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Abstract

In this master thesis several spatio-temporal models are being fit-
ted to the spatio- temporal occurrence of hantavirus in Germany. Han-
tavirus is an infectious disease trans- mitted by bank voles. The re-
lationship between several covariates related to the number of bank
voles and the disease incidence is explored. These covariates include
forest area, fructification of trees and proximity between urban and
forest areas. The inference is carried out in a Bayesian framework and
the data is modeled as a generalized additive model to include spatial
effects. The INLA method as presented by Rue et al. (2009) is ex-
plained in depth and a general summary of the necessary background
material is given. Model fitting is carried out with the R-package R-
INLA. We find evidence for our hypothesis that a high fructification
increases the hantavirus case numbers in the following year. A high
fructification of trees means an abundance of food for bank voles and
as such larger case numbers can be expected. Data and models are
visualized and the models are checked for adequacy.
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Chapter 1

Introduction

The aim of this master thesis is to fit a spatio-temporal model to the occurrence of human
hantavirus cases in Germany. Hantavirus is an infectious disease transmitted through
inhalation of aerosolized dried excretions of bank voles to humans. It can cause severe
fever with renal syndrome. As part of the Act on the Prevention and Control of Infec-
tious Diseases (IfSG), the occurrence of the disease in humans in Germany has to be
reported to the Robert Koch-Institut (RKI), the federal institute for disease control and
prevention, which is part of the Federal Ministry of Health. The aim of the modeling
is to help us understand which factors are important influences on the number of cases.
Our main hypothesis is that there is a strong connection between the fructification of
trees in a given year and the number of cases in the following year. This can be explained
by the fact that the fructification of trees can be used as a proxy variable for the number
of bank voles that carry hantavirus. The use of proxy variables is necessary, because
we have no knowledge of the number of bank voles in an area. Since the fructification
serves as a measure for the food available to bank voles, an abundance of food for bank
voles in one year implies an increased number of surviving offspring and thus a greater
total number of bank voles in the following year. The motivation for our hypothesis can
be seen in Figure 1.1, where the first plot shows the number of yearly reported human
hantavirus cases. The second and third plot show the weighted average fructification of
beech and oak of all counties per year with the weights given by the counties’ area. It
is clearly visible that most years with high average fructification are followed by years
with high reported case numbers. This gives a very rough picture as fructification and
cases are not equally distributed across Germany but it serves as a good motivation on
which to base a further, more detailed analysis. A connection between fructification and
number of cases is also considered in Boone et al. (2012).
We will also consider the forest and field areas available as habitats to bank voles and
the distance between these and urban areas. The habitats serve, again, as a proxy for
the number of animals and the interaction is thought to be important as no other at-
tack vectors for the disease (e.g. mosquitoes) seem to exist, so that proximity between
humans and bank voles is necessary for the disease to be transmitted. These hypotheses
are to be investigated in more detail. We will use these variables which provide us with
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information on a county level to perform an ecological regression.
The analysis is carried out in a Bayesian framework using structured additive regression
models. The posterior distributions are estimated using Integrated Nested Laplace Ap-
proximations (INLA). INLA was introduced by Rue et al. (2009) and is a deterministic
approximation alternative to the widely used MCMC approximations offering accurate
results in combination with reduced computational time. R and the R-INLA package
(http://www.r-inla.org/) are used to fit the model. As a consequence, a secondary aim
of this thesis is to present the INLA method in depth. We will explain several details
in more depth than in the original paper and will offer proofs that were omitted in the
paper. As INLA works on latent Gaussian models, a subclass of structured additive
regression models, an overview of these model types will be provided together with a
presentation of Gaussian Markov random fields, which are essential for INLA and spatial
modeling in general.

1.1 The Data

The RKI provides the data of reported hantavirus infections in Germany during 2001-
2012 down to the county level (German: Landkreise).
Data on the area of tree species in counties as well as the fructification of these trees,
i.e. the amount of fruit/nuts carried in a year, is provided by the Johann Heinrich von
Thünen-Institut, the Federal Research Institute for Rural Areas, Forestry and Fisheries.
These fructification data serve as a proxy variable for the number of bank voles of which
we have no knowledge.
Information on the size and location of both forests and urban areas will be obtained
from CORINE land cover raster data (resolution: 100m × 100m ) from the German
Aerospace Center. This will allow the computation of covariates such as the average
distance between settlements and forests in a county. And lastly, a vector layer with the
country and county borders from the Federal Agency for Cartography and Geodesy will
be used.
The following subsections present the data that was used for the analysis. Initial data
management and preprocessing was done according to an internal report at the Robert
Koch-Institut by Faber and Höhle (2013), and then extended upon as part of this master
thesis. Extensions include redoing and extending the preprocessing to accommodate
newer packages versions for the R packages used in the preprocessing, the inclusion of
additional cases, due to a broader case definition, and assignment of cases to different
counties when the counties were changed due to re-organization of the political regions
(in German: Kreisgebietsreformen).

1.1.1 Hantavirus

Hantavirus is a single-stranded, enveloped, negative sense RNA virus which can be found
worldwide. Small rodents are the main host carriers, and transmission occurs through
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contact with hantavirus-infected rodents, their urine or their droppings, see Faber et al.
(2010). Inhalation of aerosolized virus particles from excreta of the infected rodents is
also a mean of transmission of the hantavirus.
In Europe, three types of hantaviruses can be found: Puumala, Dobrava and Saaremaa,
see Vaheri et al. (2013). The first one causes a mild form of nephropathia epidemica,
leaving infected patients with fever and influenza-like symptoms, including headaches,
muscle pain and renal impairment. The second type of hantavirus, Dobrava, has similar
symptoms but often presents hemorrhagic complications. Few cases of Saaremaa virus
have been reported and documented, but the symptoms appear to lie between the ones
of Puumala and Dobrava viruses. Incubation time ranges from 5 to 60 days, and the
severity of the symptoms varies greatly, with some patients showing little clinical signs,
which results in an under-reporting of cases.
In Germany, Puumala virus is the predominant human pathogenic hantavirus species,
see Boone et al. (2012). Its host carrier is the bank vole (Myodes glareolus). The
rural regions endemic to the virus are lower Franconia, the Bavarian forest, Swabian
Alb, Münster and Osnabrück regions (Faber et al., 2010). While the bank vole is found
anywhere in Germany, not all areas have a population that carries the virus.
In this analysis we consider all reported cases in the RKI database that were classified
as ’Hantavirus’, ’Puumalavirus’ and ’not classified’. This is done to account for regional
differences in analyzing and interpreting the reported cases, e.g. most ’Hantavirus’ could
be further analyzed to ’Puumalavirus’. The data of 2001 are somewhat unreliable, as this
was the first year where the disease had to be reported according to the specifications of
the German Act on the Prevention and Control of Infectious Diseases - hence it will be
left out of the analysis.
As a handful of the counties were merged over the years, we assigned the newer cases
randomly to the old counties that made up the new county. Some other counties were
split into new ones, in which case the newer cases are assigned to the old county. In
total, we have 412 counties in this analysis. A threshold of 0.25 for the average yearly
incidence was included and counties with an incidence below the threshold were not
considered endemic regions. The average yearly incidence for county i is given by

ni · 105

popi · T
,

where ni is the total number of cases 2002-2012 in county i, popi the population and
T the number of years, i.e. 11. This was done to ignore very small case numbers in
some counties that could be explained by e.g. people moving instead of the local bank
vole population carrying hantavirus. After applying the threshold we are left with 150
endemic counties. Data of reported hantavirus incidence per county and per year are
shown in Figure 1.3 and the total incidence is shown in Figure 1.2. Table 1.1 shows the
total number of reported hantavirus cases in Germany per year.
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2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
209 127 223 403 61 1618 207 160 1920 267 2643

Table 1.1: Total number of reported hantavirus cases in Germany per year.
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Figure 1.1: The top plot shows the number of reported hantavirus cases per year. The
middle and lower plots show the yearly weighted mean fructification of all counties for
beech and oak, where weights are given by counties’ area.
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1.1.2 CORINE Land Cover

The Coordination of Information on the Environment (CORINE) Land Cover is a project
initiated by the European Commission and executed by the European Environment
Agency that aims to provide land cover information for countries in the European Union.
This is done through the use of satellite images. The land is divided into 44 different
land cover classes with a resolution of 1:100,000. We will use three land cover classes
as covariates: fields (German: Wiesenweiden), grassland (Grasland) and bushes (Wald-
strauch). The land cover data are freely available at http://www.eea.europa.eu. We
get the proportion of county area that is covered by three different land cover classes in
Figure 1.4.

