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Abstract

This thesis aims to evaluate the feasibility of using model assisted
survey sampling to estimate the technical provisions of a traditional
life insurance portfolio, for IFRS purposes as well as Solvency II best
estimate purposes. The goal is to achieve an estimate of technical
provisions of certain subsets of the portfolio that falls within a cer-
tain tolerance margin of the true provisions calculated using the entire
portfolio, while using only a limited subset of policies to significantly
shorten the calculation’s running time. The evaluation compares two
separate survey sampling techniques, estimating the aggregate techni-
cal provisions in the subsets of the portfolio firstly by scaling individual
policies’ calculated technical provisions based on their respective selec-
tion probabilities and secondly by fitting a multiple linear regression
to the selected policies (where the surrender value and second order
reserve predict the technical provisons) and use this model to explicitly
predict the technical provisions of each individual policy not included
in the sample. In particular the regression based estimator is found
to be accurate to within less than 0.5% of the true aggregate tech-
nical provisions of each subset on average, even for sample sizes as
low as 3% of the total portfolio in terms of number of policies. Since
the calculation time for technical provisions is approximately linear
in the number of policies used by the provision model, the suggested
sampling method can save significant amounts of time. The regression
model variables and selection probability parameter values are found to
be robust when tested on other time periods, indicating that frequent
recalibration would not be required. Using unequal selection probabil-
ities based on each policy’s surrender value provides an added benefit
to the trade off between accuracy and calculation time compared to
using a fixed probability for each policy.
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Chapter 1

Introduction

According to Swedish law and the Solvency II directive, insurance companies need to determine
their technical provisions on a recurring basis to ensure su�cient capital is held to cover future
payment liabilities. The calculation of technical provisions can be a time consuming task for a life
insurance portfolio, where the amount paid to policy holders depends on factors such as whether
the policy holder has kept up premium payments, moved the policy, died (before or after the in-
tended start of payouts) or whether the policy has reached its maturity, as well as policy speci�c
details such as di�erent technical bases and taxation classes.

To calculate technical provisions for a life insurance portfolio requires establishing a state model
for how, when and with what probability policies can transition between states. A model for future
cash �ows into and out of an insurance company, in each of the states that policies can belong to,
is also necessary. Finally, a model for the time value of money enables determining the present
value of future liabilities.

The portfolio of primary interest for the purposes of this thesis is the traditional life insurance
portfolio of a particular large Swedish insurance company. This portfolio contains a wide range of
di�erent policy tari�s, technical bases, mortality bases, policy holder ages and various other con-
ditions. For this reason, the process of calculating provisions is lengthy. To ensure that �nancial
reports can be prepared in a timely fashion amid increased regulatory demands, methods which
can reduce computational complexity while maintaining su�cient accuracy are in high demand.

To keep the evaluation focused on sample selection techniques rather than the minutiae of numer-
ous less popular policy tari�s, this thesis will consider a subset of more common types, speci�cally
annuities with a �xed maximum duration and annuities over the life of the policy holder, with
and without a bene�ciary in the event that the policy holder dies. Joint life policies will not be
included in the analysis, because they are much less common in the portfolio and also require a
more complicated state model.

The provision calculation model will be described in su�cient detail to demonstrate the cause
of long calculation times, together with an overview of the insurance mathematics included in the
model. The background of the method used to select a subset of representative policies will also
be detailed.

The rest of the thesis is organized as follows: Chapter 2 gives a brief review of basic life insurance
mathematics and introduces the provision calculation model. In Chapter 3, the foundations of
model assisted survey sampling are discussed. The application of the method to this particular
case is covered in Chapter 4 with details of the implementation. Results and conclusions are pre-
sented in Chapter 5. Finally, appendix A provides a more in-depth, illustrated explanation of
the various components of the provision model and how these work together, while appendix B
provides an overview of the results of the parameter tests conducted for the sampling method.
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Chapter 2

Mathematical background

2.1 A general introduction to technical provisions

Swedish law [3] for the insurance industry de�nes the obligation of companies in this industry
to periodically calculate their technical provisions according to certain legal standards and the
company's own technical reference documents. At the European level, the Solvency II directive
[2] speci�es essentially similar requirements. The purpose of calculating technical provisions is to
ensure that the insurance company has enough capital set aside to cover future payment liabilities.
Such liabilites exist in the form of bene�t payments to policy holders and bene�ciaries, operating
expenses and taxes.

For policies where the bene�ts are calculated using an assumption of recurring premiums, the
expected future premiums themselves reduce the required technical provisions, because these ex-
pected cash �ows increase the capital held by the insurance company to use for payments to the
particular policy holder or bene�ciary. In the event that premium payments were to cease for
such policies, the bene�ts will also be lowered accordingly. Hence, subtracting expected future
premiums from the capital requirements does not in and of itself create a risk of insu�cient capital
in the future.

Each of these four cash �ow components can hypothetically be modeled as stochastic processes. If
cash �ows occur at discrete points in time, the bene�t claims can be denoted C(t), the operating
expenses E(t), the taxes X(t) and the future premiums P (t), where each of the four are stochastic
variables that can take di�erent non-negative values at each time t.

Calculating technical provisions then becomes a task of determining a net present value of the
expected values of these cash�ow components for all future points in time. Denoting the net cash
�ow at each point in time by N(t), we have N(t) = C(t) − P (t) + E(t) + X(t) and with PVt(x)
denoting the present value at tine t of a future cash �ow x, the technical provisions at time t′ are

tp(t′) =

∞∑
t=t′

E [PVt′(N(t))]

The most relevant technical provisions are generally those at the current point in time,

tp(0) =

∞∑
t=0

E [PV0(N(t))]

This notation allows for the discounting used to determine the present value to itself have a stochas-
tic quality, i.e. to use a stochastic rate model or even model dependence between the cash �ow
quantities and the discount rates. In practice, the rates might be considered deterministic, in which
case the present value "operator" could equivalently be applied to calculated expected future cash
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�ow values.

A fully general model for calculating technical provisions might make assumptions about a prob-
ability distribution of each cash �ow component at each point in time and use known expressions
for the expected value or a Monte Carlo simulation based approach if appropriate.

It would also be possible to model the expected values of cash �ows directly, without explicit
assumptions about speci�c distributions that the cash �ows might follow. This can for instance
be useful for so called traditional life insurance (see e.g. section 5.8 of Møller and Ste�ensen [5]),
where the guaranteed part of bene�t payments (the part that impacts technical provisions) is a
known amount for each possible state and the only uncertainty is what state the policy will be in
at each point in time. In this case, the expected values of the cash �ows can be calculated by using
the known amounts in each state together with the probabilities of being in each state. For nota-
tional simplicity, the expected values can be directly denoted by c(t) = E [C(t)], p(t) = E [P (t)],
e(t) = E [E(t)] and x(t) = E [X(t)].

In either case, calculating the expected cash �ow components at any particular point in time
will require an idea of what state each particular policy holder is in, since bene�t claims, expenses,
taxes and premiums will typically depend on whether the policy holder is alive or dead, has trans-
ferred the policy out of the insurance company, has ceased or continued premium payments or
whether the policy has started paying out or reached its maturity (if any).

Keeping track of the states requires some form of state model, which could be implemented in
the form of a Monte Carlo simulation with multiple runs where the policy holder is in one particu-
lar state at each point in time for each run. Alternatively, the state model might be implemented
in the form of a Markov chain, where a probability of being in each state at each point in time is
determined and the (expected) cash �ow components are essentially calculated for each state and
each time t and then aggregated into an overall expected value for each time t.

In the most general case, a continuous time Markov chain could be used, where the probabili-
ties that the policy holder is in each of the various states at time t can be denoted by the vector

pS(t) = [p1(t) p2(t) . . . pN (t)] ,

where N is the total number of di�erent states.

It might also be possible to simplify this somewhat to a discrete time Markov chain, in case
policy events are only actually handled on a periodic basis. It is common in practice that life in-
surance companies use monthly periodization, where interest is added and expenses are subtracted
once per month and bene�ts are paid monthly or less frequently, while premiums can in principle
be paid more frequently.

In this case, the same notation can be used to denote the probabilities that the policy holder
is in each of the given states at time t (which is in this case an integer valued variable). This
notation is similar to that of Section 4.4 in Ross [7], though in this case the probabilites are stated
at a given point in time rather than stating the long run probabilities of being in each state.
Additionally, in this case it is relevant to introduce a transition matrix PS(t) according to

PS(t) =


p11(t) p12(t) . . . p1N (t)
p21(t) p22(t) . . . p2N (t)
...

...
. . .

...
pN1(t) pN2(t) . . . pNN (t)

 ,
where each pij(t) denotes the probability that the policy holder will transition from state i to
state j from time t to t + 1. This means that the following relationship holds between the state
probabilities at times t and t+ 1 and the transition matrix:

pS(t+ 1) = pS(t)PS(t),
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where the usual Markov chain convention of using a row vector for the state probabilities is used.

It is also possible to reformulate this multiplicative, matrix based notation into an equivalent
additive notation for each state separately. For details on how to derive this reformulation, see
section A.2.

2.2 Overview of basic life insurance mathematics

Fundamentally, calculating the technical provisions for life insurance policies requires the ability to
value individual payments and annnuity payments while simultaneously taking both mortality and
the time value of money into account. As described in e.g. Andersson [1], this requires de�ning
the survival function,

l(x) = P (Policy holder still alive at duration x),

from which the single time period mortality probability can be shown to be

qx = 1− l(x+ 1)

l(x)

Literature on the topic of life insurance mathematics will frequently consider this to be the prob-
ability of death within one year, although it is equally possible to use a di�erent time unit. The
model investigated in this thesis uses a time unit of one month.

To value future single payments or annuity payments, it is customary to introduce commutation
factors to encapsulate important recurring calculations in shorthand notation. The so called "dis-
counted number of the living" is used to calculate the value of a future single payment conditional
on the recipient remaining alive at the time of payment. This is de�ned as

D(x) = l(x)e−δx

To calculate the value of an annuity payment conditional on the recipient remaining alive, the so
called "sum of the discounted number of the living" is introduced according to

N(x) =

∫ ∞
x

D(t)dt

This number by itself actually relates to a hypothetical perpetuity, as indicated by the upper in-
tegration limit. To determine the value of an annuity with a maximum length, di�erences of two
such numbers can be used.

The Makeham model is used to model mortality, meaning the intensity of mortality has the form

µx = α+ βeγ(x−f), x ≥ 0.

The relationship between the mortality intensity µx and the survival function l(x) is

µx = − l
′(x)

l(x)
⇔ l(x) = e−

∫ x
0
µsds

2.3 Brief description of the provision model

The core of the provision model studied in this thesis is the state model, a discrete Markov chain
where the policy holder can belong to either of the following states:
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Short form name Description of state
PP Premium paying
PU Paid-up

POPP Paying out, from premium paying
POPU Paying out, from paid-up

TR Transferred
MA Matured
DE Dead

Table 2.1: Possible states for the state model

The reason for keeping track of the states POPP and POPU separately rather than simply a single
state PO is that policies with an explicit condition of recurring premium payments will receive
a reduced bene�t in case the policy holder decides to cease premium payments - the original es-
timated bene�t for these policies is calculated based on the assumption that premium payments
will be made according to the condition at the issue date. Hence, the calculated bene�t present
in the raw policies data used in the model (see section A.5) will not be accurate for such policies
and will need to be recalculated. By keeping POPP and POPU separate states, the bene�t can be
determined for each of these separately.

The possible transitions between these states are described in the following �gure (note though
that transitions directly from PP or PU to MA are only possible for policies with a single payout
at the time of maturity):

Figure 2.1: Possible states and transitions in the state model

In order to calculate provisions, the model attempts to calculate the function re�ecting the tech-
nical provisions at time 0. This depends on the cash �ow components bene�t claims, premiums,
operational expenses and taxes, as well as the technical provisions themselves, all at time 1. The
result will be discounted back one time period.

Since the insurance portfolio investigated consists of traditional life insurance, policy holders will
receive guaranteed payments and possibly discretionary bonus amounts depending on the perfor-
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mance of the asset portfolio. Only the guaranteed payments a�ect the technical provisions, because
the bonus amounts are discretionary and can be withheld if the asset portfolio has underperformed
and the aggregate capital is insu�cient.

The guaranteed payments are calculated by the source system at issuance (for policies with an
explicit condition of recurring premiums or policies with a purely one-o� premium) or recalculated
as each premium is paid (for policies that belong to neither of the aforementioned categories), and
the calculated amount is provided as data to the provision model (see section A.5). For policies in
the last category, no future premiums are assumed to occur in the provision model. This means
that the cash �ow components can be treated as deterministic, independently of asset performance
as well as discount rates.

