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Abstract

In this thesis we analyse over thirty years of continuous observations of
21 constituents in the aerosol and two gases of the lower Arctic troposphere
at Alert, Canada on northern Ellesmere Island. Aerosols are defined as
minute solid and/or liquid particles suspended in air. The analysis is an
extension and expansion of the analysis in the report ”Arctic lower tro-

pospheric aerosol trends and composition at Alert, Canada: 1980-1995”
(Sirois and Barrie, 1999). The analysis is made in two parts, the first
part is a time series analysis of the observed atmospheric concentrations
between 1980 and 2013. The second is a multivariate analysis called Pos-
itive Matrix Factorization (PMF) to reduce the dimensionality of data by
factorizing constituents/gases into sources. Relevant background infor-
mation and theory are explained including a detailed description of PMF.
The PMF analysis is made using the licensed program PMF2 while all
other model and data handling is done using R. For the time series analy-
sis, the complete data set as well as a subset of data for the winter (peak)
season were analysed separately. Long term and seasonal trends have been
described using cubic smoothing splines. Since Alert is situated above the
polar circle, during a large part of the year it is in complete darkness
until the polar sunrise occurs: this affects the compositions of the aerosol.
Therefore, a new approach for the PMF analysis was made in contrast
to Sirois and Barrie (1999). Two different factorizations are made: one
for the dark part of the pollution period and one for the light part of
the pollution period. The two factorizations are made for 19 aerosol con-
stituents and the gases: ozone and gas phase mercury, with data between
1995 and 2007. Some of the key results are: (i) a drastic drop of aerosol
sulphate, acidity, ammonium and metals related to oil combustion in the
mid 1990’s, most likely due to the collapse of the economy of the former
Soviet Union, and (ii) the spring time correlation shown between O3 , Hg
and Br related to photochemistry involving sea salt in snow after polar
sunrise.
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Chapter 1

Introduction

In this analysis we focus on measured concentrations of aerosols and the two gases Ozone and
Mercury, observed in the Arctic part of Canada. Aerosols are very small solid or liquid particles
dispersed in air. The science of airborne pollution is a relatively new research field and it was not
until the mid seventies that observations of aerosols were first made for a complete year in the
Alaskan Arctic. The information gained from monitoring the aerosols was of interest and since
1980 aerosols have been measured at the high Arctic station Alert, Canada. The special weather
conditions are well suited to monitor aerosols. Since Alert is above the polar circle the sun never
rises during the winter months and this makes for very stable weather conditions. Thus, during
the dark part of the year the residence times of aerosols are very long.

This thesis is a part of an article which will be published in collaboration with Leonard Barrie
and Sangeeta Sharma. In the thesis we will look closer at the statistical part of the analysis while
the article will be more concentrated on the interpretation and the chemical analysis made. The
analysis is a continuation of L.A. Barrie’s earlier research and primarily the article ”Arctic lower
tropospheric aerosol trends and composition at Alert, Canada: 1980-1995” (Sirois and Barrie,
1999). I strongly recommend to give this article a quick read before continuing with this thesis,
since it is heavily referenced.

As in the previous article, the statistical analysis in this thesis is an analysis in two parts, a
time series analysis followed by Positive Matrix Factorization (PMF), a non-negative dimension
reduction technique. There is high interest in how concentrations of aerosol constituents have
changed since 1980 and looking at the seasonality of the constituents, which the time series
analysis provides.

The second part of the analysis is done in order to lower the dimension of data and looking
at sources of the constituent concentrations. In this context, a constituent is either a chemical
element or compound which is factored into sources such as Sea-salt, Soil and Smelter. Although
the general goal of the two different analysis techniques are the same as in the report from 1999,
there are some changes in how we conduct them. In our analysis we use smoothing splines to
explain the long term trend and seasonality, in the last report this was done with polynomial,
sine and/or cosine curves. For the PMF analysis we have divided the data into two data sets
with one factorization made during the light period and one during the dark.
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1.1 Data

Weekly samples of atmospheric aerosols have been collected at the high Arctic station Alert,
Canada, from 1980 until present day. A filter is placed each week on a plateau 210 m above
sea level and 6 km from the main base. The filters are removed and then cut into eight pieces
and analysed in different ways. Concentrations of aerosols are analysed and then divided by the
amount of air that has gone through the filter while in place, resulting in measuring the weekly
concentrations in units of nanograms per cubic meter. Thus the concentration is a mean over the
specific week. In order to measure constituents the filter has to be in place for a week, otherwise
too many chemical constituents will not be detectable above the filter background especially in
the cleaner summer season. Three different methods have been used to analyse the constituent
loadings in the filter; Liquid Ion Chromatography(IC), Instrumental Neuron Activation Analysis
(INAA) and Inductively Coupled Plasma emission or mass spectroscopy (ICP).

Every fourth week a blank filter is handled exactly as the rest of the filters but after it has
been put in place it is immediately removed. The field blanks together with the analytical
detection limit are used in order to determine the Operational Detection Limit (ODL) for the
mass concentrations in air. Thus, the filed blanks include a measurement of contributions to
blanks from handling and analysis as well as that from the original filter content.

The lifetime of aerosols varies greatly throughout the year which clearly can be seen in the filter
loadings. The aerosol residence time in the lower atmosphere of the Arctic lies about 3 to 7
weeks during October to May, while during the warmer half of the year it is somewhere around
3 to 7 days. This together with seasonality in the north to south transport means there is strong
seasonality in Arctic aerosol components.

In the previous report (Sirois and Barrie, 1999) 18 constituents were analysed. For our analysis
five more constituents were available: the gases Ozone (O3) and Gaseous Elemental Mercury
(GEM) along with the aerosols Equivalent Black Carbon (EBC), Nickel (Ni) and Iron (Fe).
In Table 1.1 all constituents are listed with percentage of missing data, percentage of Below
Detection Limit (BDL), time range of observation as well as maximum and minimum. The IC
analysis is made throughout the time period while INAA stopped in January 2007 and ICP
analysis in June 2006.

Contrary to the weekly filters the concentrations for O3, EBC and GEM are instrumentally
collected. These were not reported as weekly mean concentrations but rather hourly means for
O3 and EBC and six hourly means for GEM. The black carbon is measured by drawing air
through a instrument with a filter attached which in turn is illuminated. The amount of light
that goes trough the filter is then calculated as a function of time. This instrument also uses a
blank filter as reference point. The GEM is collected in three basic steps i) pre-concentration of
GEM onto a trap; ii) removal of the Hg from the trap by thermal desorption and iii) detection and
quantification of the Hg. The details of the method can be found in Steffen et al. (2008) among
others. In order to analyse the data set as a whole, the mean of these concentrations have been
taken to match the time points for the weekly measurements of the aerosols. The information
of the data set in Table 1.1 shows the averaged data, more information of the original data sets
can be seen in section 1.1.2.
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Constituent Observation Period % NA Min Max Operational Detection % BDL Analytic method

Limit ng m−3

First Last Min Max

SO−2
4 (Sulfate) July 1980 Oct. 2013 0 10.68 3495.27 1.42 27.26 0.36 IC

H+ July 1980 Oct. 2013 3.38 0.02 48.39 0.01 0.6 39.79 IC

Br− July 1980 Oct. 2013 1.19 0.01 88.44 0.11 1.24 11.88 INAA (IC2)

NH+
4 (Ammonium) July 1980 Oct. 2013 0 4.57 465.81 6.51 68.56 9.86 IC

NO−
3 (Nitrate) July 1980 Oct. 2013 0.18 4.73 294.86 1.99 17.37 0.59 IC

Na+ July 1980 Oct. 2013 0.06 1.01 1807.9 1.85 9.06 4.93 IC

Cl− July 1980 Oct. 2013 0.06 1.23 3406.21 2.83 20.46 14.25 IC

K+ July 1980 Oct. 2013 1.8 0.08 137.92 0.2 8.22 9.5 IC

Pb July 1980 May 2006 0.77 0.01 9.34 0.01 1.23 18.17 ICP

V July 1980 Dec. 2006 1.96 0.01 3.01 0.01 0.15 2.49 INAA

Mg July 1980 May 1997 0.6 0.6 662.51 0.9 7.38 1.25 ICP

Zn July 1980 May 2006 1.85 0.05 59.53 0.07 4.7 7.72 ICP

Cu July 1980 Dec. 2006 1.2 0.02 71.86 0.03 0.67 8.73 ICP (INAA2)

Ca2+ July 1980 Dec. 2006 0.6 0.44 2603.53 0.65 44.58 1.43 ICP (INAA2)

Mn July 1980 Dec. 2006 0.3 0.01 35.88 0.01 0.31 1.96 INAA (ICP2)

I July 1980 Dec. 2006 7.15 0.01 4.46 0.02 0.29 6.59 INAA

Al July 1980 Dec. 2006 0.53 0.38 2219.22 0.57 39.85 1.43 INAA

MSA (Methanesulfonic acid) July 1980 Oct. 2013 3.92 0.01 55.43 0.05 2.49 2.97 IC

Ni July 1980 May 2006 1.69 0.01 0.55 0.01 0.55 35.13 ICP

Fe July 1980 May 2006 0.77 1.3 1106.02 0.64 14.08 ICP

O3
1 Dec. 1991 Dec. 2006 6.83 1.27 48 Instrumental

EBC1 May 1989 Dec. 2012 5.95 3.75 343.52 5 5 Instrumental

GEM1 Jan 1995 Oct. 2013 12.8 0.19 2.45 Instrumental

1 Modified data, see section 1.1.2
2 Method used to impute missing values, see section 1.1.3

Table 1.1

1.1.1 Missing data and BDL

Almost all constituents have missing values during the observed period of time but for most
constituents the total percentage is very low, as seen in Table 1.1. Some of the constituents
have been analysed by more than one method and for these concentrations there has been a
possibility to use data from an alternative method in order to eliminate missing values. As the
missing values of the different techniques often are in different weeks this is achievable. The
constituents for which this was possible were Ca, Cu, Br and Mn. For the first three there was
a small but significant difference between the INAA and the ICP analysis, with the consultation
of Leonard Barrie the choice was made to fill gaps in ICP Cu and Ca with values from INAA
Cu and Ca and the other way around for Mn. The IC analysis improved greatly after 1986,
therefore the concentrations from the INAA Br analysis was used overall and was imputed with
values from IC Br.

For some constituents, the below detection limit varies depending on improvement of chemical
analysis technique, clean filter composition and/or handling. The observations are calculated
from nanograms of constituent found in the filter divided by the air volume that has gone
through the filter between time of placement to extraction of filter. If only a small amount of air
has gone through the filter and the amount of a constituent measured is small, the concentration
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cannot be measured.

The BDL values have been treated as in Barrie and Sirois, 1999, by taking two thirds of the
BDL for that period of time, considering the comparability to the last report. The decision
of including BDL’s is motivated by the fact that they represent information; namely that the
concentration in this week was lower than the BDL. In Section 2.6.2 the theory of this is further
discussed. As mentioned, because of the generally higher concentrations of aerosols during the
winter season the number of BDL decrease immensely during the colder half of the year.

1.1.2 O3, GEM, EBC

In Table 1.2 information about the unedited data sets can be seen. The concentrations for O3,
GEM and EBC measured at time resolutions of less than a week have been averaged for a week
to match the time resolution of the weekly filter data. In order to do the PMF analysis this is a
necessity. For the time series analysis the use of the reduced data sets is motivated by comparison
to other constituents and the inconvenience in using such a large number of observations.

Constituent First observation No. of observations No. of NA Min Max

EBC 29 May 1989 206 740 31160 0.01 1794.27

O3 31 Dec. 1991 192 869 16 656 1 57

GEM 1 Jan. 1995 29 231 4048 0.002 (0)1 4.56

1 Smallest value is 0 but has been removed since values must be positive

Table 1.2

As can be see in Figure 1.1 there are values measured of O3, GEM and EBC during the time
the filter that measure the aerosols is switched. Usually, there is a short period of time between
the weekly filter is being removed and the next one put in. There are 26 occurrences where the
gap between one filter has been taken out and before another one has been placed that was more
than 24 hours. Disregarding these 26 occurrences the mean of the time between one filter being
removed and the next put in is 11.75 minutes. Of these 26 occurrences 10 are from after the
time O3, EBC and GEM observations began. The mean of the three concentrations was taken
from end point to end point. The loss of accuracy should not be affected if some observation lies
in between the time the filters are being switched, except for these 10 time points.

Using the mean of data between one filter being removed until the next is removed is made for
gain of data points for each mean and speed in computation since we do not have to look through
the large number of observations of O3, GEM and EBC to find and remove observations when
there is no filter in place. The data for O3, EBC and GEM has been removed that lies in gaps
larger than 24 hours between filters. So each observation used in the analysis is a mean from
one filter is removed until the next is removed except for 10 times where the mean is only during
that filter is in place. An illustration of this can be seen in Figure 1.1
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FILTER PUT IN FILTER REMOVED FILTER PUT IN

O3 & EBC Observations
Hg observations

Time period each observations of Hg, O3 and EBC  is based on

Figure 1.1: Illustration of observations

If all observations during a particular week are missing, the corresponding mean is treated as
a missing observation. In some weeks there are very few values which makes the averaged
observation unreliable or unrealistic. The decision was made to treat all weekly means as missing
if more than 51 observations were missing for EBC and O3, and 9 for GEM. The numbers 51 and
9 are around 30 % of the mean number of observations in each week. In Table 1.3 information
about the new reduced data vectors are shown. A noticeable thing is the much reduced maximum
value for EBC which is due to the high fluctuation from hour to hour. The maximum seen in
Table 1.2 is followed by an hour of a below detection limit value. As a comparison O3 is much
more consistent from hour to hour so only a small drop can be seen in the overall maximum.