Figure 1.4: Proportion of county area (measured in %) occupied by one of the three
CORINE land cover classes: fields (Wiesenweiden), grassland (Grasland) and bushes
(Waldstrauch).

1.1.3 Forest Area

The Federal Forest Inventory is performed every ten years by the Thünen-Institut in
accordance with Federal Forest Act and provides information as to the number and
volume of trees in Germany. The most recent version was done in 2011/2012 and is
freely available at http://www.bundeswaldinventur.de. For the inventory all of Germany
is overlaid by a 4km×4km grid, with some federal states having double or quadruple that
intensity. At each grid point there are four sampling points, the corners of a 150m×150m
square around the grid point. In total, at around 60,00 sample points an approximate
420,000 trees are measured. This is extrapolated to an estimated total of ninety billion
trees in Germany. Fig. 1.5 shows the area covered by oak, beech and fir for each county.
In the analysis we also consider ARest, which is the remaining forest area of the total
forest area that is not covered by beech, oak or fir.
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Figure 1.5: Percentage of county area covered by oak (Eiche), beech (Buche) and fir
(Tanne), respectively.

1.1.4 Fructification

Fructification is measured yearly in several locations in Germany. In total we have
2157 measurements of beech fructification and 1376 measurements of oak fructification,
both from 2000 to 2012. Following the approach of Faber and Höhle (2013), these
measurements are then used to compute a smoothed 2D-spline for all of Germany and
finally the values of the spline at the centroid of each county are taken. This 2D-spline
is necessary as we otherwise could not have fructification values for each county, because
the sampling points are spread irregularly across Germany, see Figures 1.6 and 1.7. This
is done for both beech and oak, as these were determined to be the most important food
sources for bank voles.
As this is one of the most important variables, we first describe the extrapolation and
then extend upon it. The fructification status of each tree type is determined yearly at
each sample location. Four different statuses are possible: non, weak, medium, strong
fructification.
We now consider this for beeches. Let n(si, t) be the number of beeches sampled at
location i = 1, . . . , nt, where si = (six, siy)

′, and at time t ∈ {2000, . . . , 2012}. Let then
nheavy(si, t) denote the number of beeches with fructification statuses medium or strong.
We then get the proportion of trees with medium and high fructification by

p(si, t) =
nheavy(si, t)

n(si, t)
.

These proportions are shown in Figures 1.6 and 1.7.

We now construct a smoothing spline for each year. The distribution of nheavy(si, t) is
modeled through a binomial distribution in a generalized additive model (GAM), see also
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section 2.1, as follows

nheavy(si, t) ∼ Bin(n(si, t), p(si, t)),with
logit(p(si, t)) = ft(si),

where ft(s) is the two-dimensional smoothing thin plate spline for year t. For more de-
tails on the fitting of such spline models, consult Wood (2006).

Lastly, we take the value of the smoothing spline at the centroid of each county through

hfrucjt = p̂(sj , t) = logit−1(f̂t(sj)),

where sj , j = 1, . . . , 412 denotes the location of the centroid of region j. Figure 1.8 shows
the estimated proportion of middle and high statuses for each county. The same process
is done for oaks and the equivalent plot is given in Figure 1.9. In the analysis, a county’s
fructification value is given in percent.
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Figure 1.6: Fructification index of the common beech in Germany 2000–2012 at the
observed sample points.
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Figure 1.7: Fructification index of oak in Germany 2000–2012 at the observed sample points.
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Figure 1.8: Extrapolated beech fructification for each of the 412 districts in Germany for the years
2000–2012.
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Figure 1.9: Extrapolated fructification of oak for each of the 412 districts in Germany for the years
2000–2012.
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Figure 1.10: Mean distance (in km) of urban areas to forests, i.e. u2fc index, for each
county.

1.1.5 Urban Proximity

The last covariate we include in the model is the proximity between urban and forest
areas. To compute these distances, CORINE Land Cover data are used. Two types of
areas that are comprised of several land cover classes each are considered, namely ’urban
fabric’ (i.e. continuous urban fabric, discontinuous urban fabric) and ’forests’ (i.e. broad-
leaved forest, coniferous forest, mixed forest).
A proximity variable for a county i, where i ∈ {1, . . . , 412}, can then be computed as the
average distance of urban areas to forests in that county, i.e.

u2fci =
1

|Ui|
∑
s∈Ui

dist(s, F ),

where Ui denotes the set of all ’urban’ pixels in region i and dist(s, F ) denotes the
Euclidean distance of pixel s to the nearest forest pixel. Since only German CORINE
data are considered, small edge effects at the country border might appear. A map with
the counties’ average proximity is given in Figure 1.10. Lower values mean closer average
proximity of urban areas to forests.
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Chapter 2

Prerequisites for the Statistical
Modeling

2.1 Bayesian Generalized Additive Models

In what follows we will assume a level of familiarity with Bayesian statistics as presented
in Carlin and Louis (2011) and with generalized additive models (GAMs) as given in
Fahrmeir et al. (2013). See for example Fahrmeir and Kneib (2011) for more details
on GAMs or Hastie and Tibshirani (1990), where GAMs were first introduced. The
expressions ’generalized additive model’ and ’structured additive regression’ will some-
times be used interchangeably in this thesis, see chapter 2 in Fahrmeir et al. (2013) for
an overview. This section will provide a very brief recap of GAMs and how they will be
used by INLA in chapter 3.
INLA deals with latent Gaussian models, a subclass of structured additive regression
models. These models are formulated very similarly to generalized linear models (GLMs)
but the linear predictor is replaced by a structured additive predictor which can include
nonlinear effects. As in a GLM, we model our observations, the data y = (y1, . . . , ynd)

T ,
through a marginal distribution of the one-parametric exponential family. In the model
used in this thesis, this will be a Poisson distribution, i.e.

yi|ηi ∼ Poi(µi),

where µi is connected to the structured additive predictor ηi, and therefore the covariates,
through a link function. In our model we use the log function as a link function, which
is the canonical link function for the Poisson distribution. We then have

log(µi) = ηi,

where ηi is the structured additive predictor. This predictor contains all covariates and
can be written as

ηi = α+

nf∑
j=1

f (j)(uji) +

nβ∑
k=1

βkzki + εi. (2.1)
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The variables that make up the predictor are an intercept α, nonlinear terms f (j), linear
terms βk and an error term εi. Therefore α, {βk}k∈nβ and {εi}i∈nd can be understood
similarly to their GLM counterparts. The additional nonlinear terms f (j), however, can
take a wide variety of forms. We will only be using Gaussian Markov random fields, see
chapter 2.2, to account for spatial effects, but a wide variety of random effects, splines
and other nonlinear functions are possible, see e.g. chapters 8 and 9 in Fahrmeir et al.
(2013).
In a Bayesian setting α, {βk}k, f (j), {εi}i or equivalently α, {βk}k, f (j), {ηi}i have prior
distributions. As INLA deals mainly with latent Gaussian fields, we usually assign vague
Gaussian priors, e.g. N(0, 10002), to α, {βk}k, {ηi}i. Furthermore, in our case the prior
of {f (j)}j is a Gaussian Markov random field dependent on a hyperparameter θ whose
hyperprior is a non-informative log-gamma distribution.

