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Abstract

Value at Risk (VaR) is a tool commonly used to measure market
risk. However, it can only be precise as long as the return distribution
is accurately modelled. For portfolios consisting of many dependent
assets, standard models for the dependence structure are not pre-
cise enough. Dependence modelling based on regular vine copulas is
a flexible and useful alternative for high-dimensional portfolios. We
have applied a modelling approach based on regular vine copulas for
a six dimensional portfolio and tested how the model performed with
regards to predicting VaR over 16 years. A multivariate student t
copula was used for comparison. Firstly, we backtested the model
on simulated data in order to assess the performance under ideal cir-
cumstances. Secondly, we backtested the model on six-dimensional
financial return data. We considered two approaches: for the first
one we used a fixed dependence model and for the second backtest we
re-estimated the dependence model in each step. We found that the
method with fixed dependence structure performed adequately during
normal market conditions. However, when applied to financial return
data from the time period of the recent global financial crisis, it failed
to adjust and under-estimated the risk. Last but not least, we discov-
ered that the model with a moving window did not sufficiently well
adjust to extreme market conditions.
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1
Introduction

In risk management there are several approaches to quantify risk. The most modern and con-
sistent approaches are quantile based and therefore it is of interest to understand a portfolio
return distribution. Complications may arise when dealing with higher dimensions.

There are several methods that allow modeling joint distributions and a large fraction
of them are using linear correlation. However, linear correlation can be misleading and it is
important to know a dependence structure between the assets of interest. In this case copulas
can be a very useful concept, due to the fact that they reveal dependence structure on a
quantile scale and therefore are a useful tool when describing dependence between the assets.

However, if the portfolio consists of several assets (more than two), often standard para-
metric copula families are not flexible enough, as all pairs have dependency structure defined
by one multivariate copula, usually Gaussian, Student-t or Archimedean. Moreover, widely
used multivariate Gaussian copula does not take into account tail dependencies or asym-
metry. Likewise, Student-t copula also does not account for asymmetries, as well as has a
single degrees of freedom parameter. Although Archimedean copulas can take into account
asymmetry, they are criticized for only having one or two parameters for a possibly large
number of variables. As a result, in high dimensions standard parametric copula families can
contain too many limitations.

On the other hand, bivariate copulas have a wider variety of families to choose from.
For tail independent pairs there are Gaussian and Plackett copulas, while Student t can be
used for symmetric tail dependent pairs. Gumbel, Rotated Gumbel, BB7 and Symmetric
Joe-Clayton can account for asymmetric tail dependence.

Bedford & Cooke (2002) have proposed the regular vine copula method, which connects
graph theory together with pair copula constructions. It allows us benefit from the rich
choice of bivariate copula families, while adding flexibility to the model. We will estimate
joint distribution of a 6 dimensional portfolio using regular vine copula. Afterwards we can
predict Value at Risk measure and use a back-testing procedure in order to evaluate whether
our estimation was accurate.
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2
Risk

Risk is related to randomness and uncertainty. For example, insurance companies, home
owners or investors all (to a different degree) face uncertainty in the future value of their
products. We can analyze risk in the context of the risk type. The three biggest categories
of financial risks are market risk, credit risk and operational risk.

Market risk is especially well known in banking and it is a risk of changes in value of
a financial position, which is caused by the changes in value of underlying assets. Changes
in value of underlying assets may occur for several reasons, such as interest rate, currency,
equity price or commodity price fluctuations, additionally risks occurring due to investments
that cannot be traded fast enough in order to minimize/prevent losses (liquidity risk). Fur-
thermore, credit risk is the risk of not receiving promised payments, such as repayment
of loan or other obligations. Finally, operational risk is a risk occurring due to failure of
internal processes (people and systems), or the external ones, such as fraud, security, legal,
political situation etc. Operational risk differs from other categories of risk, because it is not
revenue driven.

It is of interest to measure and manage risk and have safety mechanisms in place for
possibly adverse future events. Risk management can be also used to optimize the return for
the given risk level. We can model risk using random variables that have some distribution
function and assign probabilities for certain outcomes (More about risk can be found in
McNeil et al. (2005)). We will be analyzing the distribution of a portfolio that consists of
several types of assets and assess the risk for some future time.

2



2. Risk

2.1 Risk Measures
We will continue talking about ways to quantify risk and analyze existing measures of risk.

Artzner et al. (1999) (p. 209-210) defined what is called a coherent risk measure, which
clarifies the concept of risk and provides properties that risk measure might have. Let G
denote a vector space of random variables representing portfolio values at a fixed future
time. Let X and Y be random variables denoting a set of future net worth of an investment.
A coherent risk measure is a function ρ : G→ R that satisfies the following properties:

• Translation invariance. For all X ∈ G and all real numbers α, reference instrument
total rate of return r, we have:

ρ(X + α · r) = ρ(X)− α

Translation invariance axiom means that adding the amount α to the initial position
and investing it in a reference instrument with return r decreases risk measure by α.

• Subadditivity. If X, Y ∈ G , then

ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

In other words, merger does not create risk. This property mathematically shows a
benefit of diversification.

• Positive homogeneity. For all λ ≥ 0 and all X ∈ G

ρ(λX) = λρ(X)

The risk scales together with size of a position.
• Monotonicity. For all X ∈ G and Y ∈ G, with X ≤ Y

ρ(Y ) ≤ ρ(X)

That means if the future net worth X is smaller than Y , then X is more risky.

We will now introduce the main categories of methods used to evaluate risk, as well
as briefly analyze them in terms of the properties of coherent risk measure and discuss the
advantages and disadvantages of each method (McNeil et al. (2005), p. 34-36).

Notional-amount approach. Risk of portfolio is defined by adding up the notional
values of the individual investments in the portfolio. This approach is very old and main
advantage is its simplicity, however, it has many flaws. Risk measure calculated this approach
would not reflect subadditivity property. Well diversified portfolio consisting of a collection of
companies could be interpreted as risky as investing the whole amount just to one company.

Factor-sensitivity measures. It measures the change in portfolio value for a given
change in one of the risk factors. This measure can be used to analyze the robustness of
portfolio for some predefined events. On the other hand, this method cannot be used to
evaluate the overall riskiness of a position.

Risk measures based on return distributions. This category of methods are most
modern. The main idea is analyzing return distribution of the portfolio over some predeter-
mined period of time and quantifying the risk in terms of return distribution quantiles. The
main disadvantage is that distribution is estimated according to historical data. Laws and

3



2. Risk

regulations are constantly changing, as a result the historical data should be used carefully
when predicting future. Moreover, there is a need for improved methods predicting large
portfolio distribution, as current methods can be crude (for example, some methods require
assumption of normality) and hence affect accuracy of quantile based risk measures. Alto-
gether, quantile based risk measures can be objectively used from evaluating the uncertainty
of a single asset to determining the overall position of financial institution.

Scenario-based risk measures. Here we consider a set of possible future scenarios.
Such scenarios are changes in risk factors, for example, 5% rise in interest rate, or 20% drop
in main stock market indexes. A risk of a portfolio is considered to be the maximum loss
out of all scenarios. It can be useful if a portfolio is affected only by a small number of risk
factors. However, it is difficult to determine the appropriate set of scenarios and to compare
risk of portfolios that have different risk factors.

Throughout this thesis we analyze a method to estimate a joint distribution of a six
dimensional portfolio. The success of this task can be determined by the accuracy of the
quantile based risk measure.

2.1.1 Value at Risk
Value at Risk is a quantile based method. Given normal market conditions, it is used to
estimate the amount of capital needed to account for possible losses for a given risk level.

It is common to analyze risk in terms of discounted loss L = −X
r
(where r is a reference

instrument total rate of return) and use loss distribution. However, we will follow an approach
more commonly practiced in academia by using the distribution of X, which in our case is
a distribution of change in portfolio value in a given day. Therefore when talking about risk
we are interested in the left tail of this distribution.

Figure 2.1: VaR0.05 illustration

Value at Risk at level α ∈ (0, 1) of a portfolio
with value X at time 1 is defined in a following way
(Hult et al. (2012), p. 165-166):

VaRα(X) = min{m : P(m · r +X < 0) ≤ α}

VaR can also be expressed as (1− α) quantile of
discounted loss L = −X

r
. Suppose FL is loss distribu-

tion function, then we can express VaR as:

VaRα(X) = F−1
L (1− α) = −F−1

X (α)

V aR0.05 is illustrated in Figure 2.1 for some hy-
pothetical portfolio that has N(1, 1.5) distribution for some future time and red vertical line
marks the 5% quantile of return distribution F−1

X (0.05) = −VaR0.05. We can observe that
VaR does not take into account the tail of the distribution below α level and therefore in
some cases can violate the sub-additivity property. That is why it is not a coherent risk
measure by definition. However, it is widely used, because it is easier to work with than for
example Expected Shortfall (defined below). There are several ways to calculate portfolio
VaR. We will use the Monte Carlo simulation for estimating value at risk due to the nature
of our model.

4



2. Risk

2.1.2 Expected Shortfall
Expected shortfall is linked to Value at Risk. It is deemed to be a superior risk measure
to VaR, because it takes into account the left tail beyond α level. ES does not violate
sub-additivity property and is a coherent risk measure.

