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Abstract

The upcoming IFRS 17 Insurance entails new starting points for

accounting and valuation of insurance contracts. The goal of this

thesis is to look further into assigning a value to the aggregate out-

standing liability for an insurance company, including a risk margin.

We will apply a market-consistent two-stage valuation procedure of

an insur- ance liability based on data from loss triangles. The first

step is to find a portfolio of zero-coupon bonds that generates cash

flows matching the liability cash flow in expected values. Residual

cash flow will arise due to the imperfect replication in the first step,

which is managed by repeated one-period replication using only cash

funds. The value of the residual cash flow is what we call the cost-of-

capital margin. This is compared to the risk margin in the Solvency

II framework, calculated according to a proposed approximation tech-

nique by EIOPA that is commonly used in the industry. Moreover, we

consider two stochastic models for the comparison of the risk margin

objects. Our results are both based on data used in the literature and

on data from a Swedish insurance company. We will find that the risk

margin in Solvency II may overestimate as well as underestimate the

risk margin compared to the more correct valuation procedure. We

will also see that the ap- proximation technique is performing well for

insurance products that is less volatile and furthermore that the value

of total outstanding insurance liability is not very different among the

approaches.
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1 Introduction

The current International Financial Reporting Standards (IFRS 4) is aimed
at insurance companies and is a guide to the accounting of insurance con-
tracts. In the future, significant changes will occur when IFRS 4 is replaced
by IFRS 17 Insurance. The International Accounting Standards Board
(IASB) published an exposure draft in June 2013, called Exposure Draft
ED/2013/7 insurance contracts, with proposals on the new standard, see
[4]. This entails new starting points for accounting and valuation of insur-
ance contracts with aim to increase transparency and reduce the differences
in the accounting of insurance contracts. The final standard is expected to
be released in May 2017 and will probably take effect on January 1, 2021.

On account of the upcoming IFRS 17, we will in this thesis look further
into assigning a value to the aggregate outstanding liability for an insurance
company, including a risk margin. In the current solvency regulatory frame-
work Solvency II the market consistent valuation of the insurance liability
consists of the so-called technical provisions. This corresponds to the sum
of a discounted best estimate and a risk margin with the aim of captur-
ing capital costs. The Solvency II framework defines the risk margin (RM)
according to the following formula

RM = CoC
∑
t≥0

SCR(t)

(1 + r(t+ 1))t+1
, (1)

where CoC denotes the cost-of-capital rate, SCR(t) denotes the required
solvency capital after t years and r(t+ 1) is the risk free rate for t+ 1 years.
This is prescribed by the European Insurance and Occupational Pensions
Authority (EIOPA), see Article 37 in [2], where it is also assumed that the
cost-of-capital rate is deterministic and set to 6%. Thus, the risk margin
in the light of Solvency II corresponds to the present value of what one
has to set aside today to yield 6% in return on the capital that is required
for each year until runoff. The delegated regulation [2] also prescribes that
the solvency capital requirement (SCR) should be calculated either by a
standard formula, given in the framework, or by an internal model. This
standard formula is calibrated by the Value-at-Risk (VaR) of the basic own
funds with a confidence level of 99.5% over a time period of one year. The
latter implies that the company will be insufficient with 0.5% probability.
Note here the following, that for future years when t > 0, SCR(t) depends
on the state at the beginning of year t, which is currently not known. Hence,
the regulation allows insurance companies to use simplified methods when
calculating the risk margin, which is something that can be questioned.
Criticism and suggestions for better notations of risk margin objects are
found in [6], [12] and [10].
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In contrast to the current solvency regulatory framework, where one ex-
plicitly states how the risk margin should be calculated, one does not state
any particular formula for the risk margin in the exposure draft for IFRS
17, there called risk adjustments. Instead one can find principles of how to
approach the risk margin. Insurance companies will then be able to inter-
pret their own computation of the risk margin in line with these principles.
The new accounting standard, together with the criticism against the cost-
of-capital formula (1), make a new derivation of the risk margin of great
interest. We will in thesis look at another approach for calculating the risk
margin consistent with the new regulation for insurance contracts. One al-
ternative to calculate the risk margin under IFRS 17 is still according to the
cost-of-capital formula in Solvency II.

The delagated regulation under Solvency II states that ”...assets and liabili-
ties are valued at the amount for which they could be exchanged in the case
of assets or transferred or settled in the case of liabilities between knowledge-
able and willing parties in an arm’s length transaction”. In the exposure
draft for the new accounting standard for insurance contracts the risk ad-
justment is defined as ”the compensation that an entity requires for bearing
the uncertainty about the amount and timing of the cash flows that arise
as the entity fulfils the insurance contract”. It appears that the framework
under Solvency II and IFRS 17 coincide under these two point of views.
Therefore, to determine the aggregate liability cash flow we will consider
a so-called reference undertaking situation where the insurance liability is
hypothetically transferred to a separate entity. This entity is empty before
the transfer and will contain assets with the purpose of matching the future
liability cash flow as well as possible. The reference undertaking situation
is also considered in the Solvency II framework.