2.2 Gaussian Markov Random Fields

We now present the important concept of Gaussian Markov random fields (GMRFs). As
they are used in many different situations, presenting them from two different viewpoints
might be beneficial to their understanding. The first viewpoint sees GMRFs as random
vectors with very efficient computational properties, whereas the second sees them as a
nonlinear term f in a structured additive predictor that helps model temporal or spatial
dependencies.
The viewpoint of computational efficiency, as presented in section 2.2.1, is taken in the
theoretical part of this thesis and throughout Rue et al. (2009), where much of the
superior speed of the INLA method relies on the computationally beneficial properties
of GMRFs. The second viewpoint, section 2.2.2, as introduced by Besag et al. (1991)
and as taken in the practical part of this thesis, in Fahrmeir et al. (2013) and in many
other resources on temporal, spatial and spatio-temporal modeling, focuses on presenting
the distribution of the random vector through the full conditionals as an intuitive and
interpretable way of modeling.

2.2.1 Definition through Joint Density

A random vector x follows a Markov Random Field if the marginal distribution of each
element only depends on its immediate neighbors, where neighbors are defined according
to a given problem, e.g. predecessor and successor in a time series or counties sharing
a border in spatial applications. If we denote two elements i and j being neighbors by
i ∼ j and the set of all neighbors of i by N(i), then we can state the Markov property
for xi by

xi ⊥ xk|{xj}j∈N(i) for all k, where k is not a neighbor of i. (2.2)

Here, x ⊥ y|z denotes the conditional independence of random variables x and y, i.e. x
and y are independent given a third random variable z.
If x also follows a multivariate Gaussian distribution we say that x is a Gaussian Markov
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random field. These GMRFs have several useful properties. As the entries in the pre-
cision matrix (inverse covariance matrix) of a multivariate Gaussian distribution imply
the conditional independence structures, the precision matrices are usually sparse and
computationally very efficient methods can be used, see Rue and Held (2005).
We define a random vector x = (x1, . . . , xn)T ∈ Rn as a Gaussian Markov random field
with respect to a graph G = (V, E), a neighborhood structure, where V is the set of nodes
and E ⊆ V × V the set of edges. The mean of x is given by µ and its precision matrix by
Q. Then x is a GMRF if and only if its probability density function can be written as

π(x) = (2π)n/2det(Q)1/2 exp

(
−1

2
(x− µ)TQ(x− µ)

)
(2.3)

and
Qij 6= 0⇔ {i, j} ∈ E for all i 6= j.

We can also write the second condition as Qij 6= 0 ⇔ i ∼ j. Note that a node cannot
be a neighbor of itself and that the precision matrixQ in this definition is positive definite.

2.2.2 Definition through Full Conditionals

Gaussian Markov random fields as part of the structured additive predictor to model
spatial and temporal dependencies were introduced by Besag et al. (1991) and are now a
common tool in spatial statistics, see for example Schrödle and Held (2011a) or Schrödle
and Held (2011b). They are also referred to as conditionally autoregressive (CAR) priors.
These GMRFs are usually intrinsic Gaussian Markov random fields, i.e. their precision
matrix does not have full rank, see chapter 3 in Rue and Held (2005) for more details.
We use the notation f(si) = γi to mean the spatial effect of region si. In the spatial case,
with i = 1, . . . , ni spatial regions, we can specify the GMRF through the full conditional
of γi

π(γi|τ) ∝ exp

−τ
2

∑
j∼i

(γi − γj)2
 , (2.4)

where τ is a precision parameter. It is also possible to choose a different loss function than
the quadratic loss function and add symmetric weights between regions, e.g. common
border length or euclidean distance of centroids. For more details on how to define valid
GMRFs through full conditionals see chapter 2.2.4 in Rue and Held (2005).
We can then write the the distribution of the γi conveniently as

γi|γ−i, τ ∼ N

 1

|N(i)|
∑
j∈N(i)

γj ,
1

|N(i)| · τ

 . (2.5)

Here γ−i denotes the set of all γj , with j 6= i. These γi have of course the spatial Markov
property that the distribution of the γi only depends on γj , j ∈ N(i). This way of
formulating the GMRF through the full conditionals has an immediate interpretability,
which allows their direct use in spatial modeling.
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2.3 Model Selection

This section presents two common tools for model selection and evaluation that will be
used in the applied part of this thesis.

2.3.1 Deviance Information Criterion

The deviance information criterion (DIC) was introduced by Spiegelhalter et al. (2002)
and can, similarly to the AIC, be helpful in model selection as it provides a measure of
both the fit and the complexity of the model. According to Fahrmeir and Kneib (2011)
it can be used to evaluate the fit of a generalized additive model. The DIC is defined as

DIC = D̄ + pD, (2.6)

where D̄ is the posterior mean of the deviance, a measure of model fit and pD is the
number of effective parameters, a measure of model complexity. Ideally we would like
both D̄ and pD to be small and would therefore select the model with the smallest DIC
value.

2.3.2 Probability Integral Transforms

Probability integral transforms (PIT) are a tool to check model validity. For a count
data setting an adjusted version was introduced by Czado et al. (2009). PITs are based
on a basic theorem in probability that states that a random variable Y = FX(X) is
distributed uniformly on [0, 1] for any continuous random variable X with cumulative
distribution function FX . This follows from

P (Y ≤ y) = P (FX(X) ≤ y) = P (X ≤ F−1X (y)) = FX
(
F−1X (y)

)
= y.

Assume now that the y come from a continuous distribution. If we now define the PITs
as the values of the predictive cumulative distribution function at the observed values,
i.e. PITi = P (ynewi ≤ yi|y−i) (Martino and Rue, 2010), it follows that the PITs should
be uniformly distributed if the observations were drawn from the predictive distribution.
To assess model fit, a histogram of these PIT values can be plotted. It can then be
visually inspected to check for deviations from uniformity.
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Chapter 3

Integrated Nested Laplace
Approximations

3.1 Outline

Integrated nested Laplace approximations (INLAs) were introduced by Rue et al. (2009)
and expanded upon in Martins et al. (2013). They are used to directly approximate
marginal posterior densities in Bayesian inference. As the marginal posterior density
π(xi|y) can generally not be computed analytically, an approximation is necessary. This
is nowadays most commonly done by Markov chain Monte Carlo methods (MCMC) (Held
et al., 2010). INLAs offer a computationally efficient alternative for the calculation of
marginal posterior densities.
INLAs work on latent Gaussian models, a subclass of structured additive regression
models, see section 2.1. These models are hierarchical with the likelihood π(y|x), from
the exponential family, as the first stage, the latent Gaussian field π(x|θ) as the second
stage and the (non-Gaussian) hyperpriors π(θ) as the third stage. Here, y denotes the
observations. The second stage, the latent Gaussian field, is a GMRF. The random vector
x consists of all terms of the structured additive predictor which have Gaussian priors,
i.e.

x =
(

(ηi)
nd
i=1, α, (f

(j))
nf
j=1, (βk)

nβ
k=1

)T
.