Figure 2.2: ES0.05 Illustration

Expected Shortfall (ES) is defined in a following
way:

ESα(X) = 1
α

∫ α

0
VaRγ(x)dγ

If X has a continuous distribution function, then
for discounted loss L = −X

r
we can define ES in a

following way:

ESα(X) = E[L|L ≥ VaRα(X)]
In other words, ESα is an average of V aRγ values

where γ is in the interval [0, α]. Figure 2.2 illustrates
expected shortfall at level α = 0.05 for a hypotheti-
cal portfolio that has N(1, 1.5) return distribution at

some future time. Both for VaR and ES it important to be able to estimate the tail of
distribution precisely.

2.2 Portfolio Risk
In our case, we have a 6-dimensional portfolio, where we invested equally in each underlying
investment (weights w1 = w2 = · · · = 1) and we want to measure the risk for the next day.
The change in value of our investment in any given day can be expressed as X = ∑6

i=1 wiXi =∑6
i=1 Xi, where Xi is value change of the i-th underlying investment.

We can determine the marginal distributions of each underlying investment. However,
it is more difficult to know the portfolio distribution. We are interested in finding portfolio
distribution in order to measure the risk with the methods described above. This includes
finding a joint model for random vector of investments X = (X1, . . . , X6).

Further we will talk about what it means to measure dependence, what is dependence
structure and how it is important for joint distribution. Additionally, we will introduce r-vine
copula method that can be used to find high dimensional portfolio distribution.

5



3
Copulas and Dependence

Copulas can help to perceive and visualize the nuances of dependence which is useful when
describing the dependence of extreme events. In Figure 3.1 we can see that for the same
linear correlation parameter the dependence structure can look very different. Since copulas
reveal dependence on a quantile scale, it is especially useful in the context of quantile based
risk measures. In this chapter we will introduce important mathematical concepts related
to copula theory and explain how we can model joint portfolio distribution using bivariate
copulas.

Figure 3.1: Dependence structure

Throughout this thesis we will present definitions and theorems that are the basis for
regular vine copula theory. We will use some notation from Dißmann (2010) thesis, where the
author described in detail the theoretical background concerning regular vines and applied
the method to different data sets.

3.1 Copulas
Let X = (x1, . . . , xn) be a n-dimensional random variable. Let f(x1, . . . , xn) be its joint prob-
ability density function and F (x1, . . . , xn) be its joint cumulative distribution function. Fur-
ther, let F1(x1), . . . , Fn(xn) be the corresponding (strictly increasing, continuous) marginal
cumulative distribution functions of x1, . . . , xn and f1(x1), . . . , fn(xn) be the corresponding
probability distribution functions.

Definition 3.1.1. A n-dimensional Copula C is a joint cumulative distribution function on
[0, 1]n, C : [0, 1]n → [0, 1] with univariate uniform distributed marginals.

6



3. Copulas and Dependence

A very important result is Sklar’s theorem that states that joint distribution can be
written using marginal distributions and copula. We will use this result when constructing
pair copula constructions later in this thesis.

Theorem 3.1.1. (Sklar (1959)) Any joint cumulative distribution function F (x1, . . . , xn)
with marginal cumulative distribution functions F1(x1), . . . , Fn(xn) satisfies

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) (3.1)

where C is the copula of F (x1, . . . , xn).

If joint cumulative distribution function is absolutely continuous and marginal cumula-
tive distribution functions are strictly increasing and continuous then copula density can be
expressed as:

c(F1(x1), . . . , Fn(xn)) = ∂nC(F1(x1), . . . , Fn(xn))
∂F1(x1) . . . ∂Fn(xn)

3.1= ∂nF (x1, . . . , xn)
∂F1(x1) . . . ∂Fn(xn) = f(x1, . . . , xn)∏n

i=1 fi(xi)

As a result, we can express f(x1, . . . , xn) with the following equation:

f(x1, . . . , xn) =
n∏
i=1

fi(xi)c(F1(x1), . . . , Fn(xn)) (3.2)

3.2 Dependence Measures
In this section we will describe measures of dependence Pearson’s ρ, Spearman’s ρ and
Kendall’s τ . It is important to understand difference between these dependence measures
as we will later use them to express copula families. We will also introduce coefficients of
tail dependence. More details on dependence measures in risk management can be found in
Embrechts et al. (2002).

3.2.1 Pearson’s ρ
Definition 3.2.1. Pearson’s correlation coefficient ρ ∈ [−1, 1] is defined as

ρ = Cov(X, Y )√
V ar(X)V ar(Y )

Pearson’s ρ measures linear dependence between X and Y. Pearson’s correlation can
be interpreted as the slope of the regression line of X and Y . Pearson’s ρ between copula
variables U and V is:

ρ = 12
∫ ∫

uvdC(u, v)− 3

Criticism of Pearson’s ρ: the fact that it measures a linear dependence can be a drawback
in cases where dependence is non-linear and zero correlation in general does not imply inde-
pendence. Moreover, is it not invariant under non-linear strictly increasing transformations,
meaning that value of Pearson’s ρ depends on marginal distributions.

7



3. Copulas and Dependence

3.2.2 Spearman’s ρ
Definition 3.2.2. Spearman’s ρ ∈ [−1, 1] between X and Y is a rank correlation. It is
calculated similarly as Pearson’s ρ, but we use ranked variables F1(X) and F2(Y ). It is
expressed as:

ρ = 12
∫
x

∫
y
F1(x)F2(y)dF (x, y)− 3

Spearman’s ρ is invariant under strictly monotone transformations of X and Y . It is
considered to measure the degree of monotonic dependence, on the other hand Pearson’s ρ
only measures degree of linear dependence. Spearman’s ρ between two copula variables U
and V is:

ρ = 12
∫ ∫

uvdC(u, v)− 3

3.2.3 Kendall’s τ
Definition 3.2.3. Kendall’s τ (or coefficient of concordance), τ ∈ [−1, 1] is given by:

τ = P ((X1 −X2)(Y1 − Y2) > 0)− P ((X1 −X2)(Y1 − Y2) < 0)
where (X1, Y1) ∼ F and (X2, Y2) ∼ F are independent pairs of random variables. Kendall’s
τ is a rank correlation. It does not depend directly on the values and thus is invariant under
strictly monotone transformations (Gruber (2014)). Kendall’s τ between two copula variables
U and V is:

τ = 4
∫ ∫

C(u, v)dC(u, v)− 1

3.2.4 Tail Dependence
Definition 3.2.4. Let X = (X1, X2)T be a two dimensional random vector with marginal
distribution functions F1 and F2. The coefficient of upper tail dependence of X is defined
as:

λU = lim
ε→1

P (X1 > F−1
1 (ε)|X2 > F−1

2 (ε))

Definition 3.2.5. Let X = (X1, X2)T be a two dimensional random vector with marginal
distribution functions F1 and F2. The coefficient of lower tail dependence of X is defined
as:

λL = lim
ε→0

P (X1 ≤ F−1
1 (ε)|X2 ≤ F−1

2 (ε))

8



3. Copulas and Dependence

3.3 Elliptic Copulas
Regular vines are used together with two-dimensional copulas, that is why we use only
two dimensions to describe different copula families. However, it is common to model with
multivariate copulas. Elliptic copulas are a popular choice, but they have some restrictions.
First of all, elliptic copulas can only be used to model symmetric dependency structures.
Multivariate Gaussian is criticized, because it does not have tail dependence. Moreover,
Student t copula has a single degrees of freedom parameter for possibly a large dimension.

Table 3.1: Types of Bivariate Elliptic Copula

Name Formula Parameter Tail Dependence
Gaussian CN

ρ = ΦR
(
Φ−1(u1),Φ−1(u2)

)
ρ = sin(πτ/2) No tail dependence

Student-t Ctν,ρ = tν(t−1
ν (u1), t−1

ν (u2)) ρ = sin(πτ/2) 2tν+1(−
√

(ν+1)(1−ρ)
1+ρ )

where τ is Kendall’s τ , Φ−1 is the inverse cumulative distribution function of a standard
normal, ΦR is the joint cumulative distribution function of a bivariate normal distribu-
tion with mean vector zero and covariance matrix equal to the correlation matrix R, tν
is Student-t cumulative distribution function with ν degrees of freedom.

Figure 3.2 illustrates dependence structure differences for Gaussian and Student t copulas
with the same dependence parameter (linear correlation ρ).

Figure 3.2: Elliptic Copulas

For elliptical distributions (also elliptical copulas Gaussian or Student t) the natural
choice of dependence measure is a linear correlation. However, dependence properties that
can be applied to elliptical distributions cannot always be applied to non-elliptical cases. We
will further present such cases in the next section.

3.4 Archimedean Copulas
Archimedean bivariate copulas can be expressed in the following way (McNeil et al. (2005),
p.220):

C(u1, u2) = ψ−1(ψ(u1) + ψ(u2))

9



3. Copulas and Dependence

where ψ is a generator function ψ : [0, 1] → [0,∞]. Here we only consider such ψ that is
a strictly decreasing, continuous, convex function, satisfying ψ(1) = 0, ψ(0) = ∞ (provided
that the parameters are within the ranges specified in Table 3.2).

The condition ψ(0) =∞ means that ψ is a so called strict generator. The Archimedean
copulas can be defined in a broader sense, however, we do not need this level of complexity,
as we only use copulas where the generator is strict.