Our procedure to valuation of the aggregate insurance liability and to de-
termine the cost-of-capital margin is based on [1] and consists of two parts.
Since liability cash flows are not typically replicated by financial instruments
our first step will be to find a replicating portfolio that generates cash flows
matching the liability cash flow with expected values. Secondly we want to
asses the residual cash flow that will arise from the imperfect replication in
the first step. The value of the residual liability cash flow corresponds to
the compensation the reference undertaking would require for taking over
the liability. These non-hedgeable risks give rise to capital requirements
that the reference undertaking needs to meet. The initial capital that the
company is given to compensate for the risk is not enough to cover all fu-
ture capital requirements. Capital providers, such as share holders, are then
asked to provide buffer capital throughout the runoff which in turn requires
compensation for providing the capital.
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In line with this valuation procedure, we will apply the work in [5] to a
valuation of an insurance liability cash flow based on data from loss trian-
gles. This approach is presented when using an autoregressive model on
incremental payments. We will further extend the approach and derive an
expresssion for the value of the liability cash flow using a stochastic model
inspired by the well-known claims reserving method chain-ladder. This is
performed in the same setting as for the autoregressive model. In this way
we can assign a value to the liability cash flow with different underlying
models and analyze the difference. Moreover, we will compare and discuss
the difference between the cost-of-capital margin and the risk margin in
Solvency II. Since the latter most often is simplified by approximating the
future solvency capital requirement by the ratio of best estimate, see (2),
we will use the same technique here.

Theory underlying the valuation procedure is described in Section 2, to-
gether with other necessary notation for the data analysis. Methods for
producing results underlying our analysis are described in Section 3 and the
corresponding results are found in Section 4. Our data analysis is first based
on loss triangle data used in the literature, e.g by Mack in [7] and by Verrall
in [11]. The analysis is then extended using triangle data from a Swedish
insurance company. Finally, in Section 5, we compare and discuss the re-
sults for the different approaches in assigning a value to the outstanding
insurance liability. Here, we will also mention what can be done in future
work.

2 Theory

Throughout the thesis we will consider the case when, for all times and
maturities interest rates are zero. Although this assumption is unrealistic it
allows us compare notions of risk margin and interpret differences.

2.1 Risk margin according to Solvency II

The risk margin according to Solvency II is explicitly defined by the cost-of-
capital formula (1). As mentioned in the introduction, the solvency capital
requirement for future year t depends on the state at the beginning of year t,
which is currently not known. Therefore, various proxies are used in practice.
One common technique is by using the ratio of the best estimate at future
year t and the best estimate at the valuation date. This simplified method
is proposed by EIPOA, see Guideline 61 in [3]. Thus, when disregarding
discounting, the cost-of-capital formula reduces to

RM = CoC
T∑
t=0

BE(t)

BE(0)
SCR(0), (2)
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where BE(t) equals the expected, seen from time 0, remaining liability cash
flow from time t and CoC the cost-of-capital rate. Note that SCR(0) is the
solvency capital requirement for the reference undertaking and does only
contain non-hedgeable insurance risks.

2.2 The cost-of-capital margin

In this section we introduce the recursion formula for the cost-of-capital
margin based on economic arguments that is done in [1]. This is introduced
without going into any deeper mathematical details, however, these can be
found in [1], section 3.

We consider an aggregate insurance liability cash flow Xo = (Xo
t )Tt=1 that

corresponds to a stochastic process and where t represent time-periods of one
year, i.e. [t, t+1). As is prescribed by EIOPA in [2] and in the exposure draft
for IFRS 17 [4] we consider a hypothetical transfer of the insurance liabilities
to a separate entity, a so called reference undertaking. This entity is empty
before the transfer and is supposed to have assets matching the aggregate
liability as well as possible. The first step in the valuation procedure is then
to find a portfolio generating a cash flow replicating Xo until runoff at year
T . This static replicating portfolio is purchased at time 0 and has a market
price π generating the cash flow Xs = (Xs

t )Tt=1. In this thesis we will consider
the market price of a portfolio of zero-coupon bonds generating the cash flow
Xs = E[Xo] = (E[Xo

t ])Tt=1. Here, under the assumption of zero interest rate,
π = (E[Xo

t ])Tt=1. The sum of the market price π of the replicating portfolio
and the value of V0(X) of the residual cash flow X := Xo − Xs defines
the value of the original liability. V0(X) is what we call the cost-of-capital
margin and is calculated from repeated one-period replication. We will also
refer to Vt(X) as the cost-of-capital margin for all t = {0, ..., T}, which
furthermore will be defined in terms of Xt+1 and Vt+1(X).

Economic arguments lead us to a recursion defining the cost-of-capital mar-
gin V0(X). The one-period replication is using only cash funds where the
capital provider requires compensation for capital costs and has limited li-
ability. At time t, the capital provider is asked to provide the difference
between the capital requirement and the value of the residual liability cash
flow, i.e.