Assume that the vector x has total length n.
Requirements for the INLA method are that the random vector with Gaussian priors x
can be very high dimensional but the vector of hyperparameters θ, should be low dimen-
sional, practically feasible are dimensions up to around six. Integrated nested Laplace
approximations are fast in comparison with MCMC because many direct approximations
are used nested within each other but also because they use the computationally ben-
eficial properties of Gaussian Markov random fields, i.e. the fact that Q, the precision
matrix of x, is sparse and therefore computationally very efficient methods for sparse
matrices can be used.
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Note that we assume

π(y|x) =

nd∏
i=1

π(yi|xi)

or equivalently π(yi|x) = π(yi|xi), meaning that every observation yi in y = (y1, . . . , ynd)
T

depends only on the one corresponding entry of the latent Gaussian field. Since the latent
Gaussian field is usually larger than the number of data points, i.e. n > nd, only the first
nd entries of x are necessary to calculate the distribution of y. These first nd entries of
x correspond to η = (η1, . . . , ηnd)

T . That means that y is conditionally independent of
{xi}ni=nd given η. More formally we have

y⊥{xi}ni=nd |η.

Using all this, we can now write the joint posterior of x,θ using Bayes’ theorem

π(x,θ|y) ∝ π(θ)π(x|θ)

nd∏
i=1

π(yi|xi,θ)

∝ π(θ)det(Q(θ))
n
2 exp

(
−1

2
xTQ(θ)x +

nd∑
i=1

log{π(yi|xi,θ)}

)
. (3.1)

This is the joint posterior distribution of all model parameters and as such the aim in
conducting Bayesian inference. Before we continue to introduce the INLA method we
now present two approximations that are used extensively in the INLA method.

3.2 Gaussian Approximations

Gaussian approximations of posterior densities are computationally very fast, but might
not be very accurate if the posterior density is not sufficiently Gaussian, see also Rue and
Martino (2007). The density is approximated iteratively by matching the mode and the
curvature at the mode. This equals using the Newton-Raphson procedure. The Gaussian
approximations presented here are also referred to as GMRF approximations.

We now explain the method outlined in Rue and Held (2005). Assume that we have a
GMRF x with precision matrix Q and mean zero. We then approximate a density in the
form of (3.1),

π(x,θ|y) ∝ exp

(
−1

2
xTQ(θ)x +

nd∑
i=1

log{π(yi|xi,θ)}

)
. (3.2)

We now expand the second term componentwise using a Taylor-expansion around µ(0)i ,
the i-th entry of our starting point µ(0), which gives us

log{π(yi|xi,θ)} ≈ log{π(yi|µ(0)i ,θ)}+ bixi −
1

2
cix

2
i . (3.3)
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Inserting this we get

π̃(x,θ|y) ∝
(
−1

2
xT (Q + c)x + bTx

)
, (3.4)

which is normally distributed with precision matrix Q + diag(c) and mode µ(1) which
is the solution of {Q + diag(c)}µ(1) = b. This approximation relies of course on the
starting value µ(0). It is more accurate the closer µ(0) is to the mode of π(x). The
process can then be iterated, with µ(1) as the new starting value, until an approximation
of the required degree of accuracy is reached. Note that the precision matrix is only
changed along its diagonal, which means that the Gaussian approximation retains the
conditional independence structure of π(x) and is a GMRF with all its computationally
beneficial properties.

3.3 Laplace Approximations

Laplace approximations as an approximation of certain integrals through a Taylor se-
ries have been introduced by Laplace, see Laplace (1986). Laplace approximations were
first applied to moments of probability densities and marginal posterior distributions by
Tierney and Kadane (1986). We will use the name ’Laplace approximation’ interchange-
ably for those two different concepts. When we talk about a Laplace approximation of a
density we will mean the approximation of this density based on the use of the classical
Laplace approximation as presented in this section.
Multivariate Laplace approximations for the integral of a scalar function f(x), with x a
d-dimensional vector, have the following form∫

enf(x)dx ≈
(

2π

n

)d/2
det (−H(f)(x))−1/2 enf(x0), (3.5)

where x0 is the global maximum and H(f)(x) is the Hessian of f(x). The idea being
that for big n ∈ N, the integral has nearly all of its weight around the maximum.
Tierney and Kadane (1986) used this as an approximation for posterior densities π(θ|y),
where θ is the parameter vector and y the data. We state the derivations here in more
detail: The parameter vector θ = (θ1,θ2) is split up into a 1-dimensional and a d − 1-
dimensional part. The marginal posterior density for θ1 can then be written as

π(θ1|y(n)) =

∫
π(θ1,θ2)L(y|θ1,θ2)dθ2∫

π(θ)L(y|θ)dθ
=

∫
en·g1(θ2)dθ2∫
en·g(θ)dθ

, (3.6)

where
g(θ) = (log(π(θ)) + log(L(y|θ))) /n

is just a rewrite to bring the likelihood L(y|θ1,θ2) and the prior π(θ1,θ2) in the form
necessary for the Laplace approximation, i.e. equation (3.5). Furthermore, g1 is g with
θ1 held fixed, i.e.

g1(θ2) = (log(π(θ1,θ2)) + log(L(y|θ1,θ2))) /n.
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Let θ̂ be the posterior mode which maximizes π(θ)L(y|θ) and θ̂∗
2 = θ̂∗

2(θ1) the posterior
mode for a fixed θ1, which correspondingly maximizes π(θ1,θ2)L(y|θ1,θ2) for a given θ1.
Let then J1(θ̂∗

2) = J1(θ1) denote the observed Fisher information matrix, i.e. the nega-
tive Hessian of g1 evaluated at θ̂

∗
2. Note that we can see J1 as a function of θ̂∗2 or of θ1,

which we will both use. Now apply the Laplace approximation (3.5) to the numerator of
(3.6) (

2π

n

)(d−1)/2
det(J1(θ̂∗

2))−1/2en·g1(θ̂
∗
2) (3.7)

and the denominator (
2π

n

)d/2
det(J (θ̂))−1/2en·g(θ̂) (3.8)

with J (θ̂) being the observed Fisher information of g evaluated at θ̂. This then gives us
the Laplace approximation for the marginal density

π̂(θ1|y(n)) =

(
n det(J −11 (θ1))

2π det(J −1(θ̂))

)1/2
π(θ1, θ̂

∗
2)L(y|θ1, θ̂∗

2)

π(θ̂)L(y|θ̂)
(3.9)

Laplace and Gaussian approximations of posterior densities are widely used in the INLA
method and allow us to now introduce its main ideas.

3.4 Integrated Nested Laplace Approximations

We now explain the INLA method as described in Rue et al. (2009). Many details will
be clarified in much greater detail and we present proofs omitted from the original paper.
The model setup is taken from section 3.1 with y the data, x the latent Gaussian field,
i.e. the parameters in the distribution of y, and θ the hyperparameters.