Because of the recursive dependence on itself (a priori, the technical provisions are only known to
be 0 at the end of the projection period where no future cash �ows exist) and because the other
constituent variables in turn depend on the state model (which inherently needs to be calculated
forward in time before the expected cash �ows), the computational complexity of the model is
considerable. A more in-depth, illustrated elaboration of the complexity is provided in appendix
A, sections A.1 to A.3.

Furthermore, the model calculates both the provisions of each individual policy at time 0 as well
as the aggregate cash �ow components (claims, premiums, expenses and taxes) of di�erent groups
of policies for each of up to 1 440 months (the model assumes that the maximum age any policy
holder will reach is 120 years). This is because certain regulatory reports require knowledge of the
future cash �ow pro�le in various parts of the portfolio - for instance occupational pension and
other life insurance separately, P and K tax classes separately etc (see section A.3). To have this
data available requires calculating each cash �ow component at each of 1 440 points in time for
each individual policy.

In conclusion, the model needs to project each individual policy forward in time up to 120 years
into the future using a monthly discrete Markov chain, calculate the payout amount in the di�erent
states at each point in time and discount all these payments back to the starting point using the
relevant interest rate curve. With multiple di�erent states and a total portfolio of roughly one
million policies, the total calculation time is currently about an hour for the base case.

Considering regulatory requirements for multiple di�erent scenarios (see for instance the regu-
lation regarding tra�c light reporting from Finansinspektionen [9] or section SCR.7 of the QIS5
Technical Speci�cations [6] for Solvency II), adjusting the rates of mortality and/or other param-
eters, the total time spent calculating provisions in these scenarios quickly increases.

2.4 Description of the policy tari� types

The focus of the analysis will be the very popular annuity policies, both life-long and with a �xed
maximum duration and with/without a bene�ciary to receive payments in the event that the policy
holder dies before the policy has matured. These types correspond to the "term/permanent life
insurance" referred to in section 1.2.1 of Koller [4] and are commonly known by the following short
form tari� names:

Short form name Tari� type
R Life-long annuity, no bene�ciary

TR Fixed maximum duration annuity, no bene�ciary
RSH Life-long annuity, �xed term annuity to bene�ciary

TRSH Fixed maximum duration annuity, same duration for bene�ciary

Table 2.2: Tari� types considered in the analysis
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The R tari� corresponds to section 3.4.3 of Andersson [1], meaning that the value of future bene�ts
can be expressed as

A(t) =

{
L · N(x+k)

D(x+t) 0 < t ≤ k
L · N(x+t)

D(x+t) k < t,

where k is the remaining time until bene�t payments start, and the value of future premiums (for
policies with PRM_FLAG = L only, see section A.5) is

B(t) =


P · N(x+t)−N(x+n)

D(x+t) 0 < t ≤ n
0 n < t ≤ k
0 k < t,

where n is the remaining time during which premiums are assumed to be paid.

The TR tari� similarly corresponds to section 3.4.4, meaning that the value of future bene�ts
is

A(t) =


L · N(x+k)−N(x+k+s)

D(x+t) 0 < t ≤ k
L · N(x+t)−N(x+k+s)

D(x+t) k < t ≤ k + s

0 k + s < t,

where s is the maximum duration of the period during which bene�ts will be paid, and the value
of future premiums (for policies with PRM_FLAG = L only, see section A.5) is

B(t) =


P · N(x+t)−N(x+n)

D(x+t) 0 < t ≤ n
0 n < t ≤ k
0 k < t.

The RSH and TRSH tari�s are variants of R and TR respectively, where bene�ts will be paid to a
bene�ciary in case the policy holder dies, either before bene�ts are scheduled to start paying out
or within a certain amount of time after bene�t payments have started. The valuation of these
tari�s does not require the bene�ciary to be alive, meaning these are not joint-life tari�s. In the
event that a bene�ciary is entitled to bene�t payments, these are considered unconditional cash
�ows in the calculation of technical provisions.

The derivations of the above expressions in Andersson [1] assume a constant and deterministic
interest intensity δ. In practice, the formulas for calculating the values of claims and premiums
presented above are modi�ed by introducing discretization adjustments as well as administrative
loadings, and present values of future cash �ows are calculated using deterministic interest rate
curves rather than a constant rate. Only the surrender value, appearing in the provision model
speci�cally for the case where the policy holder transfers the policy out of the insurance company,
and the guaranteed payment amount generated by a premium payment, are calculated assuming
a constant interest rate intensity using formulas similar to those above. For further details, see
section A.1.
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Chapter 3

Model assisted survey sampling

The underlying idea of model assisted survey sampling is to let features of a model and of its data
in�uence the decision of how to sample data to obtain a representative subset of data points that
can be used to make inferences about the population from which samples are drawn.

As described by Särndal, Swensson, Wretman [8], there are multiple di�erent approaches to select-
ing samples from a population. Fundamentally, the population (denoted by U = {1, . . . , k, . . . , N})
is the full set of data points for which inferences are to be made. When conducting a sample
selection, a sampling frame is any material or device used to enable observations in the population
at hand. An individual sample is denoted by S.

A fundamental property of sampling is the probability of inclusion for a given element k from
the sampling frame. By introducing an indicator variable

Ik =

{
1 if k ∈ S
0 otherwise,

the inclusion probability πk for element k can be expressed as

πk = P (k ∈ S) = P (Ik = 1).

Frequently, it is relevant to �nd estimates of the aggregate value of some element speci�c quanti-
tative variable yk. This aggregate can be denoted by t =

∑
k∈U yk and estimated using common

statistical techniques based on model assumptions and sampling method. In general, the π esti-
mator is de�ned using the inclusion probability as

t̂π =
∑
k∈S

yk
πk
.

As shown by Särndal et al [8], this estimator is unbiased for t with variance given by

V ar(t̂π) =
∑
k∈U

∑
l∈U

∆kl
yk
πk

yl
πl
,

where ∆kl is the covariance between Ik and Il, i.e.

∆kl = Cov(Ik, Il) = E[IkIl]− E[Ik]E[Il] = πkl − πkπl.

3.1 Approaches to sample selection

In principle, the population might be more or less clearly de�ned, introducing the need for di�erent
sampling methods in the various scenarios. The most straight forward case is when the population
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is fully available in compiled format (such as a computer �le), in which case the population and
the sampling frame can be considered identical. In other cases, a sampling frame will need to be
designed separately.

With a sampling frame established, the sampling method will further depend on whether there
are subgroups within the population and whether such subgroups have a natural hierarchical or-
ganizational model. For instance, a survey conducted in a country should cover respondents from
various regions of the country and possibly also from various cities within regions, requiring a
cluster-based approach to sampling. In the absence of hierarchical patterns, it is still frequently
relevant to stratify the population to cover subsets which may have stratum speci�c properties.

On a more basic level, samplings within the (possibly clustered or strati�ed) population can be con-
ducted through various methods, each suitable for a di�erent scenario. Below are brief descriptions
of some of these approaches to sampling.

3.1.1 Bernoulli sampling

This sampling method means that each element of the sampling frame has a �xed probability π of
being included in the sample, and hence a �xed probability (1− π) of not being included. Clearly,
the sample size in this case follows a Bin(N, π) distribution. In this case, the π estimator of the
population total t =

∑
k∈U yk will take the form

t̂π =
1

π

∑
k∈S

yk.

3.1.2 Simple random sampling

If it is more relevant to ensure a uniform sample size and if each sample of this size should have
equal probability, simple random sampling without replacement is an appropriate method. For a
desired sample size n, the probability of inclusion for each element is n/N and the estimator of
the population total becomes

t̂π =
N

n

∑
k∈S

yk.

Simple random sampling with replacement will instead assign equal probability 1/Nm to each
ordered sample of size m.

3.1.3 Systematic sampling

For simplicity of execution, systematic sampling is an appropriate choice. The only randomization
required is to pick a �rst element among the a �rst elements in the sampling frame, after which each
ath element is added to the sample. If the population size N is an integer multiple of a, samples
will have a common size. Otherwise, sample sizes may di�er by one element. The estimator of the
population total is

t̂π = a
∑
k∈S

yk.

3.1.4 Poisson sampling

In case equal probability sampling is not desirable, Poisson sampling is a useful and simple ap-
proach. Setting the inclusion probability of element k as πk, the sample size is random with
expected value

∑
k∈U πk and the estimator of the population total is the general one introduced
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earlier, i.e.

t̂π =
∑
k∈S

yk
πk
.

3.1.5 Probability proportional-to-size sampling

This is a particular implementation of Poisson sampling using a probability proportional to the
size of some auxiliary variable xk that is itself approximately proportional to the objective variable
yk. Since this is a special case of Poisson sampling, the same expression holds for the estimator of
the population total.

3.1.6 Strati�ed sampling

The technique of strati�cation requires identifying relevant, disjoint strata based on quantitative
or categorical data relating to the elements in the population. Each stratum requires a sample
size and sampling design, which can be uniform or stratum speci�c. With a total of H strata, the
estimator of the population total becomes

t̂π =

H∑
h=1

t̂hπ,

where t̂hπ refers to the corresponding estimator for stratum h.

3.2 Auxiliary variables and the regression estimator

The estimation accuracy for the aggregate value of the yk variable can be further improved through
the use of multiple auxiliary variables in a regression estimator. This requires identifying J aux-
iliary variables xk = (x1k, . . . , xJk)T with su�cient predictive power for the objective variable yk
and use known values of these auxiliary variables for the elements not included in a particular
sample in order to determine speci�c estimates of the yk values of these elements.

The general regression estimator is denoted by t̂yr and de�ned as

t̂yr = t̂yπ +

J∑
j=1

B̂j
(
txj − t̂xjπ

)
,

where
t̂yπ =

∑
k∈S

yk
πk

is the usual π estimator of ty =
∑
k∈U yk,

t̂xjπ =
∑
k∈S

xjk
πk

is the π estimator of the known xj total

txj =
∑
k∈U

xjk

and B̂1, . . . , B̂J are components of the vector

B̂ =

(∑
k∈S

xkx
T
k

σ2
kπk

)−1∑
k∈S

xkyk
σ2
kπk

.
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An alternate expression for the regression estimator can be obtained by noting that the �tted
values ŷk of the objective variable can be written

ŷk = xTk B̂ =

J∑
j=1

B̂jxjk

and the sample �t residuals as
ekS = yk − ŷk.

The regression estimator becomes

t̂yr =
∑
k∈U

ŷk +
∑
k∈S

ekS
πk

.

With the help of this alternate expression and some further notation, an approximate variance and
a variance estimator for the regression estimator can be determined. Hence, con�dence intervals
can be formed for the population total through the ordinary normal approximation.
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Chapter 4

Survey sampling for the provision

model

For the particular provision model studied in this thesis, the full population of policies is available
at the outset as a computer �le, meaning that the sampling frame is identical with this �le. The
ultimate aim is to estimate an aggregate of the individual policy technical provisons, meaning that
these technical provisions represent the yk values whose sum is the object of interest. Apart from
the total sum, partial sums over certain segments of the portfolio are also required for regulatory
purposes.

4.1 Application of survey sampling

As re�ected in section A.3, the provision model studied in this thesis relies on a number of categor-
ical variables to determine which values to use for certain parameters in the provision calculations
(discount rate curves, expense and tax loadings, assumptions for policy holder options, etc.). These
categorical variables will clearly be useful in the random sampling of policies, also because aggre-
gate technical provisions need to be calculated for portfolio subsets de�ned by these categorical
variables (for instance, separate aggregates are required for collectively negotiated occupational
pensions, individual occupational pensions and other life insurance, as well as the two tax classi�-
cations).

Considering that geographical locations of policy holders or other hierarchical divisions are not
relevant for the calculation of technical provisions (meaning that clustered designs are not appro-
priate) and that total provisions need to be estimated for well de�ned, disjoint groups of policies,
the strati�ed sampling method appears most appropriate.

In general, the technical provisions will depend on calculated bene�t amounts and the total capital
contained in the policy. Hence, unequal sampling probability would appear most appropriate, with
higher inclusion probability assigned to policies with more capital. Furthermore, the regression
estimator is likely to produce improved estimates of the technical provisions of individual policies
that are not included in the sample and hence a more reliable estimate of total technical provisions.