Ct := VaRt,0.005(−Xt+1 − Vt+1(X))− Vt(X), (3)

where VaRt,0.005 is a risk measure (see Definition 2.1) motivated by the
Solvency II regulations at a 99.5% confidence level.
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Definition 2.1. In a one-year setting, the Value-at-Risk at time t of a
random loss variable L at time t+1 at level u ∈ (0,1) is defined as

VaRt,u(X) := min{m ∈ R : P(m+X < 0) ≤ u}
= min{m ∈ R : P(−X ≤ m) ≥ 1− u}
= min{l ∈ R : P(L ≤ l) ≥ 1− u},

where the loss variable L = −X.

If buffer capital is provided at time t, the available capital at time t + 1
equals

VaRt,0.005(−Xt+1 − Vt+1(X))−Xt+1,

where the capital provider collects the excess capital as compensation if this
amount exceeds Vt+1(X). If no excess capital is available at time t + 1 the
capital provider has no obligation to offset any deficit. Thus, the investor
has limited liability if

VaRt,0.005(−Xt+1 − Vt+1(X))−Xt+1 − Vt+1(X) < 0.

The acceptability condition for the capital provider is expressed by the fol-
lowing relation

Et[(VaRt,0.005(−Xt+1 − Vt+1(X))−Xt+1 − Vt+1(X))+] ≥ (1 + ηt)Ct, (4)

where ηt > 0 corresponds to a return-on-capital rate and x+ = max(x, 0).

Now, if we combine (3) and (4) and let Yt+1 := Xt+1 + Vt+1(X), we get

Vt(X) ≥ VaRt,0.005(−Yt+1)−
1

1 + ηt
Et[(VaRt,0.005(−Yt+1)− Yt+1)+].

Thus, if we have a strict inequality the capital provider obtains an oppor-
tunity to more compensation than required. If this would be the case, the
policy holders would have to pay a higher premium than what would be
reasonable. Therefore, if we replace the inequality with an equality we de-
fine the value of the cash flow as the minimum value for which the capital
provider finds acceptable and get

Vt(X) := VaRt,0.005(−Yt+1)−
1

1 + ηt
Et[(VaRt,0.005(−Yt+1)− Yt+1)+],

with the initial condition VT (X) = 0.
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2.2.1 Gaussian cashflows

In [1], the cost-of-capital margin is further derived when considering Gaus-
sian cash flows and a fixed cost-of-capital rate ηt = η0. This assumption
will provide a reasonable approximation since the cost-of-capital margin is
mainly intended for aggregate cash flows. Below, we state the definition of
a Gaussian model and the final proposition in the derivation of the cost-of-
capital margin, since the latter is applied for the models we consider.

Definition 2.2. Let Γ be a finite set of Gaussian vectors in RT that are
jointly Gaussian. Let

G0 := {∅, Ω}, Gt :=
(
∨Z∈Γ σ(Zt)

)
∨ Gt−1 for t = 1, ..., T.

G := (Gt)Tt=0 is called a Gaussian filtration, and, if X ∈ Γ , then (X,G) is
called a Gaussian model.

Proposition 2.1. Let (X,G), be a zero mean Gaussian model, then for
t ∈ {0, ..., T − 1},

Vt,G(X) = E
[ T∑
s=t+1

Xs|Gt
]

+
T∑

s=t+1

Var
(
E
[ T∑
u=s

Xu|Gs
]
|Gs−1

)1/2
c.

Moreover,

V0,G(X) =
T∑
s=1

(
Var
( T∑
u=s

Xu|Gs−1
)
−Var

( T∑
u=s

Xu|Gs
))1/2

c,

where c := Φ−1(0.995)− 1
1+η0

(
0.995Φ−1(0.995)+ϕ(Φ−1(0.995))

)
and η0 > 0.

2.3 Our model

Consider K lines of business where k ∈ {1, ...,K} = K. Let Z
(k)
ij for develop-

ment year j ∈ {1, ..., J (k)} := J and accident year i ∈ {i(k)0 , ..., J (k)+1} := I,

where i
(k)
0 ≤ 1, denote the incremental claims payment for the k:th line of

business. Negative values for i
(k)
0 correspond to fully developed accident

years. Let I
(k)
ij := Z

(k)
ij /v

(k)
i denote the normalized incremental payments

where v
(k)
i is equal to the premium volume for accident year i. We consider

the following stochastic model for incremental payments

I
(k)
ij = α

(k)
j + β

(k)
j I

(k)
i,j−1 +

σ
(k)
j√
v
(k)
i

ε
(k)
ij , (5)
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where for every k ε
(k)
ij , (i, j) ∈ I×J are mutually independent and standard

normally distributed and Ii0 := 0. We assume that the upper triangle

D0 := {I(k)ij : (i, j, k) ∈ I × J ×K, i+ j ≤ J (k) + 1}

contains observed data and that all v
(k)
i , (i, k) ∈ I×K are known constants.