Constituent No.of observations No. of missing No. of missing Min Max
obs. (all missing) obs. (30% or more)

EBC 1211 63 77 3.75 343.52

O3 1127 12 72 1.27 48

GEM 972 42 124 0.19 2.45

Table 1.3

1.1.3 Missing values for Br, Mn, Cu, Ca

As mentioned in Section 1.1.1, there are some components that have been analysed in several
ways. We use either the most trusted way or the vector of concentrations with least missing
values as the main vector, while the alternative method is used to fill in missing observations.
For Br and Mn the INAA was used as the main analysis technique and IC to fill in gaps for Br
while ICP was used to fill in gaps for Mn. For Cu and Ca the ICP analysis was used as the
prime vector and the INAA analysis observations were used to fill in missing values. All tests in
this section are used on the natural logarithm of data since the data vectors are approximately
lognormally distributed for all constituents in this section.
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Br

For Br the IC analysis was highly improved after 1986 as can be seen in Figure 1.2, therefore we
will look separately at the data before 1987 and one from 1987 onward. In Figure 1.2 and 1.3 we
can see that the observations seem better correlated after 1986. Although IC Br is measured the
longest and has the least missing values, the INAA Br is considered a more precise technique.
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Figure 1.2: Br 1980-1987
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Figure 1.3: Br 1987 and forward

The two different correlation tests between IC Br and INAA Br, one for 1980-1986 and the other
one for 1987-2013, can be seen in Table 1.4 and 1.6. Much of the badly correlated observations,
especially in the data 1980-1986, can be attributed to the different techniques having different
BDL, which clearly shows in Figure 1.2 and 1.3. The detection limit was decreased drastically for
IC but also somewhat for INAA in 1986. It would have been preferable to not use IC Br before
1987 but a large part of the missing data for INAA Br lies between 1984-1986 which is seen in
1.4, so even if the imputed values before 1987 are less accurate they are still a good estimate.

t cor df p.value
Pearson’s test 18.97 0.80 201 0.00

Table 1.4: Pearson’s χ2 test for correlation between IC and INAA Br (1980-1986)

8



conf.low conf.high
Confidence intervall -0.01 0.42

Table 1.5: 95% confidence interval diff. of mean between IC and INAA Br (1980-1986)

While the correlation test is a good measurement of how similar the two time series are it does
not take into account that they are on different levels. A paired T-test was performed to look
at the difference in mean of the two data vectors in order to compare the levels between the two
different analysis techniques. In Table 1.5 and 1.7 the 95% confidence interval of the difference
in mean between the techniques from a paired T-test are shown. From this we can read that
even though the data between 1980-1986 has worse correlation it seems to be better leveled than
the data between 1987-2007. The IC Br after 1986 have a lower ODL than INAA Br but the
difference between the means are still good enough not to make adjustments in the level of data.

t cor df p.value
Pearson’s test 71.71 0.92 934 0.00

Table 1.6: Pearson’s χ2 test for correlation between IC and INAA Br (1987-2007)

conf.low conf.high
Confidence intervall -0.38 -0.11

Table 1.7: 95% confidence interval diff. of mean between IC and INAA Br (1987-2007)

Mn

For Mn as for Br the main technique used was INAA while ICP was the analysis method for
patching the missing values. In Figure 1.4 and Table 1.8 the correlation between the two analyses
are very high. From Table 1.9 there is no significant difference in mean either, so the two different
techniques seem to be comparable.
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Figure 1.4: Mn
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t cor df p.value
Pearson’s test 75.27 0.90 1273 0.00

Table 1.8: Pearson’s χ2 test for correlation between ICP and INAA Mn

conf.low conf.high
Confidence intervall -0.14 0.02

Table 1.9: 95% confidence interval diff. of mean between ICP and INAA Mn

Cu

For Cu the observed vector with least missing observations was ICP Cu so that was chosen as
the main technique and INAA Cu as the spare values. For ICP Cu there are only 10 missing
observations during the observed period, but while ICP Cu is stopped in June 2006 INAA Cu
continues until December 2006 so most imputed values occur in the end of 2006. From the T-test
in Table 1.11 the level of data is somewhat different. This is most likely a result of the different
ODL limits but the confidence interval is very close to zero.
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Figure 1.5: Cu

t cor df p.value
Pearson’s test 25.41 0.82 323 0.00

Table 1.10: Pearson’s χ2 test for correlation between ICP and INAA Cu

conf.low conf.high
Confidence intervall 0.01 0.32

Table 1.11: 95% confidence interval diff. of mean between ICP and INAA Cu
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Ca

The same choice as for Cu was made for Ca, to use ICP as the primary method, since those
observations are less patchy than INAA. Although ICP has less missing observations, here the
INAA Ca observations continue further than ICP Ca. What we can see from Figure 1.6 is that
when INAA was first used the BDL was far better for ICP, while at the time ICP was stopped
the BDL seems to be at the same level for both techniques. From the scatter plot these BDL
values is the cluster shown to the left.
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Figure 1.6: Ca

Since the cluster of BDL would have a large influence, for the imputation these were removed
from INAA Ca and treated as NAs. There are only 5 missing values during the time ICP Ca
was observed, so almost all values used from INAA Ca lie after the time the detection limit was
improved. For Ca the mean of the data is a bit higher for ICP Ca than for INAA Ca when the
lowest BDL values have been removed from the analysis.

t cor df p.value
Pearson’s test 36.90 0.89 362 0.00

Table 1.12: Pearson’s χ2 test for correlation between ICP and INAA Ca

conf.low conf.high
Confidence intervall -0.22 -0.02

Table 1.13: 95% confidence interval diff. of mean between ICP and INAA Ca
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Chapter 2

Method & Theory

In this report we will mainly look at two different statistical analysis methods: first a time series
analysis is performed on the constituents and then Positive Matrix Factorization is used to look
at source components in the aerosol. The analysis and data handling is done using R except for
the PMF analysis which is done using the licensed program PMF2.

2.1 Cubic smoothing spline

In contrast to most other splines, cubic smoothing splines appear as an optimization problem.
For example, the commonly used regression splines use placed knots where piecewise polynomials
join smoothly. For smoothing splines we want to find a function f(x) so that the penalized sum
of squares is minimized (Hastie and Tibshirani, 1990)

PRSS =

n∑
i=1

(yi − f(ti))
2 + λ

∫
(f ′′(t))2dt, (2.1.0.1)

where the only criterion of f is that it is twice differentiable with continuous derivatives and
where λ is a fixed constant. It is evident that the first term of (2.1.0.1) is the least square fit of
data while the second term is a roughness penalty term which trades off smoothness to fidelity
to data via λ. A unique minimizer to this problem can be shown to be a natural cubic spline
with n− 2 internal knots (Green and Silverman, 1994).

For timepoints a < t1, ...tn < b we let hi = ti+1 − ti and define the n × (n − 2) matrix Nij for
i = 1, ..., n and j = 2, ..., n− 1 with entries

nj−1,j = h−1
j−1, njj = −h−1

j−1 − h−1
j , nj+1,j = h−1

j and nij = 0 for |i− j| ≥ 2

and the (n− 2)× (n− 2) matrix Ω with entries

ωi,i =
1

3
(hi−1 + hi) for i = 2, ..., n− 1,

12



ωi,i+1 = ωi+1,i =
1

6
hi for i = 2, ..., n− 2

and
ωij = 0 for |i− j| ≥ 2.

By standard numerical linear algebra Ω is strictly positive definite (Green and Silverman, 1994)
and we can define the matrix K = NΩ−1NT .

It can be shown that f and γ specify a natural cubic spline if and only if (Green and Silverman,
1994)

NT f = Ωγ. (2.1.0.2)

If (2.1.0.2) is satisfied then the roughness penalty term can be written as

∫ b

a

f ′′(t)2dt = γTΩγ = fTKf (2.1.0.3)

and PRSS sum (2.1.0.1) can be rewritten as

PRSS = (y − f)T (y − f) + λfTKf = fT (I + λK)f − 2yT f + yT y. (2.1.0.4)

Since λK is non-negative definite (I + λK) is strictly positive definite and it follows that for a
fixed λ and by setting f = (I+ λK)−1y this uniquely minimizes (2.1.0.4).

The parameter λ is controlling the smoothness of the spline, another way of controlling the
smoothness is by setting the Equivalent Degrees of Freedom (edf ) which is defined as the trace
of the hat (or smoother) matrix Sλ = (I+ λK)−1.

2.2 ARMA(p, q)-process

The autoregressive moving-average (ARMA) process {Yt} can be expressed as

Yt − ϕ1Yt−1 − ...− ϕpYt−p = Zt + θ1Zt−1 + ...+ θqZt−q, {Zt} ∼ WN(0, σ2).

for Zt white noise distributed as {Zt} ∼ WN(0, σ2) if the Zt’s are uncorrelated and µZ(t) =
0, E[Z2

t ] = σ2.

The fit of the ARMA-process is calculated by maximizing the likelihood for a Gaussian time
series {Yt}. With the help of the innovations algorithm we can recursively find one step ahead
predictions Ŷn+1

Ŷ (t)n+1 =


∑n

j=1 θnj(Y (t)n+1−j − Ŷ (t)n+1−j) for 1 ≤ n < max(p, q)

ϕ1Yn + ...+ ϕpYn+1−p +
∑p

j=1 θnj(Y (t)n+1−j − Ŷ (t)n+1−j) for n ≥ max(p, q)

13



with B as the backward shift operator BjYt = Yt−j we define W (t) as

W (t) =


σ−1Yt for t = 1, ...,max(p, q)

σ−1ϕ(B)Yt for t > max(p, q)

and E(Yn+1 − Ŷn+1)
2 = σ2E(Wn+1 − Ŵn+1)

2 = σ2rn. Where θnj and rn is determined by the
innovations algorithm for n ≥ m, m = max(p, q).

With this the Gaussian Likelihood can be expressed as

.

L(ϕ, θ, σ2) =
1√

(2π)nr0, ..., rn−1

exp(− 1

2σ2
)

n∑
j=1

(Yj − Ŷj)
2

rj−1
,

with maximum likelihood estimators

σ̂2 =
1

n
S(ϕ̂, θ̂)

S(ϕ̂, θ̂) =
n∑

j=1

(Yj − Ŷj)
2

rj−1

And for values of ϕ̂, θ̂ that minimize

l(ϕ̂, θ̂) = ln(
1

n
S(ϕ̂, θ̂)) +

1

n

n∑
j=1

ln(rj−1)

The maximum likelihood estimation must be solved numerically.

2.3 GARCH(m,n)-process

While the ARMA-process is used to calculate the conditional mean the GARCH(m,n)-process
(Generalized Autoregressive Conditional Heteroskedasticity) is used to calculate a conditional
variance that is allowed to change over time, in comparison with classical time series analysis
where a constant variance is assumed.

Let εt denote a real-valued discrete-time stochastic process, and ψt the information set (σ-field) of
all information through time t. The GARCH(m,n)-process is then defined as below (Bollerslev,
1986).

ε|ψt−1 ∼ N(0, ht) (2.3.0.1)
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ht = ω +
n∑

i=1

αiε
2
t−1 +

m∑
i=1

βiht−1 (2.3.0.2)

For m ≥ 0, n > 0, ω > 0, α > 0 and β ≥ 0. The GARCH- and ARMA-process are compatible
with each other (Brockwell and Davis, 2002) so a time series can be described by an ARMA-
GARCH model.

2.4 Definitions

• AICc

For determining the order of the ARMA-process the AICc criterion is used as recom-
mended by Brockwell and Davis (2002), which is defined as

AICc = L(ϕp, θ,
1

n
S(ϕ̂, θ̂)) +

2(p+ q + 1)n

n− p− q − 2

• Autocovariance

γY (t, h) = Cov(Yt+h, Yt)

• Weak stationarity of order 2

A time series {Yt} is weakly stationary if

• µY (t) is independent of t.

• γY (t, h) is independent of t for every h, so we write γY (h) instead.

• Autocorrelation

ρY (h) =
γY (h)

γY (0)

• IID noise

{Yt} is called iid noise, {Yt} ∼ IID(0, σ2), if the Yt’s are independent and µY (t) =
0, E[Y 2

t ] = σ2.