Since all policy data is available when conducting technical provision calculations, the concept
of nonresponse is not applicable in this case. Measuring error is also not quite applicable in the
precise sense considered by Särndal et al [8], although manual inputs to policies' data by adminis-
trative sta� inevitably create a risk of introducing errors. Certain known issues related to delays
in the handling of policy events (e.g. deaths of policy holders) are dealt with separately outside of
the core model. These corrections are considered out of scope for this thesis.
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4.2 Detailed implementation

A natural way to determine policy inclusion probabilities πk would be to use a probability that
increases with the size of bene�t payments. An easy and intuitively reasonable way to implement
this would be to use the variable SV 1ST from the policy data (see section A.5), denoting the
surrender value paid out in case the policy is surrendered or transferred. Since the goal is to
determine probabilities, the logistic function, which generally takes the form

f(x) =
L

1 + e−k(x−x0)
,

seems a reasonable choice of transform. To obtain probabilities, L should have the value 1. Since
SV 1ST is non-negative, x0 (the parameter determining the horizontal point of symmetry, where
the inclusion probability is 0.5) should have a su�ciently high positive value that a suitable number
of policies are assigned inclusion probabilities of 0.5 or above. The steepness parameter k does
not have an a priori obviously suitable value. Various combinations of values for x0 and k will be
evaluated to �nd a useful trade-o� between calculation time and estimation accuracy.

The implementation of the regression estimator for policies that are not included in the sam-
ple can bene�t from the fact that policy data includes more information than the parameters
directly used by the provision model (the variables are listed in section A.5). Variables likely to
be predictive of a policy's technical provisions include

• SV 1ST , surrender value as calculated by source system

• RES_2ND, total capital (including discretionary bonus)

• RES_1ST , premium reserve

• BEN_1ST , bene�t amount

4.3 Evaluation of logistic function parameters

Firstly, the subset of the portfolio consisting of the tari�s described in section 2.4 is analyzed to
ascertain whether all of the accounting products (see section A.3 for details) are su�ciently rep-
resented to allow sampling with reasonable predictive capability. With the tari�s chosen, it turns
out that accounting products B01, B03 and B15 are well represented while accounting products
B02 and B04 have very few policies of either of these tari�s. The subsequent analysis will hence
focus on accounting products B01, B03 and B15 (which are incidentally the accounting products
with tax class P - see section A.3).

Since these accounting products may exhibit di�erent properties, strati�ed sampling is conducted
with the accounting products as strata. Each accounting product has a separate sample with po-
tentially separate parameters for the logistic function as well as a separate regression analysis for
the purposes of the regression estimator.

In order to determine suitable parameter values for the logistic function, all 100 combinations
of the following values of k and x0 are tested for a single sample per accounting product, using a
common random seed:
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k x0

10−1 10000
10−2 20000
10−3 30000
10−4 40000
10−5 50000
10−6 60000
10−7 70000
10−8 80000
10−9 90000
10−10 100000

Table 4.1: Tested values for logistic function parameters

In each case, the π estimator and the regression estimator are used to construct estimates of the
accounting product aggregate technical provisions. For the regression estimator, it generally holds
that combinations of the four parameters listed in section 4.2 above provide highly signi�cant �ts
with adjusted R-square values of 0.96 or above as long as at least one of the �rst three is included.
Each individual parameter also is highly signi�cant with a p value of less than 2 ·10−16, though the
adjusted R-square does not change much by including more of these variables. By the principle of
parsimonious models, the common model

yk = β0 + β1x1k + β2x2k + εk

will be used, where yk is the technical provisions of policy k and x1k and x2k correspond to the
surrender value SV 1ST and second order provisions (including discretionary bonus) RES_2ND,
as these are intuitively reasonable as predictors of a policy's technical provisions.

Running these tests for one sample and one regression estimation per accounting product and

combination of k and x0 produces relative errors (calculated as
∣∣∣ t̂πt − 1

∣∣∣ and ∣∣∣ t̂yrt − 1
∣∣∣ respectively)

compared to the calculated true aggregated technical provisions as re�ected in the following �gure:
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Figure 4.1: Relative errors for a single sample obtained for di�erent values of k (the di�erent lines)
and x0 (horizontal axes), accounting product B01 (top), B03 (middle) and B15 (bottom), using
the π estimator t̂π (left) and regression estimator t̂yr (right)

Based on this �gure, it is rather clear that the highest values of k tested (10−1 to 10−4, corre-
sponding to the curves that diverge from the horizontal axes as the value of x0 increases) produce
inaccurate estimates, compared to the remaining values of k tested. Hence, lower values of k will
be more appropriate for this application.

It is, however, less clear from the �gure how k values of 10−5 and lower compare to each other, as
these curves appear to coincide in each of the subplots with comparatively small relative errors.
The next step is thus to examine further how the trade o� between sample size and accuracy works
for each accounting product and various values of k and x0. In order to �t the tables and since
the lowest values of k investigated turn out to produce very similar results, only k values between
10−5 through 10−8 are included in the tables.

In this step, ten samples are created for each combination of estimator and accounting product and
each combination of k and x0. Both the relative error as well as the sample size as a percentage
of the population size are calculated averages over these samples. The standard deviations for the
samples as a percentage of the true total technical provisions are also shown in relation to the
sample size, to get a sense of the variability between samples. The results of these evaluations can
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be found in tables B.1 through B.12 in appendix B.

Based on these tables, it is completely clear that k = 10−5 and a higher value of x0 provides
estimates that are equally or nearly equally accurate as those obtained with other combinations
of k and x0, while the sample size can be limited to a small fraction of the population in each
accounting product. The variability and average relative error do increase somewhat for larger x0
values, but it appears that x0 = 400000 is still a reasonably suitable choice for all three account-
ing products. Considering that calculation time varies approximately linearly with the number of
policies used in provision calculations, this means calculation times could be cut dramatically.

It is also clear that policies in accounting product B01 (individual occupational pension) have
larger surrender values to a greater degree than policies in accounting products B03 or B15 do,
since the sample size for B01 as a percentage of the population size is larger for each x0 tested with
k = 10−5 compared to the other accounting products. In the portfolio that this thesis considers,
B01 has a much smaller number of policies than either B03 or B15, meaning that the total sample
size as a percentage of the total number of policies will be much closer to the numbers shown for
B03 and B15.

The next step is to run a larger number of simulations using the chosen values k = 10−5 and
x0 = 400000 to better evaluate the accuracy of the estimators empirically, for each accounting
product and estimator type separately. This is done by producing a number of individual samples,
for each of which both estimators are calculated. In this investigation, 1 000 samples are created
and the same number of estimator calculations have been performed for each accounting product.
The results are presented in the following chapter.
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Chapter 5

Results and conclusions

The accuracy and variability of the sampling test is indicated in the following tables, where the
average estimates for each accounting product and estimation technique are presented along with
the true total technical provision, the standard deviation in currency units and as a percentage of
the average estimate and an approximate 95% con�dence interval for the true aggregate technical
provisions.

Accounting True technical Standard
product provision Average (µ) deviation (σ) σ/µ (%)
B01 2 676 018 451 2 676 378 096 48 114 215 1.80%
B03 8 128 171 267 8 123 513 118 117 992 832 1.45%
B15 6 220 145 565 6 222 314 605 97 939 082 1.57%

Table 5.1: Results of the repeated sample simulation, π estimator

Accounting True technical Standard
product provision Average (µ) deviation (σ) σ/µ (%)
B01 2 676 018 451 2 676 213 758 10 021 995 0.37%
B03 8 128 171 267 8 129 267 078 31 885 529 0.39%
B15 6 220 145 565 6 219 784 986 15 679 144 0.25%

Table 5.2: Results of the repeated sample simulation, regression estimator

Accounting True technical π estimator Regression estimator
product provision CIL CIU CIL CIU
B01 2 676 018 451 2 582 074 235 2 770 681 958 2 656 570 647 2 695 856 868
B03 8 128 171 267 7 892 247 167 8 354 779 070 8 066 771 442 8 191 762 715
B15 6 220 145 565 6 030 354 003 6 414 275 207 6 189 053 863 6 250 516 110

Table 5.3: Approximate 95% con�dence intervals for the true aggregate technical provisions

To verify the normality of the estimators, QQ plots have been constructed as shown below:
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Figure 5.1: QQ plots for the normal distribution, accounting product B01 (top), B03 (middle) and
B15 (bottom), using the π estimator t̂π (left) and regression estimator t̂yr (right)

The �t to the normal distribution appears quite good in each of these cases, with all points falling
very close to the line in each of the subplots.

5.1 Robustness test

As an added test of the robustness of the method for determining inclusion probabilities, the speci�c
k and x0 parameters chosen for the logistic function and the regression model, the same estimation
procedure is performed on data corresponding to three di�erent additional quarters. While the
independent variables of the regression model remain the same, separate coe�cient estimates are
computed for each sample and each quarter. The results are shown in the tables below:
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Accounting True technical Standard
product provision Average (µ) deviation (σ) σ/µ (%)
B01 2 460 767 328 2 461 081 510 46 559 658 1.89%
B03 8 191 486 141 8 193 965 337 116 725 302 1.42%
B15 5 993 942 338 5 994 418 731 91 780 339 1.53%

Table 5.4: Results of the repeated sample simulation for Q4 2015, π estimator

Accounting True technical Standard
product provision Average (µ) deviation (σ) σ/µ (%)
B01 2 460 767 328 2 461 040 797 9 946 385 0.40%
B03 8 191 486 141 8 190 359 927 29 232 823 0.36%
B15 5 993 942 338 5 994 095 150 14 681 136 0.24%

Table 5.5: Results of the repeated sample simulation for Q4 2015, regression estimator

Accounting True technical π estimator Regression estimator
product provision CIL CIU CIL CIU
B01 2 460 767 328 2 369 824 580 2 552 338 441 2 441 545 882 2 480 535 711
B03 8 191 486 141 7 965 183 745 8 422 746 930 8 133 063 593 8 247 656 261
B15 5 993 942 338 5 814 529 268 6 174 308 195 5 965 320 123 6 022 870 177

Table 5.6: Approximate 95% con�dence intervals for the true aggregate technical provisions for
Q4 2015

Accounting True technical Standard
product provision Average (µ) deviation (σ) σ/µ (%)
B01 2 664 074 513 2 662 519 192 50 588 363 1.90%
B03 8 495 557 921 8 501 920 746 113 967 107 1.34%
B15 6 414 022 584 6 413 520 384 98 998 979 1.54%

Table 5.7: Results of the repeated sample simulation for Q2 2016, π estimator

Accounting True technical Standard
product provision Average (µ) deviation (σ) σ/µ (%)
B01 2 664 074 513 2 664 026 712 10 262 179 0.39%
B03 8 495 557 921 8 497 395 220 37 470 534 0.44%
B15 6 414 022 584 6 414 232 425 16 922 232 0.26%

Table 5.8: Results of the repeated sample simulation for Q2 2016, regression estimator

Accounting True technical π estimator Regression estimator
product provision CIL CIU CIL CIU
B01 2 664 074 513 2 563 366 001 2 761 672 382 2 643 912 842 2 684 140 583
B03 8 495 557 921 8 278 545 217 8 725 296 275 8 423 952 974 8 570 837 466
B15 6 414 022 584 6 219 482 386 6 607 558 383 6 381 064 851 6 447 399 999

Table 5.9: Approximate 95% con�dence intervals for the true aggregate technical provisions for
Q2 2016
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Accounting True technical Standard
product provision Average (µ) deviation (σ) σ/µ (%)
B01 2 695 738 011 2 694 118 433 50 770 337 1.88%
B03 8 393 618 275 8 399 771 043 112 918 332 1.34%
B15 6 434 549 896 6 433 949 395 99 407 205 1.55%

Table 5.10: Results of the repeated sample simulation for Q3 2016, π estimator

Accounting True technical Standard
product provision Average (µ) deviation (σ) σ/µ (%)
B01 2 695 738 011 2 695 706 454 9 719 144 0.36%
B03 8 393 618 275 8 395 005 954 32 818 961 0.39%
B15 6 434 549 896 6 434 819 514 16 716 947 0.26%

Table 5.11: Results of the repeated sample simulation for Q3 2016, regression estimator

Accounting True technical π estimator Regression estimator
product provision CIL CIU CIL CIU
B01 2 695 738 011 2 594 608 573 2 793 628 293 2 676 656 932 2 714 755 976
B03 8 393 618 275 8 178 451 112 8 621 090 974 8 330 680 790 8 459 331 118
B15 6 434 549 896 6 239 111 273 6 628 787 517 6 402 054 297 6 467 584 730

Table 5.12: Approximate 95% con�dence intervals for the true aggregate technical provisions for
Q3 2016

These earlier quarters appear to be similarly well estimated as the quarter whose data was used
to �ne tune the estimation method. Hence, the values chosen for k and x0 and the variables used
in the regression model can be expected to perform well over time, without having to recalibrate
more than the regression coe�cients for each quarterly report.

