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Abstract

In this thesis, we consider the estimation of the weights of the

minimum variance portfolio from a Bayesian point of view. Standard

methods, which are based on determining sample moments, contain

estimation errors which are not taken into consideration in the invest-

ment process. This often leads to a false asset allocation and might

cause extreme risks to the investor. The Bayesian framework accounts

for those errors by treating the parameters as random variables. Four

different prior models will be used and compared through their pos-

terior distributions and the point estimates of their posterior means.

A simulation study is performed in order to test the point estimates

of the posterior means through the L2 deviations from the means of

a true model. The data are generated from the multivariate normal

distribution. In an empirical study we analyze the posterior distribu-

tions of the weights under all considered models through a domestic

portfolio. Given the posterior distributions we can make probabilis-

tic statements for the weights by creating the credible intervals and

calculating posterior probabilities.
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Chapter 1

Introduction

When Harry Markowitz set the fundamentals of the Modern Portfolio Theory (see
Markowitz 1952), above all, he stressed the importance of portfolio diversification.
His methodology gave us the tools on how to derive both the set of portfolios that
have the minimum possible variance (minimum risk) and those sets that lie on the
efficient frontier, e.g for a given level of risk there is a certain value of expected
return. Strictly speaking, those ideas constitute an integral part of what is called as
Mean-Variance Analysis which assumes that an investor, when choosing a portfolio,
only cares about expected return and risk. Furthermore, an investor is assumed
to be risk averse meaning that his goal is to minimize the variance of his portfolio
return for a higher expected return.

However, the Mean Variance framework is too generic since everything should
work well if only we ”knew” exactly the parameters (mean and covariance matrix)
of the distributions of asset returns. In practice, this information is not available,
since future data can be very different from what we have observed, and by replacing
the unknown parameters with their estimates, this is where estimation risk comes
into play.

Michaud (1989) states that securities with extreme expected returns, correlations
and variances are more likely to be either overestimated or underestimated in the
classical Mean Variance optimization procedure (”estimation-error maximizers”).
In addition, Stein (1956) showed that the sample mean is not a good estimator for
n-variate problems when n > 2. Following Steins’ statement, Merton (1980) showed
that estimates of covariances from historical data are more accurate over time than
estimates of the expected returns. Chopra et al. (1993) conducted three tests by
slightly modifying the true parameters (means and variances) and found that errors
in means are approximately 11 times more important than errors in variances.

As multiple sources of financial literature have discussed and stressed the im-
portance of estimation risk, several approaches have been used to account for the
problem. Portfolio resampling is one of them. Jorion (1992) performed a simula-
tion study in which he calculated the sample means and sample covariance matrix
from historical data and based on these estimates he simulated numerous samples
from multivariate normal distribution. Those samples were used to represent ob-
served data and by calculating again the sample means and covariance matrices he
constructed multiple sets of means and covariance matrices and, thus, created a
distribution of optimal weights.

There are also robust approaches to portfolio selection in which the utility func-
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Chapter 1. Introduction 7

tion was formed in such a way to incorporate explicitly estimation risk (see Goldfarb
et al. 2003) in the optimization process.

On the other hand, the Bayesian approach accounts for estimation risk since the
unknown parameters are treated as random variables. A prior belief for the unknown
parameters blended with the observed data produce an entire distribution. From
a decision-making point of view, it is not unlikely that an investor has a specific
belief about the optimal portfolio allocation. In addition, equally weighted portfolio
seems to have good out-of-sample performance (see DeMiguel et al. 2009).

This paper focuses on the estimation of a special case of the mean-variance opti-
mal portfolios, known as the Minimum Variance Portfolio. The Bayesian framework
and the analytic derivations of the posterior distributions of the weights from Bod-
nar et al. (2017) are used. In total, four different models are analyzed. In chapter
2, a general background about some important concepts in portfolio theory is pre-
sented. At the end of the chapter, MVP derivation is provided based on the classical
mean-variance optimization problem. In chapter 3, we go through some aspects of
Bayesian estimation and introduce the priors that will be used throughout the paper.
Chapter 4 serves as a simulation study in order to test the point estimates of the
posterior means of the weights under all considered priors through the L2 loss func-
tion. The data used to perform the study were simulated from a conjugate and an
informative prior. In chapter 5, a portfolio consisted of five stocks that are traded in
the Stockholm stock exchange is used and analyzed within the Bayesian framework.
Through the simulation study, the aim of this paper is to test the performance of the
mean estimates of the posterior distributions under different assumptions. Within
the empirical study, the goal is to check how much information we manage to in-
corporate through the informative priors, which assume specific prior beliefs about
the optimal allocation or based on historical estimates, compared to uninformative
priors, which only assume some vague information about the parameters and let,
mainly, the observed data affect the posterior distribution (see Rachev et al. 2008
p.102-103 and Carlin et al. 2008 ch.2.2.3).



Chapter 2

Optimal Portfolio Selection

2.1 Portfolio definition

What is a portfolio?

• It is a distribution of some initial capital across a given set of financial assets
or/and bonds.

More formally, a portfolio of k-securities is a vector
(
x1(t), x2(t), . . . , xk(t)

)
indicat-

ing the number of shares of the respective security held by an investor at time t.
The value of such a portfolio at time t is

V (t) = x1(t) · S1(t) + x2(t) · S2(t) + · · ·+ xk · Sk(t)

where Si(t) is the price of the i-th security at time t.

2.2 Portfolio weights

A portfolio constructed from k different securities can be described in terms of their
weights,

ωi =
xiSi(0)

V (0)
, i = 1, 2, . . . , k

where xi is the number of shares of the i-th security, Si(0) is the price of security
i at time t = 0, and V (0) is the value of the portfolio at time t = 0 or in other
words, the initial capital invested in the portfolio. Note that the sum of the weights
is always 1 since

ω1 + ω2 + · · ·+ ωk =
x1S1(0)

V (0)
+
x2S2(0)

V (0)
+ · · ·+ xkSk(0)

V (0)
=
V (0)

V (0)
= 1

In matrix notation, it can be written as

ωT1 = 1

where 1 = [11 · · · 1]T is a one-column matrix with all k entries equal to 1 and
ω = [ω1 ω2 · · · ωk]

T . Observe that weights of the portfolio can be either greater
than 1 or negative if short sales are allowed. A short position or, in other words,
a negative weight means that you borrow a risky asset and sell it today, but you

8



Chapter 2. Optimal Portfolio Selection 9

then have to purchase back the asset and return it to the initial lender. Hence, you
anticipate a decrease in the value of the borrowed stock in order to make profit when
you close the short position. You can, also, borrow a risk-free asset (e.g money) and
invest more capital in risky-assets but you then, as well, have to return back the
capital together with the aggregated interest rate.

2.3 Simple and logarithmic return

Let S(t) be the price of an asset (e.g stock, bond) at time t and S(t − 1) be the
respective price at time t− 1. The simple net return is defined as

R(t) =
S(t)− S(t− 1)

S(t− 1)
.

Rewriting R(t) = S(t)
S(t−1)

− 1, the simple gross return is given by

1 +R(t) =
S(t)

S(t− 1)
.

In finance, it is very usual to calculate the logarithmic/continuously com-
pounded return which is given by

r(t) = ln
(
1 +R(t)

)
= ln

(
S(t)

S(t− 1)

)
.

Both kinds of returns have its pros and cons which are analyzed in detail by Hudson
et al. (2010). In this paper, we will work with the logarithmic returns.

2.4 Risk and Expected Return

Suppose that the simple returns of the k assets at time t are R1(t), R2(t), . . . , Rk(t).
The return of this portfolio is given by

Rp(t) = ω1R1(t) + ω2R2(t) + · · ·+ ωkRk(t) =
k∑
i=1

ωi ·Ri(t).

Of course, the logarithmic return of a portfolio is not a linear function of the log
returns of its components and the previous equality only holds approximately, i.e
rp(t) ≈ Rp(t) (see Zivot 2014, p. 19). The expected return is given by

µp = E
(
Rp(t)

)
= E

( k∑
i=1

ωi ·Ri(t)
)

=
k∑
i=1

ωiE
(
Ri(t)

)
=

k∑
i=1

ωiµi = ωTm

where µi = E
(
Ri(t)

)
is the expected return of asset i at time t and m contains all

the expected returns arranged into a one-column matrix as
m = [µ1 µ2 . . . µk]

T .
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The risk of such a portfolio can be quantified by computing the variance of the
portfolio return.

σ2
p = Var(Rp) = Var

( k∑
i=1

ωi ·Ri(t)

)
= Cov

( k∑
i=1

ωi ·Ri(t),
k∑
j=1

ωj ·Rj(t)

)

=
k∑
i=1

k∑
j=1

ωiωjCov
(
Ri(t), Rj(t)

)
= ωTΣω

where Σ is the k × k covariance matrix with entries σij = Cov(Ri, Rj).

Σ =


σ11 σ12 . . . σ1k

σ21 σ22 . . . σ2k
...

...
. . .

...
σk1 σk2 . . . σkk


Note that the diagonal elements of Σ, σii = Cov(Ri, Ri) = Var(Ri) for i = 1, 2, . . . , k
are just the variances of returns.