Table 3.2: Types of Bivariate Archimedean Copula

Name Generator ψθ(t) Kendall’s τ Parameters (λL, λU )
Clayton 1

θ (t−θ − 1) θ
θ+2 θ ≥ 0 (2−1/θ, 0)

Gumbel (− ln(t))θ 1− 1
θ θ ≥ 1 (0, 2− 2 1

θ )
Frank − ln( e

−θt−1
e−θ−1 ) 1− 4

θ + 4D1(θ)
θ θ ∈ R (0,0)

Joe − ln(1− (1− t)θ) 1 + 4
θ2

∫ 1
0 (t ln(t))(1− t)2(1−θ)θdt θ ≥ 1 (0, 2− 2 1

θ )

Archimedean copulas allow modelling asymmetric dependencies and in general a variety
of dependence structures. We are only using a bivariate Archimedean copulas and avoid
their main disadvantage which appears in higher dimensions (parameters can be restrictive,
because some correlation matrix entries are forced to be equal).

3.5 Pair Copula Constructions (PCC)
Modelling with standard multivariate copulas is not flexible. First of all, there is only a few
choices for high dimensional multivariate copulas. Most popular are Student-t and Gaussian
copulas, both of which can not be used to model asymmetric dependence structure that
can often appear in data. Moreover, Student t copula, for example, has a single degrees of
freedom parameter for possibly large number of variables. Archimedian copulas can handle
asymmetry, however, they are criticized for having only one or two parameters and that
becomes a big constraint especially in high dimension. That is why here we discuss pair
copula approach which allows us to model with bivariate copulas. It is advantageous, because
in bivariate case there is a wide selection of families to choose from.

Joint probability distribution function can be expressed with bivariate(or pair) copula
densities and marginal densities and this method is called Pair Copula Constructions (first
proposed by Joe (1996)). In order to derive PCC we are using two main results: conditional
probability and an equation 3.2 that was derived from Sklar’s Theorem.

PCC illustration in three dimensions

We will first illustrate Pair Copula Constructions in three dimensions to get the idea of this
approach before generalizing it for higher dimensions. Suppose we want to express joint
probability density function f(x1, x2, x3) using only marginal densities f1(x1), f2(x2), f3(x3)
and bivariate copulas. f(x1, x2, x3) can be divided for example into:

f(x1, x2, x3) = f2|13(x2|x1, x3)f1|3(x1|x3)f3(x3)
Using definition of conditional probability and equation 3.2, f1|3(x1|x3) can be written

as:

10



3. Copulas and Dependence

f1|3(x1|x3) = f1,3(x1, x3)
f3(x3)

3.2= f1(x1)f3(x3)c13(F1(x1), F3(x3))
f3(x3) = f1(x1)c13(F1(x1), F3(x3))

(3.3)
Similarly,

f2|13(x2|x1, x3) = f(x1, x2, x3)
f1,3(x1, x3) = f2,3|1(x2, x3|x1)f1(x1)

f3|1(x3|x1)f1(x1) = f2,3|1(x2, x3|x1)
f3|1(x3|x1)

3.2= f2|1(x2|x1)f3|1(x3|x1)c23|1(F2|1(x2|x1), F3|1(x3|x1);x1)
f3|1(x3|x1)

= f2|1(x2|x1)c23|1(F (x2|x1), F3|1(x3|x1);x1)
= f2(x2)c12(F1(x1), F2(x2))c23|1(F2|1(x2|x1), F3|1(x3|x1);x1)

Although copula c23|1(F2|1(x2|x1), F3|1(x3|x1);x1) depends on conditioning variable x1,
for practical purposes we can use instead simplified PCC, which was shown by Hobæk Haff
et al. (2010) to be a good approximation of PCC. For simplified PCC, we assume that pair
copulas are independent of conditioning variables. Therefore, in this example simplified PCC
would be:

f(x1, x2, x3) =f2|13(x2|x1, x3)f1|3(x1|x3)f(x3)
=f2(x2)c12(F1(x1), F2(x2))c23|1(F2|1(x2|x1), F3|1(x3|x1))
· f1(x1)c13(F1(x1), F3(x3))f3(x3)

=f1(x1)f2(x2)f3(x3) (marginals)
· c13(F1(x1), F3(x3))c12(F1(x1), F2(x2)) (unconditional pairs)
· c23|1(F2|1(x2|x1), F3|1(x3|x1)) (conditional pair)

This simplified PCC assumption is necessary for inference with PCC. This way we can
have a flexible model, where pair copulas (in our case c23|1, c13, c12) can be chosen separately.
As a result, it is possible to model a variety of dependence structures, which also can be done
in high dimensions applying the same strategy. Therefore, given any d dimensional density,
we can decompose it into pair copula densities and marginal densities. It can be written as
(Joe (1996)):

f(x1, . . . , xd) =
d−1∏
j=1

d−j∏
i=1

ci,(i+j)|(i+1),...,(i+j−1)

d∏
k=1

fk(xk) (3.4)

However, the decomposition is not unique. For example, we could expand f(x1, x2, x3)
to:

f(x1, x2, x3) =f1|23(x1|x2, x3)f2|3(x2|x3)f3(x3)
=f1(x1)f1(x2)f1(x3) (marginals)
· c12(F1(x1), F2(x2))c23(F1(x1), F3(x3)) (unconditional pairs)
· c13|2(F1|2(x1|x2), F3|2(x3|x2)) (conditional pair)

11



3. Copulas and Dependence

Introduced by Bedford & Cooke (2001), regular vines can be used to organize simplified
pair copula constructions. This method is called regular vine copula. In the next chapter we
will present theoretical background for regular vine copulas.
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Regular Vine Copulas

Regular vine copula is a simplified pair copula construction. In the previous chapter we saw
that PCCs do not have a unique solution. Regular vine copula is a method to construct one
solution of a simplified pair copula construction such that it would be as close as possible
to real multivariate distribution that we aim to model and also capture the dependency
structure between the variables in an efficient way.

4.1 Regular Vine
Regular vine is a concept known in graph theory and we will be using it to capture most
important dependencies between variables that we want to model. We will introduce some
theoretical background for regular vines, however, limiting graph theory to a level necessary
for this thesis.

Definition 4.1.1. Let N be nodes and E be edges. Tree is a graph T = (N,E) that is
connected and has no cycles.

Table 4.1: Example: Trees

Tree. Example 1 Tree. Example 2
1 2

3 4

5 6

1 2

3 4

5 6

Table 4.1 shows how the examples of trees. In other words, trees are connected acyclic
graphs.
Definition 4.1.2. A d-dimensional regular vine is a sequence of d − 1 linked trees with
nodes Ni and edges Ei. V = {T1, . . . , Td−1}

1. Tree T1 has nodes N1 = {1, . . . , d} and edges E1.
2. For i ≥ 2 tree Ti has nodes Ni = Ei−1.
3. For i = 2, . . . , d− 1 and {a, b} ∈ Ei it must hold that |a∩ b| = 1 (Proximity condition)

Proximity condition means that if there is an edge in tree Ti(where i ≥ 2) connecting
two nodes then those two nodes are edges in tree Ti−1 and they share a common node (note

13



4. Regular Vine Copulas

that nodes in one tree are edges in the next tree). A 6-dimensional regular vine example is
shown in Table 4.3.

4.2 Regular Vine Copula Specification
Regular vine copula can be fully described by vine structure matrix, the set of bivariate
copulas, copula parameters and marginal distribution functions. More formally:

Definition 4.2.1. (Bedford & Cooke (2002)) R-Vine copula specification can be defined
in the following way: (F, V,B) is an R-Vine copula specification if

1. F = (F1, . . . , Fn) is a vector of continuous invertible distribution functions
2. V is an R-Vine on n elements
3. B = {Be|i = 1, . . . , n− 1; e ∈ Ei} where Be is a bivariate copula and Ei is the edge set

of tree Ti of the R-Vine V.
Thus we have assigned a copula to every edge of the trees.

Structure selection will be described in section 4.2.1, a method how to select copulas -
in 4.2.2 and copula parameters in section 4.2.3.

4.2.1 Structure Selection
The number of all possible r-vines increases dramatically in high dimensions. For example, in
6 dimensions there are 23,040 different regular vines and in 9 dimensions already more than
380 billion (number found in Gruber (2014)). Therefore, to be able to work in higher dimen-
sions we rather trust heuristic methods used in Graph Theory to determine the structure of
r-vine.

The r-vine of our interest is the one that captures the dependency structure most ac-
curately. The main idea when finding r-vine is to prioritise strongest dependencies in the
first trees. We use this method, because copulas specified in first tree often have the greatest
influence and dependence tends to be the strongest in Tree 1 (Dißmann (2010), p. 50). For
the precision of the model, the strongest dependencies are typically the most important and
vice versa (copula distribution functions for parameters close to independence are very simi-
lar). This type of modelling has drawbacks, for example the solution is not necessarily global
optimum, because each tree is analysed separately. This stepwise tree-by tree inference is a
sequential method. However, it is a computationally fast and effective method comparing to
alternatives. More about alternative ways to model with regular vine copulas can be found in
Gruber (2014), where the author reviewed different regular vine copula application examples
and discussed the advantages and disadvantages of each.