• Ljung-Box test

The test statistic QLB follows a χ2
h distribution under the null hypothesis H0: Resid-

uals are independent normally distributed noise

QLB = n(n+ 2)

h∑
j=1

ρ̂(j)2/(n− j)
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2.5 Change point model

A change point model can be used when an ordered data vector has different distributions within
the vector and thereby divide the data at the change point or points. The change points can be
optimized in several ways. In this thesis we look at optimizing by the mean. The change point τ
can be estimated by the least square estimation of τ̂ , with the length of the series Yt as T with
µ1 and µ2 the respective mean before and after the change point, defined as

τ̂ = argminτ

(
min{

τ∑
t=1

(Yt − µ1)
2 +

T∑
t=τ+1

(Yt − µ2)
2}

)
(2.5.0.1)

We can write the sum of squares of residuals as

S2
τ =

τ∑
t=1

(Yt − µ̂1)
2 +

T∑
t=τ+1

(Yt − µ̂2)
2 (2.5.0.2)

Where µ̂1 and µ̂2 are the least square mean estimators of the mean for the first 1-τ and τ+1-T
respectively, with this it follows with µ being the overall mean that

T∑
t=1

(Yt − µ)2 = S2
τ + V 2

τ (2.5.0.3)

For Vτ as

Vτ = (
τ(T − τ)

T
)1/2(µ1 − µ2) (2.5.0.4)

we see that

τ̂ = argminτ (S
2
τ ) = argmaxτ (V

2
τ ) = argmaxτ |Vτ | (Bai, 1994)
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2.6 Positive matrix factorization

2.6.1 Introduction to receptor modelling

The multivariate factor analysis technique Positive Matrix Factorization (PMF) is used to lower
the dimension of data. In environmental data the method is used to find the number and
composition of sources. In this context a source can be the two measured factors Na and Cl
make up the interpretable source salt. In air pollution research this is commonly referred to as
receptor modelling, based on air monitoring data and determining the sources of air pollution,
i.e. a large data set of variables is collected , e.g. chemical elements or compounds, that together
can be factorized into sources such as sea-salt, smelter, soil etc . One of the key features in
aerosol constituents is the lack of negative data since it is measured in concentrations. The
natural physical constraints was the motivation for the development of PMF; all other then-
current methods had their limitations when used on physical data. Any factor analysis receptor
model has to adhere to some basic physical constraints (Henry, 1987; Hopke, 2003);

• The model has to reproduce the original data.

• All sources have a positive percentage of all elements, so the predicted source compositions
must be non-negative.

• A source cannot give off negative mass so the predicted source contributions to the aerosol
must all be non-negative;

• The sum of the predicted elemental mass contributions for each source must be less than
or equal to total measured mass for each element; the whole is greater than or equal to the
sum of its parts.

The basis of Positive Matrix Factorization is the general factor model as is Principal Component
Analysis (PCA) and other dimension reduction techniques: for the observed n × m-matrix X
with n observations and m variables we have

X = GF + E (2.6.1.1)

for p ≤ m, G is the factor scores matrix with dimension n × p, F a p ×m loadings matrix and
E the error matrix with same dimension as X. In a receptor modelling setting p is the number
of sources.

The commonly used dimension reduction technique in environmental sciences and otherwise is
PCA, which traditionally is based on the eigenvectors of the covariance matrix but later also the
Singular Value Decomposition (SVD). A problem with using the covariance matrix is that X has
to be centered, this results in a loss of information about the initial scale of variables. For the
SVD the matrix X is expressed as

X = USV T + E (2.6.1.2)

Where U and V are orthonormal matrices, while S is a diagonal matrix. It can be shown that
(2.6.1.2) can be written on the form of (2.6.1.1) (Comero et al., 2009). Just as in the case of PCA
there is a least square property so the solution truncated to p components of (2.6.1.2) minimizes
the Frobenius norm of E. For any prechosen factorization with rank p of X can be defined as
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{G,F} = argmin
G,F

||X−GF||F = argmin
G,F

∑
ij

(xij − x̂ij)
2 (2.6.1.3)

where G and F are required to be of previously selected rank p. The solution to (2.6.1.3) has
minimum variance if and only if the precision of all xij is the same (Paatero and Tapper, 1993).
Although (2.6.1.3) can be solved there is not a unique solution, for any non-singular square
matrix T there is a rotation of the solution that doesn’t effect the residual matrix E

X = GF + E = GTT−1F + E = ḠF̄ + E (2.6.1.4)

The singular value decomposition is not invariant to scaling, which means that different decom-
positions arise if different measurements are used from one column (or row) to another. To
correct this problem different scaling techniques for X have been used for PCA, the different
scalings were studied in relation to a weighted least square (Paatero and Tapper, 1993, 1994).

{G,F} = argmin
G,F

∑
ij

wij(xij − x̂ij)
2 (2.6.1.5)

What Paatero and Tapper (1993) showed was that optimization, i.e the smallest variance of
(2.6.1.5) is obtained if each data point is scaled individually based on their uncertainties σ(xij).
If the rank of the standard deviation matrix is one and the SVD of X is rotatable so that all
matrices are positive, only then the solution by SVD is optimal. If not, the effects of the point
by point scaling is shown to be a scaled matrix that cannot be recreated by any factor analysis
based on SVD. As mentioned one of the basic constraints by Henry (1987) for a good receptor
model was that the model has to reconstruct the data. These were the main motivations to a
new factor analysis model.

2.6.2 PMF

What Paatero and Tapper (1994) proposed in order to address the problems with then-current
factor models was to minimize (2.6.2.1), with respect to the constraints that both G and F
should be non-negative.

Q(E) =
n∑

i=1

m∑
j=1

e2ij
s2ij

(2.6.2.1)

where eij is defined as

eij = xij − x̂ij = xij −
p∑

k=1

fikgkj (2.6.2.2)
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For an estimated or known standard deviation matrix S with entries sij . As can be seen in
(2.6.2.1) the problem with non-optimal scaling is addressed. In the initial paper on PMF the
minimization of Q(E) was solved via an iterative altering least squares algorithm which kept
one of the matrices G or F constant in each iterative step while the other one was optimized to
minimize Q, until convergence occurred. This way of minimizing Q(E) can be very slow if the
factors are far from being orthogonal. In order to speed up the optimization a faster algorithm
where both matrices are optimized in the same iterative step was created.

An optimization scheme that is able to vary G and F in each iterative step was described by
Paatero (1997) and implemented in the program PMF2. The function (2.6.2.1) took on a more
complicated form (2.6.2.3). In this new enhanced object function the non-negativity constraint
is implemented as penalty functions. Beginning with positive pseudorandom numbers as initial
matrices, we can see that when gik and fkj goes to zero the penalty functions will be large so
the algorithm will continue to search for a minimum.

Q̄(E,G, F ) =Q(E) + P (G) + P (F ) +R(G) +R(F ) =
m∑
i=1

n∑
j=1

e2ij
s2ij

− α
m∑
i=1

p∑
k=1

log gik − β

p∑
k=1

n∑
j=1

log fkj

+ γ
m∑
i=1

p∑
k=1

g2ik + δ

p∑
k=1

n∑
j=1

f2kj (2.6.2.3)

While P (G) and P (F ) prevent G and F from becoming negative, R(G) and R(F ) are called
regularization functions which remove the rotational indeterminacy and control the scaling of
the left and right factors. The R functions are always needed in the algorithm to prevent
singularities in the model from rotation and scale changes. The coefficients α, β, γ and δ each
control the strength of their function and are given smaller and smaller values so that the final
values are negligible but larger than zero. To solve each iterative step the algorithm uses first
Gauss-Newton or Newton-Raphson and between each step a rotational substep is performed. In
each substep a rotation matrix T and its inverse T−1 is determined so that Q̄ is minimized with
respect to the new factor matrices Ḡ and F̄ (GT and T−1F). The main part of Q̄ is not changed
by the rotations so the substeps only minimize the sum of P and R in (2.6.2.3). The algorithm
would work without the substeps but a factor of circa 2 of gain in speed can be attained.
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Figure 2.1: Simulated data showing multiple
possible source profiles that could be used to fit
the data. (Paatero et al., 2002)

As we could see with PCA, PMF also has ro-
tational ambiguity as (2.6.1.4) (Paatero and
Tapper, 1994), this leads to a non-unique so-
lution of the algorithm. An illustration of the
ambiguity in Figure 2.1 is shown with simu-
lated data of iron and silicon, where each pair
of lines corresponds to a different source pro-
file. Since the two factors are not correlated
to each other two factors are needed to repro-
duce the source profiles. The true profiles lie
somewhere in between the x and y axes and
the pair of solid lines containing all points. Al-
though there is a rotational ambiguity in PMF
as well as in any other general factor analysis
model the non-negativity constraint reduces
the number of rotations and in some cases
even produces a unique solution to (2.6.2.1) if
all rotations produce some negative elements
in matrices Ḡ and F̄.

Often the true standard deviation matrix S is
unknown. A study (Kim and Hopke, 2007) shows that PMF analysis using estimated and sample-
species specific standard deviations give very similar solutions. Typically in receptor modelling
there are three different kinds of data points; known, BDL and missing values. Missing data
have historically been treated in three different ways, either remove any row in X if it contains
a missing value or remove the complete column. This approach is typically made if a large
percentage of a row or column is missing, this is a very crude way of treating data unless it is a
very large part that is missing. The third approach is to impute values, usually the arithmetic
or geometric mean of the columns of X, and for these values raise the standard deviation by
a constant so the imputed values get less weight in the minimization of Q. One study from
Huang et al. (1999) where either samples with one or more missing value were removed vs. an
imputation of the mean showed that using imputed values gave more realistic factor solutions
and less frequent occurrence of physically unrealistic factors.

The BDL values also have three similar approaches. The BDL data actually give information
about the value being very small so removing rows or columns with BDL values results in a big
loss of information. The most common approach is to take a small constant such as 1

2 times
the detection limit and use that value, this seem to originate from Polissar et al. (1998) who
suggested the following use of data in PMF.

• xij = vij For known values

• xij =
dij

2 For BDL values

• xij = ṽj For missing values

And their respective standard deviations as

• σij = uij +
dij

3 For known values

• σij =
d̄j

2 +
dij

3 For BDL values

• σij = 4 · ṽj For missing values
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For vij as known values, uij the analytical uncertainty, and dij the analytical detection limit.
Where the analytical uncertainty can include sources of uncertainty such as bias in sampling,
storage, measurement conditions and a random effect error. We let d̄j denote the arithmetic
mean of the BDL values of variable j and ṽj the geometric mean of variable j. There have been
more suggestions similar to Polissar et al. (1998) how to estimate the error matrix S. Most suggest
a combination of error in data and measurement error such as the detection limit, minimum or
otherwise.

2.7 PMF2

The program PMF2 implements the PMF algorithm to minimize (2.6.2.3), for more details on the
algorithm see Paatero (1997), with several options implemented such as error model, rotations,
robustness and more.

2.7.1 Error models

In PMF2 there are four different error models to choose from. The standard deviation matrix
S is either set beforehand or the matrix is calculated in each iterative step. Below we see the
two models that are of interest in this thesis, the other two models include an error model
set beforehand and one specific for Poissonian data. The error models which are iteratively
calculated all use the fitted matrix Y = GF in the standard deviation matrix S.

• EM=-10, in this model the data is assumed to be lognormally distributed and in
each iterative step S is recalculated.

sij =
√
t2ij + 0.5 · v2ij · |yij |(|xij |+ |yij |)

Where tij is assumed to be a measurement error, vij the logarithm of the geometric
standard deviation and yij the fitted value in the matrix Y = GF calculated in each
step. tij is recommended to be given a small value such as the below detection limit
which can be seen as a measurement error.

• EM=-14 is a general error structure where no assumption on distribution is made
and recommended for environmental work.

sij = tij + uij

√
max(|xij |, |yij |) + vij ·max(|xij |, |yij |)

Usually, uij is set to zero unless data is Possonian and then often vij is put to zero
instead. This model and EM=-10 are recommended for receptor modelling but using
EM=-10 is recommended to be used with caution since all data have to be strictly
lognormally distributed. If vij is not large in comparison to size of data, EM=-14 and
EM=-10 are basically the same model, so in most cases it is ”safer” to use EM=-14
since no assumptions have to be made.

If each standard deviation is known, which rarely is the case, all error models can be
used, setting all elements uij in U and vij in V to zero which results in sij = tij .
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2.7.2 Robust mode

In PMF2 there is an option to run the iterations in robust mode, so outliers don’t have as large
a pull on Q. In environmental data outliers can arise for many different reasons, they can come
from e.g. sample contamination, fault in measurement or just a couple of weeks with extremely
high concentrations. It can be hard to determine the cause of an outlier; regardless of the origin
they can have a large influence on the solution. The Robust mode in PMF2 downweight the
outliers based on the Huber influence function, that modifies Q. Where in the robust mode the
least square formulation becomes

Q =
m∑
i=1

n∑
j=1

(
eij
hijsij

)2 (2.7.2.1)

Where

h2ij =

{
1 if | eijsij

| ≤ α
|eij/sij |

α if | eijsij
| > α

So that each data point only can have a certain influence to the fit, it is recommended to use the
robust mode for environmental work since outliers, whether caused by the measurement process
or not, often are a part of data. Per default the outlier distance is α=4.

2.7.3 Explained variance

In order to assess how many sources p are to be used in the model several aspects need to be
considered, one of them being the explained variance (EV) or rather the non-explained variance
NEV. The explained variance matrix, defined by Paatero (2004b), is either a n × (p + 1) or
(p+ 1)×m matrix depending on if it describes the scores matrix (EVG) or the loadings matrix
(EVF). The quantity of EV is dimensionless and ranges from 0.0 to 1.0, the value sums up how
well a factor element explains one row or column in the observed matrix X.