5.2 Comparison to constant probability sampling

To see whether the approach of unequal probabilities based on policies' surrender values produces
any added bene�t, a comparison study is performed using a constant selection probability of
π = 10%, chosen to approximately coincide with the proportion chosen for accounting product
B01 with the k and x0 values discussed above. This produces the following results:

Accounting True technical Standard
product provision Average (µ) deviation (σ) σ/µ (%)
B01 2 676 018 451 2 668 439 768 126 353 690 4.74%
B03 8 128 171 267 8 128 024 172 119 951 100 1.48%
B15 6 220 145 565 6 221 237 879 63 697 141 1.02%

Table 5.13: Results of the repeated sample simulation, π estimator, constant selection probability
of 10%
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Accounting True technical Standard
product provision Average (µ) deviation (σ) σ/µ (%)
B01 2 676 018 451 2 675 216 703 14 814 616 0.55%
B03 8 128 171 267 8 129 528 293 20 245 336 0.25%
B15 6 220 145 565 6 220 053 318 9 183 191 0.15%

Table 5.14: Results of the repeated sample simulation, regression estimator, constant selection
probability of 10%

Accounting True technical π estimator Regression estimator
product provision CIL CIU CIL CIU
B01 2 676 018 451 2 420 786 535 2 916 093 000 2 646 180 056 2 704 253 350
B03 8 128 171 267 7 892 920 016 8 363 128 328 8 089 847 435 8 169 209 151
B15 6 220 145 565 6 096 391 482 6 346 084 275 6 202 054 263 6 238 052 372

Table 5.15: Approximate 95% con�dence intervals for the true aggregate technical provisions,
constant selection probability of 10%

Considering that the unequal selection probability approach with the chosen values for k and x0
produced sample sizes of approximately 3% with comparable variability that is observed in the
results above, and that the variability for the x0 values that result in a sample size closer to 10%
(see tables B.1 through B.12 in appendix B) is lower, it does appear that using unequal selection
probabilites can o�er a better trade o� between accuracy/variability and sample size/calculation
time than the simpler approach of equal selection probabilities can.

5.3 Conclusions

This thesis has evaluated the use of model assisted survey sampling for the purposes of calculating
an accurate estimate of technical provisions of a traditional life insurance portfolio using only a
subset of representative policies. The aggregate technical provisions of each accounting product
have been estimated using two separate estimation techniques, with the selection probabilities
based on the logistic function applied to each policy's surrender value as determined by the source
system holding the policy data.

The π estimator uses simple scaling with the help of the selection probabilities, while the re-
gression estimator �ts a multiple linear regression model to the sample chosen and uses the same
model to explicitly estimate the individual technical provisions of policies not included in the sam-
ple.

As seen in tables 5.1 to 5.3, both of these estimation techniques are capable of providing ac-
curate estimates for the aggregate technical provisions of the accounting products considered, and
overall the regression estimator exhibits less variance across multiple samples (as should be in-
tuitively expected, considering the good �t obtained within the sample for the regression model
chosen).

The selection method used and the range of parameter values tested can produce sample sizes
of as little as 3% of the population size (see tables B.1 to B.12) while maintaining a high degree of
accuracy with relatively limited variability. As shown in table 5.3, calculated con�dence intervals
are reasonably narrow and cover the true technical provisions for each accounting product. Since
the calculation time in the provision model is approximately linear in the number of policies in-
cluded, this estimation method allows for highly signi�cant time savings.

The results obtained for the main test data of the last quarter of 2016 can also be expected
to hold for other quarters without the need to recalibrate the parameters for the logistic function
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or to modify the variables used for the regression estimator. Tables 5.4 through 5.12 indicate that
accuracy and variability remain comparable over time.

Using unequal selection probabilities does appear to provide an added bene�t to the trade o�
between calculation time and accuracy. Tables 5.13 through 5.15 compared to tables B.1 through
B.12 show that for comparable accuracy and variability, the approach with unequal selection prob-
abilities produces smaller sample size, while a comparable sample size produces lower variability
for the approach with unequal selection probabilities.

In summary, the sampling methods investigated in this thesis are capable of solving the prob-
lem of long calculation times, while still obtaining estimates of the technical provisions that are
quite close to the true values determined by applying the provision model to the full portfolio of
policies.

5.4 Suggestions for further research

To improve the internal consistency between di�erent regulatory reports, it would be very useful
to examine ways to estimate the four main cash �ow components (bene�t claims, premiums, ex-
penses and taxes) separately for each policy and each monthly period, to ensure that cash �ows
aggregated for speci�c purposes do in fact produce the estimated technical provisions when the
relevant interest rate curve is applied to calculate the net present value of the cash �ows.

The claims component should be possible to predict using the duration and frequency of bene�t
payments and the calculated bene�t per payment as supplied in the data provided to the model.
Premiums will be estimated as zero for all policies without an explicit condition of recurring pre-
mium payments and should be possible to estimate using the variable for premium payments in
the input data for policies with such a condition. As discussed in section A.1, expenses and taxes
are calculated from the claims and premium cash �ows and technical provisions at each point in
time using deterministic administrative loadings, meaning that these would be easily calculated if
estimates for claims and premiums have already been determined.
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Appendix A

Detailed description of the model

In this appendix, the model is described in more detail, to clarify why the provision calculation
process is computationally complex.

A.1 Cash �ow model

The technical provisions are contained in a variable called res_rea_gross_proj, which contains
four cash �ow components. Only the expected value of each is modeled, without Monte Carlo
simulations. Since this is a traditional life insurance portfolio, there is an embedded guarantee,
and only the guaranteed bene�t, which is calculated separately and provided as a known amount
to the provision model, impacts the technical provisions. For this reason, the shorthand notation
for the respective expected values introduced in section 2.1 will be used below.

Cash �ow type Variable name in model Shorthand notation
Guaranteed claims claims_1st_tot c(t)
Incoming premiums premiums_rea_proj p(t)
Operational expenses expense_rea_proj e(t)
Taxes tax_rea_proj x(t)

Table A.1: Cash �ow components of the technical provisions

The guaranteed claims in turn are calculated as the sum of three components:

Claim category Variable name in model Shorthand notation
Claims at retirement claims_1st_ret cr(t)
Claims at death claims_1st_dth cd(t)
Claims at transfer claims_1st_transfer ct(t)

Table A.2: Components of the total claims cash �ow

Digging into the calculation of these variables, the technical provisions at time t depend on the
four cash �ow components at time t+1 as well as the technical provisions themselves at time t+1.
Using the shorthand notation from the table, the formula is

tp(t) = (c(t+ 1)− p(t+ 1) + e(t+ 1) + x(t+ 1) + tp(t+ 1))× df(t+ 1)

df(t)
,

where tp refers to the technical provisions and df to the discount factor from the initial time period.
This means there is a recursive dependency only resolved at the end of the projection period, where
the provisions and other cash �ow components are all zero. The maximum duration considered is
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120 years (1 440 months), as policy holders are assumed to not reach ages higher than that.

Furthermore, the operational expense cash �ows at time t + 1 depend on the total claims at
time t + 1, the premiums at time t + 1 as well as the technical provisions at time t + 1. The
same is true of the tax cash �ows at time t+ 1. The �gure below illustrates cross-dependencies of
the variables in the cash �ow model. Here, incoming arrows indicate which values are needed to
calculate a certain cash �ow component.

Figure A.1: Cross-dependencies in the cash �ow model

Speci�cally, the formulas for the operational expense and tax cash �ows look as follows:

e(t) = (v − 1) c(t)

(
1 +

le
12

)
+ c(t)

le
12

− (v · i− 1) p(t)

(
1 +

le
12

)
− p(t) le

12

+ tp(t)

(
le
12

+
1

2

(
le
12

)2
)

x(t) = [v · c(t)− v · i · p(t)] lt
12

+ tp(t)

(
lt
12

+
le · lt
144

+
1

2

(
lt
12

)2
)
.

Note here that the operational expense and tax loading parameters (le and lt respectively) are
expressed in an annual, continuous manner and should hence be applied to continuous premium and
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claim cash �ows as well as a continuous provision variable. Since the actual provision calculation
occurs discretely, the exponential function is approximated by its second order Taylor series. To
derive this, note that the sum of operational expenses and taxes in continuous terms over a period
of one month is

[v · c(t)− v · i · p(t) + tp(t)] e
le+lt

12 − c(t) + p(t)− tp(t),
which is approximated by

[v · c(t)− v · i · p(t) + tp(t)]
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1

2

(
le + lt

12

)2
)
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v · c(t)− v · i · p(t)− c(t) + p(t) + [v · c(t)− v · i · p(t) + tp(t)]
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The claim and premium cash �ows c(t) and p(t) multiplied by the squared loading parameters in
the second order Taylor terms on the last row above will generally be negligible compared to the
other terms in the expansion. These terms are thus omitted, in order to reach a somewhat simpler
�nal expression. Reordering the remaining terms so that all terms including lt are at the end, this
becomes

v · c(t)− v · i · p(t)− c(t) + p(t) + [v · c(t)− v · i · p(t) + tp(t)]
le
12

+ tp(t)
1

2

(
le
12

)2

+

[v · c(t)− v · i · p(t)] lt
12

+ tp(t)

(
lt
12

+
le · lt
144

+
1

2

(
lt
12

)2
)
,

where the terms on the last row correspond to the expression for x(t) given above and the terms
on the �rst row can be further rearranged as

v · c(t)− c(t) + v · c(t) le
12
− v · i · p(t) + p(t)− v · i · p(t) le

12
+ tp(t)

(
le
12

+
1

2

(
le
12

)2
)

=

(v − 1) c(t)

(
1 +

le
12

)
+ c(t)

le
12
− (v · i− 1) p(t)

(
1 +

le
12

)
− p(t) le

12
+ tp(t)

(
le
12

+
1

2

(
le
12

)2
)
,

which corresponds to the expression for e(t) presented above. The v and i parameters are admin-
istrative loadings on claims and premiums respectively. These are used to allow the company to
guarantee a certain fraction of the policy holder's capital while using a certain fraction of capital to
seek higher returns through riskier investments, providing discretionary bonus bene�ts for policy
holders.

The premium cash �ows are modeled in a simple manner:

p(t) =


0 for policies without an explicit condition of recurring premiums

0 when the end of the premium paying period is reached

l1_pp(t)PRMANN
12 otherwise,

where PRMANN , the expected annual premium, is provided as data to the model (see section
A.5) and l1_pp(t) is the state probability that the policy holder is in state "premium paying" (see
section A.2).

The claim cash �ows are calculated according to

cr(t) = (l1_popp(t)× ben_1st_pp(t) + l1_popu(t)× ben_1st_pu(t))
mr

12mm
,

where l1_popp(t) and l1_popu(t) are the state probabilities that the policy holder is receiving
payouts (see section A.2), ben_1st_pp(t) and ben_1st_pu(t) are auxiliary functions that calculate
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the value of bene�ts to the policy holder recursively for premium paying and paid-up policies
respectively and mr and mm are discretization adjustment factors;

cd(t) = l2_po(t)× ben_1st_l2(t)
mr

12mm
,

where l2_po(t) is the state probability that the bene�ciary is receiving payouts (see section A.2),
ben_1st_l2(t) is an auxiliary function that calculates the value of bene�ts to a bene�ciary recur-
sively and mr and mm are discretization adjustment factors; and

ct(t) = (t1_pp_tr(t)× res_sv_pp(t) + t1_pu_tr(t)× res_sv_pu(t))
mr

12mm
,

where t1_pp_tr(t) and t1_pu_tr(t) are the state probability increments that the policy holder is
transferring the policy (see section A.2), res_sv_pp(t) and res_sv_pu(t) are auxiliary functions
that calculate the surrender value of the policy for premium paying or paid-up respectively (by
using relevant commutation factors) and mr and mm are discretization adjustment factors.

A.2 State model

The state model uses functions keeping track of the probabilities of being in each of the possible
states at each point in time as well as probability increments to transition between states. The
former category uses variable names starting with l1 for the policy holder and l2 for the possi-
ble bene�ciary in the case the policy holder dies, respectively. The latter category similarly uses
variable names starting with t1 and t2. Below are the formulas for these variables, with some
comments to illustrate certain features.