We are using Kendall’s τ to measure the dependence and solving the following optimiza-
tion problem for each tree in order to find a so called maximum spanning tree (a tree
that maximizes cumulative pairwise dependencies, see example in Table 4.2).

max
∑

edges eij in spanning tree
|τ̂ij| (4.1)

where the weights of edges are the absolute values of pairwise Kendall’s τ τ̂ij. See illustrative
example in Table 4.2 of finding a maximum spanning tree and see further example of how to
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4. Regular Vine Copulas

find Regular Vine in Table 4.3

Table 4.2: Example: Finding Maximum Spanning tree

Graph Explanation
1 2

3 4

5 6

0.09

-0.12
-0.032

0.033 -0.003

Choose arbitrary node. Say we choose node 1. Con-
nect node 1 to one of the remaining nodes, based on
(absolute) maximum Kendall’s τ value. In this case,
it is node 3.

1 2

3 4

5 6

0.09

0.21
0.038

-0.036 -0.02

We are looking for an edge with an (absolute) max-
imum Kendall’s τ value connecting one of the re-
maining nodes (2,4,5,6) to either node 3 or 1 that
were chosen in previous step. It is an edge connect-
ing nodes 2 and 3. We can now remove edge between
1 and 2, as tree should not have closed loop accord-
ing to definition.

1 2

3 4

5 6

0.08

-0.06 -0.14

Similarly, we are looking for an edge with an (abso-
lute) maximum Kendall’s τ value connecting one of
the remaining nodes (4,5,6) to either 1, 2 or 3.

1 2

3 4

5 6

-0.12

0.57

As before, we are looking for an edge with an (ab-
solute) maximum Kendall’s τ value connecting 4 or
5 to one of the nodes 1, 2, 3 or 6.

1 2

3 4

5 6

-0.12 0.21

-0.14

-0.12
0.57

After connecting the last remaining node to a graph,
we have found a maximum spanning tree.

The maximum spanning tree that we found encodes all largest dependencies based on
kendall’s τ dependency measure. This tree will be the first tree in the regular vine and all
the remaining trees will depend on the structure of this first tree. Please see in Table 4.3
how to obtain further trees of the regular vine.
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Table 4.3: Example. Finding Regular Vine

Trees Explanation

1

1 3 2 6 4

5

1,3 2,3 2,6 4,6

5,6

This is Maximum Spanning Tree(see example 4.2).
To find the remaining trees of R-vine, we give every
edge a name based on neighbouring nodes. Names
of edges will be nodes in tree 2.

2

1,3 2,3 2,6 4,6

5,6

1,2|3 3,6|2 2,4|6

2,5|6

Edges are named depending on neighbouring nodes.
We connect nodes (1,3), (2,3), (2,6). The remaining
two nodes (5,6) and (4,6) should be connected to
graph depending on their corresponding Kendall’s τ
values with an equivalent method we used to find
maximum spanning tree (example is shown in table
4.2). The resulting tree is shown here.

3 1,2|3 3,6|2 2,5|6 2,4|6
1,6|2,3 3,5|2,6 4,5|2,6

We connect nodes (1,2|3), (3,6|2). The remaining
two nodes (2,5|6) and (2,4|6) should be connected
depending on Kendall’s τ values(see example 4.2).
The resulting tree is shown here.

4 1,6|2,3 3,5|2,6 4,5|2,6
1,5|2,3,6 3,4|2,5,6

Edges in tree 3 are nodes in tree 4. Nodes in Tree 4
are connected in the same sequence as they were in
tree 3.

5 1,5|2,3,6 3,4|2,5,6
1,4|2,3,5,6 In 6 dimensions there are 5 trees. This is a final tree.

From the structure of regular vine, we can obtain regular vine structure matrix. In
order to determine structure matrix, we start looking at tree 5. See Table 4.4 and further
explanation on how to obtain structure matrix.
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Table 4.4: Example: Finding R-Vine Structure Matrix

Trees Explanation

5 1,5|2,3,6 3,4|2,5,6
1, 4 |2,3,5,6

We are looking at edges at each tree in R-vine. We
start at looking at edge in the last tree (1,4|2,3,4,6).
We choose one of the conditioned variables 1 or 4. It
does not matter whether we choose 1 or 4, because
structure matrix is not unique. Suppose we choose
1. Then we look at further trees and identify edges
where one of the conditioned variables is 1 and mark
them. (All those edges are marked in the same dark
gray shade).

4 1,6|2,3 3,5|2,6 4,5|2,6
1, 5 |2,3,6 3, 4 |2,5,6

In previous step we already marked the edge
(1,5|2,3,6), since it has conditioned variable 1. In
this step we should look at the remaining edge
(3,4|2,5,6). We randomly choose one of the condi-
tioned variables 3 or 4. Suppose we choose 3. As
before, we note edges in the remaining trees that
has conditioned variable 3.

3 1,2|3 3,6|2 2,5|6 2,4|6
1, 6 |2,3 3, 5 |2,6 4, 5 |2,6

Similarly, we identify the remaining edge 4,5|2,6.
Suppose we choose 4 and mark edges in remaining
trees that has conditioned variable 4.

2

1,3 2,3 2,6 4,6

5,6

1, 2 |3 3, 6 |2 2,4 |6

2, 5 |6

Again, we identify the remaining edge 2,5|6. Suppose
we choose 2 and mark edges in remaining trees that
has conditioned variable 2.

1

1 3 2 6 4

5

1, 3 2,3 2, 6 4, 6

5, 6
The only edge not marked in the previous steps is
(5,6). Suppose we choose 5.

Furthermore, we will note edges in a structure matrix in the order of chosen conditioned
variables in Table 4.4. Columns will encode in order in which we chose conditioned variables
and rows will encode the Tree. For instance, Column 1 will encode the edges with conditioned
variable chosen in Tree 5; remember, we chose variable 1. We note 1 in a first diagonal entry.
The next step is to encode the edges that had conditioned variable 1, namely (1, 4|5, 6, 2, 3);
(1, 5|6, 2, 3); (1, 6|2, 3); (1, 2|3); (1, 3) in the order from Tree 5 to Tree 1. The matrices shown
below illustrates the procedure described. We will not use the matrix on the left hand side,
as it is just a visualisation of how we encode r-vine structure.
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

1
1, 4|5623 3
1, 5|623 3, 4|562 4
1, 6|23 3, 5|62 4, 5|26 2
1, 2|3 3, 6|2 4, 2|6 2, 5|6 5
1, 3 3, 2 4, 6 2, 6 5, 6 6


→



1
4 3
5 4 4
6 5 5 2
2 6 2 5 5
3 2 6 6 6 6


The matrix on the right hand side is a structure matrix that represents the regular

vine structure. Structure matrix is not unique. For instance, if in Table 4.4 in the first step
we would choose variable 4 instead of 1, the matrix would be different, however, it would still
encode the same regular vine structure.

4.2.2 Copula Selection
After we have determined the r-vine structure, we can fit pair copulas to all edges in r-vine
(edges represent conditional and unconditional variable pairs). In the matrix below we wrote
down all the edges that we had in the r - vine in the example from Table 4.3.

1
1, 4|5623 3
1, 5|623 3, 4|562 4
1, 6|23 3, 5|62 4, 5|26 2
1, 2|3 3, 6|2 4, 2|6 2, 5|6 5
1, 3 3, 2 4, 6 2, 6 5, 6 6


For edges in tree Tk ∈ V we can select bivariate copulas Bk. For instance, (in Table 4.3)

Tree 4 has two edges: {(1, 5|623) and (3, 4|562)}. For each of those edges we will fit bivariate
copulas c1,5|6,2,3(F1(x1|x6, x2, x3), F5(x5|x6, x2, x3)) and c3,4|5,6,2(F3(x3|x5, x6, x2), F4(x4|x5, x6, x2)).
For determining copula family we can use AIC (Akaike Information Criterion).
Definition 4.2.2. (Akaike (1973)) Let L be the maximum likelihood function value and k
be the number of parameters in the model. AIC is defined as:

AIC = −2 ln(L) + 2k

We choose model with minimum value of AIC. This model selection method rewards
goodness of fit of a model and penalises increasing the number of parameters. Another
possibility is to use Bayesian Information Criterion (BIC) instead of AIC. Both AIC and
BIC are using maximum likelihood, however, AIC depends on sample size and BIC does not.
There is also a question if likelihood based model selection methods appropriately take into
account tail dependence. The problem with maximum likelihood is that it mostly fits the
distribution in the "middle" and its tail has little impact. On the other hand, there seems
to be no better alternative than AIC (Brechmann (2010), Section 5.4) and it is deemed to
be more practical than BIC (Burnham & Anderson (2004)). Hence we used the following
approach:

18



4. Regular Vine Copulas

• Estimate parameters for each copula family using bivariate maximum likelihood esti-
mation.

• Compute AIC. AIC of a bivariate copula family c with parameter or parameters θ is
defined as (Schepsmeier et al. (2015)):

AIC = −2 ln(
N∏
i=1

c(ui,1, ui,2|θ)) + 2k

where (ui,1, ui,2) are observations, k = 1 for pair copulas with one parameter (e.g.
Gaussian, Clayton etc.) and k = 2 for pair copulas with two parameters (e.g. t, BB1,
etc.)

• Choose family with minimum AIC value

After choosing the best fitting copula families for the conditional and unconditional
variable pairs determined by the edges in r-vine, we can proceed estimating the parameters
of the copulas.