The explained variation matrix for G is a n×(p+1) matrix where the first p columns corresponds
to the variance explained in each row by each factor. The p+1 th column correspond to the
residuals, so the matrix has been written as if the residuals were an extra factor. This results
in the p+1 th column being a measurement of the variance explained by the residuals i.e. the
unexplained variance of the model in each row. For the explained variance matrix of G the
elements are calculated as

EV (G)ik =

∑m
j=1 |gikfkj |/sij∑m

j=1(
∑p

h=1(|gihfhj |+ |eij |)/sij)
for k = 1, ..., p (2.7.3.1)

and

EV (G)ik =

∑m
j=1 |eij |/sij∑m

j=1(
∑p

h=1(|gihfhj |+ |eij |)/sij)
for k = p+ 1 (2.7.3.2)
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For i = 1, ..., n and where Equation (2.7.3.1) explains how much each element gik explains the
ith row of X while (2.7.3.2) explains how much eij explain the ith row. Similar equations also
hold for calculations of EV(F) where columns instead of rows of X are explained.

2.7.4 Normalization of factor matrices

There are several ways of normalizing the output matrices G and F from PMF2, the normaliza-
tion is made to properly compare the solutions. Seven different options (Paatero, 2004b) can be
chosen such as normalizing by the maximum or mean value of each column of G or F. In this
analysis the option used is normalizing so that the mean value of each column in G equals 1 as
to compare with results from Sirois and Barrie (1999), where the same normalization method
was used.

Immediately after output the matrices G and F are normalized by dividing and multiplying the
columns and the rows by the mean of respective column of G so that each normalized column
of G has mean 1. Since the PMF is invariant to scaling this does not influence the solution in
any way.

The columns of G and rows in F are divided and multiplied respectively by

Gi for i = 1, ..., p
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Chapter 3

Analysis & Results Time series

3.1 All year time series analysis

In order to describe the temporal variation of the weekly concentrations, time series analysis
models are fitted to each constituent. The time series analysis is solely made for a descriptive
rather than a forecasting purpose. All components were analysed for the all year data, with some
constituents additionally analysed only for the colder part of the year to look closer at the peak
season. The data set that was analysed is the one described in Table 1.1. The model for the
analysis can generally be expressed as.

Ct = mt + st + Yt (3.1.0.1)

Where Ct are the weekly concentrations, mt a long term trend, st a seasonal component and
Yt a noise component. Many constituents in the data set are lognormally distributed or the
variance grows increasingly with the level of data, in these cases a temporary transformation of
the concentrations (log(Ct) or

√
(Ct)) has been made in order to have fluctuations not dependent

on the level of the series. As recommended by Brockwell and Davis (2002), first the long term
trend was identified and removed, if no long term trend was found the mean of the series was
removed in order to center the series. Then a seasonal trend was removed to obtain (weakly)
stationary residuals, before an autoregressive moving-average process was fit to Yt. Where Yt is
defined as

Yt =

p∑
i=1

φiYt−i +

q∑
j=1

θjεt−j + εt for p, q = 1, 2 and εt ∼ N(0, σ) (3.1.0.2)

The median monthly wind speed at Alert varies between 2 and 9 km/h, which corresponds to
around 340-1600 km in a week on a spatial scale so the pollution is expected to be somewhat
homogeneous over larger areas. We choose to limit the values of p and q to be at most two, which
is both physically realistic and sufficient since it seems a larger order only overfit the models.

Each constituent was analysed in the same manner by first assessing if any transformation of the
concentrations was needed in order to obtain normally distributed residuals εt. Transformations
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were made for all constituents except for Ozone and Mercury in the all-year data. The lack of
BDL and the fact that the two are gases, not aerosols, might be the reason for the more normally
distributed observations. All other constituents are approximately lognormally distributed so a
temporary transformation to log(Ct) was made in the fitting of trends and for describing the
time series Yt.

The long term trends are both a descriptive tool to see how the overall aerosol concentrations
have developed over the years, but also a step towards estimating the underlying process of the
noise Yt. Since the data exists for such a long time span, linear and lower degree polynomial
trends are for most constituents neither sufficient or physically realistic estimators of the trends.
The decision to use splines was made in order to describe the long term trends accurately. Several
methods can be used. A disadvantage of using splines is that they are hard to use for prediction
but since the trends are fitted purely for a descriptive purpose this is not a problem. There are
several types of splines, in this paper we have used smoothing splines described in Section 2.1.
An advantage of using cubic smoothing splines is that it presents itself as an overall optimization
problem in comparison to e.g. regression splines where we have to choose where in the time
series the knots are set which easily becomes very arbitrary.

As mentioned in Section 2.1 the way of controlling the degree of smoothing is either to set λ or
the equivalent degrees of freedom edf=tr(Sλ). The higher the trace of the smoothing matrix is
the more the penalty term in Equation (2.1.0.1) becomes superfluous i.e. the solution becomes
an interpolating twice differentiable function at the extreme and at the other end as the edf are
dropping the solution will go to the least squares line.

The long term trends were chosen by adjusting the equivalent degrees of freedom, first by looking
at plots so that all larger trends in the time series are covered, but the line doesn’t include very
local trends. After choosing a long term trend, that trend together with the seasonal trend is
removed and we fit an ARMA-process to the remaining Yt. We then go back and readjust the
degrees of freedom a bit lower/higher and redo this process until the long term trend is optimized
in terms of looking at the acf, QQ-plot, time sorted plot and Ljung-Box test of the residuals. In
Figure 3.1 an example of three lines; one overfitted, one underfitted and also the chosen smooth
line is displayed. We can see that the line with edf = 5 goes too smoothly through the large
trends in data, while the line with edf = 15 show some more local trends with a local minimum
in 1992.
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Figure 3.1: Long term trends

After the long term trends in Figure 3.2 were removed from each respective constituent time
series we consider a seasonal trend. From the nature of aerosols and the weather conditions in
the Arctic part of Canada we know that there exists strong seasonality in the aerosol constituents.
Each weekly observation has exact times of the insertion and removal of the filter so we can use
this to sort the observations. Because of this, it was possible to estimate smoothing splines
as seasonality trends since the now detrended observations are centered and can be seen as
independent observations throughout the year. The technique used for the smoothing splines is
similar to the one used for the long term trends, where we set the degrees of freedom to adjust the
amount of smoothing. Another way of removing the seasonal trend would have been to remove
the monthly means but for many of the constituents the trend within one month is too drastic
to accurately remove the seasonality that way.

When looking at the time sorted data there is seasonality present for all observed variables.
Initially different degrees of freedom were considered for different constituents but the conclusion
was that for all constituents the degrees of freedom of the spline was around edf=10 so this was
set for all seasonal trends. That is where the most temporal variation was captured without
overfitting i.e. not letting individual observations influence the curve too much.

When both detrended and deseasonalized we wish to have weakly stationary time series of the
constituents. As already stated, in this section the stochastic process has natural limitations due
to how long the air travels and the stability of the aerosols, so a maximum for p and q is set for
2 it means there is no higher process than an ARMA(2,2).

Initially we considered diagnostics such as acf, pacf, QQ-plots and Ljung-Box test of the residuals
of the deseasonalized time series and then fit the best model based on the AICc criterion. If
there is autocorrelation in the residuals or they seem to not be Independent and Identically
Distributed (IID) normal observations, we go back and look at what can be changed in the
model and whether the BDL and missing values seem to affect the residuals.

Another common problem that arises when estimating trends of time series is the existence of
missing values but overall we do not consider this a large problem. In general the missing values
are spread out in such a way that there are not more than a couple of weeks missing in a row,
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which should not effect the estimated long term trend. There are some exceptions though, as
can be seen in Figure 3.2, the aerosol constituents H+, MSA, I and Ozone all have one gap each
which reaches more than a year. There is little to be done in retrieving the trend for the missing
years, so when fitting the trends the missing values have been removed in order to fit the spline.
The trends overall should not be impacted by the missing values but just before and after the
large gaps in H+, MSA, I and Ozone the trend might not be accurate.

3.2 All year results

The results from the time series analysis for the whole year data shows that an adequate model
can be fitted for most constituent time series. In Figure 3.2 the long term trend of the 23
different concentrations is displayed and in Figure 3.3 the seasonal trends can be seen. The
largest problem with data is not the missing values but the BDL observations which censor the
data, i.e. are only known to be below a certain threshold. It is easy to spot by eye in Figure 3.2
and 3.3 the concentrations where the BDL’s might impact the model heavily. The most evident
is the observations of H+ and also Ni where the BDL values lie in layers in the lower part of
plots in Figure 3.3b and 3.3t. In these cases we cannot expect completely independent normally
distributed residuals from the fitted model.

Overall the trends have been fitted to be 3-5 year trends for the observed period of time, there
are trends that can be found on a smaller time scale. Generally if the degrees of freedom are
increased, so that trends on a 1-3 year scale is fitted, the residuals of the underlying process Yt

has more autocorrelation between them and looks less normally distributed. This is why some
trends don’t show the same fluctuations as Sirois and Barrie (1999) since the trends are fitted
on a longer period of time.

3.2.1 Long term trends

A long term trend was found for all constituents except for Na. Both simple linear regression
and splines was looked at for Na and there was no indication of any long term trend. For the
long term trends, variations in BDLs for a significant fraction of data is a disruption. A clear
example can be seen in the Pb plot in Figure 3.2i where the operational detection limit was
massively lowered in the beginning of the 1990s, after this we can see a clear decrease in the
trend. By looking at the decrease we cannot say if there would be a decrease or not if the ODL
would have been the same for the whole time period, although the trend from 1993 and onward
should be correct. One other way the BDL values can influence the trend is by putting the trend
on a higher/lower level than it should be but this problem does not effect the model as much as
the difference level of the ODL.

SO−2
4 and H+ have similar trends where both decrease and then come into a stable state before

decreasing again in the last couple of years, the difference being that H+ has a longer stable state
in the middle and SO−2

4 is more stable in the beginning. The lowered ODL for H+ in the end of
the 1980s until the beginning of the 1990s might affect the trend for H+. As mentioned earlier,
because of the high number of BDL’s the model for H+ will only be roughly approximated.

Br− barely has a long term trend. There is a slight decrease from 2010 and forward and a bump
in Br− in the first couple of years but as in the case with H+ the trend is highly likely be due
to the increase of the ODL. As mentioned, we can see that the same problem presents itself for
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Pb, Ni, Fe and also in smaller scale for K+, caution should be taken when looking at the trends
where the ODL has large changes.

Zn and Cu have similar long term trends with much volatility and minima around 1995 followed
by a peak in 2010 before fading the last years measured. As seen in Sirois and Barrie (1999)
and as we will later show with the PMF analysis the two constituents Zn and Cu have a close
connection to each other so a similar trend is not surprising.

NH+
4 has a clear maximum around 1990 and a maximum 15 year later before increasing some

in the last years. V and Mn show similar trends where there is a decrease before being constant
and then both show a decrease. Although, V starts to decrease in the middle of the 90s while
Mn begin its decrease a decade later in the middle of the 00s.

The long term trends for Al, Fe, Ca, Mg, Pb, Zn, Cu and Ni very much correspond to the
trends found in Gong and Barrie (2005), which displays trends for mentioned metals. The large
difference is that a trend has been used for Na but as can be seen in Figure 3 (Gong and Barrie,
2005) the trend is very flat.

From being quite consistent for a decade Mercury shows a clear decreasing trend from 2005 and
forward. This is supported by Cole and Steffen (2010) who analysed long term trends of GEM
observed at Alert between 1995-2007. It is also mentioned that a small decline was noticed but
no trend could be established in an analysis made on data between 1995-2005 (Temme et al.,
2007). The overall decrease seem to be due to decline in anthropogenic emissions (Zhang et al.,
2016).
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Figure 3.2: Long term trends
Long term trends of all concentrations, note that all plots are on log scale except for O3 and Hg
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3.2.2 Seasonal trends

Contrary to the long term trends the seasonal trends are smoother. Many of the aerosol con-
stituents have very strong seasonal patterns associated with the lifetime of aerosols in the Arctic
air mass due to the variations in transport and removal processes.

The seasonal trends estimated correspond well, at the very least visually, to the seasonal trends
for the constituents presented in Sirois and Barrie (1999) and Gong and Barrie (2005). So we can
conclude that the seasonal trends haven’t changed much in the last 16 years since the last report
was published. The seasonality of all aerosol constituents analysed in this report can be seen in
the last report together with Ni and Fe analysed in Gong and Barrie (2005), the exception is
EBC and the gases Ozone and Mercury.

The same data set of Mercury in this analysis is also analysed in Steffen et al. (2014). From their
analysis we see the same pattern (Fig.2 Steffen et al. (2014)) as in our analysis with a decrease
during springtime where the variance is larger followed by a peak in June with a consistent
concentration during the cold half of the year. It is also shown that the minimum of Mercury
has changed in period of time between 1995-2001 and 2002-2007, most likely related to increase
in temperature.

In Ozone there are two minimas in the seasonal trend where the first occurs during spring and the
variance is largely increased which is associated with the polar sunrise and ozone depletion. It has
been found that the depletion of O3 is related to the depletion of Mercury which also decreases
markedly in the spring. A negative correlation between O3 and Bromide during spring has been
found (Barrie et al., 1988), we will examine this relationship further in the PMF analysis.
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Figure 3.3: Seasonal trends
Seasonal variation of all concentrations, after long term trend has been removed.