Note speci�cally that the functions are not structured in the typical matrix algebra sense de-
scribed in section 2.1; there is no explicit matrix formed for transition probabilities and in fact
only increments to state probabilities are calculated. The relationship between the ordinary mul-
tiplicative approach and this alternative additive approach can be derived as follows:

Consider a particular state x. The probability of being in this state at time t+ 1 is

px(t+ 1) =

N∑
i=1

pi(t)pix(t)

= p1(t)p1x(t) + p2(t)p2x(t) + . . .+ px(t)pxx(t) + . . .+ pN (t)pNx(t)

= px(t) + p1(t)p1x(t) + p2(t)p2x(t) + . . .+ px−1(t)px−1,x(t)+

px+1(t)px+1,x(t) + . . .+ pN (t)pNx(t)− px(t) (1− pxx(t)) .

By introducing the notation tix(t) = pi(t)pix(t), this can be rewritten as

px(t+ 1) = px(t) + t1x(t) + t2x(t) + . . .+ tx−1,x(t) + tx+1,x(t) + . . .+ tNx(t)− px(t) (1− pxx(t)) ,

where the tix(t) can be thought of as probability increments for the transitions out of each state i
into state x.

For an absorbing state x, 1 − pxx(t) = 0, and hence the probability of being in such a state
at time t + 1 is simply the probability of being in the same state at time t plus the sum of the
probability increments for transitioning into state x.

For a non-absorbing state x, it is more helpful to think of the term px(t) (1− pxx(t)) as the
sum of probability increments for transitions out of state x. The correctness of this alternative
interpretation can be seen from the fact that the sum of probabilities of transitioning from each
state x must equal one:

N∑
j=1

pxj(t) = 1⇔ 1− pxx(t) = px1(t) + px2(t) + . . .+ px,x−1(t) + px,x+1(t) + . . .+ pxN (t),
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and hence the probability of being in state x at time t+ 1 can be rewritten as

px(t+ 1) = px(t) + t1x(t) + t2x(t) + . . .+ tx−1,x(t) + tx+1,x(t) + . . .+ tNx(t)

− tx1(t)− tx2(t)− . . .− tx,x−1(t)− tx,x+1(t)− . . .− tx,N (t)

in this case. In the sections below, the expressions for state probabilities and transition probability
increments used in the provision model are provided.

A.2.1 State probabilities

Probability that the policy holder is in absorbing state "DE" (dead) at time t (probability that
the policy holder was in state "DE" at time t− 1 plus the probability increments that the policy
holder transitioned to state "DE" from the states that can transition there):

l1_de(t) = l1_de(t− 1) + t1_pp_de(t) + t1_pu_de(t) + t1_popp_de(t) + t1_popu_de(t)

Probability that the policy holder is in absorbing state "MA" (matured) at time t (probability
that the policy holder was in state "MA" at time t − 1 plus the probability increments that the
policy holder transitioned to state "MA" from the states that can transition there):

l1_ma(t) = l1_ma(t− 1) + t1_pp_ma(t) + t1_pu_ma(t) + t1_popp_ma(t) + t1_popu_ma(t)

Probability that the policy holder is in state "POPP" (paying out, from premium paying) at time t
(probability that the policy holder was in state "POPP" at time t−1 plus the probability increment
that the policy holder transitioned to state "PO" from "PP" minus the probability increments that
the policy holder transitioned from state "POPP" to "MA", "DE" or "TR"):

l1_popp(t) = l1_popp(t− 1) + t1_pp_po(t)− t1_popp_ma(t)− t1_popp_de(t)− t1_popp_tr(t)

Probability that the policy holder is in state "POPU" (paying out, from paid-up) at time t (proba-
bility that the policy holder was in state "POPU" at time t−1 plus the probability increment that
the policy holder transitioned to state "PO" from "PU" minus the probability increments that the
policy holder transitioned from state "POPU" to "MA", "DE" or "TR"):

l1_popu(t) = l1_popu(t− 1) + t1_pu_po(t)− t1_popu_ma(t)− t1_popu_de(t)− t1_popu_tr(t)

Probability that the policy holder is in state "PP" (premium paying) at time t (probability that
the policy holder was in state "PP" at time t− 1 minus the probability increments that the policy
holder transitioned from state "PP" to the other possible states):

l1_pp(t) = l1_pp(t−1)−t1_pp_de(t)−t1_pp_ma(t)−t1_pp_po(t)−t1_pp_pu(t)−t1_pp_tr(t)

Probability that the policy holder is in state "PU" (paid-up) at time t (probability that the
policy holder was in state "PU" at time t − 1 plus the probability increment that the policy
holder transitioned from "PP" to "PU" minus the probability increments that the policy holder
transitioned from state "PU" to the other possible states):

l1_pu(t) = l1_pu(t−1)+t1_pp_pu(t)−t1_pu_de(t)−t1_pu_ma(t)−t1_pu_po(t)−t1_pu_tr(t)

Probability that the policy holder is in absorbing state "TR" (transferred) at time t (probability
that the policy holder was in state "TR" at time t − 1 plus the probability increments that the
policy holder transitioned to state "TR" from the states that can transition there):

l1_tr(t) = l1_tr(t− 1) + t1_pp_tr(t) + t1_pu_tr(t) + t1_popp_tr(t) + t1_popu_tr(t)

In all cases, these formulas show the values of the state probabilities at an arbitrary point in time
after the initial state. The policy data used in the calculation indicates what state a given policy
is in at the start of the calculation. The model assigns 1 as the probability of that state at time 0
and zero probability for each of the other states.
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Speci�cally for the policies with a bene�ciary if the policy holder dies, the cash �ow model re-
quires a further state l2_po to keep track of whether the policy is paying to the bene�ciary (the
terms added indicate whether the policy holder has transitioned to state "DE"; the calculation
does not take into account the possibility that the bene�ciary also might be dead):

l2_po(t) = l2_po(t− 1) + t1_pp_de(t) + t1_pu_de(t) + t1_popp_de(t) + t1_popu_de(t)

A.2.2 Transition probability increments

Probability increment that the policy holder transitions from state "POPP" to state "DE" at time
t (probability that the policy holder was in state "POPP" at time t − 1, minus the probability
increment that the policy holder transitioned to state "MA" at time t because maturity takes
precedence over death, multiplied by the mortality rate):

t1_popp_de(t) = [l1_popp(t− 1)− t1_popp_ma(t)]×mort_rate_exp(t)

Probability increment that the policy holder transitions from state "POPP" to state "MA" at time
t (the raw policy data contains the date of maturity, allowing the period of maturity to be easily
determined):

t1_popp_ma(t) =

{
l1_popp(t− 1) if t is the period of maturity

0 otherwise

Probability increment that the policy holder transitions from state "POPP" to state "TR" at time
t (probability that the policy holder was in state "POPP" at time t − 1, minus the probability
increments that the policy holder transitioned to state "MA" or "DE" at time t because maturity
and death take precedence over transfer, multiplied by the surrender rate):

t1_popp_tr(t) = [l1_popp(t− 1)− t1_popp_ma(t)− t1_popp_de(t)]× surrender_rate(t)

Probability increment that the policy holder transitions from state "POPU" to state "DE" at time
t (probability that the policy holder was in state "POPU" at time t − 1, minus the probability
increment that the policy holder transitioned to state "MA" at time t because maturity takes
precedence over death, multiplied by the mortality rate):

t1_popu_de(t) = [l1_popu(t− 1)− t1_popu_ma(t)]×mort_rate_exp(t)

Probability increment that the policy holder transitions from state "POPU" to state "MA" at time
t (the raw policy data contains the date of maturity, allowing the period of maturity to be easily
determined):

t1_popu_ma(t) =

{
l1_popu(t− 1) if t is the period of maturity

0 otherwise

Probability increment that the policy holder transitions from state "POPU" to state "TR" at time
t (probability that the policy holder was in state "POPU" at time t − 1, minus the probability
increments that the policy holder transitioned to state "MA" or "DE" at time t because maturity
and death take precedence over transfer, multiplied by the surrender rate):

t1_popu_tr(t) = [l1_popu(t− 1)− t1_popu_ma(t)− t1_popu_de(t)]× surrender_rate(t)

Probability increment that the policy holder transitions from state "PP" to state "DE" at time t
(probability that the policy holder was in state "PP" at time t−1, minus the probability increment
that the policy holder transitioned to state "MA" at time t because maturity takes precedence over
death, multiplied by the mortality rate):

t1_pp_de(t) = [l1_pp(t− 1)− t1_pp_ma(t)]×mort_rate_exp(t)
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Probability increment that the policy holder transitions from state "PP" to state "MA" at time
t (the raw policy data contains the date of maturity, allowing the period of maturity to be easily
determined):

t1_pp_ma(t) =

{
l1_pp(t− 1) if t is the period of maturity

0 otherwise

Probability increment that the policy holder transitions from state "PP" to state "PO" at time t
(probability that the policy holder was in state "PP" at time t−1, minus the probability increments
that the policy holder transitioned to the other possible states):

t1_pp_po(t) = l1_pp(t− 1)− t1_pp_pu(t)− t1_pp_ma(t)− t1_pp_de(t)− t1_pp_tr(t)

Probability increment that the policy holder transitions from state "PP" to state "PU" at time t
(probability that the policy holder was in state "PP" at time t−1, minus the probability increments
that the policy holder transitioned to state "MA" or "DE" at time t because maturity and death
take precedence over transfer, multiplied by 1 minus half the surrender rate because premium
cessation and transfers are assumed to occur simultaneously, further multiplied by the paid-up
rate):

t1_pp_pu(t) = [l1_pp(t− 1)− t1_pp_ma(t)− t1_pp_de(t)]×
[
1− surrender_rate(t)

2

]
×

paidup_rate(t)

Probability increment that the policy holder transitions from state "PP" to state "TR" at time
t (probability that the policy holder was in state "PP" at time t − 1, minus the probability
increments that the policy holder transitioned to state "MA" or "DE" at time t because maturity
and death take precedence over transfer, multiplied by 1 minus half the paid-up rate because
premium cessation and transfers are assumed to occur simultaneously, further multiplied by the
surrender rate):

t1_pp_tr(t) = [l1_pp(t− 1)− t1_pp_ma(t)− t1_pp_de(t)]×
[
1− paidup_rate(t)

2

]
×

surrender_rate(t)

Note that the above two expressions mean that the sum of the transition probability increments
from "PP" to "PU" and "TR" becomes

t1_pp_pu(t) + t1_pp_tr(t) = [l1_pp(t− 1)− t1_pp_ma(t)− t1_pp_de(t)]×
[paidup_rate(t) + surrender_rate(t)−
paidup_rate(t)× surrender_rate(t)],

where the product of the paid-up rate and the surrender rate is subtracted to not double count
policies, as a given policy that transfers out of the company also will cease premium payments.

Probability increment that the policy holder transitions from state "PU" to state "DE" at time t
(probability that the policy holder was in state "PU" at time t−1, minus the probability increment
that the policy holder transitioned to state "MA" at time t because maturity takes precedence over
death, multiplied by the mortality rate):

t1_pu_de(t) = [l1_pu(t− 1)− t1_pu_ma(t)]×mort_rate_exp(t)

Probability increment that the policy holder transitions from state "PU" to state "MA" at time
t (the raw policy data contains the date of maturity, allowing the period of maturity to be easily
determined):

t1_pu_ma(t) =

{
l1_pu(t− 1) if t is the period of maturity

0 otherwise

Probability increment that the policy holder transitions from state "PU" to state "PO" at time t
(probability that the policy holder was in state "PU" at time t− 1, plus the probability increment
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that the policy holder transitioned from "PP" to "PU", minus the probability increments that the
policy holder transitioned to the other possible states):

t1_pu_po(t) = l1_pu(t− 1) + t1_pp_pu(t)− t1_pu_ma(t)− t1_pu_de(t)− t1_pu_tr(t)

Probability increment that the policy holder transitions from state "PU" to state "TR" at time t
(probability that the policy holder was in state "PU" at time t−1, minus the probability increments
that the policy holder transitioned to state "MA" or "DE" at time t because maturity and death
take precedence over transfer, multiplied by the surrender rate):

t1_pu_tr(t) = [l1_pu(t− 1)− t1_pu_ma(t)− t1_pu_de(t)]× surrender_rate(t)

A.3 Parameter sets

The model uses a range of di�erent parameters, which are organised as follows:

Product group: Collectively negotiated occupational pension insurance uses a di�erent operational
expense loading compared to individual occupational pension insurance and other life insurance,
re�ecting di�erent actual operational expenses for these lines of business. Occupational pension
insurance also uses a separate interest rate curve for discounting purposes compared to other life
insurance, as required by the regulator. Furthermore, other life insurance uses "safe" assumptions
regarding mortality, while occupational pension insurance uses "realistic" assumptions.