2.5 Minimum Variance Portfolio

The Minimum Variance Portfolio has the smallest variance among all the feasible
portfolios. A cautious investor will choose such a portfolio against a portfolio which
gives a higher expected return but with increased risk.

2.5.1 Finding the MVP

To find this portfolio we have to solve the following minimization problem

minimize
(ω1,...,ωk)

σ2
p =

k∑
i=1

ω2
i VarRi + 2 ·

k∑
i=1

k∑
j=i+1

ωiωjCov(Ri, Rj)

such that ω1 + ω2 + · · ·+ ωk = 1

The Lagrange function for this problem is

L(ω1, ω2, . . . , ωk, λ) =
k∑
i=1

ω2
i VarRi + 2 ·

k∑
i=1

k∑
j=i+1

ωiωjCov(Ri, Rj)

+ λ(ω1 + ω2 + · · ·+ ωk − 1)
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and the first order conditions for a minimum are

∂L

∂ω1

= 2ω1VarR1 + 2 ·
k∑
i 6=1

ωiCov(R1, Ri) + λ = 0,

∂L

∂ω2

= 2ω2VarR2 + 2 ·
k∑
i 6=2

ωiCov(R2, Ri) + λ = 0,

...

∂L

∂ωk
= 2ωkVarRk + 2 ·

k−1∑
i=1

ωiCov(Rk, Ri) + λ = 0

∂L

∂λ
= ω1 + ω2 + · · ·+ ωk − 1 = 0

The minimization problem can be expressed, using matrix notation, in the following
form

minimize
(ω1,...,ωk)

ωTΣω such that ωT1 = 1 (2.1)

The Lagrange function is now given by

L(ω, λ) = ωTΣω − λ(ωT1− 1)

The first order conditions for the minimization problem (2.1) can be written as

∂L(ω, λ)

∂ωT
= 2 ·Σω + λ · 1 = 0 (2.2)

∂L(ω, λ)

∂λ
= ωT1− 1 = 0 (2.3)

Using (2.2), we solve with respect to ω and get:

ω = −1

2
· λ ·Σ−11 (2.4)

Next, we combine (2.3), (2.4) and solve with respect to λ.

1 = 1Tω = −1

2
· λ · 1TΣ−11 =⇒

λ = − 2

1TΣ−11

Substituting the value of λ to (2.2) completes the solution to the problem and gives
us the weights of the minimum variance portfolio as follows :

2 ·Σω = −λ · 1 =
2 · 1

1TΣ−11
=⇒

ωMVP =
Σ−11

1TΣ−11
(2.5)

The expected return µMVP and the risk σ2
MVP of the minimum variance portfolio are

given as

µMVP = ωTm =

(
Σ−11

1TΣ−11

)T
·m =

1T
(
Σ−1

)T
m

1TΣ−11
=

1TΣ−1m

1TΣ−11
(2.6)
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and

σ2
MVP = ωTΣω =

(
Σ−11

1TΣ−11

)T
·

I︷ ︸︸ ︷
Σ ·Σ−1 1

1TΣ−11
=

1T
(
Σ−1

)T
1TΣ−11

· I · 1
1TΣ−11

=
�����
1TΣ−11

�����
1TΣ−11 · 1TΣ−11

=
1

1TΣ−11
. (2.7)

Note that I stands for the identity matrix which is a k×k square matrix with ones
on the main diagonal and zeros everywhere else, i.e

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .



Chapter 3

Estimation of Optimal Portfolio

Following the formulation of the minimum variance portfolio, the solution of the
optimization problem in (2.5) needs to be exploited. In addition, the lowest vari-
ance bound σ2

MVP(see equation (2.7)) can only be implemented if we can, somehow,
calculate the covariance matrix Σ of the stock returns. This has been the main topic
of many researches and the question of which technique produces the best out-of
sample portfolio returns is rather difficult to answer. Frequentists argue that given
a large amount of data, the mean vector of returns µ and the covariance matrix Σ
can be estimated by their sample counterparts. On the other hand, Bayesians treat
data as fixed and the parameters of question as random quantities. In what follows,
we will present the Frequentist approach regarding the estimation of expected return
and risk and then we will introduce the Bayesian framework suggesting different
priors in order to model the asset returns and the weights.

3.1 Frequentist approach

In Frequentist inference, the likelihood function plays a central role. Given the data,
our goal is to maximize the likelihood function, e.g find the value of the parameter
for which the likelihood function is maximal. This procedure is called Maximum
Likelihood Estimation (MLE) and results in finding point estimates together with the
respective standard error (or covariance matrix) with which we can create confidence
intervals. In portfolio theory, the most popular choice for modelling the properties
of asset returns is the normal distribution. Suppose that there are k assets and
rt = (r1t, r2t, . . . , rkt) are the returns at time t for t = 1, 2, . . . , n. The returns are
assumed to have multivariate normal distribution N (µ,Σ) where µ is a k×1 vector
and Σ is a k × k matrix. The maximum likelihood estimators of the multivariate
normal distribution replace the expected returns µ and the covariance matrix Σ in
equations (2.6), (2.7). Note that although the MLE of the mean

µ̂mle =
1

n

n∑
t=1

rt

is an unbiased estimator, the MLE of the variance

Σ̂mle =
1

n

n∑
t=1

(rt − µ̂)(rt − µ̂)T

13



Chapter 3. Estimation of Optimal Portfolio 14

is biased. That is the reason why, in practice,

Σ̂ =
1

n− 1

n∑
t=1

(rt − µ̂)(rt − µ̂)T

is often applied. Hence, the unknown parameters µ and Σ are estimated from the
available data.

3.2 Estimation from the Bayesian perspective

Within the Bayesian context, the whole point and the main objective in order to
draw inference is to derive the posterior distribution. In contrast to the frequentist
approach (which considers the parameter in question fixed but unknown), the pa-
rameter we want to estimate, say θ, is considered as random variable. The key idea
is that we are trying to assign a probability to all different values of the parameter we
want to estimate. In order to achieve this goal, e.g to find the posterior distribution,
we make use of the following famous formula known as Bayes’ Theorem:

P (θ|y) =
P (y|θ) · P (θ)

P (y)
(3.1)

where P (θ|y) is the posterior distribution given the observed data y, P (y|θ) =
L(θ|y) is the likelihood function. It is a prior specification, an assumption for the
process which generates the data. P (θ) is the prior distribution of the parameter θ.
It represents the pre-experimental knowledge of the parameter value θ or, in other
words, it is our subjective belief about the parameter θ before we observe the data.
P (y) is the marginal probability of the data y.
We can rewrite equation (3.1) in the following form :

P (θ|y) =
L(θ|y) · P (θ)∫
P (y|θ) · P (θ)dθ

=
L(θ|y) · P (θ)∫
L(θ|y) · P (θ)dθ

(3.2)

Since the denominator does not depend on θ we can again rewrite (3.2) as :

P (θ|y) ∝ L(θ|y) · P (θ) (3.3)

Equation (3.3) provides us with the posterior distribution of θ up to some unknown
constant.
Through the estimation process, we consider the general setup for the portfolio
weights, as discussed in (Bodnar et al. 2017, p. 293) and (Bodnar et al. 2008, p. 131),
by considering arbitrary linear combinations of the MVP weights. Let L be an
arbitrary p × k matrix of constants with p < k. Let li ∈ Rk, i = 1, . . . , p, 1 ≤ p ≤
k − 1, and LT = (l1, . . . , lp).
We define

θ = LwMVP =
LΣ−11

1TΣ−11
=

(
lT1 Σ−11

1TΣ−11
, . . . ,

lTp Σ−11

1TΣ−11

)
(3.4)

The setting above allows us not only to analyse a specific weight of our portfolio
but also to make comparisons of one weight against the other.
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3.2.1 Bayesian Point Estimates

In the Bayesian setting, there is a greater freedom since one can find the mean,
mode or the median of the posterior distribution P (θ|y). In addition, similar to

the Frequentists’ MLE approach, one can find the parameter θ̂ that maximizes the
posterior distribution, what we call Most Probable Estimator, i.e

θ̂ = sup
θ∈Θ

P (θ|y),

where Θ is the set of all possible values of θ. Nevertheless, the most common
Bayesian point estimate is the mean of the posterior which is defined as

µp = E(θ|y) =

∫
Θ

θ · P (θ|y)dθ.

3.2.2 Credible Intervals

Given that we have obtained the posterior distribution P (θ|y) and a significance
level α, an equal-tailed (i.e symmetric) 100(1 − α)% credible interval is (θL, θU)
such that

α

2
=

∫ θL

−∞
P (θ|y) dθ =

∫ ∞
θU

P (θ|y) dθ.

This means that we have to find the interval between the quantiles qα
2
, q1−α

2
of the

posterior distribution. In addition, the Highest Posterior Density(HPD) credi-
ble set is a two-tailed interval assuming the smallest possible interval on a posterior
density for a given significance level α. For a more formal definition address to Car-
lin et al. (2008)[ch. 2.3.2]. Credible sets are for Bayesians what confidence intervals
are for Frequentists. Despite the analogy, the inference about these two concepts
is completely different. On the one hand, credible sets can be seen as a probabilis-
tic statement for the parameter θ. Thus, based on the posterior distribution, the
100(1 − α)% credible set (θL, θU) given the observed data, means that there is a
100(1 −α)% probability that the parameter θ lies in (θL, θU).