31



3.2.3 ARMA-process

The numbers of p and q vary between constituents and out of a first glance a direct pattern
cannot be detected. When we look closer we can see that the concentrations where the ODL
varies throughout time such as Br, Pb, K+ and Ni have a tendency to have MA(2)-terms. This
might be due to the need to smooth the errors over time. For H+ a AR(2)-process has been
fitted but due to the high percentage of BDL values in data, 39.79 % , there is no way of fitting
a model that fulfill the model criteria of weakly stationary Yt and iid normal residuals.

In Figure 3.3 the variance during the seasons vary some. This does not show in the residuals
of the models except for the gases Ozone and Mercury where we can see a clear seasonality in
the variance. In Figure 3.4 concentrations of Ozone and Mercury are plotted with removed long
term trend and seasonality with a clear systematic increase of variance each year.
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Figure 3.4: Ozone and Mercury without long term and seasonal trends

To properly model the concentrations in addition to an ARMA-process we use the GARCH-
process to model the conditional variance. For both gases we use a GARCH(1,1)-process in
combination with an ARMA(1,1)-process for Ozone and ARMA(2,1)-process for Mercury. In
Table 3.1 we see that fitted parameters to the GARCH-process and in Figure 3.5 the conditional
variances are plotted which have a clear seasonal pattern.

Gas ω α β

O3 2.949 0.374 0.521

GEM 0.002 0.443 0.556

Table 3.1
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Figure 3.5: Conditional σ2 for Ozone and Mercury

We will see in the winter time series analysis that the number of p and q are reduced for all
constituents analysed in both time periods. We can suspect the number of BDL values will
influence this but also that the processes of Yt during the year are profoundly different so a
higher number of p and q are needed to explain the series.

Constituent Long term trend Seasonal Cycle ARMA ARMA coefficients

R2 df R2 R2 φ1 φ2 θ1 θ2

SO−2
4 0.05 5 0.77 0.03 0.06 0.47 0.27 −0.34

H+ 0.04 5 0.52 0.07 0.79 −0.5

Br 0.02 6 0.7 0.09 0.87 −0.48 −0.05

NH+
4 0.05 5 0.57 0.09 0.1 0.5 0.31 −0.33

No−3 0.02 4 0.55 0.06 1.1 −0.24 −0.72

Na 0 0.63 0.04 −0.22 0.4 0.53 −0.21

Cl− 0.01 6 0.46 0.05 0.48 −0.18

K+ 0.01 5 0.64 0.02 −0.02 0.45 0.34 −0.34

Pb 0.08 7 0.58 0.06 0.75 −0.35 −0.12

V 0.08 5 0.3 0.08 0.37

Mg 0.03 6 0.24 0.09 0.35

Zn 0.15 10 0.22 0.09 0.78 −0.45 −0.11

Cu 0.2 8 0.1 0.29 0.83 −0.58

Ca 0.04 7 0.04 0.1 0.46 −0.15

Mn 0.03 5 0.12 0.1 0.33

I 0.06 9 0.45 0.08 0.67 −0.35

Al 0.02 5 0.09 0.08 0.14 0.32 0.14 −0.26

MSA 0.03 5 0.54 0.07 −0.36 0.32 0.73

Fe 0.05 6 0.07 0.09 0.5 −0.22

Ni 0.11 5 0.21 0.12 0.67 −0.28 −0.09

EBC 0.04 5 0.77 0.03 0.87 −0.48 −0.24

O3 0.02 5 0.59 0.05 0.68 −0.35

GEM 0.09 6 0.47 0.05 0.81 0 −0.45

Table 3.2
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3.3 Winter time series analysis

By the all-year time series analysis the large part BDL values, strong seasonality and varying
variance motivates the decision to reduce the data set and only look at the winter part of the
year. For the PMF analysis we will use data between November to May to reduce the number of
BDL values in data. A natural choice would be to use the same time period for the winter time
series but the seasonality will influence the time series if not a shorter period is used.

A choice was made to analyse the same constituents as in the previous report together with the
new chemical compounds/elements, which all have peaks during the winter/spring. So, as in the
last report (Sirois and Barrie, 1999) we will use the data between 1st of January and 1st of May
for SO−2

4 , NO−
3 , H

+ and NH+
4 while January 1st to April 1st for Zn, Pb, Fe, Ni, K+, xV, xMn,

EBC, GEM and O3, where xV and xMn are the V and Mn associated with non-soil, calculated
as

• xV=V-0.0013Al

• xMn=Mn-0.0065Al.

As we will see in the PMF analysis there is a large part Mn and V that is associated with Soil
which is heavily loaded with Al. Since there is an interest in looking at the trends of Mn and V
which is not associated with Soil we analyse xMn and xV. The same measurement of xMn and
xV was used in Sirois and Barrie (1999) and the relationship between Mn and Al is considered
to be constant.

The two are analysed in the last report as well. The added constituents in the new analysis have
been added to the January to April analysis. We chose to do this for Fe and Ni because of the
metal characteristics which follows Zn and Pb while Ozone, Mercury and to some extent EBC
have a change in variance during April and May.

The overall process of the winter time analysis is the same as for the all-year described in Section
3.1. In the last report no transformation was needed for any of the concentrations, in this
extended data sets log-transformations were needed for all metals (Zn, Pb, Fe, Ni) and including
the alkali metal K+. For xV and xMn the transformation of

√
(Ct) was made in order to obtain

normally distributed residuals. During the analysis we momentarily transform the concentrations
as

√
xMn and

√
xV . In Figure 3.6k and 3.6l the data and trend has been transformed back to

normal scale.

The long term trends were analysed as for the all-year data by smoothing splines with various
degree of freedom. When analyzing the winter data the mean and variance for SO−2

4 , H+ and
NH+

4 seem to have a large change in the mid 1990s. A decision was made to adapt a change
point model for these three constituents.

As we can see in Figure 3.6a-3.6c the dominant part of the values before the change point lies
above the overall mean and respectively most values lie below after the change point. A least
square method (see Section 2.5 ) was used to estimate the change point in the time series, where
we treat data as a linear process and the mean was used to asses the change point. After the
change point has been set we divide the vector in two parts and continue with the analysis as
before but with two separate vectors.

In the all year data it was known that a seasonal trend existed. For the winter data this is
not the case so each constituent had to be assessed individually. After the long term trend is
removed we look at the autocorrelation function of Ct −mt to see if there is seasonality in the
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data. The data should naturally be autocorrelated at around lag 17 for the Jan-May data and 13
for Jan-April, depending on how many weekly observations are fitted in the time span, if there
exists a seasonal trend.

We fit the ARMA-process as described in the all year analysis, with looking at the AICc value,
acf and pacf plots. As mentioned the natural settings of the transportations of the aerosols are
restricted and although we could limit the number of p and q in the ARMA(p,q)-process, this
is not necessary. All time series is fitted either an AR(1)-, Ma(1)- or ARMA(1,1)-process, which
all are well-fitted with white noise residuals.

3.4 Winter time series results

For the three constituents for which we used a change point model to optimize τ̂ the result is
very similar: for SO−2

4 and H+ the change point was estimated to the last observation of 1995
and for NH+

4 the last observation of 1994. That the change point lies in the last observation in
a year makes sense both from a statistical and an environmental point of view, since there is a
clear jump between the first of May until the first of January.

3.4.1 Long term trends

The results for the long term trends are displayed in Figure 3.6 as well as in Table 3.3. Most
trends look more or less the same as in Figure 3.2 but more refined, the large difference is the
change point models which have less smooth trends divided into two parts. The problem with
the BDL values seen in the all-year analysis is almost non-existent in the winter peak data,
especially for H+ and most metals.

The large decrease of Sulfate in the beginning of the 1990’s has been attributed to the fall of
the Soviet Union (Sharma et al., 2004). This is most likely the cause for the decrease of H+ and
NH+

4 as well (Bodhaine and Dutton, 1993). In Figure 3.2m black carbon has a steep decreasing
trend from the beginning of 1990 until 1998 when it levels out. This decreasing trend has also
been recognized as a consequence of the collapse of the Soviet Union economy (Sharma et al.,
2004).
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Figure 3.6: Long term trends-Winter
a)-d) based on Jan-May data, normal scale

e)-j) based on Jan-April, log scale
k)-o) based on Jan-April, normal scale
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3.4.2 Seasonality and AR/MA-process

From the analysis we can conclude that the constituents with a strong seasonal trend were SO−2
4 ,

NO−
3 , H

+ and NH+
4 , xV, xMn, GEM and O3. The metals and EBC have no significant month

to month trend from January to April, we can also hint this in Figure 3.3.

In Table 3.3 all detrended time series Yt are sufficiently fitted with an AR(1)-process, except
for black carbon where a MA(1)-process was a better fit and Mercury which is fitted with an
ARMA(1,1)-process. Since we are only using the 1st of January to 1st of April data for Ozone
and Mercury the variance is consistent, as we can see in Figure 3.3v and 3.3w it is in the shift
between March and April that the variance starts to blow up. Judging from diagnostics all
residuals can be considered white noise. We can conclude that using the all-year data will in
some cases lead to misconceptions on long term trends and underlying processes. When looking
at the all year data, the large part of low and BDL values will get to much influence especially
when transforming data to a logarithmic scale. When only looking at the peak season, clearer
trends and time series processes can be seen.

Constituent Long term trend Seasonal Cycle ARMA ARMA coefficients

R2 df R2 df R2 φ1 θ1

SO−2
4 (1980-1995) 0.04 4 0.17 3 0.17 0.47

SO−2
4 (1996-2013) 0.04 4 0.16 3 0.05 0.28

NO−
3 0.09 4 0.04 5 0.15 0.42

H+ (1980-1995) 0.03 4 0.15 3 0.15 0.44

H+ (1996-2013) 0.11 4 0.23 3 0.19 0.39

NH+
4 (1980-1994) 0.03 4 0.04 3 0.24 0.5

NH+
4 (1995-2013) 0.04 4 0.09 3 0.15 0.33

Zn 0.35 9 0 0.12 0.51

Pb 0.18 5 0 0.18 0.46

Fe 0.14 6 0 0.06 0.27

Ni 0.29 4 0 0.16 0.47

K+ 0.06 5 0 0.08 0.29

Cu 0.33 9 0 0.06 0.3

Vx 0.31 4 0.02 5 0.19 0.54

Mnx 0.13 4 0.01 5 0.22 0.51

EBC 0.36 4 0 0.05 0.27

Ozone 0.06 4 0.11 5 0.03 0.21

Mercury 0.32 4 0.24 6 0.05 0.71 −0.46

Table 3.3
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Chapter 4

PMF analysis

4.1 Analysis

We now proceed in the analysis and will look at the PMF analysis of the data set. All concen-
trations will be analysed except for Fe. It is only used in the time series analysis since Fe is
measured by ICP mass spectroscopy and is not total Fe but rather the acid soluble fraction of
total aerosol iron. Our main goal with the analysis is reducing the dimension of X as X=GF,
where X is a n×m matrix with n observed weeks and m aerosol constituents. Which in turn is
made to obtain interpretable sources of the measured factors.

4.1.1 Reproduction

The first step in the analysis is to recreate the PMF analysis made in Sirois and Barrie (1999).
The main problem is the lack of information on the analysis made, such as handling of missing
values and choice of error model. Recalling from Section 2.6.2, the main objective of PMF is
to minimize Q (2.6.2.1) where sij has to be estimated. Even though the PMF analysis is quite
robust the choice of S is vital in reconstructing the initial analysis. Unfortunately the way
of reconstructing the analysis without all information is trial and error which is a very time
consuming process. Throughout the PMF analysis the robust mode is used with default outlier
distance α = 4.

Handling of missing BDL observations

In accordance with Sirois and Barrie (1999) we set, for dij as the detection limit,

• xij = 2
3 · dij For BDL values

We wish to have errors so that small changes of the constant 2
3 will not change the outcome of

the analysis, therefore a sensitivity analysis by using 1
2 instead (the constant recommended by

Polissar et al. (1998)) is made to make sure no major changes are made to the outcome. As for
the errors we trust that using a fixed analysis error will compensate for the higher errors of the
BDL values. We come back to this in the next section.
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Almost all concentrations have some missing values and since all rows in the matrix X must be
complete we quickly realize that excluding all rows with one or more missing values will reduce
the data immensely. The option is to impute missing values which is also a method validated by
previous literature (Section 2.6.2). By looking at the number of missing values in each row we
choose a combination of the two. Since if a large amount of constituents is missing in a row that
observation has no, little, or a misleading contribution to the analysis.

We chose to impute values as suggested by Polissar et al. (1998). Namely, to substitute missing
values as the geometric mean, we use the seasonal geometric mean which are more accurate than
the overall. For each constituent the geometric mean aggregated by month is calculated and
imputed in the corresponding missing values. For the errors of the missing values we also follow
the same guidance and put the standard deviations four times higher for the imputed values. If
there is 6 or more missing values in one row we choose to discard that row. There are very few
rows with more than 5 missing values, e.g. in the reproduction only 3 out of 442, but if there
are, it is often one type of analysis method missing (INAA, ICP or IC) which might influence
the analysis.