Tax classi�cation: The Swedish tax code separates life insurance into tax classes P ("pension
insurance") and K ("capital insurance") and these are taxed at di�erent rates. Furthermore, while
both classes apply the tax rate to the yield of government bonds of approximately 10 year durations
with a suitable adjustment, di�erent adjustments are made to the yield for the two classes. Hence,
the tax loading (used for setting aside funds from policies to pay their taxes) is separate for P and K.

It should be noted that collectively negotiated policies are only classi�ed as occupational pen-
sion insurance and only as tax class P, while individual policies can belong to either of the four
possible combinations of occupational pension/other life insurance and tax class P/K. Hence, there
is a total of �ve possible such combinations, referred to as accounting products. Below is a table of
the accounting products included in the portfolio studied in this thesis:

Accounting
product Contents

B01 Individual occupational pension insurance, tax class P
B02 Individual occupational pension insurance, tax class K
B03 Other life insurance, tax class P
B04 Other life insurance, tax class K
B15 Collectively negotiated occupational pension insurance, tax class P

Table A.3: Accounting products present in the portfolio studied

Some parameter values are separate for each accounting product, for instance parameters used for
valuing the policy holder option (available in some but not all policies) of changing the length of
the bene�t payment period. These parameters include the probability of changing bene�t duration
as well as the expected change in this duration, and are further split between policies that initially
had life-long bene�t duration and policies that initially had a �xed maximum bene�t duration.

Technical basis: Sets of parameter values applicable to policies issued on or after a certain starting
date. Typically, there are several simultaneously active technical bases for each of the tax classes
and for di�erent collectives of policy holders. Occasionally, new technical bases are introduced
in response to changing �nancial market conditions and their e�ects on the investment portfolio.
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Newly issued policies will then use a relevant new basis.

For policies without an explicit condition of recurring premiums, existing capital keeps its original
technical basis while any further premiums paid are placed in sub-policies that will be subject to
the technical bases applicable at the time of payment. A policy can also be issued with an explicit
condition of recurring premium payments, in which case the original technical basis is applied for
all future premiums as long as premium payments are made according to the condition.

Mortality basis: A set of Makeham parameters for calculating the survival function and com-
mutation factors. Each technical basis can contain separate mortality bases for purposes such as
provision calculations, pricing, prognoses etc. Several technical bases can share the same mortality
basis for one or several of these purpose classes.

To further illustrate the organization of the parameter sets, below are sample tables of �ctitious
(but realistic in terms of the order of magnitude) parameter values:

196400K 196400P 196401K 196401P 199300K 199300P . . .
mortality basis pricing mort1 mort2 mort1 mort2 mort3 mort4 . . .

mortality basis provisions mort5 mort5 mort5 mort5 mort6 mort6 . . .
mortality basis prognosis mort7 mort8 mort9 mort10 mort11 mort12 . . .
mortality basis realistic rea13 rea13 rea13 rea13 rea13 rea13 . . .
survival basis pricing surv1 surv2 surv1 surv2 surv3 surv4 . . .

survival basis provisions surv5 surv5 surv5 surv5 surv6 surv6 . . .
survival basis prognosis surv7 surv8 surv9 surv10 surv11 surv12 . . .
survival basis realistic rea13 rea13 rea13 rea13 rea13 rea13 . . .

delta pricing 0.0123 0.0157 0.0123 0.0157 0.0214 0.0214 . . .
delta provisions 0.0234 0.0178 0.0234 0.0178 0.0235 0.0235 . . .
delta prognosis 0.0184 0.0125 0.0184 0.0125 0.0209 0.0209 . . .

Table A.4: Sample, �ctitious table of technical bases

As indicated in the table, a particular mortality basis can be shared by several technical bases,
but can also be unique to a single technical basis. The numbers at the start of the technical basis
names indicate the year it was introduced as well as identi�er numbers in case several bases were
introduced the same year. The last letter re�ects the tax class - the two tax classes can have
di�erent technical bases.

mort1_M mort1_F mort2_M . . . surv1_M surv1_F . . .
α 0.0015 0.0015 0.0018 . . . 0.0025 0.0025 . . .
β 0.000057 0.000057 0.000061 . . . 0.000043 0.000043 . . .
γ 0.051 0.051 0.047 . . . 0.043 0.043 . . .
f 0 3 0 . . . 0 4 . . .

Table A.5: Sample, �ctitious table of mortality bases

The names of the mortality bases re�ect the names used in the table for technical bases above and
the �nal letter corresponds to the gender of the policy holder. Some mortality bases are gender
neutral for legal reasons, in which case the _M and _F versions will have the same Makeham
parameters.

A.4 Calculation of commutation factors

To calculate the survival function l(x), we note the fact that the Makeham model uses the mortality
intensity µx = α+βeγ(x−f), x ≥ 0 and insert this into the general expression linking the mortality
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intensity and the survival function:

l(x) = exp

(
−
∫ x

0

µsds

)
= exp

(
−
∫ x

0

(
α+ βeγ(s−f)

)
ds

)
= exp

[
−αx− β

γ

(
eγ(x−f) − 1

)]
In this model, l(x) is considered to be zero for x > 120 years, and for x > 80 years the mortality
intensity is considered to increase linearly rather than exponentially.

The D(x) commutation factor is trivially calculated according to its de�nition, D(x) = l(x)e−δx,
though the δ value can vary by technical basis and not simply by mortality basis as seen in the
previous section. For the purposes of calculating the N(x) commutation factor, Simpson's rule
is used to approximate the value of the integral. This means that a general de�nite integral is
approximated by ∫ b

a

f(x)dx ≈ b− a
6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
The approximate N(x) values for a given age x (expressed in months) are calculated cumulatively,
by estimating such integral values over the required number of two-month intervals and adding
them up, according to the following recursive formula:

N(x) =
D(x) + 4D(x+ 1) +D(x+ 2)

36
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As a consequence of the duration changes according to the option available to some policy holders,
N(x) commutation factors for non-integer ages in months can be required in provision calcula-
tions. These are then calculated using a Taylor expansion based interpolation between the values
available in this table.

The original model calculates commutation factors on an as-needed basis and stores them in an
expanding but non-persistent table to be re-used by any further policies sharing the same param-
eters. For subsequent quarters, the entire table is recalculated. This method is �exible and allows
further technical bases and/or mortality bases to be introduced without requiring modi�cations to
the method or separate preparatory calculations of the commutation factors. To save time in the
main technical provision calculation loop of the adapted R version of the model, all possible com-
mutation factor values for each combination of technical basis, mortality basis and age (measured
in months) have been calculated separately and stored in tables which are loaded at the start of
the main program.

A.5 Format of policy data

The majority of information required to actually calculate technical provisions is supplied to the
model by the data from the policy information database. The following table shows the variables
included in this data and brief descriptions of their content:
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Variable name Contents
POLICY_ID A unique identi�er for each policy

ISSUE_YEAR The year the policy was issued
ISSUE_MTH The month the policy was issued
ISSUE_DAY The day the policy was issued

DOB1_YEAR The year the policy holder was born
DOB1_MTH The month the policy holder was born
DOB1_DAY The day the policy holder was born

SEX1 The gender of the policy holder (M/F)
AGE_T_TYPE1 Technical age type of policy holder ("E" for exact or "H" for whole years)
PROD_GROUP "Ind" for individually signed policies, "TJP" for collectively negotiated

TJP_CODE "1" for occupational pension insurance, "0" for other life insurance
TARIFF The tari� type of the policy (see section 2.4)

SAR_IND1 An index for whether the policy has mortality (0) or longevity (-1) risk
TECH_BASIS The technical basis of the policy/subpolicy (see section A.3)
TAX_CLASS The tax class of the policy (see section A.3)
PRM_FLAG "L" for policies with an explicit condition of recurring premiums,

"E" for purely one-o� premium, "LE" otherwise
STATUS The state in the state model at time 0 (see section 2.3)

PRE_AGE_AC Policy holder age when premium payments are scheduled to cease
RET_AGE_TE Technical retirement age of policy holder
RET_AGE_AC Actual retirement age of policy holder

(may be di�erent from RET_AGE_TE if AGE_T_TYPE1 = "H")
BEN_TRM_AC Length of bene�t payment period, policy holder
FAM_TRM_AC length of bene�t payment period, bene�ciary (if any)

BEN_1ST Calculated guaranteed bene�t per payment
BEN_FREQ Number of bene�t payments per year
BEN_TIME Bene�t timing ("B" for advance, "A" for arrears)
PRMANN Annual premium at calculation date (zero if PRM_FLAG 6= "L")
PRMTRM Premium per period at calculation date (zero if PRM_FLAG 6= "L")

PRM_FREQ Number of premiums per year (zero if PRM_FLAG 6= "L")
SURR_FL "J" if policy can be transferred, otherwise "N"

SV1ST Surrender value of policy if transferred out of the company
RES_1ST Premium reserve of policy
RES_2ND Second order reserve of policy (including discretionary bonus)

Table A.6: Contents of data used by the model

Note speci�cally that an estimate of the guaranteed bene�t of each policy is calculated beforehand
and provided to the technical provision model under the variable name BEN_1ST. The model
does contain functions to recalculate bene�ts in the event of premium cessation however.
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Appendix B

Accuracy and variability of evaluated

logistic function parameters

Below are tables showing the accuracy and variability of the π estimator and the regression esti-
mator for each of the accounting products considered and for the values of k and x0 evaluated.
The accuracy is measured as the average of the relative error observed for the aggregate technical
provision estimate in each of the 10 samples chosen for each case. The variability is measured as
the standard deviation as a percentage of the true aggregate technical provisions for the 10 samples
used for each estimator and combination of k and x0.

Note that since both the π estimator and the regression estimator are unbiased per Särndal et
al [8], if one instead calculates the average aggregate technical provisions and then calculates the
relative error of this average, the result will be a smaller error than the average of the individual
sample relative errors re�ected in the tables below.
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B.1 The π estimator

k = 10−5 k = 10−6 k = 10−7 k = 10−8

relative sample relative sample relative sample relative sample
x0 error size error size error size error size
20000 0.27% 62.7% 0.63% 52.2% 1.10% 50.2% 0.92% 50.0%
40000 0.28% 58.6% 0.64% 51.8% 1.00% 50.2% 0.89% 50.0%
60000 0.21% 54.4% 0.66% 51.3% 1.01% 50.1% 0.94% 50.0%
80000 0.20% 50.2% 0.63% 50.8% 0.92% 50.1% 0.87% 50.0%
100000 0.29% 46.1% 0.63% 50.3% 0.97% 50.0% 0.90% 49.9%
120000 0.20% 42.2% 0.61% 49.8% 0.97% 50.0% 0.92% 49.9%
140000 0.19% 38.5% 0.79% 49.5% 0.94% 50.0% 0.85% 50.0%
160000 0.44% 34.9% 0.73% 49.0% 0.91% 50.0% 0.79% 50.1%
180000 0.32% 31.4% 0.77% 48.5% 0.98% 49.9% 0.82% 50.0%
200000 0.23% 28.5% 0.81% 48.0% 0.95% 49.9% 0.81% 50.0%
220000 0.35% 25.7% 0.96% 47.5% 1.06% 49.9% 0.92% 50.1%
240000 0.60% 23.2% 1.04% 47.0% 1.06% 49.8% 0.94% 50.1%
260000 0.91% 20.9% 0.96% 46.6% 1.06% 49.8% 0.86% 50.1%
280000 0.86% 18.8% 0.93% 46.1% 1.06% 49.7% 0.83% 50.1%
300000 0.93% 17.0% 0.93% 45.6% 1.08% 49.7% 0.88% 50.1%
320000 0.77% 15.4% 1.09% 45.2% 1.34% 49.7% 1.13% 50.2%
340000 1.06% 13.9% 1.14% 44.7% 1.34% 49.7% 1.15% 50.2%
360000 1.29% 12.6% 1.11% 44.2% 1.41% 49.6% 1.15% 50.2%
380000 1.32% 11.4% 1.23% 43.7% 1.40% 49.6% 1.22% 50.2%
400000 1.11% 10.4% 1.32% 43.2% 1.55% 49.5% 1.29% 50.1%