4.2.3 Parameter Estimation
Gruber (2014) reviews the literature for regular vine dependence modelling, where different
modelling choices are compared in terms of their accuracy and computational time. Bayesian
approach can be used to simultaneously select a structure and parameters of the regular vine
copula, instead of step-wise procedure. We do not choose Bayesian approach due to the long
computational time. Although Bayesian approach can be more accurate, stepwise model
selection and maximum likelihood estimation of the parameters is much faster. For a fully
Bayesian model selection it takes two hours to select a model(for 500 observations in 6
dimensions), while step-wise frequentist approach takes several seconds. Time consideration
is especially important for backtesting procedure in model validation stage, where model will
have to be re-tested several times.

Moreover, after we specified the regular vine, we can obtain copula density, which is a
product of all bivariate copulas selected for edges in r-vine. In our example, r-vine copula
density would be:

c(F1(x1) . . . Fn(xn)) =c1,3c3,2c4,6c2,6c5,6 (Tree 1)
c1,2|3c3,6|2c4,2|6c2,5|6 (Tree 2)
c1,6|23c3,5|62c4,5|26 (Tree 3)
c1,5|623c3,4|562 (Tree 4)
c1,4|5623 (Tree 5)

where we denote c1,3 as c1,3(F1(x1), F3(x3)), or c1,2|3 as c1,2|3(F1|3(x1|x3), F2|3(x2|x3)) etc. Gen-
erally, we can write:

Theorem 4.2.1. R-vine copula density is uniquely determined as:

c(F1(x1), . . . , Fd(xd)) =
d−1∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)(F (xj(e)|xD(e)), F (xk(e)|xD(e))) (4.2)
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4. Regular Vine Copulas

where e = j(e), k(e)|D(e) are edges in Ei; j(e), k(e) are conditioned nodes; D(e) is the
conditioning set; cj(e),k(e)|D(e) is bivariate copula density (Bedford & Cooke (2001), Brechmann
& Joe (2015))
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5
Marginal Time Series

Copulas are static models and we cannot model seasonality or similar trends solely through
their use. That is why data should be independent and identically distributed for modelling
with copulas. Log-returns have periods of higher variance and are time dependant. We have
to remove the seasonality, trends and dependencies from the return series. For that we can
use ARMA-GARCH model to obtain independent and identically distributed residuals and
proceed modelling those residuals with copulas.

5.1 ARMA(m,n)-GARCH(p,q) Model
We can describe the return series as a process:

rt = µt + εt

where rt is log return at time t, µt is expected value of conditional rt, εt is a white noise
series. Furthermore, µt can be treated as a constant, or modelled with ARMA model. ARMA
model contains two smaller models: Autoregressive AR(m) model is written on the left hand
side of the equation 5.1 and Moving Average MA(n) is on the right hand side of 5.1. With
ARMA(m,n) model rt has the following expression (Tsay (2010), p. 56):

rt −
m∑
i=1

airt−i = c+ εt −
n∑
i=1

biεt−i (5.1)

rt = c+
m∑
i=1

airt−i + εt −
n∑
i=1

bi (5.2)

where c is some constant, {a1, . . . , am} are AR(m) parameters, {b1, . . . , bn} are MA(n) pa-
rameters.

Robert Fry Engle developed ARCH model in 1982 (Engle (1982)). Tim Bollerslev pro-
posed an extension to ARCH model, which is called the generalized ARCH (GARCH) model
(Bollerslev (1986)). GARCH (p,q) is used for modelling volatility σt. It is expressed as (Tsay
(2010), p.114):

εt = σtzt where Zt ∼ D(0, 1) (5.3)

σ2
t = w +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiσ
2
t−i (5.4)
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where w, α1, . . . , αp, β1, . . . , βq are parameters of GARCH model, zt are i.i.d standardized
random variables and D(0, 1) is some distribution with zero mean and unit variance. That
distribution can be determined analysing quantile-quantile plots. The common choices in-
clude Standard Normal distribution, Skewed Normal, Student - t, Skewed Student t etc.
After extracting the residuals from ARMA-GARCH model, we can perform Box Ljung test
to assess whether the residuals are independent and identically distributed. If this is true,
then we can proceed modelling with r-vine copulas.

ARMA-GARCH model lags can be chosen according to AIC criterion (Brockwell & Davis
(1991)). We estimate AIC for all possible combinations of ARMA GARCH lags m,n, p, q ≤ 2
and select the best model.

5.2 Box Ljung Test
Box Ljung statistic Q can be calculated with the following formula (Ljung & Box (1978)):

Q = n (n+ 2)
h∑
i=1

ρ̂2
i

n− i

where n is sample size, ρ̂i is the sample autocorrelation at lag i and h is the number of lags
tested. Under the null hypothesis statistic Q is χ2

(h) distributed. We would reject null hy-
pothesis (that data is randomly distributed) at some chosen significance level α if Q > χ2

1−α,h,
where χ2

1−α,h is the α-quantile of the chi-squared distribution with h is degrees of freedom.
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6
Model Implementation

In this section we will show how to implement a model using real data.

6.1 Data Description
The presented theory will be tested with data consisting of commodities (Gold and Oil),
foreign exchange rates (United States Dollar to Euro), equity (Euro Stoxx 50 equity index)
and bonds (European Union Government and Corporate Bond Indexes).

Gold
Date available from: 1999-01-04.
Source: Datastream (2016)
Unit: Euros per Troy Ounce - official price.
Abbreviation: GOLD

Daily Prices are set in US dollars per fine troy ounce. Euro prices are indicative prices
for settlement only (The London Bullion Market Association (2016)).

Oil
Date available from: 1970-01-30
Source: Datastream (2016)
Unit: Price of Barrel Crude Oil in USD
Abbreviation: OIL

Foreign Exchange Rates
Date available from: 1957-12-31.
Source: Datastream (2016)
Unit: United States Dollar to Euro exchange rate
Abbreviation: USEUR
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6. Model Implementation

Equity
Date available from: 1997-06-30.
Source: Datastream (2016)
Unit: Price Index
Abbreviation: STOXX

EURO Stoxx 50 index was chosen to account for the equity price movements. The
index consists of 50 stocks from 12 countries in Eurozone. Since the index contains several
companies, the price movements are not specific to one sector, but to overall businesses in
Eurozone. It reflects the biggest and most liquid stocks.

Euro Corporate Bond Index, 5-7 years maturity
Date available from: 1999-07-02
Source: Datastream (2016)
Unit: Clean Price Index
Abbreviation: CORP

Euro Government Bond Index, 5-7 year maturity
Date available from: 1998-05-01
Source: Datastream (2016)
Unit: Clean Price Index
Abbreviation: GOV

Clean price is a more accurate measure of true index value. It does not depend on coupon
dates, while dirty price depends on it. Clean price can change due to changing interest rates
and/or bond issuer’s credit rating.

Furthermore, we analyse data from 1999-07-02 until the 2016-04-20, which is 4343 trading
days. We will estimate the model for the first 1000 days, which is a period from 1999-07-02
to 2003-05-20 and then backtest it on the remaining days.
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6. Model Implementation

6.2 Backtesting
.

Measuring the risk can be viewed as a statistical issue. We are using historical data
in order to estimate the the parameters of r-vine copula model and the performance of the
model will also depend on how close the estimated parameters are to their true values. We can
predict risk measure VaRα for different α values and use backtesting procedure to analyse if
the model predictions are accurate. If the forecast of VaRα is accurate, events where returns
are smaller than VaRα values should occur independently and proportion of such events
should be roughly equal to α. We will determine the portfolio dependence structure using
r-vine and assume that the structure does not change for the following day.

Backtesting Procedure

Figure 6.1: Distribution of log-returns

1. Convert time series to daily
log returns

rt,j = ln
(
St,j
St−1,j

)

where St is price of an asset
at day t in [1, 4343] and j =
{1, . . . , 6} determines each of the
six assets. We can see marginal
distributions in Figure 6.1. It
can be expected that bond in-
dexes are less volatile than the
remaining variables. Moreover,
we get a total of 4342 log re-
turns.

2. Fit univariate ARMA(p,q) GARCH(m,n) models separately for rt,1, . . . , rt,6, where
t ∈ [1, 1000]. Lags p, q,m, n can be determined using AIC criterion. Moreover, we use
appropriate standardized residuals distribution, which we can determine by investigating
quantile-quantile plots and estimate the optimal parameters of ARMA(m,n) GARCH(p,q)
model. The results can be seen in Table 6.2. Using the pre-determined parameters we convert
the remaining log returns with equations given below. For t in [1001, 4342] and j = {1, . . . , 6}
we apply the following:

rt,j = cj +
m∑
i=1

ai,jrt−i,j + εt,j −
n∑
i=1

bi,jεt−i,j

εt,j = σt,jzt,j where zj ∼ D(0, 1)

σ2
t,j = wj +

p∑
i=1

αi,jε
2
t−i,j +

q∑
i=1

βi,jσ
2
t−i,j

3. Convert standardized residuals zt,1, . . . , zt,6 to standard uniform variables ut,1, . . . , ut,6
with probability integral transformation. Using the fitted marginal cumulative distribution
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6. Model Implementation

functions F1, . . . , F6 that are described in Table 6.2, for t in [1, 4342] we apply the following
equation:

ut,j = Fj(zt,j)

Backtest with constant models

4. Fit an r-vine copula model for ut,1, . . . , ut,6 using model selection procedure described
for r-vines for t in [1:1000]. Using the regular vine structure determined, we want to predict
a distribution for days in the interval [1001,4342].