On the other hand, a confidence interval, from the Frequentist perspective, is
not a probabilistic statement. Instead, the interpretation is that given we were to
repeat the experiment numerous times, 100(1− α)% of the created intervals would
include the true parameter θ.

3.2.3 Choice of the prior

The first prior that is going to be used has been applied in portfolio theory by
Klein et al. (1976), Barry (1974) and Brown (1976). It is an uninformative diffuse
prior in the sense that the investor has no prior knowledge of how the parameters
vary that he would wish to incorporate. It allows us to model the average vector of
returns µ and the covariance matrix Σ. The density of the so-called Jeffrey’s prior
is given by

pd(µ,Σ) ∝ |Σ|−
k+1
2
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where k is the number of assets.
The second prior that will be used is an informative conjugate prior meaning that
our personal belief towards the parameters is incorporated via this specific choice of
model. The conjugate prior for the mean vector of returns, conditional on Σ, is a
multivariate normal distribution, e.g µ|Σ ∼ N (µc,

1
κc

Σ) and can be written as

pc(µ|Σ) ∝ |Σ|−1/2exp
{
− κc

2
(µ− µc)Σ

−1(µ− µc)
}

(3.5)

where µc is the prior mean and κc is a parameter reflecting the prior precision of
µc.
The conjugate prior for the unknown covariance matrix is the inverse Wishart dis-
tribution, e.g Σ ∼ IW(Sc, νc − k − 1) and can be expressed as

pc(Σ) ∝ |Σ|−νc/2 · exp
{
− 1

2
tr[ScΣ

−1]
}

(3.6)

where νc is a precision parameter on Σ and Sc is a known prior k × k matrix of Σ.
Combining (3.5) and (3.6) we get the following joint prior for both parameters as

pc(µ,Σ) ∝ |Σ|−(νc+1)/2 · exp
{
− κc

2
(µ− µc)

TΣ−1(µ− µc)−
1

2
tr[ScΣ

−1]
}

(3.7)

At this point, the following Lemma from Bodnar et al. (2017) will be introduced.
Its importance is crucial since, in section 4.2, the derivation of the ”true” weights
of the chosen model are related to the distinct choice of the prior precision matrix
Sc. More precisely, when we simulate a covariance matrix Σ from IW distribution,
the choice of the prior matrix Sc defines the weights of our model.
Lemma 1. Let Σ|X1, . . . ,Xn ∼ IWk(τ0,V0) with V0 = V0(X1, . . . ,Xn) and let L
be a p× k matrix of constants.
Then

LΣ−11

1TΣ−11

∣∣∣∣X1, . . . ,Xn ∼ tp

(
τ0 − k − 1;

LV −1
0 1

1TV −1
0 1

;
1

τ0 − k − 1

LR0L
T

1TV −1
0 1

)
(3.8)

Proof. (see Bodnar et al. 2017, Appendix A)

In the following prior models we will make statements directly for the linear combi-
nation of the portfolio weights. From the investor’s perspective that approach seems
more natural since it is rational to have a prior belief about the optimal allocation
of the wealth than a prior belief about the expected returns. Before we proceed to
the last priors we will present the general setting of reparameterization (see Bodnar
et al. 2017, ch. 4.1) since it will be used in order to derive the covariance matrix for
the simulation study based on the informative prior in Chapter 4.

Let L̃ =
(
LT 1

)T
=

(
L
1T

)
, Σ̃ = L̃Σ−1L̃T , ζ = 1TΣ−11 and θ defined from

previous section as θ = LΣ−11
1TΣ−11

= LΣ−11
ζ

. Ψ is defined in the following way

Ψ = LΣ−1LT − LΣ−111TΣ−1LT

1TΣ−11
.
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Solving with respect to LΣ−1LT , we get

LΣ−1LT = Ψ +
LΣ−111TΣ−1LT

1TΣ−11
= Ψ +

ζ�2 · θθT

��ζ
= Ψ + ζ · θθT

So,

Σ̃ = L̃Σ−1L̃T =

(
L
1T

)
Σ−1

(
LT 1

)
=

(
L
1T

)(
Σ−1LT Σ−11

)
=

[
LΣ−1LT LΣ−11
1TΣ−1LT 1TΣ−11

]
=

[
Ψ + ζ · θθT ζθ

ζθT ζ

]
= ζ

[
Ψ
ζ

+ θθT θ

θT 1

]
. (3.9)

The third prior will be the Jeffrey’s non-informative prior expressed by the following
model as

pn(θ,Ψ, ζ) ∝ ζ
p
2
−1|Ψ|−

p
2
−1 (3.10)

For more details (see Bodnar et al. 2017, Ch. 4.1).
Finally, the fourth prior that will be used is an informative prior under a hierarchical
Bayesian model similar to the one developed by Tunaru (2002). The informative
prior is given by

θ ∼ Np
(
wI ,

1

ζ
Ψ−1

)
(3.11)

Ψ ∼ Wp(νI ,SI) (3.12)

ζ ∼ Gamma(δ1, 2δ2) (3.13)

where wI is the prior mean, νI is a prior precision parameter on Ψ, SI is the known
matrix and δ1, δ2 are prior constants. The joint prior is expressed as

pI(θ,Ψ, ζ) ∝
∣∣∣∣1ζΨ−1

∣∣∣∣− 1
2

exp

{
− ζ

2
(θ −wI)

TΨ(θ −wI)

}
× ζδ1−1|Ψ|

νI−p−1

2 exp

{
− 1

2
tr[S−1

I Ψ]− ζ

2δ2

}
.

3.2.4 Posterior distribution based on the asset returns

Proposition 1. Let X1, . . . ,Xn|µ,Σ be independent and identically distributed
with Xi|µ,Σ ∼ Nk(µ,Σ). Let L be a p × k matrix of constants, p < k and 1
denotes the vector of ones. Then
(a) Under the diffuse prior pd(µ,Σ) the posterior for θ is given by

θ|X1, . . . ,Xn ∼ tp

(
n− 1; θ̂;

1

n− 1

LRdL
T

1TS−11

)
(3.14)

where Rd = S−1 − S−111TS−1/1TS−11, θ̂ = LS−11
1TS−11

.

(b) Under the conjugate prior pc(µ,Σ) the posterior for θ is given by

θ|X1, . . . ,Xn ∼ tp

(
νc + n− k − 1;

LV −1
c LT

1TV −1
c 1

;
1

νc + n− k − 1

LRcL
T

1TV −1
c 1

)
(3.15)
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where

rc =
nX + κcµc
n+ κc

,

Vc = (n− 1)S + Sc + (n+ κc)rcr
T
c + nX X

T
+ κcµcµ

T
c ,

Rc = V −1
c − V

−1
c 11TV −1

c

1TV −1
c 1

.

Proofs. (see Bodnar et al. 2017, Appendix A)

3.2.5 Posterior distribution based on the MVP weights

Proposition 2. Let X1, . . . ,Xn|µ,Σ be independent and identically distributed
with Xi|µ,Σ ∼ Nk(µ,Σ). Let L be a p× k matrix of constants with p < k. Then
the posterior for the MV portfolio weights θ under the jeffrey’s non-informative prior
pn(θ,Ψ, ζ) is given by

θ|X1, . . . ,Xn ∼ tp

(
n− k + p; θ̂;

1

n− k + p

LRdL
T

1TS−11

)
(3.16)

Proof. (see Bodnar et al. 2017, 4.1 Non-informative Prior)
This result is almost identical to the posterior obtained under the diffuse prior based
on expected returns. The only difference lies on the degrees of freedom.

Proposition 3. Let X1, . . . ,Xn|µ,Σ be independent and identically distributed
with Xi|µ,Σ ∼ Nk(µ,Σ). Let L be a p× k matrix of constants with p < k. Then
the posterior for θ under the informative prior pI(θ,Ψ, ζ) is given by

pI(θ|X1, . . . ,Xn) ∝
[
(θ −wI)

T (S−1
I + (n− 1)(LRdL

T )−1)−1(θ −wI))
]n−k+2p+2δ1

2

× U

(
n− k + 2p+ 2δ1

2
;
p+ 2δ1 − νI + 1

2
; g(θ)

)
(3.17)

where U(·, ·, ·) is a confluent hypergeometric function introduced by Abramowitz
et al. (1964) and

g(θ) =
n− 1

2

(
(θ − θ̂)T (LRdL

T )−1(θ − θ̂) + (1TS−11)−1

)
+

δ−1
2

n−1

(θ −wI)T
(
S−1
I + (n− 1)(LRdLT )−1

)−1

(θ −wI)

.