2.3.1 Value of the outstanding liability

We want to assign a value to the future liability cash flow from contracts
that may still generate claims, i.e. Incurred But Not Reported (IBNR)
and Reported But Not Settled (RBNS) and from active contracts, i.e. Non
Incurred claim (NI) claims. The lower triangle

{Z(k)
ij : (i, j, k) ∈ I × J ×K, i ≥ 2, i+ j > J (k) + 1}

corresponds to the outstanding liability cash flow. Note that NI claims
from still active contracts corresponds to accident year J (k) + 1. Let T =
max{J (k) : k ∈ K} and

X
o,(k)
t :=

{∑J(k)+1
u=t+1 Z

(k)

u,J(k)−u+t+1
, t = 1, ..., J (k),

0 t = J (k) + 1, ..., T.

Also let

Xo
t :=

K∑
k=1

X
o,(k)
t , t = 1, ..., T

Xo := (Xo
1 , ..., X

o
T ).

Given that available zero-coupon bond prices for the maturity times 1, ..., T
exists and that the relevant conditional expectations and conditional vari-
ances can be determined, the value of the outstanding liability cash flow
Xo,(k) is given by

T∑
t=1

E[Xo
t |F0] + c

T∑
t=1

(
Var(Xc

T |Ft−1)−Var(Xc
T |Ft)

)1/2
, (6)

where the market price π of the bond portfolio giving the holder the cash
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flow E[Xo|F0] is given by
∑T

t=1 E[Xo
t |F0], and

X := Xo − E[Xo|F0],

Xc
T :=

T∑
s=1

Xs,

Ft := σ(Dt),

Dt := {I(k)ij : (i, j, k) ∈ I × J ×K, i+ j ≤ J (k) + 1 + t},

c := Φ−1(0.995)− 1

1 + η0

(
0.995Φ−1(0.995) + ϕ(Φ−1(0.995))

)
.

Moreover,

Var(Xc
T |Fs) = Var

( T∑
u=1

(Xo
u − E[Xo

u|F0]|Fs)
)

= Var(
T∑
u=1

Xo
u|Fs)

= Var(XU
T |Fs),

i.e. the variance of all the ultimate claims amount for all accident years
given the information at times, for s ≥ 0, where XU

T :=
∑T

u=1X
o
u.

Notice that

E[Xo|F0] =
K∑
k=1

E[Xo,(k)|F0],

where

E[Xo,(k)|F0] =
J(k)+1∑
u=t+1

v(k)u E[I
(k)

u,J(k)−u+t+1
|I(k)
u,J(k)−u+1

],

for t = 1, ..., J (k). Furthermore,

E[I
(k)

u,J(k)−u+t+1
|I(k)
u,J(k)−u+1

]

= Iu,J(k)−u+1

J(k)−u+t+1∏
l=J(k)−u+2

β
(k)
l +

J(k)−u+t+1∑
l=J(k)−u+2

α
(k)
l

J(k)−u+t+1∏
m=l+1

β(k)m .

It remains to derive the conditional variances in the latter part of equation
(6). We have that

Var(XU
T |Ft) =

K∑
k=1

Var(X
U,(k)
T |Ft) + 2

∑
k<l

Cov(X
U,(k)
T , X

U,(l)
T |Ft).
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Since accident years are considered independent

Var(X
U,(k)
T |Ft) =

J(k)+1∑
i=t+2

(v
(k)
i )2Var

( J(k)∑
j=J(k)−i+2+t

I
(k)
i,j |Ft

)

=

J(k)+1∑
i=t+2

(v
(k)
i )2Var

( J(k)∑
j=J(k)−i+2+t

j∑
l=J(k)−i+2

σ
(k)
l√
v
(k)
i

ε
(k)
i,l

j∏
m=l+1

β(k)m

)

=

J(k)+1∑
i=t+2

(v
(k)
i )2Var

( J(k)∑
l=J(k)−i+2+t

J(k)∑
j=l

σ
(k)
l√
v
(k)
i

ε
(k)
i,l

j∏
m=l+1

β(k)m

)

=
J(k)+1∑
i=t+2

v
(k)
i

J(k)∑
l=J(k)−i+2+t

(σ
(k)
l )2

(
1 +

J(k)∑
j=l+1

j∏
m=l+1

β(k)m

)2
.

Under the assumption that the ultimate claims amounts for the different

lines of business are uncorrelated, i.e. that Cov(X
U,(k)
T , X

U,(l)
T |Ft) = 0 for all

k < l and all t,

T∑
t=1

(
Var(XU

T |Ft−1)−Var(XU
T |Ft)

)1/2
=

T∑
t=1

( K∑
k=1

J(k)∑
i=t+1

v
(k)
i (σ

(k)

J(k)−i+1+t
)2
(

1 +
J(k)∑

j=J(k)−i+2+t

j∏
m=J(k)−i+2+t

β(k)m

)2)1/2
.

Given suitable parameter estimators we may estimate E[Xo
t |F0] by

K∑
k=1

J(k)+1∑
u=t+1

v(k)u

(
I
(k)

u,J(k)−u+1

J(k)−u+t+1∏
l=J(k)−u+2

β̂
(k)
l +

J(k)−u+t+1∑
l=J(k)−u+2

α̂
(k)
l

J(k)−u+t+1∏
m=l+1

β̂(k)m

)
and the sum of the conditional variances in (6) by

T∑
t=1

( K∑
k=1

J(k)∑
i=t+1

v
(k)
i (σ̂

(k)

J(k)−i+1+t
)2
(

1 +
J(k)∑

j=J(k)−i+2+t

j∏
m=J(k)−i+2+t

β̂(k)m

)2)1/2
.