The goal in conducting Bayesian inference is to obtain the posterior density of the pa-
rameters, either the full posterior 3.1 or the marginal posterior densities. We will now
focus on the latter, the marginal posterior density π(xi|y), which can be obtained by
integrating out the hyperparameters

π(xi|y) =

∫ ∫
π(x,θ|y)dx−idθ =

∫
π(xi|θ,y)π(θ|y)dθ (3.10)

where we used the notation x−i for the vector x without the i-th element. Additionally,
let m denote the dimension of θ. Expression (3.10) is almost always impossible to
compute analytically. Instead, we try to approximate it by an approximate density
π̃(xi|y). The idea of INLA is to do this approximation by using several approximations
nested within each other. First, consider a usual multivariate quadrature approach where
we approximate the m-dimensional integral on the right-hand side of expression (3.10)
as a weighted sum by
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π(xi|y) ≈
nk∑
k=1

π(xi|θk,y)π(θk|y)∆k

≈
nk∑
k=1

π̃(xi|θk,y)π̃(θk|y)∆k =: π̃(xi|y), (3.11)

using a number nk of support points θk with corresponding area weights ∆k. Details on
these support points are given in section 3.5.
In equation (3.11) we introduced two new approximations. The first one, π̃(xi|y,θ), is
either a Gaussian, a Laplace or a simplified Laplace approximation of π(xi|y,θ). We will
return to these in more detail in section 3.6.
The second one, π̃(θ|y), is a Laplace approximation of π(θ|y), which we will discuss now.
To obtain this Laplace approximation we firstly see that from

π(x,θ,y) = π(x|θ,y)π(θ|y)π(y)

we can obtain

π(θ|y) ∝ π(x,θ,y)

π(x|θ,y)
. (3.12)

The numerator of (3.12) is easily computed, since

π(x,θ,y) = π(y|x)π(x|θ)π(θ).

All of which we know from the model formulation in section 3.1.
The denominator of (3.12), however, we do not know. We therefore replace π(x|θ,y)
by its Gaussian approximation π̃G(x|θ,y) and evaluate the whole fraction at x∗(θ), the
posterior mode of π(x|θ,y) for a given θ. Taking all this together, we get

π̃(θ|y) ∝ π(x,θ,y)

π̃G(x|θ,y)

∣∣∣∣
x=x∗(θ)

. (3.13)

As claimed in Rue et al. (2009), the approximation in expression (3.13) is equivalent to
the Laplace approximation in Tierney and Kadane (1986) as we will show in the next
subsection.

3.4.1 Equivalence of Laplace Approximations

We prove this by following analogously the idea proposed in a short comment from
Leonard (1982).

The denominator of (3.13) has the following form

π̃G(x|θ,y) = (2π)−
n
2 |J (θ,y)|

1
2 exp

{
−1

2
(x− x∗)TJ (θ,y)(x− x∗)

}
(3.14)
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where J (θ,y) is the observed Fisher information of log π(x,θ,y) evaluated at the pos-
terior mode x∗(θ). That is

J (θ,y) =
δ2

(δx)2
log π(x,θ,y)

∣∣∣∣
x=x∗(θ)

. (3.15)

Expression (3.14) is now inserted back into (3.13). Note hat the evaluation at the mode
causes the exp-part in (3.14) to disappear. This gives

π̃(θ|y) ∝ (2π)
n
2 |J (θ,y)|−

1
2π(x,θ,y)

∣∣∣
x=x∗(θ)

(3.16)

To show equivalence between this expression and the one in Tierney and Kadane (1986),
we can compute a regular Laplace approximation of π(θ|y) analogous to Tierney and
Kadane (1986). Note that we will ignore the proportionality constant as we did above.

Rewrite π(θ|y) as follows

π(θ|y) ∝
∫
π(θ,x,y)dx =

∫
exp {log π(x,θ,y)} dx, (3.17)

which is the standard form for a Laplace approximation. Using the classical Laplace
approximation 3.5 gives

π(θ|y) ∝ (2π)
n
2 |J (θ,y)|−

1
2π(x,θ,y)

∣∣∣
x=x∗(θ)

, (3.18)

which is equal to equation (3.16), showing the equivalence of the two methods.

Now that we have an approximation to π(θ|y), section 3.6 will treat the remaining
second approximation in 3.11, namely π(xi|y,θ), after evaluation points of π̃(θ|y) are
considered in section 3.5.

3.5 Finding Evaluation Points for π̃(θ|y)
For the numerical integration in 3.11 it is necessary to find several evaluation points of
π̃(θ|y). This way a parametrical representation of π̃(θ|y) is not necessary if evaluation
points with according density values and weights are computed. As long as these points
represent the distribution sufficiently well. Two approaches for finding evaluation points
of π̃(θ|y) are presented in Rue et al. (2009), the GRID strategy and central composite
design, the CCD strategy. The GRID strategy gives more accurate results but Rue et al.
(2009) argue that CCD results are nearly as good for most practical applications with
significantly reduced computing costs and it is therefore set as the default option in R-
INLA. After evaluation points have been found, these can be used to obtain the posterior
marginals π(θj |y).
The GRID strategy consists of computing the maximum and Hessian of log (π̃(θ|y)),
reparametrizing θ with their help and then spanning an even grid around the maximum
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to include values of sufficient probability mass. Since this grid is even, all evaluation
points have the same weight ∆k. These evaluation points can then also be used to create
an interpolant for log (π̃(θ|y)), which in turn can be used for numerical integration to
obtain approximations to the posterior marginals π(θj |y).
The CCD strategy uses a greatly reduced amount of evaluation points, allowing for
higher m, the dimensionality of the hyperparameters. One point is placed on the origin
and several more along each axis. Then, in a full factorial or fractional factorial design,
evaluation points are placed on a hypersphere around the origin. The integration weights
are equal for all points on the hypersphere and straightforward to calculate.

3.6 Approximations of π(xi|y,θ)
Three different approximations of π(xi|y,θ) were presented in Rue et al. (2009) and im-
plemented in R-INLA. The computationally fastest but least accurate is the Gaussian
approximation. Much more accurate but also much more computationally expensive is
the full Laplace approximation (FLA). The third alternative is the simplified Laplace
approximation (SLA), introduced by Rue et al. (2009), which is supposed to be compu-
tationally less expensive than the FLA while still being much more accurate than the
Gaussian approximation. The SLA is the default option in R-INLA.

3.6.1 Gaussian Approximation

The Gaussian approximation, see section 2.2, π̃G(xi|y,θ) for π(xi|y,θ) is computation-
ally efficient since the Gaussian approximation π(x|y,θ) has already been computed when
the space of π(θ|y) has been searched for support points θk. Then, only the marginal
variances need to be computed additionally to obtain π̃G(xi|y,θ).

3.6.2 Full Laplace Approximation

We now consider the full Laplace approximation to π(xi|y,θ)

π̃LA(xi|θ,y) ∝ π(x,θ,y)

π̃GG(x−i|xi,θ,y)

∣∣∣∣
x−i=x∗

−i(xi,θ)

, (3.19)

where π̃GG(x−i|xi,θ,y) is a Gaussian approximation of π(x−i|xi,θ,y) and the whole
expression is evaluated at x∗−i(xi,θ), the mode of π(x−i|xi,θ,y).
Two adjustments are made to significantly speed up the computation. Firstly, the modal
configuration is approximated by

x∗−i(xi,θ) ≈ Eπ̃G(x−i|xi), (3.20)

which is easy to compute since π̃(x|y,θ) has already been computed. This is also advan-
tageous since Eπ̃G(x−i|xi) is continuous in xi, whereas a numerical optimization to find
x∗−i(xi,θ) does not have this benefit. Secondly, it is assumed that only xj "close" to xi in-
fluence the marginal posterior π̃LA(xi|θ,y). Therefore, if suitably "far" xj are neglected,
only smaller matrices need to be factorized in the computation of π̃GG(x−i|xi,θ,y).
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3.6.3 Simplified Laplace Approximation

The simplified Laplace approximation π̃SLA(xi|θ,y) is based on a series expansion of
the full Laplace expansion π̃LA(xi|θ,y) up to third order. The inclusion of the third
order term as well as the use of the skew normal distribution allow for more accurate
approximations than the simple Gaussian approximation. For more details, see Rue et al.
(2009).