Throughout the paper, instead of the previous result, we will use the following
stochastic representation formula for θ (see Bodnar et al. 2017, p. 298):

θ = rI + ζ−
1
2

(
VI(τ)

) 1
2z0 (3.18)

where

z0 ∼ Np(0p, Ip),

ζ|τ ∼ Gamma

(
n− k + 2p+ 2δ1

2
,

2

hI(τ)

)
,

τ ∼ Gamma

(
n− k + p+ νI − 1

2
, 2

)
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and

P1 =

(
S−1
I + (n− 1)(LRdL

T )−1

)−1

,

P2 = (n− 1)(LRdL
T )−1,

r = δ−1
2 + (n− 1)(1TS−11)−1,

VI(τ) = (τP1 + P2)−1,

rI(τ) = (τP1 + P2)−1(τP1wI + P2θ̂),

hI(τ) = r + τwT
I P1wI + θ̂TP2θ̂ − rI(τ)T

(
VI(τ)

)−1
rI(τ).



Chapter 4

Numerical Study

Simulated data from the MN distribution are used and they represent the weekly
log-returns of different stocks for a period of one year. Based on the simulated data
and assuming that we want to examine five different stocks, their respective weights
are evaluated under four different models. Almost each model produces different
point estimates. The goal of the study was to assume specific priors for the mean
vector of expected returns µ of the stocks, their respective covariance matrix Σ and
for the linear combinations of the weights θ in two different scenarios.

In the first scenario, the mean vector of expected returns and the covariance
matrix are assumed to follow distributions from the conjugate prior (see (3.5), (3.6)),
e.g the vector of expected returns follows a MN and the covariance matrix follows an
IW distribution. In addition, the data are generated from MN with an IW distributed
covariance matrix, and a MN distributed mean vector given this specific covariance
matrix.

In the second scenario, the parameters θ (linear combination of weights), Ψ, ζ
are simulated from an informative prior (see (3.11), (3.12), (3.13)) and they are used
together with (3.9) and Σ̃ = L̃Σ−1L̃T for the generation of the covariance matrix
Σ. Then, having Σ we just needed a mean vector in order to simulate the data from
MN distribution.

In the first case, the prior precision matrix Sc, which accounts for the generation
of the covariance matrix Σ, uniquely defines the ”true” weights of the MVP (see
(3.8)). Note that, in the second case, the ”true” weights are directly used as input
in (3.11) and need not be calculated as it was done in the first scenario. Moreover,
the prior weights are then simulated based on the true weights.

Throughout the simulation study, we have assumed that the number of assets is
five, e.g k = 5. In order to derive the distributions of the five weights of each model
separately, p is set to 1. Thus, L (see (3.4)) is defined as the following 1× 5 matrix:

L = (1, 0, 0, 0, 0).

In an analogous way, inference for the remaining 4 weights is drawn by setting
L = (0, 1, 0, 0, 0), L = (0, 0, 1, 0, 0) and so forth.

Furthermore, since we know the ”true” parameters, we can assess the perfor-
mance of all models in terms of their point estimates. Hence, the quadratic loss
function is introduced and the best point estimate will be the one that minimizes
the expected quadratic loss function.

20
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4.1 Loss Function & Expected Loss Function

Let θ = (θ1, θ2, . . . , θk) ∈ Θ be a vector of the true values of the parameter and let

θ̂M =
(
θ̂1,M , θ̂2,M , . . . , θ̂k,M

)
be the vector of estimated parameters under a specific

model. The Quadratic or L2 loss function is defined as

L(θ, θ̂M) = ||θ − θ̂M ||2 =
k∑
i=1

(
θi − θ̂i,M

)2

and the approximated Expected Quadratic or L2 loss function is given by

R(θ, θ̂M) = E
(
L(θ, θ̂M)

)
=

1

N

N∑
j=1

k∑
i=1

(
θi,j − θ̂i,j,M

)2

where N represents the number of simulations.

4.2 Simulation from Conjugate prior

As mentioned in the beginning of the chapter, the first case that is considered is that
of conjugate priors where the investor has informative beliefs about the mean vector
and the covariance matrix of returns. In the Bayesian framework, the IW distribution
is the conjugate prior to the covariance matrix of the multivariate normal distribu-
tion (see Nydick 2012, Ch 2.4) , whereas the multivariate normal (conditional on
Σ) is the conjugate prior to the mean vector of the multivariate normal distribution
(see Murphy 2007, p.17-18). Hence, we simulate a 5× 5 covariance matrix from the
IW distribution with 50 degrees of freedom, e.g we have k = 5 assets and we collect
the weekly returns for a period of one year (n = 50). Given the covariance matrix Σ,
the vector µ of expected returns is simulated from MN distribution. After following
those steps, our dataset is provided by simulating values from MN with mean vector
µ and covariance matrix Σ.

For the informative prior we need to make assumptions about the prior constants.
Thus, we set δ1 = 1, δ2 = 0.5, νI = n, SI = 1, and wI = 0.2, i.e all prior weights
are be equal (equally weighted portfolio). In addition, the point estimate of each
weight, under the stochastic representation formula (see (3.18)), is drawn based on
20000 simulations of z0, τ and ζ and then taking the average (see Bodnar et al. 2017,
p. 298). This procedure is applied four times for L = (1, 0, 0, 0, 0), L = (0, 1, 0, 0, 0)
etc, resulting in four point estimates. Since the sum of the weights must be equal
to one, the fifth weight can be derived as a function of the other weights.

For the conjugate prior we assume νc = kc = n+ 6, µc = 0k , where n represents
the number of collected data for each asset, 0k is a k-dimensional vector of zeros. Sc
was chosen aiming to cover two basic directions. First of all, we wanted to allow for
flexibility so that Sc would be as realistic as possible. A convenient way to achieve
that was to use the relationship that connects a correlation matrix with a covariance
matrix in the following way:

Rcc = D−1/2ScD
−1/2 =⇒ (4.1)

Sc = D1/2RccD
1/2 (4.2)
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where the correlation matrix Rcc is a k×k symmetric matrix with diagonal elements
equal to 1. Since the non-diagonal entries take values in the interval (-1, 1), random
numbers were simulated from Uniform (-1, 1) distribution. D1/2 is a k× k diagonal
matrix with elements equal to the standard deviations. Hence, a random diagonal
matrix of variances D was used as input. The results of the simulations that have
been set under the described context above are presented in the first two sub-tables
of Table 4.1. In the first sub-table, the entries of the diagonal matrix D were set
equal to 0.1, 1.8, 2.4, 0.5, 0.9 (as it can be seen from the diagonal elements of Sc).
In the second sub-table, all the diagonal entries of D were set equal to 2. Note that
the generated portfolios allow for short sales.

Next, we wanted to test the L2 deviations based on specific portfolios. Thus,
a diagonal matrix Sc was used directly as input to the IW distribution. This is a
heuristic approach because, by lemma 1 in (3.8), if we take a diagonal matrix Sc
with equal elements then the derived portfolio is just the equally weighted portfolio,
i.e wi = 0.2 for i = 1, 2, . . . , 5. Again, if we take non equal diagonal elements for Sc
then we get a non equally-weighted portfolio. The results of these slightly modified
simulations are presented in the bottom sub-tables of Table 4.1. In any case, the
matrix Sc must be positive definite, meaning that not only it has to be symmetric
but it also has to have positive eigenvalues.

In all considered scenarios, multiple datasets from conjugate priors have been
generated based on 1000 simulations. In order to test the performance of each model,
comparison of the point estimates of weights against the ”true” weights is performed
via the expected quadratic loss function. Note that since the diffuse and the non
informative prior have the same point estimates, we only needed to calculate three
instead of four expected quadratic loss functions. Moreover, it should be mentioned
that since the ”true” covariance matrix is simulated from the conjugate prior, we
would expect that the smallest deviation corresponds to the case of the model which
assumes conjugate priors. The results in Table 4.1 validates our expectation but with
one exception. In the last sub-table the informative prior performs better but this
is due to the fact that the chosen prior matrix Sc, which is a diagonal matrix with
all entries equal to 1, provides an equally weighted portfolio as the ”true” portfolio
which coincides with our assumption for the prior weights of the informative prior.
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Table 4.1: L-2 deviations from the ”true” weights based on 1000 simulations from the
conjugate priors. Each sub-table represents a different choice of the prior precision
matrix Sc and hence a different set of ”true” weights.