2.3.2 Estimators and predictors

Unbiased estimators for α(k) and β(k) are found by weighted least squares
based on the observed data. Write


I
(k)

i
(k)
0 ,j
...

I
(k)

J(k)−j+1,j

 =


1 I

(k)

i
(k)
0 ,j−1

...
...

1 I
(k)

J(k)−j+1,j−1


[
α
(k)
j

β
(k)
j

]
+


e
(k)

i
(k)
0 ,j
...

e
(k)

J(k)−j+1,j

 ,

12



where e
(k)
j has zero mean and covariance matrix (σ

(k)
j )2Σ

(k)
j with

Σ
(k)
j = diag(1/v

(k)
i0
, ..., 1/v

(k)

J(k)). Compactly we can write the matrix equation

above as I
(k)
j = A

(k)
j θ

(k)
j + e

(k)
j . The weighted least squares estimator

θ
(k)
j = ((A

(k)
j )T (Σ

(k)
j )−1A

(k)
j )−1(A

(k)
j )T (Σ

(k)
j )−1I

(k)
j

is given by general theory of linear models. With v(k) =
∑J(k)−j+1

i=i
(k)
0

v
(k)
i ,

β̂
(k)
j =

∑J(k)−j+1

i=i
(k)
0

v
(k)
i

v(k)

(
I
(k)
ij −

∑J(k)−j+1

i=i
(k)
0

v
(k)
i

v(k)
I
(k)
ij

)
I
(k)
i,j−1∑J(k)−j+1

i=i
(k)
0

v
(k)
i

v(k)

(
I
(k)
i,j−1 −

∑J(k)−j+1

i=i
(k)
0

v
(k)
i

v(k)
I
(k)
i,j−1

)
I
(k)
i,j−1

(7)

= β
(k)
j + σ

(k)
j

∑J(k)−j+1

i=i
(k)
0

v
(k)
i

v(k)

(
ε
(k)
ij√
v
(k)
i

−
∑J(k)−j+1

i=i
(k)
0

v
(k)
i

v(k)
ε
(k)
ij√
v
(k)
i

)
I
(k)
i,j−1∑J(k)−j+1

i=i
(k)
0

v
(k)
i

v(k)

(
I
(k)
i,j−1 −

∑J(k)−j+1

i=i
(k)
0

v
(k)
i

v(k)
I
(k)
i,j−1

)
I
(k)
i,j−1

,

α̂
(k)
j =

J(k)−j+1∑
i=i

(k)
0

v
(k)
i

v(k)

(
I
(k)
ij − β̂

(k)
j I

(k)
i,j−1

)
. (8)

Moreover, if J (k) − i(k)0 − j ≥ 1, then

(σ̂
(k)
j )2 =

1

J (k) − i(k)0 − j
(I

(k)
j −A

(k)
j θ̂

(k)

j )T (Σ
(k)
j )−1(I

(k)
j −A

(k)
j θ̂

(k)

j )

=
1

J (k) − i(k)0 − j

J(k)−j+1∑
i=i

(k)
0

v
(k)
i (I

(k)
ij − α̂

(k)
j − β̂

(k)I
(k)
i,j−1)

2 (9)

is an unbiased estimator of (σ
(k)
j )2.

From equation (5) we can construct predictors of Î
(k)
ij based on the observed

data D0 for i+ j > J (k) + 1

Î
(k)
ij = Ii,J(k)−i+1

j∏
l=J(k)−i+2

β̂
(k)
l +

j∑
l=J(k)−i+2

α̂
(k)
l

j∏
m=l+1

β̂(k)m .

Moreover, set

X̂
o,(k)
t :=

{∑J(k)+1
u=t+1 v

(k)
u Îu,J(k)−u+t+1, t = 1, ..., J (k),

0 t = J (k) + 1, ..., T.

and X̂o :=
∑K

k=1 X̂
o,(k).
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2.4 Chain-ladder

The chain-ladder method is one of the most popular actuarial loss reserv-
ing technique. The aim of the method is to estimate IBNR claims and to
project ultimate loss amounts. The fact that the chain-ladder method is
distribution-free and seems to work with almost no assumptions is the rea-
son for its simplicity. We will now present some basic notation and results
for the chain-ladder method by Mack, see [7].

Let Cij denote the accumulated paid claims amount for accident year i,
i0 ≤ i ≤ J , and development year j, 1 ≤ j ≤ J . We assume that we have an
observation in the triangle if i+ k ≤ J + 1, which corresponds to the upper
triangle. The idea behind chain-ladder is that there exists development
factors f1, ...fI−1 > 0 with

E[Ci,j+1|Ci1, ..., Cij ] = Cijfj . (10)

The chain-ladder method consists of estimating development factors fj by

f̂j =

∑J−j
i=i0

Ci,j+1∑J−j
i=i0

Cij
, 1 ≤ j ≤ J − 1, (11)

and the ultimate claims amount CiJ by

ĈiJ = Ci,J+1−if̂J+1−i...f̂J−1.

