimate a regression

coefficient to be exactly zero. In ridge regression the estimated regression coefficients are only

shrunken towards zero, but never actually set equal to zero. Both Lasso and Elastic net are

implemented in R, for example in the penalized package where the penalization parameter(s)

is chosen using likelihood-based cross-validation. Furthermore, the ridge penalization is also

implemented in this package. It would have been interesting to compare the models we got

using the method by Cule and De Iorio [2013] for estimation of the penalization parameter and

the ones where cross-validation was used to estimate the penalization parameter, perhaps with

regard to the size of the penalization parameter as well as for example the predictive ability of

the models or which SNP region they deem as significant.
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In this thesis the aim was to analyze a genomic region by utilizing both logistic regression and

logistic ridge regression techniques to identify loci that are significantly associated with breast

cancer risk. We found a promising subregion with an association to breast cancer risk, which

was the same regardless of regression technique utilized. The analyses done in this thesis are

important first steps in locating specific locations contributing to breast cancer risk and the

subregion found should be subject to further investigations.
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Appendix A

Supplementary Theory

In Chapter 4 we introduce the theory and methods used in this thesis. Since we analyze a binary

response we focus in that chapter on different logistic regression settings. For completeness sake

we, in this appendix, give some background and extend the theory from Chapter 4 to include also

the linear regression setting. We start by introducing the theory behind principal component

analysis (PCA) and how the principal components (PCs) are constructed in Section A.1. The

PCs can then be used as covariates in principal component regression (PCR), which is introduced

in the linear regression setting in Section A.2. Here we also explain the relationship between

PCR and the singular value decomposition. Moving on to ridge regression, we outline in Section

A.3 how the method by Cule and De Iorio [2013] for estimation of the penalization parameter

is utilized in the linear ridge regression setting.

A.1 Principal Component Analysis

Principal component analysis (PCA) is a technique used for explaining a set of correlated vari-

ables by a reduced number of uncorrelated variables having maximal variance, where the uncor-

related variables are called principal components (PCs) [Aguilera et al., 2006]. For the derivation

of the principal components we follow Jolliffe [2002, chapter 1].

Consider a vector of p random variables, x = (x1, . . . , xp)
′. PCA seeks the uncorrelated linear

combinations z1, . . . , zp of these, that have maximum variance. z1 = α′1x is the linear function

with the vector of coefficients α1 = (α11, . . . , α1p)
′ that maximises Var(z1) = Var(α′1x) =

α′1Σα1, where Σ is the covariance matrix of x, under the constraint α′1α1 = 1. Without this

constraint it is clear that Var(z1) can be increased by simply multiplying α1 by some constant.

The standard approach for maximizing Var(α′1x) = α′1Σα1 subject to α′1α1 = 1 is the technique

of Lagrange multipliers. We want to maximize the Lagrangian

α′1Σα1 − λ(α′1α1 − 1), (A.1.1)
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where λ is the Lagrange multiplier. Differentiating with respect to α1 yields

Σα1 − λα1 = 0 (A.1.2)

or

(Σ− λIp)α1 = 0, (A.1.3)

which we recognize as the characteristic polynomial and thus λ is an eigenvalue of Σ and α1 is

the corresponding eigenvector. The quantity to be maximized is

α′1Σα1 = α′1λα1 = λα′1α1 = λ, (A.1.4)

so λ must be as large as possible. Therefore α1 is the eigenvector corresponding to the largest

eigenvalue of Σ, denoted by λ1, and Var(z1) = Var(α′1x) = α′1Σα1 = λ1.

Generally, zj = αjx is called the jth PC of x with Var(zj) = λj , the jth largest eigenvalue of Σ

and αj is the corresponding eigenvector, where j = 1, . . . , p. Furthermore, Cov(zj , zk) = 0 for

j 6= k, j, k = 1, . . . , p. A proof when j = 2 can be found in Jolliffe [2002, page 5-6].

The vectors αj are commonly referred to as the vectors of coefficients or ’loadings’ for the jth

PC.

A.2 Principal component linear regression

We follow Jolliffe [2002, chapter 8]. The linear regression model with response vector Y =

(Y1, . . . , Yn) and n× p design matrix X, whose (i, j)th element is the value of the jth covariate

for the ith observation, is written as

Y = Xβ + ε, (A.2.1)

where β is the vector of p regression coefficients and ε is a vector of independent error terms,

each with the same variance. Here we assume that Y is centered about its mean, i.e. each

value of Y has been subtracted by the mean of Y. Furthermore we assume that each column

Xj , j = 1, . . . , p, of X has been centered and standardized, meaning each value of Xj has been

subtracted by its mean and divided by its standard deviation. This way X′X is proportional to

the correlation matrix of X. This means that, if X consists of genotype information at p SNPs,

the off-diagonal elements of X′X would describe the correlation between the SNPs. Squaring

the elements of X′X thus gives us a measure of the degree of linkage disquilibrium between the

SNPs, as explained in Equation (3.1.3).

Now the values of the PCs for each observation are given by

Z = XA, (A.2.2)
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where the (i, j)th element of Z is the value of the jth PC for the ith observation, i = 1, . . . , n, j =

1, . . . , p, and A is the p × p orthogonal matrix whose jth column is the jth eigenvector of the

correlation matrix X′X. Since A is orthogonal we can write

Y = Xβ + ε = XAA′β + ε = Zγ + ε (A.2.3)

where γ = A′β, meaning we have simply replaced the covariates by their PCs in the regression

model. Now, γ̂ can be calculated as the algebraic solutions to the normal equations for model

(A.2.3) as

γ̂ = (Z′Z)−1Z′Y. (A.2.4)

Using only a reduced set of PCs in the principal component regression (PCR) model, any large

variances for coefficient estimates caused by multicollinearities can be reduced, even though

these estimators usually are biased. The reduced PCR model takes the form

Y = Zsγs + εs, (A.2.5)

where s < p so γs is a vector of s elements that are a subset of elements of γ, Zs is an n × s
matrix whose columns are the corresponding columns of Z and εs is the appropriate error term.