Prior matrix True weights Model

Sc =

(
0.10 −0.1483 −0.0818 0.0025 0.0704
−0.1483 1.80 0.3551 0.7575 0.1907
−0.0818 0.3551 2.40 −0.4091 −0.0588
0.0025 0.7575 −0.4091 0.50 0.1283
0.0704 0.1907 −0.0588 0.1283 0.90

) ω1 = 0.5481 Diff. 0.3278
ω2 = -0.1328 Conj. 0.0833
ω3 = 0.1404 Inf. 0.3323
ω4 = 0.4412 Non-Inf. 0.3278
ω5 = 0.0030

Sc =

(
2 −0.6990 −0.3339 0.0227 0.4693

−0.6990 2 0.3417 1.5969 0.2996
−0.3339 0.3417 2 −0.7469 0.0800
0.0227 1.5969 −0.7469 2 0.3825
0.4693 0.2996 0.0800 0.3825 2

) ω1 = -0.1563 Diff. 0.3483
ω2 = -1.1325 Conj. 0.0921
ω3 = 0.8204 Inf. 3.5697
ω4 = 1.3360 Non-Inf. 0.3483
ω5 = 0.1325

Sc =

(
0.25 0.0000 0.0000 0.0000 0.0000

0.0000 9.0000 0.0000 0.0000 0.0000
0.0000 0.0000 9.0000 0.0000 0.0000
0.0000 0.0000 0.0000 9 0.0000
0.0000 0.0000 0.0000 0.0000 9

) ω1 = 0.9 Diff. 0.0083
ω2 = 0.025 Conj. 0.0021
ω3 = 0.025 Inf. 0.5738
ω4 = 0.025 Non-Inf. 0.0083
ω5 = 0.025

Sc =

(
1 0.0000 0.0000 0.0000 0.0000

0.000 1 0.000 0.0000 0.0000
0.0000 0.0000 1 0.0000 0.0000
0.0000 0.0000 0.0000 1 0.0000
0.0000 0.0000 0.0000 0.0000 1

) ω1 = 0.2 Diff. 0.0337
ω2 = 0.2 Conj. 0.0086
ω3 = 0.2 Inf. 3.58e-05
ω4 = 0.2 Non-Inf. 0.0337
ω5 = 0.2

4.3 Simulation from Informative prior

In this part of the simulation study, the ”true” weights are directly used as input
in (3.11). In order to simulate a set of informative weights we also need to generate
values for Ψ and ζ. Our main goal still remains, as in the previous section, to
generate a covariance matrix under the informative’s prior setup by using (3.9).
The mean vector of returns is generated from MN distribution given the derived
covariance matrix and, consequently, our dataset is provided by simulating data from
MN distribution given both the generated mean vector and the covariance matrix.

Also, recall that L̃ was defined as L̃ =

(
L
1T

)
and L was defined as the (k − 1)× k

matrix of constants, i.e it can be written as

L =


1 2 · · · (k − 1) k

1 1 0 · · · 0 0
2 0 1 · · · 0 0
...

...
...

. . .
...

...
(k − 1) 0 0 · · · 1 0

.

Thus, L̃ can now be written as
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L̃ =



1 2 · · · (k − 1) k

1 1 0 · · · 0 0
2 0 1 · · · 0 0
...

...
...

. . .
...

...
(k − 1) 0 0 · · · 1 0

k 1 1 · · · 1 1

.

The generation of the covariance matrix was completed in 3 steps.
In step 1, we generate ζ, Ψ and θ in the following way:

ζ ∼ Gamma(δ1, 2δ2)

Ψ ∼ W4(νI ,SI)

θ ∼ N4(wI ,
1

ζ
Ψ−1)

In step 2, Σ̃ is calculated by plugging in the values from step 1 in (3.9).
In step 3, the covariance matrix can now be derived by using Σ̃ = L̃Σ−1L̃T and

solving with respect to Σ, i.e

Σ̃ = L̃Σ−1L̃T =⇒
L̃−1Σ̃ = Σ−1L̃T =⇒

L̃−1Σ̃(L̃T )−1 = Σ−1 =⇒

Σ =
(
L̃−1Σ̃(L̃T )−1

)−1

Since we wanted to provide results for several choices of hyper-parameters, we have
considered four different couples of δ1, δ2 for one choice of the matrix SI . The prior
(”true”) weights were selected in order to include L2 deviations from :

1. an equally weighted portfolio, i.e wI,i = 0.2 for i = 1, . . . , 5

2. a slightly skewed portfolio, i.e wI = (0.5, 0.125, . . . , 0.125)

3. a heavily skewed portfolio, i.e wI = (0.9, 0.025, . . . , 0.025)

4. a portfolio allowing for short sales, i.e wI = (1.4,−0.1, · · · − 0.1)

In all considered cases, the informative prior outperforms the other models as it can
be seen in Table 4.2.
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Table 4.2: L-2 deviations from the prior/true weights based on 1000 simulations
from the Informative prior. The diagonal matrix SI has been set such that the
main diagonal entries are equal to 0.1.

Prior/True weights Diffuse Conjugate Inf. Non-Inf.

δ
1

=
1
,
δ
2

=
.5 ωI = (0.2, 0.2, . . . , 0.2) 27.4355 15.9909 10.9963 27.4355

ωI = (0.5, 0.125, . . . , 0.125) 26.7057 15.1960 10.7461 26.7057
ωI = (0.9, 0.025, . . . , 0.025) 29.8530 17.4218 11.9897 29.8530
ωI = (1.4,−0.1, . . . ,−0.1) 27.1242 16.1115 11.0367 27.1242

δ
1

=
2
,
δ
2

=
1 ωI = (0.2, 0.2, . . . , 0.2) 1.2165 0.7043 0.5168 1.2165

ωI = (0.5, 0.125, . . . , 0.125) 1.2593 0.7656 0.5329 1.2593
ωI = (0.9, 0.025, . . . , 0.025) 1.2517 0.7109 0.5348 1.2517
ωI = (1.4,−0.1, . . . ,−0.1) 1.2598 0.7607 0.5469 1.2598

δ
1

=
7
.5
,
δ
2

=
.5 ωI = (0.2, 0.2, . . . , 0.2) 0.4347 0.2511 0.1869 0.4347

ωI = (0.5, 0.125, . . . , 0.125) 0.4403 0.2540 0.1883 0.4403
ωI = (0.9, 0.025, . . . , 0.025) 0.4346 0.2609 0.1870 0.4346
ωI = (1.4,−0.1, . . . ,−0.1) 0.4433 0.2864 0.1899 0.4433

δ
1

=
9
,
δ
2

=
.2
5 ωI = (0.2, 0.2, . . . , 0.2) 0.6952 0.3975 0.2958 0.6952

ωI = (0.5, 0.125, . . . , 0.125) 0.6958 0.3979 0.2922 0.6958
ωI = (0.9, 0.025, . . . , 0.025) 0.6882 0.4035 0.2923 0.6882
ωI = (1.4,−0.1, . . . ,−0.1) 0.6778 0.4216 0.2870 0.6778

4.4 Comparing two measurement methods for the

Informative prior

However convenient the stochastic representation formula (3.18) might seem, it also
has its drawbacks. For all the parts of the simulation study we have made the
assumption that SI is a diagonal matrix and hence by extracting the diagonal ele-
ments (scalars) we were able to calculate each weight separately. But, in case that
we wanted to assume for a non diagonal matrix SI our method would come to a
dead end. This is equivalent to saying that the dependencies between the various
weights through the inverse wishart distributed covariance matrix would be lost. In
order to overcome this obstacle one has to calculate the vector of weights at once.
This can be achieved by setting

L =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .

Dealing with this issue is by no means negligible but disadvantages also exist. Calcu-
lating the weights at once is computationally expensive meaning that it takes much
more time for the code to run. With this method, we would need to compute roughly
three times as many matrices as the chosen sample size for the random generated
numbers (τ , ζ, z0). The aim of this section is to compare the procedure that was
already used in the previous sections, with the method we just introduced. Simu-
lated data from the informative prior are used. The method generating the data is
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exactly the same as the one considered in the previous section. The expected loss
functions, though, were only computed for the informative posterior estimates based
on the two methods. In the following table method 1 stands for the method which
treats the weights separately whereas method 2 handles the weights at once. SI is,
again, a diagonal matrix with entries equal to 1. The prior weights are considered
as wI,i = 0.2 for i = 1, . . . , 5. In addition, we modify the sample size of the random
generated numbers τ , ζ, z0 in order to examine if there is any significant improve-
ment of the estimates. The first method which treats the weights separately slightly
outperforms the second in all considered cases. Furthermore, increasing either the
number of simulations or the sample size of the hyperparameters used in stochastic
representation formula does not seem to affect the precision of the estimates. Table
4.3 presents the respective results from the simulations of data from informative
priors. The first method performs slightly better in terms of the precision of the
point estimates in all kinds of modifications that we set.

Table 4.3: L2 deviations of the informative prior based on simulations of data from
informative prior. Two different methods for measuring the posterior informative
point estimates are compared.

Informative sample size of z0, ζ, τ # of simulations

Method 1 10−2×3.088
200 1000

Method 2 10−2×3.925

Method 1 10−2×2.936
400 1000

Method 2 10−2×4.893

Method 1 10−2×3.123
600 2000

Method 2 10−2×7.460

Method 1 10−2×3.911
800 3000

Method 2 10−2×5.067

Method 1 10−2×4.538
1000 4000

Method 2 10−2×6.244



Chapter 5

Empirical Study

5.1 Financial Data and sample estimates

In order to perform the empirical part of the thesis, we have considered the daily
logarithmic returns of five companies that are listed on Nasdaq Stockholm ( Stock-
holm Stock Exchange). Hence, a domestic portfolio is analyzed. The portfolio is
composed of companies which belong to the index (H&M, Volvo, Nordea) meaning
that they are traded frequently, together with other two companies (Clas Ohlson,
SAS) that are traded infrequently (low volume). The data were downloaded from
https://finance.yahoo.com and were directly loaded into RStudio using the
get.hist.quote command (see Zeileis et al. 2005, p.20-21). More precisely, the
adjusted closing prices of the stocks were downloaded for a time horizon starting
from 3/1/2011 until 31/12/2015. The dataset was divided into two sub-periods.
The period from 3/1/2011 - 31/12/2013 served as a prerun meaning that the sam-
ple estimates of the covariance matrix and the vector of expected returns were used
as inputs in order to derive the posterior distributions. In addition, the MVP was
calculated based on the sample covariance matrix. In the following tables 5.1, 5.2,
5.3, we present the relevant estimates. The data from 1/1/2014 - 31/12/2015 were
used as the in-sample period and can be interpreted as the data for which we up-
dated our prior belief about the prior distribution of the parameters. The sample
estimates of the mean vector of returns and the covariance matrix are presented in
tables 5.4, 5.5.