Moreover, chain-ladder does not account for dependencies between accident
years so one assumes that accident years are independent, i.e.

{Ci1, ..., CiJ}, {Ck1, ..., CkJ}, i 6= k, are independent. (12)

This assumption makes the estimator f̂j an unbiased estimator of fj which
is a desirable property of a good estimator. The expressions (10) and (12)
are two of the underlying assumptions for the chain-ladder method. The
last assumption for Mack’s chain-ladder is called the variance assumption,
where the variance of Cij is assumed to be equal to

Var(Ci,j+1|Ci1, ..., Cij) = Cijλ
2
j , (13)

with unknown parameters λ2j . The estimate for λ2j is given by the following
formula

λ̂2j =
1

J − j − 1

J−j∑
i=1

Cij

(
Ci,j+1

Cij
− f̂j

)2

, 1 ≤ j ≤ J − 2, (14)

where λ̂2j is an unbiased estimator of λ2j . If the claims development is believed

to be finished after J − 1 years we can put λ̂2j = 0 otherwise

λ̂2j = min(λ̂4J−2/λ̂
2
J−3,min(λ̂2J−3, σ̂

2
J−2)).
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2.5 Chain-ladder time series model

Consider the following time series model for the accumulated payments

C
(k)
i,j+1 = C

(k)
ij f

(k)
j + λ

(k)
j

√
C

(k)
ij ε

(k)
i,j+1, (15)

where ε
(k)
i,j+1 are mutually independent and standard normally distributed.

This model satisfies the underlying assumptions of Mack’s chain-ladder model
presented in the previous section. Thus, the conditional expectation and
variance are equal to

E[C
(k)
i,j+1|C

(k)
i1 , ..., C

(k)
ij ] = C

(k)
ij f

(k)
j

Var(C
(k)
i,j+1|C

(k)
i1 , ..., C

(k)
ij ) = C

(k)
ij (λ

(k)
j )2,

where the parameter estimates for f
(k)
j and λ

(k)
j are found by equation (11)

respectively (14).

2.6 Stochastic model inspired by chain-ladder

We will in this section present a Gaussian stochastic model inspired by
chain-ladder and furthermore derive the value of the aggregate outstanding
liability. Note that we will use exactly the same notation as in section 2.3
but now for the following model

C
(k)
i,j+1 = C

(k)
ij f

(k)
j0 + σ

(k)
j0 ε

(k)
i,j+1, (16)

where the ε
(k)
i,j+1 are mutually independent and standard normally distributed.

The conditional expectation and variance for this model equals

E[C
(k)
i,j+1|C

(k)
i1 , ..., C

(k)
ij ] = C

(k)
ij f

(k)
j0

Var(C
(k)
i,j+1|C

(k)
i1 , ..., C

(k)
ij ) = (σ

(k)
j0 )2.

Hence, the variance assumption underlying the chain-ladder model intro-
duced by Mack is not satisfied since we assume the same variance for all
accident years. Note, that f and σ in (16) are not the same parameters
as in the chain-ladder model and the autoregressive model on incremental
payments. Therefore we have added an additional index ’0’.

2.6.1 Value of the outstanding liability

The incremental payments Z
(k)
ij for this model is the difference between the

accumulated payments for development period j and j− 1 for accident year
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i, i.e. C
(k)
ij − C

(k)
i,j−1. The expected value of the outstanding liability cash

flow for future year t equals

E[X
o,(k)
t |F0] =

J(k)∑
u=t+1

E[Z
(k)

u,J(k)−u+t+1
|F0]

=
J(k)∑
u=t+1

E[C
(k)

u,J(k)−u+t+1
− C(k)

u,J(k)−u+t|F0]

=
J(k)∑
u=t+1

(
E[C

(k)

u,J(k)−u+t+1
|C(k)

u,J(k)−u+1
]

− E[C
(k)

u,J(k)−u+t|C
(k)

u,J(k)−u+1
]
)

=

J(k)∑
u=t+1

(
C

(k)

u,J(k)−u+1

J(k)−u+t∏
j=J(k)−u+1

f
(k)
j0

− C(k)

u,J(k)−u+1

J(k)−u+t−1∏
j=J(k)−u+1

f
(k)
j0

)
and the conditional variances in (6)

Var(X
U,(k)
T |Ft) =

J(k)∑
i=t+2

Var
( J(k)∑
j=J(k)−i+2+t

Z
(k)
ij |Ft

)

=

J(k)∑
i=t+2

Var
( J(k)∑
j=J(k)−i+2+t

(C
(k)
ij − C

(k)
i,j−1)|F0

)

=

J(k)∑
i=t+2

Var(C
(k)

iJ(k) |Ft)

=
J(k)∑
i=t+2

J(k)−1∑
j=J(k)−i+1+t

(σ
(k)
j0 )2

J(k)−1∏
m=j+1

(f
(k)
m0)2.