3.6.4 Computing π(xi|y)

Now that π̃(θ|y) (Eq. 3.13) and π̃(xi|y,θ) (Eq. 3.19 or one of the other approximations)
are available we can combine all these as given in 3.11 and compute an approximation
to the marginal posterior π(xi|y).

3.7 Implementation in R-INLA

INLA has been implemented in C and has an R interface in the R-INLA package which
is freely available as open-source at www.r-inla.org. It is based on the GMRFlib library
accompanying Rue and Held (2005). Rue et al. (2009) provide some tests as to the ac-
curacy of the method and later papers by e.g. Held et al. (2010), Schrödle et al. (2011)
and Bivand et al. (2015) have found that the results obtained by INLA agree remarkably
well with MCMC results.

R-INLA is intuitive to use as its syntax is very similar to that of the glm function in R.
Firstly, the structured additive predictor needs to be specified as a formula, which is an
extended version of the glm formula. As an example from the analysis in the following
sections we have

f.st <- cases ~ 1 + #Intercept
AEiche + ABuche + ATanne + ARest + #Main effects
hfrucBuche + hfrucEiche + #Main effects
hfrucBuche:ABuche + hfrucEiche:AEiche + #Interaction effects
f(AGS.iid, model="iid") + #Unstructured error
f(AGS.struc,model="besag",graph=graph) #Structured error

The first lines look identical to the formula in a glm, whereas the last two lines are
specific to R-INLA. The f() environment allows for the specification of a model for the
latent Gaussian field. These specifications correspond with stage 2 of the model, as stated
in section 3.1. In this case we have a spatial model, which we model in the way proposed
by Besag et al. (1991), with a spatially structured and an unstructured error term. The
call for the "besag" model requires an additional argument, graph, which defines the
neighborhood structure.
This formula is then used in the call of the inla function.

m <- inla(f.st, family="poisson", E=Population, data=hanta,
control.compute=list(dic=1))
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Here, family is the distribution of our observational model, the likelihood. This is stage
1 of the model specification. E is the offset in a Poisson model and control.compute=
list(dic=1) allows the specification of additional things to be computed, in this case
the DIC as a later criterion for model selection. The output can then be accessed in the
usual R fashion, for example by summary(m).
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Chapter 4

Analysis of the Hantavirus Data

We now analyze the hantavirus data described in section 1.1. Hantavirus is caused by
transmission from bank voles to humans. Since we do not have any information on the
number of bank voles, we use several proxy-variables, which we assume give us similar
information on the number of bank voles but are possible to obtain. We consider the
habitats of bank voles, e.g. forests and fields, as well as their proximity towards urban
areas. We also consider the fructification of trees, as nuts and seeds are a food source to
bank voles.
We fit a GLM and several GAMs to the data. The GLM will model the spatio-temporal
data solely through the temporally and spatially varying covariates mentioned above,
whereas the linear predictor of the GAMs will include a Gaussian Markov random field
to account for the spatial structure that is clearly exhibited by the data. We fit the
GLM as a reference against which to compare the later GAMs. We will use the R-INLA
package as well as the glm function to fit these models.

4.1 Fitting a Generalized Linear Model

The data is first analyzed using as generalized linear model. To this end the glm function
and then for comparison the inla function are used. As we are dealing with spatio-
temporal count data, a Poisson distribution with spatio-temporally varying mean is as-
sumed

yi,t ∼ Po(ei · µit),

with i = 1, . . . , 412 and t = 2002, . . . , 2012, the counties and years respectively. The
population of county i as an offset is given by ei. We choose the canonical log-link

log(µit) = ηit
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and can then specify the model through the linear predictor as

ηit =α+ β1xi,AEiche + β2xi,ABuche + β3xi,ATanne+

β4xit,hfrucEiche + β5xit,hfrucBuche+

β6xit,hfrucEichexi,AEiche + β7xit,hfrucBuchexi,ABuche+

β8xi,CAWaldstrauch + β9xi,CAGrasland + β10xi,CAWiesenweiden + β11xi,u2fc.

The model contains an intercept, α, as well as main and interactions effects β = β1, . . . , β11.
The main effects are the percentage of area covered by oak, beech and fir in a county,
section 1.1.3, and the fructification index of that county for the previous year, section
1.1.4. This is due to our hypothesis that high fructification in one year is followed by a
high case number in the next year. The variable xit,hfrucBuche denotes therefore the beech
fructification in county i in year t− 1. The interaction effects of some of these variables
are also considered. Lastly, the Corine land coverage variables for bushes, grassland and
fields, section 1.1.2, and the distance between forests and urban areas, section 1.1.5 enter
the model.

This predictor is specified as a formula in R by

f.st <- cases ~ 1 + #Intercept
AEiche + ABuche + ATanne + ARest + #time constant forest variables
hfrucBuche + hfrucEiche + #time varying forest variables
hfrucBuche:ABuche + hfrucEiche:AEiche + #interaction effects
CAWaldstrauch + CAGrasland + CAWiesenweiden + #CORINE variables
u2fc. #urbanization variables (derived from CORINE)

Note, that we will specify the offset separately using E in inla and using offset in the
glm function. In what follows, we will present the predictors of other models in R-style
as this is more compact.

The data can now be analyzed in a standard fashion by calling glm

m.st <- glm(f.st,offset=log(KreisPop),family=poisson,
data=hanta.long.endemic)

or in a Bayesian framework using inla.

m.st.inla <-inla(f.st,E=KreisPop,family="poisson",
data=hanta.long.endemic,
control.compute=list(dic=TRUE,cpo=TRUE),
control.inla=list(strategy="laplace",npoints=21,

int.strategy = "grid", diff.logdens = 4))
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We use the R-INLA default, which implies that vague Gaussian priors, i.e. N(0, 10002),
are assigned to intercept and covariates. Note that the control.compute() and control.inla()
arguments are optional, and chosen here to allow for the accurate computation of model
selection criteria in section 4.3.

4.2 Fitting Generalized Additive Models

We will now introduce several models that utilize Gaussian Markov random fields to
account for spatial variation in the counties of Germany. The first model with regional
effects, named Pois, is given by

yit ∼ Po (ei · µit)
log (µit) = ηit = α+ x′itβ + f(si) + ui

where yit is the number of hantavirus cases in county i during year t = 2002, . . . , 2012,
ei is the population as an offset and x′it is the vector of (time varying) covariates of i
introduced in section 4.1. The discrete location variable with the set of all 412 counties as
its domain is labeled si and f(si) is the spatial effect of si. We will use a Gaussian Markov
random field with precision parameter τ to account for the structural error, see section
2.2. A log-gamma prior distribution with parameters (1, 5e−05) is assigned to log(τ).
The unstructured error is represented by the random effect ui, where ui ∼ N(0, τ−2u ) are
independent and identically distributed. The log precision τ2u is assigned a log-gamma
prior with parameters (1, 5e−05). The inla formula for the linear predictor is then
given by

f.st.inla

## cases ~ 1 + AEiche + ABuche + ATanne + ARest + hfrucBuche + hfrucEiche +
## hfrucBuche:ABuche + hfrucEiche:AEiche + CAWaldstrauch + CAGrasland +
## CAWiesenweiden + u2fc. + f(AGS.iid, model = "iid") + f(AGS.struc,
## model = "besag", graph = graph)

In addition, a number of different models was also fitted, since Pois is a reasonable
assumption about how the hantavirus cases can be modeled through the given covariates
but not necessarily based on any model described in the literature. Since we hypothesize
fructification to be a very important factor, we will consider several models with different
combinations of the fructification main and interaction effects. We consider next a model
that is similar to Pois but with the fructification main effects removed, which we will
call Pois-no-main. Although it may look atypical to exclude the main effect of a variable
while keeping its interaction term, the rationale behind this is that only areas that
contain forests can be said to have a fructification. This model therefore only considers
interaction effects between fructification and forest area. The predictor in inla is given
by