Table 5.1: Sample means of daily logarithmic returns starting from 3/1/2011 until
31/12/2013.

H&M Clas Ohlson Nordea SAS Volvo

µprior × 104 5.005 2.972 2.129 -5.361 -3.580

27

https://finance.yahoo.com
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Table 5.2: Sample Variance-Covariance matrix Sprior of daily logarithmic returns
starting from 3/1/2011 until 31/12/2013. The values presented have been multiplied
with 104.

H&M Clas Ohlson Nordea SAS Volvo
H&M 1.963

Clas Ohlson 1.098 3.681
Nordea 1.546 1.438 3.146

SAS 1.395 1.127 1.962 12.874
Volvo 1.705 1.815 2.461 2.233 4.131

Table 5.3: Sample weights of the MVP for the period starting from 1/3/2011 until
31/12/2013.

H&M Clas Ohlson Nordea SAS Volvo

ωprior 0.6589 0.2322 0.1414 0.0297 -0.0623

Note that the prior sample estimates are meaningful only for the models which
assume informative priors. Hence, as already mentioned, the estimated parameters
were used as input in the prior distributions by setting µc = µprior, Sc = Sprior and
wI = ωprior.

Table 5.4: Sample means X of daily logarithmic returns starting from 1/1/2014
until 31/12/2015.

H&M Clas Ohlson Nordea SAS Volvo

X × 104 1.605 5.943 1.612 7.509 -0.130

Table 5.5: Sample Variance-Covariance matrix S of daily logarithmic returns start-
ing from 1/1/2014 until 31/12/2015. The values presented have been multiplied
with 104.

H&M Clas Ohlson Nordea SAS Volvo
H&M 1.446

Clas Ohlson 0.519 2.248
Nordea 0.866 0.650 2.146

SAS 0.393 0.365 0.753 6.377
Volvo 0.926 0.639 1.326 0.854 2.989

In-sample estimates for the average daily logarithmic returns produce better
results compared to their prior period counterparts. Note that there is only one stock
(Volvo) with negative average return. In addition, the variance-covariance matrix of
the prior period contains greater values and implies a more unstable performance for
our portfolio of stocks. Nevertheless, in both periods, the covariances are positive
meaning that the chosen stocks move towards the same direction.
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5.2 Posterior distributions

All the plots of the posterior distributions are presented in figure 5.1. In table 5.6, we
also present the Bayesian point estimates of the mean under all different models. The
diffuse and the non informative prior appear, not surprisingly, quite similar. Note
that the location (mean) parameters, which were calculated based on the MVP for
the in-sample data, are identical. The superiority of the informative prior lies on
the fact that it has managed to incorporate our pre-experimental knowledge about
the optimal allocation resulting in much wider densities around the point estimates
of the mean. On the contrary, the conjugate prior has, certainly, failed to fit our
prior beliefs. There is no indication that the densities have moved towards the prior
weights. In addition, the probability of getting the prior weights of, for example,
Volvo or SAS is zero or close to zero. The prior information for both the informative
and the conjugate prior corresponds to the minimum variance portfolio which was
calculated from historical data covering the period from 1/1/2011 - 31/12/2013.
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Figure 5.1: Posterior densities for the portfolio weights of H&M, Clas Ohlsson,
Nordea, SAS, Volvo under the four different models for the period from 1/1/2014 -
31/12/2015. The prior parameters for the case of Conjugate and Informative prior
have been calculated using historical data from 1/1/2011 - 31/12/2013.
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Table 5.6: Posterior point estimates of the mean under all different priors. Note
that the last column represents the weights derived from the classical frequentist
approach which coincide with the weights from the diffuse/uninformative prior.

Weights Diff. Conj. Inf. Frequentist

H&M 0.4540 0.4521 0.4816 0.4540
Clas Ohl. 0.2702 0.2689 0.2605 0.2702
Nordea 0.1379 0.1377 0.1236 0.1379

SAS 0.09 0.0903 0.0901 0.09
Volvo 0.0478 0.0510 0.0441 0.0478

Next, based on the posterior distributions, the 95% credible sets, i.e the intervals
that the true parameter is contained with probability of 95%, are presented in figure
5.2. For the informative prior, the credible sets were provided based on the sample
data, i.e 20000 simulated data for each weight. The informative prior has produced
the widest confidence intervals, something which makes sense given the posterior
distributions from figure 5.1. On the other hand, the credible intervals arised from
the conjugate prior are more narrow than those based on the uninformative priors
which goes against the main goal of incorporating prior beliefs.
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Figure 5.2: 95% Bayesian credible intervals for the portfolio weights of H&M, Clas
Ohlsson, Nordea, SAS, Volvo under all different models.

From a practitioner’s point of view, the probability of putting a positive/negative
weight on an asset might be of interest. In table 5.7, the probabilities of those
complementary events are presented. In the case of the informative prior, all the
weights, more or less, are likely to be assigned a negative value. For all other priors,
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only the weights of Volvo have a realistic chance of being negative. Note that the
probabilities of the informative prior were calculated from the empirical distribution
of the simulated data according to

FN(x) =
# of data ≤ x

N

where N is the total number of data. In our case the interpretation is that the
probability of getting a negative value is equal to the proportion of the simulated
values that are less or equal to zero. Furthermore, one might want to test the
weights of one asset against the other. This is done by setting, for example, L =
(1,−1, 0, 0, 0), L = (1, 0,−1, 0, 0) and so forth meaning that we are testing the
differences of the first weight to all the others. In table 5.3, the distributions of the
differences between the weight of H&M and the other weights are presented. Among
the priors, only the informative prior provides a substantial chance of observing
that the differences of the random variables of the differences of the weights (seen as
random variables) are negative (see figure 5.3 and table 5.8), i.e P (Y = WH&M−Wj ≤
0) > 0 where j represents the rest of the weights. Another thing that could possibly
be of interest for an investor is the correlation of the different weights. In proposition
1-(a) and 1-(b), the posterior covariance matrices of the diffuse and the conjugate
prior up to a proportionality constant are defined as Rd and Rc respectively. Hence,
it is possible to derive the correlation matrices of the weights by using the setting
(4.1). The correlation between all pairs of weights range from moderate negative to
very weak negative close to zero (see figure 5.4). Of course, a negative correlation
implies that the weights move towards opposite directions.
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Table 5.7: Posterior probabilities for all the models that the weights of the assets
are either greater or less than zero.

Posterior Probabilities

Models Weights ω ≤ 0 ω > 0

Diffuse

H&M 0 1
Clas Ohlson 0 1

Nordea 10−4×1.246 0.9998
SAS 10−7×1.553 0.9999

Volvo 10−2×6.124 0.9387

Conjugate

H&M 0 1
Clas Ohlson 0 1

Nordea 10−9× 4.576 0.9999
SAS 10−16×3.451 0.9999

Volvo 10−3×4.7 0.9952

Informative

H&M 0.0154 0.9846
Clas Ohlson 0.0698 0.9302

Nordea 0.28565 0.71435
SAS 0.20535 0.79465

Volvo 0.4063 0.5937

Non-Informative

H&M 0 1
Clas Ohlson 0 1

Nordea 10−4×1.299 0.9998
SAS 10−7×1.680 0.9999

Volvo 10−2×6.178 0.9382

Table 5.8: Posterior Probabilities for the differences of the random variables of the
weights under the informative prior. Four differences are compared and correspond
to the comparison of the H&M weight against the other weights.

Posterior Probabilities

Models Differences ωH&M − ωj ≤ 0 ωH&M − ωj > 0

Informative

H&M vs Clas 0.19195 0.80805
H&M vs Nordea 0.0861 0.9139

H&M vs SAS 0.05755 0.94245
H&M vs Volvo 0.03935 0.96065
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Figure 5.3: Posterior distributions of the difference of the H&M weight and the other
weights, i.e the distributions of the difference between pairs of random variables.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

H
&

M

C
la

sO
hl

N
or

de
a

S
A

S

V
ol

vo

H&M

ClasOhl

Nordea

SAS

Volvo

Diffuse Correlation Matrix

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

H
&

M

C
la

sO
hl

N
or

de
a

S
A

S

V
ol

vo

H&M

ClasOhl

Nordea

SAS

Volvo

Conjugate Correlation Matrix

Figure 5.4: Correlation matrices for the diffuse and conjugate posterior distributions.



Chapter 6

Conclusion

In this paper, we have looked into a Bayesian method that can be used in portfo-
lio theory. More specifically, we have investigated the minimum variance portfolio
under a Bayesian approach. Throughout the thesis, four different models have been
compared.