Error model and normalization

In the previous analysis Sirois and Barrie (1999) the observations are assumed to be lognormally
distributed, an explicit error model is not mentioned but a reasonable assumption is that error
model -10 was used since it corresponds to lognormally distributed factors.

sij =
√
t2ij + 0.5 · v2ij · |yij |(|xij |+ |yij |)

What can be altered is T, V and the handling of missing values, since there are only guidelines
on the three and no clear restrictions, each sij can be altered infinitely. When estimating the
errors, T is often set as a small value such as the BDL, min or the least significant digit in the
measurement (Kim and Hopke; Lee et al., 1999; Polissar et al., 1998). In this error model it
functions as an imposed error: both as a measurement of analytical uncertainties and to control
the errors of small values. When T and V are both used, the uncertainty matrix S is a trade-off
between a fixed analysis error and the uncertainty in concentrations, so small values will have
a higher error in relation to size. Since we know the BDL values are small but not how small
they have a higher uncertainty than known values, which naturally will be implemented when
using T. Using T also helps the algorithm that minimize Q to converge since there is a risk of
iterating very small errors for values close to zero.

For this error model V is theoretically the logarithm of the geometric standard deviation al-
though this is usually set as a constant. After exploring using different values of vij for different
constituents we conclude that for the consistency of the analysis a constant is preferable and
instead using different values of tij for different chemical compounds. If both V and T change
with regards to constituent and/or season the analysis will not be comparable if e.g. using dif-
ferent periods of time. We also conduct the analysis using different values of T such as the BDL
and minimum for each constituent along with using different small constants between 1

4 and 1
times the values.

After a great deal of trials and almost as many errors we select to use

• tj = 1
2max(dj) for j = 1, ...,m
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• v = 0.4

which almost reproduces the analysis of 1980 to 1995 data by Sirois and Barrie (1999), some
tries have been closer to the values but in turn unstable with more local minimas of Q.

As in Sirois and Barrie (1999) the matrices G and F have been normalized by dividing and
multiplying the columns and the rows by the mean of respective column of G, so each normalized
column of G has mean 1. This will ensure that the results of the two analyses are comparable.

4.1.2 New analysis

For the extended analysis there are some limitations in how long the different concentrations are
measured. First of all Mg only has observations until May 1997 so in a PMF analysis beyond
1997 Mg has to be excluded. For the new constituents Black carbon, Ozone and Mercury there
is a lower limit where they can be included since measurements started in 1989, 1991 and 1995
respectively.

Due to the limitations, different time periods were analysed

• 1980-2007 without Mg
• 1995-2007 without Mg
• 1989-2007 without Mg with EBC
• 1995-2007 without Mg with EBC
• 1995-2007 without Mg with EBC, O3 and Hg

What the analyses from the different periods of time and with change of constituents shows is
that factors from the last report are more or less stable. The main change is the magnitude of
the factors, as a result this is expected from what we have seen from the time series analysis. A
good example of this is the factor named PHOTO-S in Sirois and Barrie (1999). When looking
at 1995-2007 the factor loadings are almost half the loading between 1980-1995, which are likely
driven by changing anthropogenic emissions of sulphur dioxide gas to the atmosphere.

So even though the results are interesting, and are validated by the time series analysis, they are
also very much what was expected from the analysis of Sirois and Barrie (1999). Thus a different
analysis was undertaken; comparing PMF analysis for the dark time of year before polar sunrise
to that for the light time of year after polar sunrise.

After complete darkness in January and February the sun rises in March at Alert and it quickly
gets lighter. Thus photochemistry of the atmosphere is switched on. In Figure 3.3 it can be
seen that many concentrations either drop or increase drastically when this occurs. There have
been studies of the change showing that the polar sunrise is an important factor of changes in
the composition of the lower Arctic atmosphere (Barrie et al., 1988). As this new analysis shows
interesting results and a clear change in factors and factor loadings, this will be our main focus
for the PMF analysis.

Error model

When reproducing the results we used the error model -10 which is used for lognormally dis-
tributed observations. When introducing Ozone and Mercury in the model this error model no
longer holds since they’re clearly not lognormally distributed. Instead we use EM -14 which
should more or less be the same model although our V is quite high. When looking at the value
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of Q when switching between the two error models Q is higher when using EM -10 than for EM
-14. An outcome of this is that the relative errors are lower for EM -14.

When doing sensitivity analysis, using EM-14, results in different solutions, so the error model
used doesn’t give a robust result. It seems the trade-off between the fixed error in T and the
observation based error in V is too heavily weighted towards the fixed errors. Two things can
be done: either raise the values of V or lower the values of T. Different approaches was made
and in the end we choose the error that produced the model which resembled the results gained
from using EM -10 together with same solution from sensitivity analysis of T. This was to
use the minimum BDL instead of using the maximum BDL values seen in Table 1.1 as for the
reproduction.

In the Light/Dark analysis we use,

• tj = 1
2min(dj) for j = 1, ...,m

• v = 0.4

and uij = 0 for errors

sij = tij + uij

√
max(|xij |, |yij |) + vij ·max(|xij |, |yij |)

The handling of missing values and BDL observations is the same as in the reproduction analysis.
There are two exceptions in the errors, since ozone and mercury are measured instrumentally
they do not have a detection limit so instead of using the minimum detection limit we use the
overall minimum instead. We could scale the errors and get the same solution. If we use e.g.

• tj = 1
5min(dj) for j = 1, ...,m

• v = 0.2

We will get the same solutions which talks to the robustness of the model.

4.1.3 Selection of factors

We base our choice of factors on the number chosen in the last analysis, which was ten factors, as
well as the interpretability and how physically realistic they are. We also look at diagnostics such
as the value of Q. We can also look a the scaled residuals which should be ranging between -2
and 2 without visual patterns. There are exceptions to this though, if concentrations are almost
completely explained by one factor this will show in much smaller residuals.

Ultimately the choice of model comes down to interpretability, so a choice of different factors
which all had pros and cons statistically was presented. These were looked over by Leonard Barrie
to see which solution was the most physically realistic. The changes in terms of concentration
from the last report is that Mg is removed and Ni, EBC, Ozone and Mercury have been added
to the analysis. Since the choice in 1999 was to use 10 factors and Mg was not its own factor the
same or a higher number of factors is expected to explain all concentrations. For the dark period
the choice of factors was between 10-13 and for the light period 11-14, since most factors are
more active when the polar sunrise occurs and processes such as ozone and mercury depletion
and aerosol Br production by photochemistry set in.

The choice was made to use 12 factors for the dark period and 13 for the light. For the light
period there where two similar solutions with minimas of Q close to each other, while for the
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dark period there was a solution with smallest minima of Q. So for the light period the most
interpretable solution was chosen.

4.2 Results

The results from our PMF analysis will be displayed as in Sirois and Barrie (1999). For the dark
and light period respectively we look at the factor loadings matrix F (corresponding to Table 5
in Sirois and Barrie (1999)), explained variance matrix (corr. to Table 4) and the factor scores
plotted (corr. to Figure 5 and 6). The factor loadings are assumed to be normally distributed.

As mentioned the factor loadings and scores are normalized so we can compare the loadings
between the different analyses. The factor names are chosen by L.A. Barrie, which are based on
the interpretation of the loadings, the same technique used in Sirois and Barrie (1999). For a
geoscientist the names of the loadings are interpretable. For example modified means that there
are other constituents loaded on the factor than the original primary, anthro is anthropogenic
i.e. man-made and photo stands for photochemical.

The factor ACID PHOTO-S, equivalent to PHOTO-S in the last report, is a factor mainly
associated with SO−2

4 and H+ but also NH+
4 , related to gas phase photochemical oxidation of

sulphur dioxide to sulphuric acid and absorption of ammonia gas to form NH+
4 . Recall that the

three concentrations which we used a change point model for are the main three components in
this factor. When looking at the factor loadings we can clearly see the results from the time
series analysis also here in the PMF analysis. When comparing the dark period to the light the
loadings of SO−2

4 , H+ and NH+
4 are about the double for the light period compared to the last

report. The loadings of SO−2
4 and H+ are about the double once more from the light period,

while NH+
4 only has decreased with about a fifth.

Of all factors BROMIDE is one of the strongest; both when using different errors, number of
factors and handling of BDL values there is always a factor driven by Br. From the tables we see
that during the dark period there is also some SO−2

4 and Na loaded onto BROMIDE in a higher
degree than in the light period. In the earlier analysis BROMIDE has nothing else loaded on it,
this can both depend on the solutions chosen but also that especially Na is more correlated with
Br in recent years.
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BROMIDE ACID PHOTO-S SEA-SALT LEAD ANTHRO MOD. SEA-SALT OIL COMB. SMELTER ZINC IODIDE SOIL BLACK CARBON MOD. MSA

SO−2
4 63.58 ±25.27 115.05 ±22.65 6.19 ±14.97 104.6 ±22.81 172.24 ±22.55 62.62 ±21.09 0.7 ±5.78 0.01 ±0.10 8.14 ±6.67 0.87 ±7.68 18.51 ±20.10 28.81 ±15.71

H+ 0.01 ±0.02 2.79 ±0.10 0 ±0.01 0 ±0.01 0.01 ±0.01 0 ±0.02 0.01 ±0.00 0.01 ±0.00 0 ±0.00 0 ±0.01 0.01 ±0.02 0.01 ±0.01

Br− 4.38 ±0.24 0.07 ±0.09 0.03 ±0.12 0.35 ±0.13 0.01 ±0.08 0.21 ±0.13 0 ±0.05 0.06 ±0.02 0.14 ±0.05 0 ±0.05 0 ±0.11 0.05 ±0.08

NH+
4 0.33 ±2.36 10.27 ±2.43 0.16 ±1.45 21.1 ±2.96 17.33 ±2.35 4.57 ±1.71 0.01 ±0.39 1.24 ±0.47 0.96 ±0.84 0.01 ±0.38 0.04 ±1.57 0.34 ±1.73

NO−
3 2.74 ±2.79 0.04 ±1.46 9.15 ±2.91 12.01 ±2.93 29.41 ±3.56 1.38 ±2.17 0.08 ±0.95 1.28 ±0.50 3.22 ±1.67 3.45 ±1.73 16.83 ±3.14 0.09 ±2.16

Na+ 18.73 ±7.66 1 ±2.93 167.61 ±13.43 10.48 ±5.33 50.02 ±8.15 1.35 ±3.26 0.56 ±3.43 1.43 ±0.61 1.97 ±2.18 0.46 ±3.53 3.9 ±5.60 1.18 ±4.11

Cl− 0.22 ±2.10 0.06 ±1.67 370.92 ±16.86 0.66 ±3.02 4.7 ±6.31 0.24 ±1.96 0.67 ±3.07 3.73 ±1.23 0.31 ±1.61 3.46 ±3.88 5.36 ±4.01 0.53 ±3.51

K+ 3.09 ±0.84 0.94 ±0.49 8.05 ±0.88 5.05 ±0.78 2.5 ±0.69 0.56 ±0.54 0.01 ±0.24 0.14 ±0.06 0 ±0.13 0 ±0.13 0.31 ±0.58 0.04 ±0.40

Pb 0.15 ±0.02 0 ±0.00 0 ±0.01 0.94 ±0.05 0 ±0.00 0 ±0.00 0.06 ±0.01 0.03 ±0.01 0 ±0.00 0.02 ±0.01 0 ±0.01 0 ±0.00

V 0 ±0.00 0 ±0.00 0 ±0.00 0.04 ±0.01 0 ±0.00 0.22 ±0.01 0 ±0.00 0.01 ±0.00 0 ±0.00 0 ±0.00 0 ±0.00 0 ±0.00

Zn 0.13 ±0.05 0.02 ±0.05 0 ±0.04 0.43 ±0.10 0 ±0.04 0.13 ±0.07 0.56 ±0.08 2.24 ±0.19 0 ±0.03 0.01 ±0.06 0.01 ±0.05 0.01 ±0.05

Cu 0.02 ±0.01 0 ±0.01 0.01 ±0.01 0.07 ±0.02 0.01 ±0.02 0 ±0.01 0.82 ±0.05 0.01 ±0.01 0 ±0.01 0 ±0.01 0 ±0.01 0 ±0.01

Ca2+ 2.22 ±1.16 0.01 ±0.54 7.24 ±1.59 0.01 ±0.29 0.02 ±0.77 1.43 ±0.69 0.01 ±0.26 1.61 ±0.59 1.13 ±0.73 51.43 ±2.80 0.04 ±0.92 0.01 ±0.47

Mn 0 ±0.00 0 ±0.01 0 ±0.01 0.26 ±0.03 0 ±0.00 0.08 ±0.03 0.01 ±0.00 0.03 ±0.01 0 ±0.00 0.38 ±0.03 0 ±0.01 0 ±0.01

I 0 ±0.00 0 ±0.01 0 ±0.01 0.03 ±0.01 0 ±0.01 0.02 ±0.01 0.01 ±0.00 0.01 ±0.00 0.26 ±0.02 0 ±0.01 0 ±0.01 0 ±0.01

Al 0.01 ±0.24 0.07 ±0.45 0.01 ±0.25 0 ±0.13 0 ±0.18 4.82 ±0.91 0.66 ±0.26 0.01 ±0.19 0.17 ±0.34 56 ±2.30 0 ±0.21 0 ±0.18

MSA 0 ±0.01 0.1 ±0.03 0 ±0.02 0 ±0.01 0 ±0.02 0 ±0.01 0 ±0.01 0.01 ±0.00 0 ±0.01 0 ±0.01 0 ±0.01 1.29 ±0.06

Ni 0 ±0.00 0 ±0.00 0 ±0.00 0.04 ±0.01 0.01 ±0.00 0.04 ±0.01 0 ±0.00 0.02 ±0.00 0 ±0.00 0.02 ±0.01 0.01 ±0.00 0 ±0.00