5. Simulate one sample usim1 , . . . ,usim6 using fitted r-vine copula model in the previous
step, where number of simulations sim = 105. This one sample is the same for all days in
[1001,4342] and in Step 6 and onwards is equivalent to usimt+1,1, . . . ,usimt+1,6. For multivariate
student t copula we simulate a similar sample.

Backtest with re-fitted models

4. Fit an r-vine copula model for u(t−500):t,1, . . . ,u(t−500):t,6 using model selection proce-
dure described for r-vines, where (t − 500) : t denotes a rolling window of 500 days. Using
the regular vine structure determined up to time t, we want to predict a distribution at time
(t+ 1) in [1001,4342].

5. Simulate sample usimt+1,1, . . . ,usimt+1,6 using fitted r-vine copula model in the previous
step, where number of simulations sim = 3000. Repeat steps 4 and 5 for all days in chosen
backtesting period (t + 1) in [1001,4342]. Similarly, we can fit multivariate t copula for
comparison with regular vine copula and simulate a similar sample.

6. Backtranfrorm uniform variables usimt+1,1, . . . ,usimt+1,6 to standardized residuals using the
inverse of cumulative distribution function.

zsimt+1,j = F−1
j (usimt+1,j)

7. Use ARMA GARCH model coefficients to forecast one day ahead for each asset.

σ2
t+1 = w + α1ε

2
t + β1σ

2
t

εεε∗t+1 = σt+1zsimt+1 where zzzsimt+1 ∼ D(0, 1) is calculated in Step 6
r∗t+1 = c+ εεε∗t+1 + a1rt − b1εt

8. For assets j = 1, . . . , 6 portfolio return at time t+ 1 is:

Xt+1 =
6∑
j=1

r∗t+1,j

Xt+1 is a vector. We have as many observations for Xt+1 as the number of simulations.
9. Compute VaRα(Xt+1)
10. Compare the values of VaRα(Xt+1) to returns rt+1 for each day (t+1) in [1001,4342].

To test whether VaR prediction is good we can use Kupiec’s Proportion of Failures Test and
Christoffersen’s Independence Test. Kupiec’s Proportion of failures test allows us to evaluate
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6. Model Implementation

whether number of returns that exceeded VaR is expected (Kupiec (1995)). If the proportion
of exceedances differs significantly from α× 100% then we can suspect that model might not
be accurate. Moreover, Christoffersen’s Independence Test evaluates if those exceedances
occurred independently from one another (Christoffersen (1998)). Proportion of failure and
independence tests can be joined together in order to examine the accuracy of VaR model.
We will test two null hypotheses: firstly that the exceedances are independent and secondly
that the exceedances are both independent and identically distributed.

6.3 R Commander Implementation
We have implemented the model in R commander. Here we describe the packages that we
used to obtain the results.

• ggplot2 is a package that provides tools to visualise data (Wickham (2009))
• VineCopula package contains algorithms related to regular vine copulas. We used

function RVineStructureSelect() that specifies family, parameter and structure matrices
of regular vine copula. Moreover, we used RVineSim() to simulate samples with wanted
regular vine specification (Schepsmeier (2015))

• rugarch this package implements ARMA-GARCH methods and finds the parameters,
we used functions ugarchspec() in order to specify the needed model and ugarchfit()
to find the model parameters and other details. Function ugarchfit() also estimates p-
values for those parameters, checks for convergence in distribution and provides useful
plots, such as quantile-quantile plots or autocorrelation functions. Moreover, we used
function VaRtest() that implements Kupiec and Christoffersen coverage tests (Ghalanos
(2015))

• GEVStableGarch gsSelect() function was used to find ARMA GARCH lags based
on AIC (Sousa et al. (2015))

• QRM This package contains Frank, Gumbel, Clayton, Normal and Student t copulas.
It implements the fitting of the copulas. In case of Student t copula, we can choose
to calculate dependence either with Kendall’s τ or Spearman’s ρ and the function
fit.tcopula() maximizes log likelihood for the degrees of freedom parameter. Further-
more, we simulated samples with fitted student t copula parameters using function
rcopula.t() (Bernhard & McNeil (2016))

6.4 ARMA GARCH Analysis of Time Series
We have fitted the ARMA GARCH model in order to obtain i.i.d time series. We will
demonstrate an example for one of the assets in our chosen portfolio how this was done. We
have chosen to analyse gold.

First of all, we had to identify the lags of ARMA(p,q) GARCH(m, n) model. This was
done by evaluating AIC for all combinations of lags up to order p, q,m, n ≤ 2. We found
that order p = 0, q = 1,m = 1, n = 1 had the AIC = −6.65 and this was the best model.
Moreover, we have fitted the ARMA(0,1) GARCH(1,1) model and obtained the following
parameters:
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Table 6.1: ARMA GARCH parameter estimates for gold

Estimate Std. Error t value Pr(>|t|)
a1 -0.085548 0.030997 -2.7599 0.005783
ω 0.000006 0.000001 7.2563 0.000000
α1 0.081146 0.009658 8.4020 0.000000
β1 0.859413 0.019408 44.28 0.000000
ν 4.159774 0.489894 8.4912 0.000000

The p-values in Table 6.1 are all significant (for significance level of 0.05), meaning that
with 95% confidence the parameters are non zero. Furthermore, we have tested standardized
residuals for serial correlation with Ljung-Box Test. For time lag of one day the test gave
p-value p = 0.516, which means that we cannot reject the null hypothesis (our null hypothesis
is that there is no serial correlation). Furthermore, we have tested different time lags and it
shows a similar result.

Figure 6.2: Gold auto-correlation function and fitted density plots

Serial correlation can also be observed with auto-correlation function. Auto-correlation
function tests whether there are patterns in data. In Figure 6.2 we can observe that autocor-
relation function twice exceeds the limits of significance, however, that can happen randomly
when testing many lags. Moreover, in Figure 6.2 we can also notice that student t distribution
seems to be a better fit than normal distribution.
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Figure 6.3: Standardized Residuals, 1000 days

Similarly, ARMA-GARCH model was fitted to oil, USD-Euro exchange rate, equity
index, corporate and government bonds. Standardized residuals for the first 1000 days that
are plotted in Figure 6.3. We can observe that there does not seem to be any volatility
clustering, or moving average. We tested if we obtained independent identically distributed
variables using Box Ljung test. The Box-Ljung test results, fitted distributions, quantile-
quantile plots and ACF functions for all analysed variables are summarized in Table 6.2

(a) Residual distribution (b) Standardized Residual distribution

Figure 6.4: ARMA-GARCH residual distribution

In Figure 6.4 we see distributions of the residuals for each instrument. Residual distri-
bution in some cases is identical to log return distribution of each asset. This is due to the
fact that for most assets we had ARMA(0,0) model (except for gold), therefore rt = εt.
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Table 6.2: ACFs, Q-Q plots and description of marginal time series

Description Quantile-Quantile plot ACF of standardized residuals

Gold ARMA(1,0)-GARCH(1,1)
Distribution: tν=4.16
Box Ljung p = 0.51

Oil ARMA(0,0)-GARCH(1,1)
Distribution: tν=5.4
Box Ljung p = 0.33

Useur ARMA(0,0)-GARCH(1,1)
Distribution: tν=7.8
Box Ljung p = 0.21

Stoxx ARMA(0,0)-GARCH(2,1)
Distribution: N(0, 1)
Box Ljung p = 0.81

Corp ARMA(0,0)-GARCH(1,1)
Distribution: tν=8.6
Box Ljung p = 0.89

Gov ARMA(0,0)-GARCH(1,1)
Distribution: tν=12.8
Box Ljung p = 0.36
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7
Results

7.1 Regular Vine Specification
We have fitted ARMA GARCH parameters for marginal time series and transformed obser-
vations to uniform variables as described in Section 6.2 for the first 1000 days. Moreover,
we have found regular vine structure and fitted the pair copulas as described in Chapter 4.
Regular copula specification is provided in the Table below 7.1.

Table 7.1: R-vine copula specification for 1000 days

Structure Family
1
5 4
2 5 3
6 2 5 2
4 6 2 5 5
3 3 6 6 6 6




0
0 1
0 0 0
2 2 0 2
34 2 2 0 2


Parameter 1 Parameter 2

−
− 0.12
− − −
−0.08 −0.25 − 0.46
−1.18 −0.34 0.36 − 0.92



−
− −
− − −

13.47 8.4 − 19.6
− 10.13 6.64 − 3.8


Where in family matrix the integers define the following pair copulas:
0 - Independence copula
1 - Gaussian Copula
2 - Student t copula
34 - rotated Gumbel copula (270 degrees). Rotations of 90 and 270 degrees
allow to model the negative dependence, thus the corresponding parameter
is negative (Brechmann & Czado (2013), p.8).