33



f.st.inla2

## cases ~ 1 + AEiche + ABuche + ATanne + ARest + hfrucBuche:ABuche +
## hfrucEiche:AEiche + CAWaldstrauch + CAGrasland + CAWiesenweiden +
## u2fc. + f(AGS.iid, model = "iid") + f(AGS.struc, model = "besag",
## graph = graph)

Thirdly, we will consider model Pois-no-interact, which is similar to Pois but has no
interaction effects between fructification and area covered by tree species. This might
give a better fit since it reduces model complexity.

f.st.inla3

## cases ~ 1 + AEiche + ABuche + ATanne + ARest + hfrucBuche + hfrucEiche +
## CAWaldstrauch + CAGrasland + CAWiesenweiden + u2fc. + f(AGS.iid,
## model = "iid") + f(AGS.struc, model = "besag", graph = graph)

Model Pois-interact has interaction effects of the urban proximity variable u2f, exploring
possible differences in how proximity is affected by fructification. Note that we use here
the inverse of the proximity as we believe that smaller proximity and higher fructification
both lead to increased cases numbers.

## cases ~ 1 + AEiche + ABuche + ATanne + ARest + hfrucBuche + hfrucEiche +
## hfrucBuche:ABuche + hfrucEiche:AEiche + CAWaldstrauch + CAGrasland +
## CAWiesenweiden + u2fc + I(1/u2fc):hfrucBuche + I(1/u2fc):hfrucEiche

Lastly, a negative binomial model, NBinom, was also considered. The predictor was
equal to the one in model Pois, but a negative binomial distribution was used instead of
the Poisson distribution.

4.3 Model Selection

In this section the fit of the different models to the data will be evaluated. The deviance
information criterion and the probability integral transforms as introduced in sections
2.3.1 and 2.3.2 will mainly be used to evaluate model fit. The DIC and PIT histogram for
each model can easily be obtained from inla by setting control.compute=list(dic=TRUE,
cpo=TRUE) in the function call. To obtain reliable results for theses measures of fit, it
is necessary to chose the Full Laplace Approximation and the GRID strategy with addi-
tional evaluation points. Figure 4.1 shows the PIT histograms for all models and Table
4.1 shows the corresponding DICs.
As lower a DIC value is preferable, at first glance, the negative binomial model seems to
be a very good fit. From the Poisson models, model Pois-interact seems to be the best
compromise between model fit and complexity. The pure GLM without spatial effects
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Figure 4.1: PIT histograms for all models. The U-shaped form indicates underdispersion.
The diagonal shape of the negative binomial model indicates that central tendencies are
biased.
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GLM Pois Pois-no-main Pois-no-interact Pois-interact NBinom
19269.40 9705.17 10364.58 9860.93 9643.58 5973.15

Table 4.1: DIC values of all models

seems to be the worst model, according to its DIC.
The PIT histograms reveal signs of underdispersion for all Poisson models, as indicated
by the U-shape. The negative binomial model shows a skewed shape, which according
to Czado et al. (2009) is a sign of central tendencies being biased.
Model NBinom has an excellent DIC but shows severe problems when we use PIT his-
tograms as a diagnostic tool. The Poisson models on the other hand have a higher DIC,
but show a less problematic behavior in the PIT histograms. We note that model Pois-
interact has the best DIC value of the Poisson models followed by model Pois. The
inclusion of many fructification interactions seems to give a better model fit.
In the following section we will consider the results obtained from the GLM and the
model including spatial effects, Pois. We choose model Pois to allow for easier compa-
rability between the GLM and the GAM but also because it has a very good DIC value
and its linear predictor can be interpreted very well.

4.4 Results of the GLM

The results of the GLM fit with glm and inla are nearly identical when we consider
estimates for the mean and for the 95% confidence and credibility intervals. This is not
very surprising since we used weakly informative priors in the Bayesian case and a large
150× 11 spatio-temporal data set for fitting. As such the posterior is dominated by the
likelihood. The inla output for the fixed effects is presented in Table 4.2.

mean sd 0.025quant 0.5quant 0.975quant mode
(Intercept) -10.937 0.084 -11.102 -10.937 -10.772 -10.937

AEiche 0.044 0.005 0.034 0.044 0.054 0.044
ABuche 0.055 0.004 0.047 0.055 0.062 0.055
ATanne 0.044 0.006 0.032 0.044 0.055 0.044
ARest -0.017 0.002 -0.021 -0.017 -0.013 -0.017

hfrucBuche 0.026 0.001 0.025 0.026 0.028 0.026
hfrucEiche 0.007 0.002 0.003 0.007 0.011 0.007

CAWaldstrauch 0.131 0.011 0.109 0.131 0.154 0.132
CAGrasland 0.334 0.012 0.311 0.334 0.356 0.334

CAWiesenweiden -0.009 0.002 -0.013 -0.009 -0.005 -0.009
u2fc -0.082 0.004 -0.091 -0.082 -0.074 -0.082

ABuche:hfrucBuche -0.000 0.000 -0.000 -0.000 -0.000 -0.000
AEiche:hfrucEiche -0.001 0.000 -0.002 -0.001 -0.001 -0.001

Table 4.2: Summary statistics of the posterior distributions of the GLM fixed effects.
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We can interpret these estimates in the standard fashion for Poisson regression. Take
beech fructification as an example. Here we are dealing with an interaction effect of
two continuous variables. Note that Table 4.2 only gives three digits. The full effect
of ABuche:hfrucBuche is −3.1 × 10−4. Since we are mainly interested in the effect of
fructification, we will exemplary interpret the unit increase of fructification with three
fixed values for the forest area, its mean (6.831) and mean±standard deviation (1.602
and 12.06). Taking the mean forest area, a unit increase of beech fructification in the
year t−1 in a county i increases the expected number of reported cases per population of
i, i.e. the incidence in county i, by a factor of exp(0.026+(−3.1×10−4)·6.831)=1.025 for
the following year t. Inserting mean-standard deviation and mean+standard deviation
for the forest area, we obtain factors of 1.026 and 1.023.
We get a 95% credibility interval for the increase of the expected incidence for a unit
increase of beech fructification very easily by centering the value for ABuche and re-
running the model. If we center ABuche at its mean and insert the mean forest value,
then we can neglect the term for ABuche:hfrucBuche as it is zero. The credibility interval
for hfrucBuche is then then credibility interval for the fixed effect plus the interaction
effect for a mean forest value. This gives us the credibility interval (1.024,1.025). The
credibility intervals of the beech fructification for forest area values of mean-standard
deviation and mean+standard deviation can be computed similarly and are given by
(1.025,1.027) and (1.022,1.024) respectively.
Clearly, the fructification of trees, especially beeches, has a strong effect even after having
adjusted for a multitude of other time-constant and time-varying factors. We also notice
that none of the 95% credibility intervals for the covariates cover 0.