EBC 2.78 ±1.91 8.8 ±2.24 0.98 ±1.30 0.55 ±2.55 0.23 ±2.13 3.42 ±2.27 0.12 ±0.58 3.65 ±1.01 0.18 ±0.89 0.1 ±1.53 50.49 ±3.53 2.58 ±2.17

Ozone 0.04 ±1.22 3.48 ±1.30 0.09 ±1.14 0.03 ±0.92 14.3 ±1.94 0.02 ±0.59 0.35 ±0.58 1.41 ±0.38 2.27 ±1.00 2.23 ±0.84 2.68 ±1.57 8.94 ±1.81

Mercury 0.01 ±0.09 0.18 ±0.07 0.01 ±0.06 0 ±0.07 0.61 ±0.10 0 ±0.04 0.01 ±0.03 0.09 ±0.03 0.08 ±0.05 0.12 ±0.05 0.11 ±0.08 0.36 ±0.09

Estimated factor loadings and standard deviations

Table 4.1: Factor loadings of dark period

SEA-SALT and MODIFIED SEA-SALT, equivalent to MIXED PHOTO-S/SEA-SALT in Sirois
and Barrie (1999), are factors in both the dark and light period. From the time series analysis
we could see that Na+ has been stable throughout the measured period while Cl− has had minor
fluctuations. The main difference from the previous analysis is when we divide SEA-SALT into
a dark and a light period the loadings of Na and Cl− are much higher during the dark. The ratio
between them also seem to be slightly changed with a little bit more Na loaded onto the factor
during the dark period. For the MODIFIED SEA-SALT factor we can see another example of
the drop in SO−2

4 , where the loadings in Table 4.1 and 4.2 are less but the explained variance in
Table 4.3 and 4.4 is about the same as in corresponding tables in Sirois and Barrie (1999).
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ACID PHOTO-S BROMIDE MOD. SEA-SALT SEA-SALT NITRATE ZINC OIL COMB. SMELTER IODIDE-SOIL SOIL MOD. BC MSA PHOTO O3-HG

SO−2
4 179.08 ±40.76 91.86 ±37.25 242.71 ±43.31 65.36 ±27.98 25.69 ±18.48 72.36 ±41.22 55.69 ±37.73 5.11 ±6.76 0.12 ±5.35 0.57 ±17.82 60.44 ±43.36 59.72 ±23.42 0.06 ±2.51

H+ 4.68 ±0.20 0 ±0.03 0 ±0.04 0 ±0.03 0 ±0.02 0 ±0.03 0 ±0.02 0 ±0.02 0 ±0.01 0 ±0.01 0 ±0.04 0 ±0.02 0.1 ±0.02

Br− 1.15 ±0.36 9.81 ±0.73 0 ±0.12 0.02 ±0.32 0.21 ±0.34 0.02 ±0.39 0.11 ±0.26 0.01 ±0.08 0.36 ±0.23 0 ±0.03 0.01 ±0.34 0 ±0.07 0.83 ±0.24

NH+
4 15.83 ±4.52 0.16 ±3.69 32.58 ±5.12 0.09 ±2.50 13.4 ±3.88 9.81 ±4.64 9.24 ±5.51 0.06 ±0.87 0.03 ±1.40 0.73 ±3.00 0.07 ±3.13 1.8 ±2.32 5.52 ±2.66

NO−
3 0.22 ±2.22 0.37 ±4.02 15.73 ±4.84 11.8 ±3.79 50.72 ±4.73 0.4 ±3.29 0.11 ±4.06 0.87 ±0.63 0.06 ±1.93 6.92 ±3.05 10.7 ±4.33 3.28 ±1.95 0.02 ±0.84

Na+ 0.45 ±2.84 9.45 ±4.56 43.9 ±5.65 97.08 ±8.28 0.03 ±1.32 0.21 ±3.93 0.49 ±5.27 1.8 ±1.18 3.26 ±1.90 0.07 ±2.67 11.87 ±5.43 0.16 ±1.86 0.01 ±0.64

Cl− 0.02 ±0.69 0.13 ±1.87 0.06 ±2.05 149.55 ±7.70 0.35 ±1.81 0.1 ±1.30 0.04 ±1.76 1.38 ±0.61 0.2 ±1.33 0.79 ±1.29 0.06 ±1.94 0.05 ±0.75 3.94 ±1.54

K+ 1.26 ±0.58 0.62 ±0.62 4.95 ±0.78 5.58 ±0.77 0.26 ±0.27 1.93 ±0.81 0.94 ±0.82 0 ±0.09 0.02 ±0.25 0.02 ±0.40 2.39 ±0.81 0.01 ±0.25 0.05 ±0.12

Pb 0.1 ±0.03 0 ±0.02 0.1 ±0.03 0.02 ±0.02 0 ±0.01 0.39 ±0.05 0.08 ±0.03 0.06 ±0.02 0 ±0.01 0 ±0.01 0.11 ±0.04 0 ±0.01 0 ±0.01

V 0 ±0.01 0.02 ±0.01 0 ±0.01 0 ±0.01 0 ±0.01 0 ±0.01 0.18 ±0.02 0 ±0.00 0.03 ±0.01 0 ±0.00 0.01 ±0.01 0 ±0.00 0.01 ±0.01

Zn 0 ±0.05 0.05 ±0.08 0 ±0.08 0.01 ±0.05 0.23 ±0.07 1.05 ±0.13 0 ±0.09 1.03 ±0.14 0.01 ±0.04 0.06 ±0.06 0.03 ±0.07 0.04 ±0.04 0.01 ±0.03

Cu 0 ±0.01 0.01 ±0.01 0.02 ±0.02 0.02 ±0.01 0 ±0.02 0.01 ±0.02 0.03 ±0.03 1.34 ±0.09 0 ±0.01 0 ±0.02 0 ±0.02 0 ±0.01 0.01 ±0.01

Ca2+ 0.03 ±1.09 0.06 ±1.14 0.03 ±1.55 6.34 ±1.58 5.84 ±2.28 0.04 ±1.34 2.77 ±2.38 0.06 ±0.29 0.06 ±1.74 63.72 ±4.37 1.26 ±1.86 0.04 ±1.17 0.08 ±1.46

Mn 0 ±0.02 0 ±0.03 0.14 ±0.05 0.01 ±0.02 0.01 ±0.04 0.15 ±0.04 0 ±0.05 0 ±0.01 0.2 ±0.04 0.49 ±0.06 0 ±0.03 0.02 ±0.02 0.02 ±0.03

I 0.1 ±0.02 0 ±0.02 0 ±0.01 0.09 ±0.02 0.12 ±0.03 0 ±0.02 0 ±0.02 0.03 ±0.01 0.35 ±0.03 0 ±0.01 0.03 ±0.03 0 ±0.01 0 ±0.02

Al 0.07 ±1.29 0.06 ±1.76 0.12 ±2.23 0.05 ±1.14 0.03 ±1.07 1.22 ±1.81 0.03 ±1.38 0.04 ±0.35 24.51 ±2.95 76.98 ±4.96 0.03 ±1.43 0.67 ±1.71 0.05 ±1.42

MSA 0 ±0.07 0 ±0.09 0 ±0.07 0.01 ±0.08 0.01 ±0.12 0 ±0.04 0 ±0.10 0.01 ±0.03 0.01 ±0.12 0.01 ±0.15 0 ±0.09 8.02 ±0.36 0.01 ±0.06

Ni 0.01 ±0.01 0 ±0.00 0 ±0.01 0.01 ±0.00 0 ±0.01 0.02 ±0.01 0.08 ±0.01 0.01 ±0.00 0 ±0.00 0.01 ±0.01 0 ±0.01 0 ±0.00 0 ±0.00

EBC 3.47 ±1.72 3.14 ±1.90 0.1 ±2.06 0.19 ±1.75 0.58 ±1.49 2.96 ±2.76 0.08 ±2.29 0.37 ±0.39 0.15 ±1.02 0.07 ±1.18 37.81 ±3.19 0.03 ±0.90 4.78 ±1.55

Ozone 0.08 ±0.87 0.01 ±0.60 2.07 ±1.31 0.01 ±0.53 0.01 ±0.51 0.06 ±1.14 0.05 ±1.57 0.03 ±0.35 0.04 ±0.65 1.68 ±1.03 5.49 ±1.44 0.06 ±0.95 18.62 ±1.53

Mercury 0.05 ±0.06 0 ±0.06 0.01 ±0.08 0 ±0.04 0.07 ±0.08 0 ±0.06 0 ±0.08 0.01 ±0.02 0.01 ±0.05 0.09 ±0.06 0.18 ±0.08 0.04 ±0.06 0.75 ±0.09

Estimated factor loadings and standard deviations

Table 4.2: Factor loadings of light period

By introducing Ni into the analysis we see that a new factor has been formed together with V,
called OIL COMBUSTION, this factor is present both in the dark and light period. Whereas V
was mostly associated with LEAD ANTHRO (ANTHRO-S in the previous analysis) it is mainly
loaded on OIL COMBUSTION in this analysis. With the new factor, V now has less unexplained
variance in both Table 4.3 (6.1%) and 4.4 (4%) compared to 11% in Sirois and Barrie (1999).
In Lee et al. (1999) a PMF analysis of pollution in Hong Kong was made with similar chemical
elements/compounds where Ni and V were included and together formed their own component
linked to Oil burning.

When looking at Table 4.1 and 4.2 we also notice that OIL COMBUSTION during the light
period is only loaded with V, Ni and some Pb. Compared to the dark where there are small
portions of mostly soil associated metals such as Al, Mn and Ca2+ but also some Br−, SO2+

4 and
NH+

4 loaded on the factor.

Another factor that is present during both the dark and light as well as in the last analysis is
MSA, originating from the atmospheric oxidation of the marine biogenic gas dimethyl sulphide.
However, the loadings are much lower in the dark than the light due to less ocean productivity
in winter than in spring. During the dark period O3 and Hg are loaded on this factor (Modified
MSA) and the amount loaded is also much less than in the light period. This can also be seen
in the seasonality plot in Figure 3.3r where MSA is low during the dark part of the year and as
soon as the sun rises it increases with a peak in the beginning of June.

SOIL is another important source of aerosol constituents, in all analyses it is associated with
Al, Ca+ and Mn. In the previous report V was also loaded on the factor but as we could see
it is now mostly explained by the OIL COMBUSTION. Although V and Al are connected to
each other in both analyses; during the light period V and Al are both loaded on IODINE-SOIL,
while during the dark period they’re both loaded on LEAD ANTHRO.

Another constituent connected with Aluminum is IODINE. In the previous analysis there is a
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small loading of Al on IODINE. During the light period it is associated with Al as well as some
other constituents so it is named IODINE-SOIL while during the dark period IODINE is mostly
loaded with I, except for some very small loadings of Br− and EBC. If we look at Table 4.3 and
4.4 we can see that during the dark winter I is most noticeably explained by one factor while
during the spring light period it is more spread out.