Thus, under the assumption Cov(X
U,(k)
T , X

U,(l)
T |Ft) = 0 for all k < l and all

t,

T∑
t=1

(
Var(XU

T |Ft−1)−Var(XU
T |Ft)

)1/2
=

T∑
t=1

( K∑
k=1

J(k)−1∑
i=t

(σ
(k)
i0 )2

J(k)∏
j=i+1

(f
(k)
j0 )2

)1/2
.
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Given suitable parameter estimators we may estimate E[Xo
t |F0] by

K∑
k=1

J(k)∑
u=t+1

(
C

(k)

u,J(k)−u+1

J(k)−u+t∏
j=J(k)−u+1

f̂
(k)
j0 − C

(k)

u,J(k)−u+1

J(k)−u+t−1∏
j=J(k)−u+1

f̂
(k)
j0

)
and the sum of the conditional variances in (6) by

T∑
t=1

( K∑
k=1

J(k)−1∑
i=t

(σ̂
(k)
i0 )2

J(k)−1∏
j=i+1

(f̂
(k)
j0 )2

)1/2
.

2.6.2 Estimators and predictors

The estimators for f
(k)
j0 are found by weighted least squares based on the

observed data. We then want to minimize the following expression for a

fixed j by taking the derivative with respect to f
(k)
j0

J(k)−i(k)0 −j∑
i=i

(k)
0

(C(k)
i,j+1 − C

(k)
ij f

(k)
j0

σ
(k)
j0

)2
.

By setting the derivative equal to zero and solving for f
(k)
j0 we get that the

minimizing parameter is

f̂
(k)
j0 =

∑J(k)−i(k)0 −j
i=i

(k)
0

C
(k)
ij C

(k)
i,j+1∑J(k)−i(k)0 −j

i=i
(k)
0

(C
(k)
ij )2

.

Moreover, if J (k) − i(k)0 − j ≥ 1

(σ̂
(k)
j0 )2 =

1

J (k) − i(k)0 − j

J(k)−i(k)0 −j∑
i=i

(k)
0

(C
(k)
i,j+1 − C

(k)
ij f

(k)
j0 )2

is an unbiased estimator of (σ
(k)
j0 )2.

2.7 Prediction of future solvency capital requirements

Using the work in [1], we will here derive an expression for the prediction
of the solvency capital requirement at time t. This makes us able to com-
pare the approximation of SCR(t) in the cost-of-capital formula against
the prediction of SCR(t) according to the cost-of-capital margin approach.
In contrast to the simplified risk margin (2), the solvency capital require-
ment for future year t is kept as a random variable in the derivation of the
cost-of-capital margin V0(X).
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We have the following expression for the solvency capital requirement at
time t ∈ {0, ..., T}

VaRt,0.005(−Xt+1 − Vt+1(X)) = E
[ T∑
s=t+1

Xs|Ft
]

+ c
T∑

s=t+2

(
Var
( T∑
u=s

Xu|Fs−1
)
−Var

( T∑
u=s

Xu|Fs
))1/2

+ Φ−1(0.995)
(

Var
( T∑
s=t+1

Xs|Ft
)
−Var

( T∑
s=t+1

Xs|Ft+1

))1/2
,

where for our models we can simplify according to

VaRt,0.005(−Xt+1 − Vt+1(X)) =
T∑

s=t+1

(
E
[
Xo
s |Ft

]
− E

[
Xo
s |F0

])

+ c
T∑

s=t+2

(
Var
( T∑
u=s

Xo
u|Fs−1

)
−Var

( T∑
u=s

Xo
u|Fs

))1/2
+ Φ−1(0.995)

(
Var
( T∑
s=t+1

Xo
s |Ft

)
−Var

( T∑
s=t+1

Xo
s |Ft+1

))1/2
.

At time 0, we predict the solvency capital requirement at time t by its
expected value given the information up to time 0, i.e. by

E[VaRt,0.005(−Xt+1 − Vt+1(X))|F0] =

+ E
[ T∑
s=t+1

(
E
[
Xo
s |Ft

]
− E

[
Xo
s |F0

])
|F0

]

+ cE
[ T∑
s=t+2

(
Var
( T∑
u=s

Xo
u|Fs−1

)
−Var

( T∑
u=s

Xo
u|Fs

))1/2
|F0

]

+ Φ−1(0.995)E
[(

Var
( T∑
s=t+1

Xo
s |Ft

)
−Var

( T∑
s=t+1

Xo
s |Ft+1

))1/2
|F0

]
.

Note that the expected value of the first sum above, denoting the difference
between the prediction of future cash flows at time t and at time 0, vanishes
when we perform the prediction at time 0. The prediction of the future
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solvency capital requirement at time t then reduces to

E[VaRt,0.005(−Xt+1 − Vt+1(X))|F0] =

cE
[ T∑
s=t+2

(
Var
( T∑
u=s

Xo
u|Fs−1

)
−Var

( T∑
u=s

Xo
u|Fs

))1/2
|F0

]

+ Φ−1(0.995)E
[(

Var
( T∑
s=t+1

Xo
s |Ft

)
−Var

( T∑
s=t+1

Xo
s |Ft+1

))1/2
|F0

]
.