In the simulation study, the aim was to compare the mean point estimates of the
weights under the posterior distributions by generating data from different priors.
Towards that direction, we also wanted to test the robustness of the priors which
generated the data by considering different values for the prior parameters. In
section 4.2, since we have simulated data from the conjugate prior we would expect
that the posterior mean of the weights under the conjugate prior would outperform
the other posterior means in terms of the expected quadratic loss function, i.e the
average deviations of the mean estimates from the ”true” parameters based on 1000
simulations. Indeed, the smallest values of the deviations correspond to the model
which coincides with the true model generating the data, i.e the conjugate prior. The
only occasion in which different results are produced is when the ’true’ parameters
coincide with the prior assumption of the informative prior for the weights. We could
also state that this is a strong indication that the informative prior has managed to
embody our prior beliefs. In addition, since our sample size is small (# of obs = 50)
it is actually a good thing that the informative prior has not adjusted to the data.
In section 4.3, the data were generated from the informative prior and, thus, the
posterior mean estimates of the weights under the informative prior were closer to
the ”true” weights compared to the posterior mean estimates of the other models.

In chapter 5, the goal was to analyze the posterior densities of the weights of a
domestic portfolio based on two years of daily data. A couple of models (informa-
tive ones) required specification for some of their parameters. This was provided
by estimating parameters from a prior period which served as our pre-experimental
knowledge. The diffuse and the non-informative prior produced almost identical
results. Note that the conjugate prior did not live up to our expectations. The
posterior distributions had smaller standard deviations from the uninformative pri-
ors resulting in more narrow curves failing to incorporate estimates from the prior
period (compare, for example, the weights of H&M and Volvo in table 5.3 to the
posterior distributions under the conjugate prior in figure 5.2). Probably the big
sample size (daily data for two financial years) forced our prior belief to vanish. On
the other hand, the posterior distributions provided by the informative prior were
very wide. The point estimates of the means were in between the prior MVP and

34
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the in-sample MVP estimates suggesting that the informative prior has successfully
incorporated prior knowledge.
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A.1 Shifted Student-t distribution

A random variable X which has a t-distribution with mean µ, scale parameter σ and
ν degrees of freedom

(
X ∼ T (µ, σ, ν)

)
is just a linear transformation of a standard

Student t random variable expressed as:

g(T ) = X = µ+ σ · T.

The cumulative distribution function after the transformation is given as follows:

FX(x) = P (X ≤ x) = P (µ+ σ · T ≤ x)

= P

(
T ≤ x− µ

σ

)
= FT

(
x− µ
σ

)
(A.1)

The probability density function is derived by making use of the transformation
theorem as follows:

fX(x) = fT
(
g−1(x)

)
·
∣∣∣∣ ∂∂x(g−1(x)

)∣∣∣∣ (A.2)

Since g(T ) = X = µ+σ·T , the inverse function is given by g−1(T ) = T−µ
σ

. Therefore,
(A.2) can be written as:

fX(x) = fT

(
x− µ
σ

)
· 1

σ
(A.3)

The inverse cumulative distribution function corresponding to p = FX(x) =
FT
(
x−µ
σ

)
is defined as:

x− µ
σ

= F−1
T (p) =⇒ x = σ · F−1

T (p) + µ

=⇒ F−1
X (p) = σ · F−1

T (p) + µ (A.4)

In R, in order to calculate the cumulative distribution, the inverse cumulative dis-
tribution and the probability density we used the following functions:

pt_ls <- function(x, df, mu, a, lower.tail=T){

pt((x - mu)/a, df, lower.tail=lower.tail)}

qt_ls <- function(prob, df, mu, a) qt(prob, df)*a + mu

dt_ls <- function(x, df, mu, a) 1/a * dt((x - mu)/a, df).

36
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A.2 Cholesky Decomposition

In sections 4.4 and 5.2, we came across the calculation of the square root of a real
valued symmetric and square matrix. This can be achieved by deriving the cholesky
decomposition of this matrix. Every positive definite matrix A can be factorized as
A = LLT . L is a lower triangular matrix with positive diagonal elements and is
called the cholesky factor of A. Let A be a n× n square matrix, i.e

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n
...

...
...

. . .
...

an1 an2 an3 . . . ann

 = LLT ,

and let

L =


l11 0 0 . . . 0
l21 l22 0 . . . 0
l31 l32 l33 . . . 0
...

...
...

. . .
...

ln1 ln2 ln3 . . . lnn

 ,LT =


l11 l21 l31 . . . ln1

0 l22 l32 . . . ln2

0 0 l33 . . . ln3
...

...
...

. . .
...

0 0 0 . . . lnn

 .

Multiplying L by LT we get

LLT =


l211 l11l21 l11l31 . . . l11ln1

l11l21 l221 + l222 l21l31 + l22l32 . . . l21ln1 + l22ln2

l11l31 l21l31 + l22l32 l231 + l232 + l233 . . . l31ln1 + l32ln2 + l33ln3
...

...
...

. . .
...

l11ln1 l21ln1 + l22ln2 l31ln1 + l32ln2 + l33ln3 . . . l2n1 + l2n2 + · · ·+ l2nn

 .

Thus, by matching the elements of A to the elements of LLT we get that all the
diagonal elements of L can be derived using the following formula

lkk =

√√√√akk −
k−1∑
j=1

lkj, for k = 1, 2, . . . , n,

whereas the other non diagonal elements of L can be calculated using

lki =
aki −

∑i−1
j=1 lijlkj

lii
, for k = 1, 2, . . . , n and i < k.

In R, we used the base function chol which returns the upper diagonal matrix LT .
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A.3 Multivariate Normal distribution

In chapter 4, MN distribution was used in various occasions. First of all, we simulated
the mean vector of returns from MN, since a MN mean vector is the conjugate prior
to a MN likelihood. Secondly, the simulated data, also, followed a MN distribution.
Thus, it would be appropriate to provide some relevant background. Recall that the
univariate normal distribution is given by

f(x;µ, σ) =
1√

2πσ2
· exp

{
− 1

2

(x− µ
σ

)2
}

where µ is the mean and σ2 is the variance. Isolating the exponent part we note
that

exponent = −1

2

(x− µ
σ

)2

= −1

2
(x− µ)

(
σ2
)−1

(x− µ).

Now for the multivariate case, the exponent part will be

(x− µ)TΣ−1(x− µ),

where µ is a mean vector and Σ is a matrix of covariances. Hence, the multivariate
analogue of the univariate case is given by

f(x;µ,Σ) =
1

(2π)n/2
|Σ|−

1
2 exp

{
− 1

2
(x− µ)TΣ−1(x− µ)

}
where µ is a n×1 vector, Σ is a n×n matrix and |Σ| is the determinant of matrix Σ.
For more information regarding the MN distribution one can address to Do (2008). In
R, in order to simulate numbers from MN distribution we used the function mvrnorm

from the MASS package.

A.4 Wishart and inverse Wishart distributions

The Wishart distribution is a family of distributions defined over positive definite
random matrices. More precisely,
if S is a p×p matrix and can be written as S = XTX where X is a n×p matrix of
data for which each row xi ∼ Np(0p,V ) for i = 1, 2, . . . , n, then S is said to have a
Wishart distribution with n > p− 1 degrees of freedom and scale matrix V (p× p).
We denote

S ∼ Wp(V , n).

Note that XTX is a scatter matrix which is used as estimate for a covariance ma-
trix. Hence, matrix V can be thought of as a covariance matrix.
In addition, if S ∼ Wp(V , n) then S−1 is said to follow an inverse Wishart dis-
tribution denoted by

S−1 ∼ W−1
p (V −1, n+ p+ 1).

For a more formal definition of the Wishart and inverse Wishart distributions to-
gether with their properties address to Nydick (2012)[ch. 1,2].
In R, for the generation of Wishart and inverse Wishart distributed matrices we
used the function rWishart from stats package and the function riwish from the
MCMCpack package respectively.
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A.5 Kernel Density Estimation

In section 5.2, we plotted the posterior distribution of the informative prior using
the stochastic representation formula (3.18). This was done by applying the kernel
density estimation method which is a non parametric density estimation technique
based on sample data from some distribution with unknown density. It is similar to
how one creates histograms. More formally,

f̂h =
1

nb

n∑
i=1

K

(
x− xi
b

)
where K(.) is a chosen kernel and b > 0 is called the bandwidth. One choice of

density, the one we have used, is a gaussian kernel i.e K(u) = 1√
2π
e−

1
2
u2 . Note that

the bandwidth was set as the default value obtained by Silverman’s rule of thumb
(see Silverman 1986, p.48) as

b ≈ 1.06 · σ̂ · n−1/5

where σ̂ is the sample standard deviation and n is the size of the sample. In R, we
applied density estimation by calling geom density from ggplot2 package.
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R code

The code below was used for the calculations of the expected quadratic L-2 loss
functions for the top two sub-tables of table 4.1.