Table B.1: Accuracy and sample size for the π estimator, accounting product B01

k = 10−5 k = 10−6 k = 10−7 k = 10−8

standard sample standard sample standard sample standard sample
x0 deviation size deviation size deviation size deviation size
20000 0.36% 62.7% 0.89% 52.2% 1.45% 50.2% 1.23% 50.0%
40000 0.32% 58.6% 0.86% 51.8% 1.40% 50.2% 1.19% 50.0%
60000 0.32% 54.4% 0.90% 51.3% 1.45% 50.1% 1.26% 50.0%
80000 0.28% 50.2% 0.83% 50.8% 1.31% 50.1% 1.12% 50.0%
100000 0.35% 46.1% 0.87% 50.3% 1.28% 50.0% 1.13% 49.9%
120000 0.25% 42.2% 0.76% 49.8% 1.34% 50.0% 1.13% 49.9%
140000 0.26% 38.5% 0.94% 49.5% 1.15% 50.0% 1.02% 50.0%
160000 0.54% 34.9% 0.88% 49.0% 1.18% 50.0% 0.99% 50.1%
180000 0.35% 31.4% 0.98% 48.5% 1.25% 49.9% 1.03% 50.0%
200000 0.27% 28.5% 1.02% 48.0% 1.28% 49.9% 1.06% 50.0%
220000 0.44% 25.7% 1.17% 47.5% 1.33% 49.9% 1.10% 50.1%
240000 0.83% 23.2% 1.22% 47.0% 1.30% 49.8% 1.11% 50.1%
260000 1.06% 20.9% 1.11% 46.6% 1.27% 49.8% 1.04% 50.1%
280000 1.09% 18.8% 0.99% 46.1% 1.25% 49.7% 0.98% 50.1%
300000 1.05% 17.0% 0.98% 45.6% 1.23% 49.7% 0.96% 50.1%
320000 1.01% 15.4% 1.09% 45.2% 1.43% 49.7% 1.17% 50.2%
340000 1.38% 13.9% 1.17% 44.7% 1.51% 49.7% 1.28% 50.2%
360000 1.58% 12.6% 1.09% 44.2% 1.52% 49.6% 1.24% 50.2%
380000 1.59% 11.4% 1.06% 43.7% 1.52% 49.6% 1.27% 50.2%
400000 1.56% 10.4% 1.37% 43.2% 1.74% 49.5% 1.48% 50.1%

Table B.2: Variability and sample size for the π estimator, accounting product B01
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k = 10−5 k = 10−6 k = 10−7 k = 10−8

relative sample relative sample relative sample relative sample
x0 error size error size error size error size
20000 0.16% 52.1% 0.32% 50.3% 0.37% 50.0% 0.34% 50.0%
40000 0.15% 47.3% 0.32% 49.8% 0.37% 50.0% 0.37% 50.0%
60000 0.16% 42.6% 0.35% 49.3% 0.39% 49.9% 0.39% 50.0%
80000 0.26% 37.9% 0.27% 48.8% 0.31% 49.9% 0.31% 50.0%
100000 0.23% 33.6% 0.29% 48.3% 0.36% 49.8% 0.35% 50.0%
120000 0.36% 29.4% 0.29% 47.8% 0.34% 49.8% 0.34% 50.0%
140000 0.39% 25.6% 0.23% 47.3% 0.32% 49.7% 0.31% 50.0%
160000 0.40% 22.2% 0.22% 46.8% 0.31% 49.7% 0.30% 50.0%
180000 0.28% 19.1% 0.24% 46.3% 0.30% 49.6% 0.34% 50.0%
200000 0.29% 16.4% 0.32% 45.8% 0.37% 49.6% 0.37% 50.0%
220000 0.40% 14.0% 0.32% 45.3% 0.40% 49.5% 0.41% 49.9%
240000 0.39% 11.9% 0.35% 44.8% 0.43% 49.5% 0.43% 49.9%
260000 0.50% 10.1% 0.27% 44.3% 0.33% 49.4% 0.32% 49.9%
280000 0.62% 8.5% 0.22% 43.8% 0.32% 49.4% 0.31% 49.9%
300000 0.77% 7.2% 0.29% 43.3% 0.40% 49.3% 0.40% 49.9%
320000 0.94% 6.0% 0.29% 42.8% 0.40% 49.3% 0.39% 49.9%
340000 1.27% 5.1% 0.35% 42.3% 0.43% 49.2% 0.42% 49.9%
360000 1.04% 4.3% 0.34% 41.8% 0.41% 49.2% 0.40% 49.9%
380000 1.17% 3.6% 0.39% 41.4% 0.44% 49.1% 0.42% 49.9%
400000 1.25% 3.0% 0.41% 40.9% 0.50% 49.1% 0.48% 49.9%

Table B.3: Accuracy and sample size for the π estimator, accounting product B03

k = 10−5 k = 10−6 k = 10−7 k = 10−8

standard sample standard sample standard sample standard sample
x0 deviation size deviation size deviation size deviation size
20000 0.18% 52.1% 0.41% 50.3% 0.42% 50.0% 0.41% 50.0%
40000 0.18% 47.3% 0.40% 49.8% 0.45% 50.0% 0.45% 50.0%
60000 0.20% 42.6% 0.45% 49.3% 0.48% 49.9% 0.48% 50.0%
80000 0.31% 37.9% 0.38% 48.8% 0.39% 49.9% 0.39% 50.0%
100000 0.35% 33.6% 0.38% 48.3% 0.45% 49.8% 0.46% 50.0%
120000 0.43% 29.4% 0.39% 47.8% 0.43% 49.8% 0.44% 50.0%
140000 0.46% 25.6% 0.31% 47.3% 0.35% 49.7% 0.36% 50.0%
160000 0.50% 22.2% 0.28% 46.8% 0.37% 49.7% 0.37% 50.0%
180000 0.35% 19.1% 0.31% 46.3% 0.38% 49.6% 0.41% 50.0%
200000 0.33% 16.4% 0.41% 45.8% 0.44% 49.6% 0.47% 50.0%
220000 0.36% 14.0% 0.38% 45.3% 0.44% 49.5% 0.46% 49.9%
240000 0.48% 11.9% 0.44% 44.8% 0.51% 49.5% 0.52% 49.9%
260000 0.38% 10.1% 0.34% 44.3% 0.40% 49.4% 0.42% 49.9%
280000 0.43% 8.5% 0.31% 43.8% 0.41% 49.4% 0.41% 49.9%
300000 0.73% 7.2% 0.38% 43.3% 0.51% 49.3% 0.52% 49.9%
320000 1.00% 6.0% 0.38% 42.8% 0.51% 49.3% 0.50% 49.9%
340000 1.23% 5.1% 0.46% 42.3% 0.54% 49.2% 0.53% 49.9%
360000 1.12% 4.3% 0.44% 41.8% 0.54% 49.2% 0.53% 49.9%
380000 1.37% 3.6% 0.48% 41.4% 0.58% 49.1% 0.57% 49.9%
400000 1.41% 3.0% 0.54% 40.9% 0.67% 49.1% 0.64% 49.9%

Table B.4: Variability and sample size for the π estimator, accounting product B03
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k = 10−5 k = 10−6 k = 10−7 k = 10−8

relative sample relative sample relative sample relative sample
x0 error size error size error size error size
20000 0.17% 50.6% 0.27% 50.1% 0.26% 50.0% 0.25% 50.0%
40000 0.28% 45.7% 0.22% 49.6% 0.27% 50.0% 0.27% 50.0%
60000 0.25% 40.9% 0.22% 49.1% 0.30% 49.9% 0.29% 50.0%
80000 0.27% 36.3% 0.19% 48.6% 0.29% 49.9% 0.28% 50.0%
100000 0.40% 31.9% 0.18% 48.1% 0.27% 49.8% 0.26% 50.0%
120000 0.46% 27.8% 0.21% 47.6% 0.27% 49.8% 0.25% 50.0%
140000 0.53% 24.0% 0.18% 47.1% 0.24% 49.7% 0.22% 50.0%
160000 0.51% 20.6% 0.23% 46.6% 0.25% 49.7% 0.24% 50.0%
180000 0.67% 17.6% 0.27% 46.1% 0.26% 49.6% 0.25% 50.0%
200000 0.73% 14.9% 0.28% 45.6% 0.27% 49.6% 0.26% 50.0%
220000 0.70% 12.6% 0.31% 45.1% 0.29% 49.6% 0.27% 50.0%
240000 0.64% 10.6% 0.33% 44.6% 0.33% 49.5% 0.31% 50.0%
260000 0.54% 8.8% 0.33% 44.1% 0.31% 49.5% 0.29% 50.0%
280000 0.43% 7.4% 0.37% 43.6% 0.34% 49.4% 0.31% 50.0%
300000 0.59% 6.1% 0.37% 43.1% 0.32% 49.3% 0.31% 50.0%
320000 0.63% 5.1% 0.35% 42.7% 0.31% 49.3% 0.29% 50.0%
340000 0.93% 4.2% 0.38% 42.2% 0.33% 49.3% 0.30% 50.0%
360000 0.81% 3.5% 0.39% 41.7% 0.37% 49.2% 0.35% 50.0%
380000 0.71% 2.9% 0.45% 41.2% 0.37% 49.2% 0.36% 50.0%
400000 0.96% 2.4% 0.46% 40.7% 0.35% 49.1% 0.34% 50.0%

Table B.5: Accuracy and sample size for the π estimator, accounting product B15

k = 10−5 k = 10−6 k = 10−7 k = 10−8

standard sample standard sample standard sample standard sample
x0 deviation size deviation size deviation size deviation size
20000 0.23% 50.6% 0.37% 50.1% 0.40% 50.0% 0.37% 50.0%
40000 0.37% 45.7% 0.30% 49.6% 0.35% 50.0% 0.32% 50.0%
60000 0.25% 40.9% 0.25% 49.1% 0.35% 49.9% 0.34% 50.0%
80000 0.30% 36.3% 0.25% 48.6% 0.35% 49.9% 0.34% 50.0%
100000 0.46% 31.9% 0.27% 48.1% 0.32% 49.8% 0.30% 50.0%
120000 0.56% 27.8% 0.28% 47.6% 0.31% 49.8% 0.29% 50.0%
140000 0.62% 24.0% 0.23% 47.1% 0.28% 49.7% 0.27% 50.0%
160000 0.64% 20.6% 0.27% 46.6% 0.30% 49.7% 0.29% 50.0%
180000 0.80% 17.6% 0.32% 46.1% 0.30% 49.6% 0.29% 50.0%
200000 0.91% 14.9% 0.33% 45.6% 0.31% 49.6% 0.30% 50.0%
220000 0.89% 12.6% 0.36% 45.1% 0.34% 49.6% 0.32% 50.0%
240000 0.82% 10.6% 0.39% 44.6% 0.38% 49.5% 0.36% 50.0%
260000 0.81% 8.8% 0.39% 44.1% 0.38% 49.5% 0.36% 50.0%
280000 0.64% 7.4% 0.43% 43.6% 0.40% 49.4% 0.38% 50.0%
300000 0.59% 6.1% 0.42% 43.1% 0.38% 49.3% 0.36% 50.0%
320000 0.73% 5.1% 0.39% 42.7% 0.36% 49.3% 0.34% 50.0%
340000 0.93% 4.2% 0.41% 42.2% 0.37% 49.3% 0.33% 50.0%
360000 0.72% 3.5% 0.43% 41.7% 0.40% 49.2% 0.37% 50.0%
380000 0.73% 2.9% 0.48% 41.2% 0.40% 49.2% 0.37% 50.0%
400000 1.11% 2.4% 0.51% 40.7% 0.41% 49.1% 0.37% 50.0%

Table B.6: Variability and sample size for the π estimator, accounting product B15
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B.2 The regression estimator

k = 10−5 k = 10−6 k = 10−7 k = 10−8

relative sample relative sample relative sample relative sample
x0 error size error size error size error size
20000 0.06% 62.7% 0.11% 52.2% 0.16% 50.2% 0.15% 50.0%
40000 0.06% 58.6% 0.11% 51.8% 0.15% 50.2% 0.14% 50.0%
60000 0.03% 54.4% 0.11% 51.3% 0.12% 50.1% 0.13% 50.0%
80000 0.04% 50.2% 0.11% 50.8% 0.13% 50.1% 0.14% 50.0%
100000 0.04% 46.1% 0.14% 50.3% 0.12% 50.0% 0.13% 49.9%
120000 0.03% 42.2% 0.12% 49.8% 0.11% 50.0% 0.12% 49.9%
140000 0.04% 38.5% 0.14% 49.5% 0.12% 50.0% 0.14% 50.0%
160000 0.09% 34.9% 0.13% 49.0% 0.13% 50.0% 0.15% 50.1%
180000 0.06% 31.4% 0.13% 48.5% 0.14% 49.9% 0.16% 50.0%
200000 0.11% 28.5% 0.12% 48.0% 0.11% 49.9% 0.14% 50.0%
220000 0.13% 25.7% 0.14% 47.5% 0.10% 49.9% 0.12% 50.1%
240000 0.16% 23.2% 0.13% 47.0% 0.10% 49.8% 0.12% 50.1%
260000 0.21% 20.9% 0.13% 46.6% 0.11% 49.8% 0.13% 50.1%
280000 0.23% 18.8% 0.12% 46.1% 0.11% 49.7% 0.12% 50.1%
300000 0.24% 17.0% 0.09% 45.6% 0.11% 49.7% 0.12% 50.1%
320000 0.26% 15.4% 0.11% 45.2% 0.12% 49.7% 0.12% 50.2%
340000 0.32% 13.9% 0.08% 44.7% 0.11% 49.7% 0.11% 50.2%
360000 0.32% 12.6% 0.07% 44.2% 0.11% 49.6% 0.11% 50.2%
380000 0.35% 11.4% 0.07% 43.7% 0.11% 49.6% 0.11% 50.2%
400000 0.27% 10.4% 0.09% 43.2% 0.13% 49.5% 0.13% 50.1%