A.2.1 Connection to singular value decomposition

As mentioned above, if we assume that each Xj , j = 1, . . . , p, has been centered and standard-

ized, X′X is proportional to the correlation matrix of X. Utilizing the singular value decompo-

sition (B.2.1) and spectral theorem (B.1.1) respectively, we get that

X = UDA′ (A.2.6)

X′X = AD2A′, (A.2.7)

where the p columns of U are eigenvectors of XX′, the p columns of A are the eigenvectors of

X′X and D2 is the diagonal matrix with eigenvalues of X′X in descending order in the diagonal.

We saw previously that the PCs are given by Z = XA, where the columns of A correspond to

the eigenvectors of X′X. By this, (A.2.6) and (A.2.7), we see that the PCs are given by UD

and the coefficients of the linear combinations, a.k.a. ’loadings’, are given by the columns of A:

UD=XA [Jolliffe, 2002].

Furthermore, using the above we can rewrite the PCR coefficient estimates in equation (A.2.4)

as

γ̂ = (Z′Z)−1Z′Y = ((UD)′UD)−1Z′Y = D−2Z′Y. (A.2.8)
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A.3 Choosing the penalization parameter in linear ridge regres-

sion - a summary of the method by Cule and De Iorio [2013]

In Section 4.5 we described the method proposed by Cule and De Iorio [2013] for estimation of

the penalization parameter in the logistic ridge regression setting. For the completeness of this

thesis we here provide the method in the linear ridge regression setting.

Consider n individuals having been genotyped at p SNPs each. X is the covariate matrix with

genotype information for each individual i, i = 1, . . . , n, at each SNP j, j = 1, . . . , p, meaning

that xij ∈ {0, 1, 2} depending on the number of a-alleles in individual i’s genotype at SNP j.

Each Xj , j = 1, . . . , p, i.e. each column of X, is centered and standardized, meaning each

observation in Xj is subtracted by its column mean and divided by its standard deviation. The

sample covariance matrix is given by S= X′X/(n− 1), thus if we divide each observation in X

by
√
n− 1 we get that S = X′X, where diag(S)= 1p and 1p is a p-length vector of ones. We

denote this as S being in correlation form and the off-diagonal elements describe the correlations

between the SNPs, i.e. the linkage disequilibrium as described in Section 3.1.1.

Furthermore, in the linear regression setting, Y= (Y1, . . . , Yn)′ is the vector of phenotype mea-

surements that have been centered, i.e. the mean of Y is subtracted from each Yi, i = 1, . . . , n.

We also define the so called ’hat’ or projection matrix H that relates the fitted outcomes of a

regression model to the observed ones, i.e. Ŷ = HY. The specific form of H is described below.

Note, previously the penalization parameter was denoted by λ, here we denote it by k since λ

is reserved for the eigenvalues.

The first step of the proposed approach is to calculate the PCs of X as Z=XA and the PCR

coefficients as γ̂ = Λ−1Z′Y, see Equation (A.2.2) and (A.2.8), where the columns of A are the

eigenvectors of S and Λ is the diagonal matrix with eigenvalues of S, denoted by λj , j = 1, . . . , t,

as diagonal elements, in descending order and at most t = min(n, p) of them are non-zero. For

r = 1, . . . , t the penalization parameter kr is calculated as

kr =
rσ̂2r
γ̂ ′rγ̂r

, (A.3.1)

where

σ̂2r =
(Y− Zrγ̂r)

′(Y− Zrγ̂r)

n− r
(A.3.2)

and γ̂r is the vector of the first r PCR coefficients and Zr are the first r columns of Z. The

number of PCs to use in the calculation of kr is then chosen as the r∗ that minimizes the

difference between r and the effective degrees of freedom for variance in the model calculated

using kr. The effective degrees of freedom for variance are tr(H′H), where H is the ’hat’ matrix

as described above. In the linear ridge regression setting we have that H = X(X′X+krIp)
−1X′.
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Thus the ridge estimates in the linear ridge regression setting are calculated, using kr∗ , as

β̂RR,kr∗ = (X′X + kr∗I)−1X′Y. (A.3.3)
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Appendix B

Matrix Decompositions

In this chapter we state the Spectral theorem, Section B.1, and the Singular value decomposition,

B.2, which can both be utilized when doing principal component linear regression as explained

in Appendix A.2.

B.1 Spectral theorem

The spectral decomposition of a n× n symmetric matrix A is given by [Johnson and Wichern,

1998]

A =

n∑
i=1

λiuiu
′
i = UΛU′, (B.1.1)

where Λ is the diagonal matrix with eigenvalues of A, λi, i = 1, . . . , n, as diagonal elements

in descending order and ui are the associated normalized eigenvectors and form the columns of

U. Thus U is an orthogonal matrix, i.e. U′U = UU′ = In, where In is the identity matrix of

dimension n.

B.2 Singular value decomposition

The singular value decomposition of a n× p matrix A is given by [Johnson and Wichern, 1998]

A = UDV′, (B.2.1)

where D is the p × p diagonal matrix with so called singular values σj =
√
λj , j = 1, . . . , p, as

diagonal elements in descending order, where λj denote the eigenvalues of XX′ (and X′X). U

is the orthogonal n × p matrix where the columns form the eigenvectors of XX′ and V is the

orthogonal p× p matrix where the columns form the eigenvectors of X′X.
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