Equivalently, we fitted the multivariate student t copula based on the first 1000 days.
The estimated degrees of freedom ν = 1.67 and the correlation matrix ρ is shown below:

ρ =


−0.01
−0.26 −0.01
0.02 −0.03 −0.35
−0.07 −0.01 0.34 −0.26
−0.07 −0.03 0.36 −0.33 0.92



31



7. Results

7.2 Model Consistency
We have simulated a sample of size 4342 (same size as the real data) of uniform variables
u1, . . . ,u6 with a regular vine structure given in Table 7.1. Moreover, we transformed
u1, . . . ,u6 to log returns using the ARMA GARCH parameters that were estimated for
the first 1000 observations and we have kept the real data volatility. This way we have
obtained the data with constant regular vine structure, constant GARCH parameters and
constant standardized residual distribution. We applied the backtesting procedure in order
to investigate if the model was consistent.

Figure 7.1: Backtest: model consistency

We tested VaR with Kupiec and Christoffersen coverage tests in order to determine if
the simulated data exceeded VaR independently and in a right proportion. The results are
summarized below in Table 7.2.

Table 7.2: VaR test, model consistency

V aRα Expected exceedances Actual exceedances H0 "Correct Exceedances" H0 "Correct Exceedances & Indep"
V aR0.05 167 185 p = 0.16 p = 0.32
V aR0.03 100 106 p = 0.56 p = 0.58
V aR0.01 33 30 p = 0.55 NA

For α = {0.05, 0.03, 0.01} tests’ results show that we cannot reject the hypotheses that
exceedances are independent and that the proportion of exceedances is correct. Thus we can
confirm that the model is consistent.

7.3 Serial Correlation of Standardized Residuals
We have calculated standardized residuals using ARMA GARCH parameters that we ob-
tained from the first thousand days. After some time we can expect that parameters need to
be updated. Standardized residuals for the full data-set are shown in Figure 7.2.
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Figure 7.2: Box Ljung test result for standardized residuals

Table 7.3 summarizes Box Ljung test results that can help us to identify if there is any
serial correlations in the data. We are able to observe that care should be taken in regards to
the observations after approximately the 3000th. However, between the 1st and the 3000th
observation the data does not seem to contain serial correlations.

Box Ljung 0-1000 1000-2000 2000-3000 3000-4000 1-4000 1-3000
GOLD p = 0.51 p = 0.71 p = 0.06 p = 0.0004 p = 0.026 p = 0.38

OIL p = 0.33 p = 0.12 p = 0.47 p = 0.14 p = 0.56 p = 0.28
USEUR p = 0.21 p = 0.73 p = 0.14 p = 0.2 p = 0.42 p = 0.14
STOXX p = 0.81 p = 0.1 p = 0.14 p = 0.52 p = 0.07 p = 0.09
CORP p = 0.89 p = 0.64 p = 0.62 p = 0.19 p = 0.92 p = 0.59
GOLD p = 0.36 p = 0.49 p = 0.35 p = 0.02 p = 0.01 p = 0.13

Table 7.3: Independence of time series

7.4 Regular Vine Copula and Student t Copula Com-
parison

We analysed how densities of portfolio return distribution simulated with r-vine differ from
the ones simulated with student t copulas. We fitted copula models for the first 1000 obser-
vations and simulated two samples of size 105, one with regular vine copula and one with
student t copula. Then we back-transformed those samples to return distribution for one day
ahead using ARMA-GARCH parameters. The two densities are shown in Figure 7.3.
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(a) Densities of predictive portfolio 1-step
ahead

(b) Q-Q plot between empirical predictive
portfolio distributions

Figure 7.3: Densities simulated with r-vine and t-copula

We can observe in Figure 7.3 that density simulated with student t copula has fatter
tails and is steeper in the middle than the one simulated with r-vine.

7.4.1 Backtesting Fixed Models
Here we investigated the accuracy of VaR predictions when we do not update ARMA GARCH
parameters or copula models. We have estimated ARMA GARCH parameters, regular vine
copula parameters and multivariate student t copula parameters for the first thousand days
and kept them fixed. We can expect models to perform worse as time goes by. Due to the
fact that we kept the models constant, we could increase the number of simulations to 105

and get more precise estimates of VaR.

Figure 7.4: Backtest: fixed models, regular vine copula
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Table 7.4: VaR test, fixed models, regular vine copula

V aRα Expected exceedances Actual exceedances H0 "Correct Exceedances" H0 "Correct Exceedances & Indep"
From 2003-05-20 to 2016-04-19 (1001-4342 days)

V aR0.05 167 236 p = 2.4× 10−7 p = 4.5× 10−7

V aR0.03 100 148 p = 5.9× 10−6 p = 2.2× 10−5

V aR0.01 33 52 p = 0.002 p = 0.01
From 2003-05-20 to 2007-03-29 (1001-2000 days)

V aR0.05 50 49 p = 0.88 p = 0.91
V aR0.03 30 28 p = 0.71 p = 0.91
V aR0.01 10 10 p = 1 NA

From 2007-03-30 to 2011-02-10 (2001-3000 days)
V aR0.05 50 91 p = 8.5× 10−8 p = 5.8× 10−7

V aR0.03 30 55 p = 3.2× 10−5 p = 0.0002
V aR0.01 10 19 p = 0.01 p = 0.026

From 2011-02-11 to 2016-04-19 (3001-4342 days)
V aR0.05 67 96 p = 6.3× 10−4 p = 4.5× 10−4

V aR0.03 40 65 p = 2.6× 10−4 p = 7.7× 10−4

V aR0.01 13 23 p = 0.017 NA

Table 7.4 summarizes Kupiec and Christoffersen coverage tests results for VaR for chosen
periods of time. We can observe that Value-at-Risk predictions with r-vine were accurate
in the period from 2003-05-20 to 2007-03-02. However, during the period of global financial
crisis r-vine copula model did not perform sufficiently. Figure 7.4 illustrates the predictions
of VaR and exceedances for α = 0.01 level.

Figure 7.5: Backtest: fixed models, student t copula

Moreover, we used multivariate student t copula to simulate VaR predictions in the same
way as with r-vine model. The results are summarized in Table 7.5 and Figure 7.5.
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Table 7.5: VaR test, fixed models, student t copula

V aRα Expected exceedances Actual exceedances H0 "Correct Exceedances" H0 "Correct Exceedances & Indep"
From 2003-05-20 to 2016-04-19 (1001-4342 days)

V aR0.05 167 248 p = 1.8× 10−9 p = 1.7× 10−9

V aR0.03 100 138 p = 2.9× 10−4 p = 5.6× 10−4

V aR0.01 33 33 p = 0.94 NA
From 2003-05-20 to 2007-03-29 (1001-2000 days)

V aR0.05 50 53 p = 0.18 p = 0.68
V aR0.03 30 25 p = 0.9 p = 0.57
V aR0.01 10 8 p = 0.51 NA

From 2007-03-30 to 2011-02-10 (2001-3000 days)
V aR0.05 50 92 p = 4.3× 10−8 p = 3× 10−7

V aR0.03 30 51 p = 4× 10−4 p = 0.002
V aR0.01 10 11 p = 0.75 NA

From 2011-02-11 to 2016-04-19 (3001-4342 days)
V aR0.05 67 103 p = 2.8× 10−5 p = 7.3× 10−6

V aR0.03 40 62 p = 0.001 p = 0.002
V aR0.01 13 14 p = 0.87 NA

Furthermore, we analysed how VaR estimates differ for both models. We found that
models had very similar VaR estimates for α = {0.05, 0.03}, but for α = 0.01 multivariate
t copula estimated higher VaR than regular vine. Figure 7.6 illustrates VaR estimated with
student t and regular vine copula.

Figure 7.6: VaRα simulated with regular vine and student t copula models

7.4.2 Backtesting Re-fitted Models
We tested the model with standardized residuals shown in Section 7.3. We chose rolling
window of 500 days to fit the regular vine and student t copula models and simulated a sample
size of 3000 in order to calculate VaRα. Figure 7.7 illustrates VaR predictions simulated with
regular vine copula and Figure 7.8 - with student t copula.
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Figure 7.7: Backtest: rolling window for r-vine copula

Furthermore, we tested VaR with Kupiec and Christoffersen coverage tests and the
results are summarized in Tables 7.6 and 7.7 for regular vine and student t copula models
respectively.

Table 7.6: VaR test, regular vine copula with rolling window

V aRα Expected exceedances Actual exceedances H0 "Correct Exceedances" H0 "Correct Exceedances & Indep"
V aR0.05 167 136 p = 0.01 p = 0.038
V aR0.03 100 66 p = 0.0002 p = 0.0009
V aR0.01 33 16 p = 0.0007 NA

Figure 7.8: Backtest: rolling window for multivariate student t copula

We can observe that neither model seems to perform well. Although multivariate student
t copula VaR predictions at α = 0.05 level (Table 7.7) seems to be right, for α = {0.01, 0.03}
levels the model does not produce correct VaR values.
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Table 7.7: VaR test, student t copula with rolling window

V aRα Expected exceedances Actual exceedances H0 "Correct Exceedances" H0 "Correct Exceedances & Indep"
V aR0.05 167 152 p = 0.22 p = 0.35
V aR0.03 100 70 p = 0.001 p = 0.005
V aR0.01 33 11 p = 6× 10−6 NA

For backtesting copula models we needed to refit data many times. In the backtesting
procedure where we refitted the copula models, due to computational time we restricted
number of simulations. We chose to simulate samples of size 3000. When we measure
value at risk, we are looking at the tail of the distribution, where observations are sparsely
distributed, therefore there exists an error for the value at risk estimator V̂aR3000

α .