4.5 Results of the GAM

We first consider the fixed effects of the spatio-temporal model, Pois. We have the
following summary statistics for their posterior distributions in Table 4.3.
In contrast to the GLM, it can be seen that the influence of the fructification of oaks and
beeches is similar if we account for spatial structure. That the effects of fructification
change is not surprising given their different spatial distributions in Figures 1.8 and 1.9.
We can interpret the effect of a unit increase in beech fructification as we did for the GLM.
Assuming the mean of the forest area, the expected incidence of the county increases by
a factor of 1.033 (95% credibility interval (1.032,1.034)) for a unit increase in beech
fructification. Inserting mean-standard deviation and mean+standard deviation for the
forest area gives us factors of 1.027 and 1.038 as well as credibility intervals (1.025,1.028)
and (1.037,1.04) respectively.
Estimates for the precisions of the unstructured and the spatially structured effects are
available in Table 4.4. As the unstructured effect is distributed as ui ∼ N(0, σ2), a very
high precision, and therefore a very small variance, means that the unstructured effect is
not important. On the other hand, the spatially structured effect, signifying the different
county effects, is very important. These effects are shown separately in Figure 4.2 and
added together in Figure 4.3. The last representation is preferable, since it is question-
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mean sd 0.025quant 0.5quant 0.975quant mode
(Intercept) -13.067 0.534 -14.116 -13.066 -12.019 -13.066

AEiche 0.005 0.040 -0.073 0.005 0.083 0.005
ABuche -0.014 0.026 -0.065 -0.014 0.037 -0.014
ATanne -0.001 0.058 -0.115 -0.001 0.112 -0.001
ARest 0.003 0.013 -0.023 0.003 0.028 0.003

hfrucBuche 0.024 0.001 0.023 0.024 0.026 0.024
hfrucEiche 0.021 0.002 0.016 0.021 0.026 0.021

CAWaldstrauch -0.078 0.117 -0.308 -0.077 0.152 -0.077
CAGrasland 0.215 0.121 -0.022 0.215 0.452 0.216

CAWiesenweiden -0.002 0.014 -0.030 -0.002 0.026 -0.002
u2fc 0.007 0.024 -0.041 0.007 0.054 0.007

ABuche:hfrucBuche 0.001 0.000 0.001 0.001 0.001 0.001
AEiche:hfrucEiche 0.004 0.001 0.002 0.004 0.005 0.004

Table 4.3: Summary statistics of the posterior distributions of the Pois model fixed
effects.

mean sd 0.025quant 0.5quant 0.975quant mode
Precision for AGS.iid 19107.9 18696.8 1260.1 13611.7 68371.7 3397.5

Precision for AGS.struc 0.2 0.0 0.1 0.2 0.3 0.2

Table 4.4: Summary statistics of the posterior distributions of the Pois model random
effects, i.e. the spatially structured and unstructured effects.

able whether the two effects can really be cleanly separated, see chapter 5 in Fahrmeir
and Kneib (2011).
Figure 4.2 still offers several insights. Firstly, we see that the unstructured error is of
the same size and always negligible for all endemic regions. This is in line with our
observation that the unstructured effect has a very high precision. It is also in line with
our observation through the PIT histogram that the model is underdispersed, i.e. we
have less variation in the data than the model suggests and therefore the extra variation
in the model possible through the unstructured effect is nearly non-existent.
Secondly, the left panel of Figure 4.2, which shows the spatially structured effects, illus-
trates the effect of the Gaussian Markov random field very well. Its effect is not contained
to the endemic regions but does of course affect the regions around them as well, as we
assume a spatially smooth distribution is underlying our observations 1.2. In Figure 4.3
we do, however, only consider the endemic regions. Lastly we notice again that we might
have some border effects as we only consider cases in Germany but several regions with
strong effects according to the GMRF lie on the border of Germany.
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Figure 4.2: Spatially structured and unstructured error separately.
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Figure 4.3: Spatially structured and unstructured error of model Pois added together.
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Chapter 5

Conclusion

For this thesis a spatio-temporal analysis was conducted for an extensive dataset con-
taining yearly hantavirus cases in Germany between 2002 and 2011 as well as a large
number of environmental variables. After an initial exploratory analysis of the data, we
performed our analysis using the state-of-the-art INLA inference method, see Rue et al.
(2009), instead of the very common MCMC methods to avoid long runtimes and diffi-
cult implementation. MCMC in spatial applications requires careful implementation to
avoid extremely long runtimes and convergence issues due to strong dependencies in the
data. The R package R-INLA provides a universal interface for many different kinds of
models which is fairly easy to use. Runtimes of around ten minutes for each model, even
though the computationally most expensive approximations were chosen, are excellent
and corroborate the claims of computational efficiency in Rue et al. (2009). Even the
fully saturated model could be fitted in under two hours using simplified Laplace approx-
imations (model omitted). We used the R-INLA package to model the reported number
of human hantavirus cases in Germany in the years 2002 to 2012 in a spatio-temporal
framework using generalized linear models and generalized additive models. The GAM
contains a Gaussian Markov random field to account for the spatial structure in the data.
This modeling of the spatial dependencies was found to be very important and lead to a
much better fitting model.
As part of this thesis the theoretically intricate INLA method and the necessary advanced
background material were explained. Important detailed steps in the proofs leading to
an increased didactical presentation of the material were given. The INLA method, as
the name suggests, relies on several (Laplace) approximations and numerical integra-
tions nested within each other. This method of direct approximations proved to be very
effective in practical use. Spatio-temporal models such as the ones we considered be-
come quite complex very quickly so that interpretation and residual checking become
extremely important. This issue was addressed by the use of probability integral trans-
forms to check model fit. Alternatively, one-step-ahead predictions could have been used.
An alternative to the use of the R-INLA package could have been the BayesX package,
see Belitz et al. (2009), which could have fit our models using MCMC.
Even though no model produced a perfect fit by our model validation criteria, important
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conclusions can still be drawn from the models. A variety of different data sources was
combined using geographic information systems like preprocessing in order to investigate
the relationship between the environmental variables and the reported case number. We
found strong evidence for our research hypothesis that the fructification of especially
beech but also oak trees in one year has a strong influence on the number of reported
cases in the following year. This hypothesis was motivated by the literature, see for
example Boone et al. (2012), and our explorative data analysis. A high fructification of
beeches and oaks leads to an abundance of food for bank voles and therefore to a greater
number of offspring as well as a higher chance of survival for the next winter. Bank voles
are the main carrier of hantavirus and their excretions are the main source of infection
for humans.
Furthermore, we produced a map, Figure 4.3, that gives a clear picture of the regions
with bank vole populations that carry hantavirus and therefore pose a risk to humans.
The expected increase of the incidence by a factor of 1.033 (95% credibility interval
(1.032,1.034)) is an important finding that can for example be used in forecasting case
numbers. These forecasts are done per county so that warnings after years of strong
fructification can be issued to specific regions, enabling these regions to prepare and take
measures for a coming year with high numbers of expected infections. These warnings
can be given to health professionals but can also be issued to the general population and
especially to people working on the countryside or in close proximity to forests.
Limitations of the analysis are that we only use German data, which can lead to errors
close to the borders, since our models with spatial effects take a county’s neighbors into
account. Counties that are close to a border are therefore modeled as if there were for
example no forests on the other side of the border. Further research could include an ex-
tended way of computing the fructification spline, e.g. including the forest area directly
as we now assume an even spread of forest across Germany when calculating the fructi-
fication spline. A more complex and possibly better model could include the modeling
of the fructification as a random walk to include the effects from several years, see for
example Schrödle et al. (2011). The interaction between the two continuous variables
forest area and fructification could be modeled using a smooth two-dimensional function.

Outlook

As more and more datasets with spatial information are being made publicly available
by governments, health institutes and other sources, the need to be able to analyze these
data increases as well. This requires skills in geographic information systems, computer
science and statistics. This thesis presents such an analysis, but its results need to be
interpreted carefully since it is an ecological regression. Results that were found on the
county level can therefore not easily be generalized to individuals in these counties. It
nonetheless provides important results on which further research can be based.
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