1 ########################################
2 #### Input : D c−Diagonal matrix o f ####
3 #### the Var iances o f S c ####
4 #### Ouput : dev ia t i ons , W true , S c ####
5 #### num. o f i t e r a t i o n f o r ####
6 #### c o r r e l a t i o n matrix R xx ####
7 ########################################
8 L2DevConj<−f unc t i on (D c) {
9 l i b r a r y (MCMCpack)#Simulate from m u l t i v a r i a t e normal

10 l i b r a r y ( matr ixca l c )#check p o s i t i v e d e f i n i t e matrix
11 #######################################################
12 #### Def ine the ( pxk ) matr i ce s L , with p=1 and k=5 ####
13 #######################################################
14 L 1<−matrix ( c ( 1 , 0 , 0 , 0 , 0 ) , 1 , 5 ) ; L 2<−matrix ( c ( 0 , 1 , 0 , 0 , 0 ) , 1 , 5 )
15 L 3<−matrix ( c ( 0 , 0 , 1 , 0 , 0 ) , 1 , 5 ) ; L 4<−matrix ( c ( 0 , 0 , 0 , 1 , 0 ) , 1 , 5 )
16 L 5<−matrix ( c ( 0 , 0 , 0 , 0 , 1 ) , 1 , 5 )
17 L<− l i s t (L 1 ,L 2 ,L 3 ,L 4 ,L 5)
18 ###############################
19 #### d e f i n e some cons tant s ####
20 ###############################
21 de l ta1<−1 ; de l t a2<−0 .5
22 p<−nrow (L 1) ; S I<−1 ; w I<−rep ( 0 . 2 , 5)
23 ones<−matrix (1 , 5 , 1)
24 k c<−nu c<−56 ; k<−5
25 set . seed (3 )
26 ############################################
27 #### Generate the c o r r e l a t i o n matrix ####
28 #### which w i l l be used toge the r with ####
29 #### D c f o r the gene ra t i on o f the ####
30 #### p r i o r p r e c i s i o n covar iance matrix ####
31 #### S c . We w i l l f o r c e S c to be ####
32 #### p o s i t i v e d e f i n i t e by modifying the ####
33 #### c o r r e l a t i o n matrix ####
34 ############################################
35 R xx<−matrix (0 , 5 , 5)
36 S c<−matrix (0 , 5 , 5)
37 m<−0
38 whi le ( ! i s . p o s i t i v e . d e f i n i t e (S c) ) {
39 f o r ( i in 1 : 5 ) {
40 R xx [ i , i : 5 ]<−c (1 , r u n i f (5− i , −1, 1) )

40
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41 R xx [ i : 5 , i ]<−R xx [ i , i : 5 ]
42 }
43 S c<−cho l (D c)%*%R xx%*%cho l (D c)
44 S c<−round (S c , 5) ;m<−m+1
45 }
46 #### Lemma 1 ####
47 W true<−s o l v e (S c)%*%ones / as . numeric ( t ( ones )%*% s o l v e (S c)%*%ones )
48 ###############################################
49 #### Create the v a r i a b l e s that we w i l l use ####
50 #### in order to s t o r e the va lue s o f the 5 ####
51 #### weights f o r every s imu la t i on ####
52 ###############################################
53 THETADIFF<−matrix (0 ,5 ,1000)
54 the tacon j<−matrix (0 ,5 ,1000)
55 THETAINF<−matrix (0 ,5 ,1000)
56 ###################################################
57 #### the v a r i a b l e in which we w i l l s t o r e ####
58 #### the squared d i f f e r e n c e s f o r every weight , ####
59 #### e . g the quadrat i c l o s s func t i on ####
60 ###################################################
61 l o s s . table<−l app ly ( 1 : 3 , f unc t i on ( x ) matrix (0 ,5 ,1000) )
62 ##############################
63 #### L−2 l o s s func t i on ####
64 #### f o r 1000 s imu la t i on s ####
65 ##############################
66 f o r ( i in 1 :1000) {
67 ######################################
68 #### Generate a Covariance matrix ####
69 ######################################
70 Sigma . sim <− r i w i s h (nu c−k−1,S c)
71 ##########################################
72 #### Generate \mu vector and the data ####
73 ##########################################
74 mus . sim<−mvrnorm (1 , rep (0 , 5 ) , Sigma . sim/k c)
75 data . sim<−mvrnorm (50 ,mus . sim , Sigma . sim )
76 covar<−cov (data . sim )
77 nu I<−n<−nrow (data . sim )
78 ###########################
79 #### est imated weights ####
80 ###########################
81 DEN e s t<−t ( ones )%*% s o l v e ( covar )%*%ones
82 NUM e s t<−s o l v e ( covar )%*%ones
83 W e s t<−NUM e s t / as . numeric (DEN e s t )
84 ##################################
85 #### c a l c u l a t e the matrix R d ####
86 ##################################
87 R D<−s o l v e ( covar )−( s o l v e ( covar )%*%ones%*%t ( ones )%*% s o l v e ( covar ) ) /

as . numeric (DEN e s t )
88 #########################
89 #### d i f f u s e weights ####
90 #########################
91 t h e t a d i f 1 . sim<−as . numeric (L 1%*%W e s t ) ; t h e t a d i f 2 . sim<−as . numeric (L

2%*%W e s t )
92 t h e t a d i f 3 . sim<−as . numeric (L 3%*%W e s t ) ; t h e t a d i f 4 . sim<−as . numeric (L

4%*%W e s t )
93 t h e t a d i f 5 . sim<−as . numeric (L 5%*%W e s t )
94 #############################################
95 #### Save the weights o f each s imu la t i on ####
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96 #### based on the d i f . p r i o r ####
97 #############################################
98 THETADIFF[ , i ]<−rbind ( t h e t a d i f 1 . sim , t h e t a d i f 2 . sim , t h e t a d i f 3 . sim ,

t h e t a d i f 4 . sim , t h e t a d i f 5 . sim )
99 ###########################

100 #### conjugate weights ####
101 ###########################
102 X BAR<−matrix ( colMeans (data . sim ) ,5 , 1 )
103 R C<−(n*X BAR) / (n+k c)
104 V C<−(n−1)*covar+S c+(n+k c)*R C%*%t (R C)+n*X BAR%*%t (X BAR)
105 DENOM<−t ( ones )%*% s o l v e (V C)%*%ones
106 thetacon1 . sim<−as . numeric (L 1%*% s o l v e (V C)%*%ones /DENOM)
107 thetacon2 . sim<−as . numeric (L 2%*% s o l v e (V C)%*%ones /DENOM)
108 thetacon3 . sim<−as . numeric (L 3%*% s o l v e (V C)%*%ones /DENOM)
109 thetacon4 . sim<−as . numeric (L 4%*% s o l v e (V C)%*%ones /DENOM)
110 thetacon5 . sim<−as . numeric (L 5%*% s o l v e (V C)%*%ones /DENOM)
111 #############################################
112 #### Save the weights o f each s imu la t i on ####
113 #### based on the conj . p r i o r ####
114 #############################################
115 the tacon j [ , i ]<−rbind ( thetacon1 . sim , thetacon2 . sim , thetacon3 . sim ,

thetacon4 . sim , thetacon5 . sim )
116 ###########################
117 #### in fo rmat ive p r i o r ####
118 ###########################
119 f o r ( j in 1 : 4 ) {
120 R<−1/ de l t a2 +(n−1)/ as . numeric (DEN e s t )
121 Z 0<−rnorm (20000)
122 TAU<−rgamma(20000 , shape = (n−k+p+nu I−1)/ 2 , scale = 2)
123 P two<−(n−1)/ as . numeric (L [ [ j ] ]%*%R D%*%t (L [ [ j ] ] ) )
124 P one<−1/ (1 /S I+P two )
125 V. I<−1/ (TAU*P one+P two )
126 r . I<−V. I*(TAU*P one*w I [ j ]+P two*THETADIFF[ j , i ] )
127 h . I<−R+TAU*w I [ j ] *P one*w I [ j ]+THETADIFF[ j , i ] *P two∗THETADIFF[ j , i ]−

r . I/V. I*r.I
128 ZETA<−rgamma(20000 , shape = (n−k+2*p+2*de l ta1 ) / 2 , scale = 2/h . I)
129 #### s t o c h a s t i c r e p r e s e n t a t i o n formula ####
130 THETAINF[ j , i ]<−mean( r . I+ZETAˆ(−1/ 2)* s q r t (V. I)*Z 0)
131 }
132 THETAINF[ 5 , i ]<−1−sum(THETAINF[ , i ] )
133 ####
134 l o s s . table [ [ 1 ] ] [ , i ]<−(THETADIFF[ , i ]−W true ) ˆ2
135 l o s s . table [ [ 2 ] ] [ , i ]<−( the tacon j [ , i ]−W true ) ˆ2
136 l o s s . table [ [ 3 ] ] [ , i ]<−(THETAINF[ , i ]− W true ) ˆ2
137 }
138 ####################################
139 #### expected L−2 l o s s func t i on ####
140 ####################################
141 re turn ( l i s t ( d e v i a t i o n s=data . frame ( d i f f u s e = sum( colSums ( l o s s .

table [ [ 1 ] ] ) ) / 1000 ,
142 conjugate = sum( colSums ( l o s s . table [ [ 2 ] ] ) ) / 1000 ,
143 i n f o rmat ive = sum( colSums ( l o s s . table [ [ 3 ] ] ) ) / 1000) , W

true= W true , S c=S c , num. o f . d i f . c o r r e l a t i o n . matr i ce s=m) )
144 }
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