Figure 7.9: Density of VaR estimator based on different levels of α and different copula
families for simulation size 3000

We have estimated V̂aR3000
α for one day 2000 times, both with regular vine and with

multivariate student t copula for different α levels. The distribution of resulting V̂aR3000
α

densities are shown in Figure 7.9. We can observe that the smaller the α - the larger the
error.
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Discussion and Conclusion

We have applied regular vine copula model and analyzed how accurately it can predict VaRα

for α = {0.01, 0.03, 0.05}. First of all, we have tested whether the model is consistent by
backtesting it on a simulated data that had constant ARMA GARCH model and dependency
structure simulated with regular vine. We have found that the model was consistent and
accurate in predicting VaRα values based on Kupiec and Christoffersen coverage tests results
(Table 7.2).

Moreover, we have backtested the model with real data using regular vine and multivari-
ate student t copulas. First backtest was done with the fixed copula models (Section 7.4.1)
and the second one with a rolling window of 500 days for the copula models (Section 7.4.2).

For the fixed models we found that copula models failed to predict VaRα for α =
{0.03, 0.05}. On the other hand, multivariate Student t copula captured the right proportion
of exceedances for α = 0.01 while the regular vine did not. It could be due to a heavier tail
in case of student t copula, which was compared to regular vine copula in Figure 7.3. We
can however expect that dependency structure changed during global financial crisis of 2008
and in Figure A.1 we can observe that in fact correlation diverged from the level estimated
in the period between the 1st and the 1000th day for some variables. We have divided the
analysis into three parts, pre-crisis, during and after. We could see that models performed
well under normal market conditions, but failed to re-adjust during and after the global fi-
nancial crisis. After the crisis we could see in Table 7.3 that standardized residuals were not
independent, therefore the results could have been distorted due to changed ARMA GARCH
parameters rather than the copula models: we found that we should reject the hypothesis of
independence for two out of six instruments after 3000th observation (2011-02-11).

Furthermore, we discovered that the backtest for copula models with rolling window did
not adjust to global financial crisis, similarly as the fixed models. However, the results may
have been affected by the limitations of our study that are illustrated in Figure 7.9. We could
observe that V̂aR3000

α estimator was not exact and varied.
In order to improve the result, we could extend the copula models by adding time

variation for dependence parameters, similarly as was done by Patton (2006). That could
allow for dependency models to quickly adjust to changing market conditions.

39



Bibliography

Akaike, H. (1973), ‘Information theory and an extension of the maximum likelihood principle’,
2nd International Symposium on Information Theory pp. 267–281.

Artzner, P., Delbaen, F., EBER Société Générale, J.-m. & David Heath, P. (1999), ‘Coherent
Measures of Risk’, Mathematical Finance 9(3), 203–228.

Bedford, T. & Cooke, R. M. (2001), ‘Probability density decomposition for conditionally
dependent random variables modeled by vines’, Annals of Mathematics and Artificial In-
telligence 32(1-4), 245–268.

Bedford, T. & Cooke, R. M. (2002), ‘Vines - A new graphical model for dependent random
variables’, Annals of Statistics 30(4), 1031–1068.

Bernhard, P. & McNeil, A. (2016), ‘QRM: Provides R-Language Code to Examine Quanti-
tative Risk Management Concepts.’.

Bollerslev, T. (1986), ‘Generalized autoregressive conditional heteroskedasticity’, Journal of
Econometrics 31(3), 307–327.

Brechmann, E. C. (2010), ‘Truncated and simplified regular vines and their applications’,
p. 227.

Brechmann, E. C. & Czado, C. (2013), ‘Risk management with high-dimensional vine copulas:
An analysis of the Euro Stoxx 50’, Statistics and Risk Modeling 30, 307–342.
URL: http://mediatum.ub.tum.de/doc/1079276/1079276.pdf.

Brechmann, E. C. & Joe, H. (2015), ‘Truncation of vine copulas using fit indices’, Journal of
Multivariate Analysis 138, 19–33.
URL: http://linkinghub.elsevier.com/retrieve/pii/S0047259X15000470

Brockwell, P. J. & Davis, R. A. (1991), Time Series: Theory and Methods, Springer Series
in Statistics, Springer New York, New York, NY.
URL: http://link.springer.com/10.1007/978-1-4419-0320-4

Burnham, K. P. & Anderson, D. R. (2004), ‘Multimodel Inference Understanding AIC and
BIC in Model Selection’, Sociological methods and Research 33(2), 261–304.

Christoffersen, B. P. F. (1998), ‘Evaluating interval forecasts’, International Economic Review
39, 841–862.

Datastream (2016), ‘Thomson Reuters Datastream’.
URL: Subscription Service

40



Bibliography

Dißmann, J. F. (2010), Statistical Inference for Regular Vines and Application, PhD thesis,
Technische Universitat Munchen.

Embrechts, P., McNeil, A. & Straumann, D. (2002), ‘Correlation and Dependency in Risk
Management: Properties and Pitfalls’.

Engle, R. F. (1982), ‘Autoregressive Conditional Heteroscedasticity with Estimates of the
Variance of United Kingdom Inflation’.
URL: http://www.jstor.org/stable/1912773

Ghalanos, A. (2015), ‘rugarch: Univariate GARCH models.’, R package version .
URL: https://cran.r-project.org/web/packages/rugarch/

Gruber, L. F. (2014), ‘Review of Dependence Modeling with Regular Vine Copulas and
Current Methods for Inference and Model Selection’, pp. 1–17.

Hobæk Haff, I., Aas, K. & Frigessi, A. (2010), ‘On the simplified pair-copula construction
-Simply useful or too simplistic?’, Journal of Multivariate Analysis 101(5), 1296–1310.
URL: http://www.sciencedirect.com/science/article/pii/S0047259X09002206

Hult, H., Lindskog, F., Hammarlid, O. & Rehn, C. J. (2012), Risk and Portfolio Analysis.
URL: http://link.springer.com/10.1007/978-1-4614-4103-8

Joe, H. (1996), ‘Families of m-variate distributions with given margins and m(m-1)/2 bivari-
ate dependence parameters’, Lecture Notes–Monograph Series 28.
URL: http://projecteuclid.org/euclid.lnms/1215452614

Kupiec, P. H. (1995), ‘Techniques for Verifying the Accuracy of Risk Measurement Models’,
The Journal of Derivatives 3(2), 73–84.

Ljung, G. M. & Box, G. E. P. (1978), ‘On a measure of lack of fit in time series models’,
65(2), 297–303.

McNeil, A., Frey, R. & Embrechts, P. (2005), Quantitative Risk Management: Concepts,
Techniques, and Tools.

Patton, A. J. (2006), ‘Modelling Asymmetric Exchange Rate Dependence’, International
Economic Review 47(2), 527–556.
URL: http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=20426692&site=ehost-
live

Schepsmeier, U. (2015), ‘Efficient information based goodness-of-fit tests for vine copula
models with fixed margins: A comprehensive review’, Journal of Multivariate Analysis
1, 34–52.
URL: http://www.sciencedirect.com/science/article/pii/S0047259X15000068

Schepsmeier, U., Stoeber, J., Brechmann, E. C., Graeler, B., Na, T., Erhardt, T. & Nagler,
M. T. (2015), ‘Statistical Inference of Vine Copulas’.

Sklar, A. (1959), ‘Fonctions de répartition à n dimensions et leurs marges’, Publications de
l’Institut de Statistique de L’Université de Paris. 8, 229–231.

Sousa, T., Otiniano, C. & Lopes, S. (2015), ‘GEVStableGarch’.
URL: Available on CRAN

41



Bibliography

The London Bullion Market Association (2016), ‘Pricing and Statistics’.
URL: http://www.lbma.org.uk/pricing-and-statistics

Tsay, R. S. (2010), Analysis of Financial Time Series.

Wickham, H. (2009), ‘Elegant Graphics for Data Analysis’, Media 35(July), 211.
URL: http://had.co.nz/ggplot2/book

42



A
Appendix 1

A.1 Time Variation of Dependence Parameter
For the dependence parameter (such as Kendall’s τ), we can either assume that it is constant
over time, or model it with some type of Moving Average model. Patton (2006) found that
dependence parameter varies significantly in bivariate copula model, and follows a process
similar to ARMA. Therefore assumption of constant dependence is strong.

In case of R vines, the challenge is that if the dependence parameter varies then also
r-vine structure varies over time.

We have used the following equations found in Patton (2006) to model time varying
correlation parameter ρ in order to understand how dependency varied for unconditional
pairs of assets that had student t copula dependency structure:

ρt = Λ1(ω + α
1
q

q∑
i=1

Φ−1(ut−i)Φ−1(vt−i) + βρt−1)

Λ1(x) = tanh(x) = 1− e−x
1 + e−x

τt = 2
π

arcsin(ρt)

Where Φ−1 is an inverse CDF of student t distribution with corresponding degrees of
freedom, τt is Kendall’s τ at time t, ω, α, β are some constants to be determined by opti-
mization similarly as in ARMA-GARCH model, Λ1 is a modified logistic transformation that
keeps ρt in (-1,1), u, v are standard uniform variables.

The Figure A.1 below shows correlation variation, where red line represents correlation
value between given assets from the 1st to the 1000th day. We can observe that dependence
between assets varies and therefore depending on a period of time chosen the regular vine
structure would change as well.
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Figure A.1: Time variation of linear correlation parameter ρt
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