ACID LEAD MODIFIED OIL BLACK MODIFIED Unexplained

BROMIDE PHOTO-S SEA-SALT ANTHRO SEA-SALT COMBUSTION SMELTER ZINC IODIDE SOIL CARBON MSA variance

SO2−
4 9.1% 14.8% 1.2% 13.1% 30.7% 8.9% 0.2% 0% 1.7% 0.3% 3% 5.5% 11.5%

H+ 1.1% 84.4% 0.7% 0.2% 1.1% 0.6% 1% 2.7% 0.8% 1.6% 1.1% 1.3% 3.4%

Br− 70.6% 1.8% 0.7% 7.8% 0.2% 5.1% 0.1% 2.5% 4.8% 0.1% 0.1% 1.9% 4.3%

NH+
4 0.5% 13.6% 0.3% 24.9% 32% 6.7% 0% 2.4% 2% 0% 0.1% 0.7% 16.8%

NO−
3 2.8% 0% 8.9% 12% 32.5% 1.4% 0.1% 2% 3.9% 4.3% 17.2% 0.1% 14.7%

Na+ 7.7% 0.8% 46.9% 5.6% 22.4% 0.7% 0.3% 1.5% 1.2% 0.3% 2% 0.7% 9.8%

Cl− 0.1% 0.1% 81.5% 0.5% 2.5% 0.2% 0.3% 2.8% 0.3% 1.8% 3.3% 0.4% 6.4%

K+ 12.5% 5% 31% 20.2% 13.8% 2.6% 0.1% 1.4% 0% 0% 1.7% 0.3% 11.4%

Pb 17.3% 0% 0% 59.5% 0% 0% 6% 3.9% 0% 4.2% 0% 0% 9%

V 0.2% 0.1% 0% 17.5% 0.1% 67.4% 0.1% 4.4% 0% 0% 0.1% 4% 6.1%

Zn 7.2% 1% 0.3% 16.6% 0.1% 6% 17.5% 45.9% 0.2% 0.6% 0.5% 0.6% 3.7%

Cu 4.3% 0.3% 3.5% 13.6% 3.2% 0.4% 69.1% 2.1% 0.4% 0.9% 0.5% 0.4% 1.3%

Ca2+ 5.2% 0.1% 12.9% 0% 0% 3% 0% 3% 2.7% 58.4% 0.1% 0% 14.6%

Mn 0% 0% 0% 30.3% 0% 8.5% 1.9% 3.5% 0% 42.6% 0% 0.7% 12.4%

I 0.1% 0.5% 0.5% 11.2% 0.4% 5.8% 3.1% 2.5% 71.2% 0.7% 1.2% 1.6% 1.3%

Al 0% 0.4% 0% 0% 0% 10.2% 2.4% 0% 0.6% 75.8% 0% 0% 10.4%

MSA 0% 7.8% 0.1% 0% 0.1% 0.1% 0.1% 2.4% 0% 0% 0% 85% 4.4%

Ni 2.9% 2.5% 0.1% 21.5% 8.2% 19.4% 0.3% 8.2% 0.7% 12.6% 4.7% 0% 19%

EBC 4.4% 12.5% 2% 0.7% 0.5% 4.6% 0.2% 4.9% 0.3% 0.2% 59.5% 4.7% 5.5%

Ozone 0.1% 8.7% 0.2% 0.1% 34.2% 0% 0.8% 3.5% 5.6% 5.8% 6.3% 21.6% 13%

Mercury 0.8% 9.8% 0.4% 0.1% 33.5% 0.1% 0.8% 4.4% 4.7% 6.5% 6.1% 20.4% 12.5%

Total Variance of each Aerosol constituent explained by the factors

Table 4.3: Explained variance- Dark period

The nineteen aerosols constituents and the two gases are well explained by the model with all
having less than 20% unexplained variance. Overall it seems that the model for the light period
has less unexplained variance for most concentrations, a small part is explained by the extra
factor. Probably the largest part is due to the fact that when the sun rises most aerosols and
especially O3 and Hg have a much clearer trend than during the dark period. An example of this
is O3 and Hg which during the dark period is spread out among several factors but during the
light is collected into one. This reflects the strong photochemistry and simultaneous depletion of
ozone and mercury in the light rather than the dark period. Even if we increase the number of
factors during the dark period they do not collect themselves as a physically realistic factor. The
component which has the most unexplained variance is Ni. It might be associated with other
metals not included in the analysis or be related to analytical uncertainty. Nevertheless, as we
could see it helps with the explanation of V through OIL COMBUSTION.
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ACID MOD. OIL IODIDE- MODIFIED PHOTO- Unexplained

PHOTO-S BROMIDE SEA-SALT SEA-SALT NITRATE ZINC COMBUSTION SMELTER SOIL SOIL BLACK CARBON MSA O3-HG variance

SO2−
4 16.8% 9.6% 23.3% 6.6% 4.1% 6.7% 6.4% 0.7% 0% 0.1% 6.3% 8.6% 0% 10.6%

H+ 82.3% 0.2% 0.3% 0.2% 0.4% 0.1% 0.1% 0.1% 0.7% 0.1% 0.1% 0.6% 10.6% 4.1%

Br− 10% 67.2% 0% 0.2% 2.6% 0.2% 1.3% 0.1% 4.3% 0% 0.1% 0% 12.1% 2%

NH+
4 14.5% 0.2% 28.8% 0.1% 15.9% 8.8% 9% 0.1% 0% 0.9% 0.1% 2.2% 7.2% 12.3%

NO−
3 0.3% 0.4% 15.5% 8.9% 45% 0.4% 0.1% 1.1% 0.1% 6.9% 10.8% 3.7% 0% 6.9%

Na+ 0.4% 6.8% 30.5% 36.4% 0% 0.2% 0.4% 1.4% 3.8% 0.1% 8.3% 0.2% 0% 11.4%

Cl− 0.1% 0.2% 0.1% 74.6% 0.8% 0.2% 0.1% 2.3% 0.5% 2% 0.1% 0.1% 11.8% 7.1%

K+ 7.3% 3.6% 26.3% 22.2% 2.3% 9.3% 5.9% 0% 0.2% 0.2% 12.5% 0.1% 0.7% 9.4%

Pb 10.9% 0.1% 12.8% 2.4% 0.1% 33.7% 10.5% 5.1% 0.1% 0.1% 12.8% 0.2% 0.9% 10.5%

V 0.4% 9.2% 0.1% 0.1% 0.1% 0.9% 55.8% 1.4% 12.9% 0% 6.3% 0.1% 5.3% 7.3%

Zn 0.2% 2.5% 0.2% 0.4% 15.2% 39.4% 0.2% 19.5% 1% 3.9% 1.6% 3.4% 0.5% 12.1%

Cu 1.5% 1.8% 5.5% 3.8% 1.2% 1.4% 7.7% 67.2% 1.3% 1.2% 0.8% 0.8% 2.5% 3.3%

Ca2+ 0.1% 0.1% 0.1% 10.7% 11.6% 0.1% 4.4% 0.1% 0.1% 59.9% 2.7% 0.1% 0.2% 9.9%

Mn 0.2% 0.5% 14.3% 0.8% 1.2% 15.3% 0.2% 0% 17.6% 33.9% 0.6% 1.8% 2.6% 11%

I 15.5% 0.1% 0% 11.5% 18% 0.1% 0.2% 3.9% 37.2% 0.1% 4.6% 0.1% 0.3% 8.4%

Al 0.2% 0.1% 0.2% 0.1% 0.1% 2.3% 0% 0.1% 26.7% 61.8% 0.1% 1.2% 0.1% 7%

MSA 0.1% 0.1% 0.1% 0.2% 0.2% 0% 0.1% 0.4% 0.3% 0.1% 0.1% 96.6% 0.3% 1.3%

Ni 7% 0.6% 0.7% 7.9% 4.1% 10.3% 39.7% 2.9% 2.9% 7.9% 0.4% 3.8% 0% 11.9%

EBC 6.6% 6.9% 0.2% 0.4% 1.7% 5.3% 0.2% 1% 0.5% 0.2% 58.9% 0.1% 13.8% 4.3%

Ozone 0.3% 0.1% 8.5% 0.1% 0% 0.2% 0.2% 0.1% 0.2% 7% 18.8% 0.2% 59% 5.2%

Mercury 3.8% 0.2% 0.6% 0.1% 5.4% 0.1% 0.2% 0.6% 0.9% 7.1% 13.7% 3% 55.2% 9%

Total Variance of each Aerosol constituent explained by the factors

Table 4.4: Explained variance- Light period
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Figure 4.1: Factor Scores, Dark

The metal Zn is highly explained by the two factors ZINC and SMELTER. In Figure 4.1 and
4.2 we can see the factor scores plotted. During the dark, the two factors both share the same
peaks while during the light, ZINC doesn’t show the same peak as SMELTER does.

When comparing the factor score plots for the dark/light analysis with the factor scores plotted
in Figure 7 and 8 in Sirois and Barrie (1999), the scores overall have a lot less seasonality due
to the division of dark and light. Long term trends are present in many of the factors. Since a
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number of factors are dominated by a single constituent such as MSA, ZINC and BROMIDE we
could also examine the time series of the individual constituent concentrations.
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Figure 4.2: Factor Scores, Light

There is a lot to be learned from the factor scores plots, one of the interesting things is the
relationship between the factor O3-HG and Br. From the time series analysis as well as the PMF
analysis we could see that Ozone and Hg deplete as soon as the sun starts to rise. In Figure 4.3
the factor scores of PHOTO O3-HG are plotted against both the actual values of Bromide and
the factor scores of BROMIDE. In a dimension reduction model allowing negative values, the
concentrations of O3, Hg and Br would most likely have formed a single component. In a PMF
model this cannot happen since all loadings are positive.

From the plots we can both see the negative correlation of O3-HG and Br but also that Br almost
solely is explained by BROMIDE. By Table 4.2 the loading of Br on BROMIDE is 9.81, we can
see this in the plot since the factor scores are a bit less than a tenth of the actual values.
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Figure 4.3: Scatter plot showing relationship between Br concentrations, BROMIDE Factor
scores and the Photo O3-HG factor score.

In Table 4.5 and 4.6 two correlation tests are made which show a negative correlation between
PHOTO O3-HG and Br. This again confirms the conclusions in Barrie et al. (1988) regarding
the negative correlation between ozone and bromide. The correlation is slightly stronger between
the two factors than between the PHOTO O3-HG and the actual values but the difference is so
small no conclusions can be drawn by the difference.

t cor df p.value
Pearson’s test -5.04 -0.38 149 0.00

Table 4.5: Pearson’s χ2 test for correlation between PHOTO O3-Hg and Br

t cor df p.value
Pearson’s test -5.69 -0.42 149 0.00

Table 4.6: Pearson’s χ2 test for correlation between PHOTO O3-Hg and BROMIDE
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Chapter 5

Discussion

The primary aim of this analysis was to continue the work done in Sirois and Barrie (1999), where
two separate but connected analyses were made. Namely, a time series analysis and a Positive
Matrix Factorization (PMF). As we explored data and looked at results from the reproduction of
the 1980-1995 analysis in Sirois and Barrie (1999), we decided to change the analyses methods.
For the time series analysis the main change was to use smoothing splines instead of polynomial,
sine and/or cosine curves. For the PMF analysis we have made two different factorizations,
one for data during winter time when the sun never rises and one period with sunlight. The
decision of changing the way we estimate the trend curves was based on explaining the curves as
physically realistic as possible, without overfitting the curves. The change of the PMF analysis
was motivated by looking at the results we gained, which was what we could expect from the last
report and the time series analysis. Therefore, a division of the data between the dark winter
and light spring time was made which gave interesting results.

The time series analysis shows long term trends for all aerosol constituents and gases except
for Na where no significant trend was found. The long term trends of the aerosol constituents
and the gases analysed indicate changes in the arctic atmospheric chemical environment. We
could see that some concentrations have dropped drastically, some have increased and some have
fluctuated throughout the time period. One of the interesting things we found in the analysis
was the change point models associated with the fall of the Soviet Union.

In order to correctly interpret the trends we need to have more information about the origin of
the aerosols and independently gathered information on arctic haze. The time series analysis
made in this thesis can be continued by looking at transport indexes and analyzing the cause of
the trends which we only have discussed briefly.

The main motivation for using PMF instead of other dimension reduction techniques, e.g. PCA,
is the non-negativity restraint and with that the ability to model physically realistic sources.
Using positive matrix factorization has both its advantages and disadvantages. Compared to
other dimension reduction techniques it is a very flexible modelling tool which allows us to analyse
data with missing and/or BDL values very easily, compared to other analysis techniques.

In the PMF analysis we have both reproduced the analysis from Sirois and Barrie (1999) and
factorized data for varying period of time, constituents, different errors etc. Overall, PMF is
robust but there are numerous variables and constants that can be changed. The errors are the
main change in different models, which can be altered infinitely if the true errors are unknown.
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During the work on this data set we learned that an important part is to find a middle way
of modelling the errors sufficiently uniformly so that factorizations of different time periods are
comparable.

The main disadvantage of using PMF and the PMF2 program is the sometimes lack of theoretical
background. Paatero writes

”it is essential to stress that the technical details of the [PMF] algorithm should in
fact not concern the user of PMF. In the case of PMF it is possible to separate
the question ’What is computed? i.e. which mathematical problem is solved by the
program?’ from the question of how it is computed....The second aspect should only
be important for the application if it is suspected that the program does not in fact do
what it is supposed to do” (Paatero, 1997).

It often seems that by Paatero, PMF and especially PMF2 is constructed so that the user should
not have to concern themselves with too many details of the computation, e.g. the specification of
the algorithm used is sometimes scarce and the different error models are never derived properly.

Positive matrix factorization is a great tool to understand and explain sources without dealing
with issues like scaling, since PMF is invariant if different measurements are used from one
column (or row) to another. The two most common implementations of the method are the
licensed program PMF2 used in this thesis and EPA’s (US Environmental Protection Agency)
free program PMF 5.0. While PMF2 offers more options with the choice of iterating errors,
PMF 5.0 is a far more user friendly since PMF2 is implemented in MS-DOS using an .ini file to
control options. Since the algorithm and the iteration process is fairly simple it could easily be
implemented as a R or a MATLAB program.

The work on this data set has been interesting and the amount of information that can be gained
is rich. The long time span of the data set is quite unique and the conclusions we have come to
are only a small part of what can be explored. In the scope of this analysis we have looked at
the data set both as a whole and at each separate constituent but there is still much that can be
analysed. Unfortunately there are some obstacles with the data which complicates the analysis,
such as the changing Over Detection Limit (ODL) and missing values. These problems might
have a better solution than the uniform one that has been used in this analysis.

Despite the disadvantages of PMF, there is a huge amount of information we can extract by
looking at sources in a receptor model setting using PMF. We have only looked at a small part
of what could be analysed, as in the previous report we could look at time series for each factor
score plotted in Figure 4.1 and 4.2 and use different combinations of concentrations for different
purposes. We could look closer at correlations between different components as with PHOTO
O3-Hg and Br, analyse trends on a smaller scale and look at different dimension reductions.

When using positive matrix factorization we could see that it is essential to know both statis-
tical theory and a considerable knowledge in the data that is to be analysed. Positive matrix
factorization is an example of a method which is a compromise between statistical theory and
interpretability. During the work on this thesis I have worked closely with Leonard Barrie and
Sangeeta Sharma who have been interpreting data from a geoscientific view point. An important
part of the work together has been to translate the statistical analysis to physically realistic and
understandable results from a geoscience point of view.
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