Table B.7: Accuracy and sample size for the regression estimator, accounting product B01

k = 10−5 k = 10−6 k = 10−7 k = 10−8

standard sample standard sample standard sample standard sample
x0 deviation size deviation size deviation size deviation size
20000 0.07% 62.7% 0.14% 52.2% 0.20% 50.2% 0.19% 50.0%
40000 0.07% 58.6% 0.13% 51.8% 0.19% 50.2% 0.18% 50.0%
60000 0.04% 54.4% 0.12% 51.3% 0.17% 50.1% 0.16% 50.0%
80000 0.04% 50.2% 0.13% 50.8% 0.17% 50.1% 0.18% 50.0%
100000 0.05% 46.1% 0.14% 50.3% 0.17% 50.0% 0.17% 49.9%
120000 0.04% 42.2% 0.15% 49.8% 0.16% 50.0% 0.16% 49.9%
140000 0.06% 38.5% 0.16% 49.5% 0.17% 50.0% 0.17% 50.0%
160000 0.12% 34.9% 0.16% 49.0% 0.17% 50.0% 0.17% 50.1%
180000 0.09% 31.4% 0.16% 48.5% 0.18% 49.9% 0.18% 50.0%
200000 0.13% 28.5% 0.15% 48.0% 0.15% 49.9% 0.16% 50.0%
220000 0.15% 25.7% 0.16% 47.5% 0.15% 49.9% 0.15% 50.1%
240000 0.15% 23.2% 0.14% 47.0% 0.15% 49.8% 0.14% 50.1%
260000 0.29% 20.9% 0.15% 46.6% 0.15% 49.8% 0.15% 50.1%
280000 0.32% 18.8% 0.15% 46.1% 0.16% 49.7% 0.15% 50.1%
300000 0.34% 17.0% 0.12% 45.6% 0.15% 49.7% 0.14% 50.1%
320000 0.37% 15.4% 0.14% 45.2% 0.17% 49.7% 0.16% 50.2%
340000 0.41% 13.9% 0.11% 44.7% 0.15% 49.7% 0.14% 50.2%
360000 0.41% 12.6% 0.10% 44.2% 0.16% 49.6% 0.14% 50.2%
380000 0.45% 11.4% 0.09% 43.7% 0.16% 49.6% 0.14% 50.2%
400000 0.32% 10.4% 0.12% 43.2% 0.18% 49.5% 0.17% 50.1%

Table B.8: Variability and sample size for the regression estimator, accounting product B01
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k = 10−5 k = 10−6 k = 10−7 k = 10−8

relative sample relative sample relative sample relative sample
x0 error size error size error size error size
20000 0.04% 52.1% 0.05% 50.3% 0.06% 50.0% 0.05% 50.0%
40000 0.03% 47.3% 0.07% 49.8% 0.06% 50.0% 0.05% 50.0%
60000 0.03% 42.6% 0.05% 49.3% 0.06% 49.9% 0.05% 50.0%
80000 0.06% 37.9% 0.06% 48.8% 0.05% 49.9% 0.05% 50.0%
100000 0.06% 33.6% 0.06% 48.3% 0.04% 49.8% 0.04% 50.0%
120000 0.07% 29.4% 0.05% 47.8% 0.04% 49.8% 0.04% 50.0%
140000 0.08% 25.6% 0.03% 47.3% 0.04% 49.7% 0.04% 50.0%
160000 0.10% 22.2% 0.04% 46.8% 0.05% 49.7% 0.06% 50.0%
180000 0.10% 19.1% 0.04% 46.3% 0.06% 49.6% 0.06% 50.0%
200000 0.12% 16.4% 0.04% 45.8% 0.06% 49.6% 0.06% 50.0%
220000 0.12% 14.0% 0.04% 45.3% 0.06% 49.5% 0.06% 49.9%
240000 0.16% 11.9% 0.03% 44.8% 0.05% 49.5% 0.05% 49.9%
260000 0.12% 10.1% 0.05% 44.3% 0.06% 49.4% 0.07% 49.9%
280000 0.16% 8.5% 0.05% 43.8% 0.06% 49.4% 0.07% 49.9%
300000 0.16% 7.2% 0.06% 43.3% 0.06% 49.3% 0.07% 49.9%
320000 0.19% 6.0% 0.06% 42.8% 0.07% 49.3% 0.07% 49.9%
340000 0.25% 5.1% 0.06% 42.3% 0.06% 49.2% 0.07% 49.9%
360000 0.25% 4.3% 0.07% 41.8% 0.06% 49.2% 0.07% 49.9%
380000 0.30% 3.6% 0.06% 41.4% 0.05% 49.1% 0.06% 49.9%
400000 0.32% 3.0% 0.06% 40.9% 0.05% 49.1% 0.07% 49.9%

Table B.9: Accuracy and sample size for the regression estimator, accounting product B03

k = 10−5 k = 10−6 k = 10−7 k = 10−8

standard sample standard sample standard sample standard sample
x0 deviation size deviation size deviation size deviation size
20000 0.04% 52.1% 0.07% 50.3% 0.07% 50.0% 0.06% 50.0%
40000 0.04% 47.3% 0.08% 49.8% 0.07% 50.0% 0.07% 50.0%
60000 0.04% 42.6% 0.08% 49.3% 0.07% 49.9% 0.06% 50.0%
80000 0.07% 37.9% 0.07% 48.8% 0.06% 49.9% 0.06% 50.0%
100000 0.09% 33.6% 0.07% 48.3% 0.05% 49.8% 0.05% 50.0%
120000 0.09% 29.4% 0.06% 47.8% 0.05% 49.8% 0.05% 50.0%
140000 0.09% 25.6% 0.05% 47.3% 0.05% 49.7% 0.05% 50.0%
160000 0.12% 22.2% 0.05% 46.8% 0.06% 49.7% 0.07% 50.0%
180000 0.11% 19.1% 0.05% 46.3% 0.07% 49.6% 0.07% 50.0%
200000 0.15% 16.4% 0.05% 45.8% 0.07% 49.6% 0.08% 50.0%
220000 0.14% 14.0% 0.04% 45.3% 0.07% 49.5% 0.07% 49.9%
240000 0.18% 11.9% 0.04% 44.8% 0.05% 49.5% 0.05% 49.9%
260000 0.16% 10.1% 0.06% 44.3% 0.06% 49.4% 0.08% 49.9%
280000 0.21% 8.5% 0.05% 43.8% 0.06% 49.4% 0.07% 49.9%
300000 0.21% 7.2% 0.07% 43.3% 0.08% 49.3% 0.09% 49.9%
320000 0.25% 6.0% 0.08% 42.8% 0.07% 49.3% 0.08% 49.9%
340000 0.31% 5.1% 0.07% 42.3% 0.07% 49.2% 0.08% 49.9%
360000 0.31% 4.3% 0.08% 41.8% 0.06% 49.2% 0.08% 49.9%
380000 0.37% 3.6% 0.06% 41.4% 0.06% 49.1% 0.07% 49.9%
400000 0.42% 3.0% 0.06% 40.9% 0.06% 49.1% 0.08% 49.9%

Table B.10: Variability and sample size for the regression estimator, accounting product B03
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k = 10−5 k = 10−6 k = 10−7 k = 10−8

relative sample relative sample relative sample relative sample
x0 error size error size error size error size
20000 0.03% 50.6% 0.03% 50.1% 0.04% 50.0% 0.04% 50.0%
40000 0.02% 45.7% 0.04% 49.6% 0.03% 50.0% 0.03% 50.0%
60000 0.03% 40.9% 0.05% 49.1% 0.04% 49.9% 0.04% 50.0%
80000 0.03% 36.3% 0.05% 48.6% 0.05% 49.9% 0.05% 50.0%
100000 0.05% 31.9% 0.06% 48.1% 0.06% 49.8% 0.06% 50.0%
120000 0.07% 27.8% 0.05% 47.6% 0.05% 49.8% 0.05% 50.0%
140000 0.06% 24.0% 0.05% 47.1% 0.05% 49.7% 0.05% 50.0%
160000 0.06% 20.6% 0.05% 46.6% 0.05% 49.7% 0.04% 50.0%
180000 0.04% 17.6% 0.05% 46.1% 0.04% 49.6% 0.04% 50.0%
200000 0.05% 14.9% 0.05% 45.6% 0.05% 49.6% 0.04% 50.0%
220000 0.03% 12.6% 0.05% 45.1% 0.04% 49.6% 0.04% 50.0%
240000 0.06% 10.6% 0.05% 44.6% 0.05% 49.5% 0.05% 50.0%
260000 0.16% 8.8% 0.05% 44.1% 0.04% 49.5% 0.04% 50.0%
280000 0.16% 7.4% 0.04% 43.6% 0.04% 49.4% 0.04% 50.0%
300000 0.19% 6.1% 0.04% 43.1% 0.04% 49.3% 0.04% 50.0%
320000 0.20% 5.1% 0.04% 42.7% 0.04% 49.3% 0.04% 50.0%
340000 0.27% 4.2% 0.05% 42.2% 0.04% 49.3% 0.04% 50.0%
360000 0.30% 3.5% 0.04% 41.7% 0.04% 49.2% 0.04% 50.0.%
380000 0.33% 2.9% 0.04% 41.2% 0.04% 49.2% 0.04% 50.0%
400000 0.31% 2.4% 0.04% 40.7% 0.04% 49.1% 0.04% 50.0%

Table B.11: Accuracy and sample size for the regression estimator, accounting product B15

k = 10−5 k = 10−6 k = 10−7 k = 10−8

standard sample standard sample standard sample standard sample
x0 deviation size deviation size deviation size deviation size
20000 0.03% 50.6% 0.04% 50.1% 0.05% 50.0% 0.05% 50.0%
40000 0.03% 45.7% 0.05% 49.6% 0.04% 50.0% 0.04% 50.0%
60000 0.04% 40.9% 0.07% 49.1% 0.06% 49.9% 0.06% 50.0%
80000 0.04% 36.3% 0.07% 48.6% 0.07% 49.9% 0.07% 50.0%
100000 0.06% 31.9% 0.07% 48.1% 0.07% 49.8% 0.07% 50.0%
120000 0.08% 27.8% 0.06% 47.6% 0.06% 49.8% 0.06% 50.0%
140000 0.06% 24.0% 0.05% 47.1% 0.05% 49.7% 0.05% 50.0%
160000 0.07% 20.6% 0.06% 46.6% 0.05% 49.7% 0.05% 50.0%
180000 0.06% 17.6% 0.06% 46.1% 0.05% 49.6% 0.05% 50.0%
200000 0.06% 14.9% 0.06% 45.6% 0.05% 49.6% 0.05% 50.0%
220000 0.05% 12.6% 0.06% 45.1% 0.05% 49.6% 0.05% 50.0%
240000 0.07% 10.6% 0.06% 44.6% 0.05% 49.5% 0.05% 50.0%
260000 0.18% 8.8% 0.05% 44.1% 0.05% 49.5% 0.05% 50.0%
280000 0.19% 7.4% 0.05% 43.6% 0.04% 49.4% 0.04% 50.0%
300000 0.22% 6.1% 0.05% 43.1% 0.04% 49.3% 0.04% 50.0%
320000 0.25% 5.1% 0.06% 42.7% 0.05% 49.3% 0.05% 50.0%
340000 0.30% 4.2% 0.06% 42.2% 0.05% 49.3% 0.05% 50.0%
360000 0.39% 3.5% 0.05% 41.7% 0.05% 49.2% 0.05% 50.0%
380000 0.43% 2.9% 0.05% 41.2% 0.05% 49.2% 0.05% 50.0%
400000 0.43% 2.4% 0.05% 40.7% 0.05% 49.1% 0.05% 50.0%

Table B.12: Variability and sample size for the regression estimator, accounting product B15
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