For the stochastic model on incremental payments we get the following ex-
pression for the prediction

E[VaRt,0.005(−Xt+1 − Vt+1(X))] =

c

T∑
s=t+2

( J(k)∑
i=s+1

v
(k)
i (σ

(k)

J(k)−i+1+s
)2
(

1 +

J(k)∑
j=J(k)−i+2+s

j∏
m=J(k)−i+2+s

β(k)m

)2)1/2

+ Φ−1(0.995)
( J(k)∑
i=t+2

v
(k)
i (σ

(k)
J−i+2+t)

2
(

1 +
J(k)∑

j=J(k)−i+3+t

j∏
m=J(k)−i+3+t

β(k)m

)2)1/2
and for the stochastic model inspired by chain-ladder

E[VaRt,0.005(−Xt+1 − Vt+1(X))] =

c

T∑
s=t+2

( J(k)−1∑
i=s

(σ
(k)
i0 )2

J(k)−1∏
j=i+1

(f
(k)
j0 )2

)1/2

+ Φ−1(0.995)
( J(k)−1∑
i=t+1

(σ
(k)
i0 )2

J(k)−1∏
j=i+1

(f
(k)
j0 )2

)1/2
.

The quantities are estimated by replacing the unknown parameter values by
their estimates based on the upper triangle observed at time 0.

2.8 Balance sheet for the reference undertaking under Sol-
vency II and under the cost-of-capital margin approach

The risk margin under Solvency II is calculated according to the cost-of-
capital formula (1), which equals the cost of holding capital meeting the
solvency capital requirement for each year until runoff. Thus, the reference
undertaking needs to have assets covering the best estimate, but it is also
given additional capital, i.e. the risk margin. The risk margin then techni-
cally covers some of the capital requirement that the reference undertaking
needs to meet at each future year t. This point of view is not considered
in the Solvency II framework. Instead, one calculates the cost of holding
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the whole solvency capital requirement at each future year t without con-
sidering the additional capital. Consequently, there is a double counting.
In the derivation of the cost-of-capital margin, one only considers capital
costs for covering the difference between the capital requirement and the
cost-of-capital margin at time t. Let

At = assets at time t

Lt = insurance liability at time t

RMt = risk margin according to Solvency II at time t

and recall that Ct denotes the buffer capital that investors are asked to
provide and Vt the cost-of-capital margin at time t. In figure 2.1, the balance
sheet for the reference undertaking company according to each method for
calculating the risk margin object is shown. There, the difference between
the two approaches is clearly observable. Thus, if the two approaches is
predicting the future solvency capital requirements equally, we can expect
to get a higher value for the risk margin according to the simplified cost-of-
capital formula than when using the cost-of-capital margin approach. Since
the simplified cost-of-capital formula is approximating SCR(t) we will in
our data analysis study whether this approximation is good or not.

Ct SCRt

Vt

At Lt

Ct SCRt

RMt

At Lt

Figure 2.1: Balance sheet for the reference undertaking under the cost-of-
capital margin approach (left) and the cost-of-capital formula in Solvency
II (right).
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3 Method

In this section, we describe the underlying data and how the study was
implemented in details. Here, the index k is dropped to avoid unnecessary
heavy notation.

3.1 Data

Our study is based on loss triangle data which have the following structure,

Accident Development year j
year i 1 . . . j . . . J

i0

...
Dt

J − j

...

J

where Dt denotes the known upper triangle at time t and consists of either
incremental payments, Iij , or accumulated payments, Cij , depending on the
underlying model.

3.2 Model check

When selecting a model to assign a value to the outstanding insurance lia-
bility, one should check whether the underlying model assumptions are ful-
filled by the data. Methods to assure whether the underlying chain-ladder
assumptions are considered to be met are described by Mack in [8]. For the
other stochastic models presented in the theory section, the residuals should
be distributed according to a standard normal distribution. If it appears
that a model is not satisfied by the data, another model should be used to
get the best prediction of the outstanding liability.

3.3 Simulation study

The overall aim in this thesis is to compare the different approaches for
assigning a value to the risk margin in the balance sheet, i.e. when using
the cost-of-capital margin formula and the approximation of the cost-of-
capital formula in Solvency II. We also want to say something about whether
the choice of underlying model have any impact on the calculations of risk
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margin. To answer these questions, we will perform a simulation study
where we consider the following three models

a) Iij = αj + βjIi,j−1 +
σj√
vi
εij

b) Cij = Ci,j−1fj−1 + λj−1
√
Cijεij

c) Cij = Ci,j−1fj−1,0 + σj−1,0εij .

From now on we will call these models by a), b) and c) for easier notation.
The following algorithm describes how the simulation study is implemented
step by step.

Simulation algorithm

1) Estimate model parameters for the models a), b) and c) based on an
observed loss triangle, i.e. α̂j, β̂j, σ̂j, f̂j, λ̂j, f̂j0 and σ̂j0.

2) Simulate a fully developed runoff triangle by model a), using the pa-
rameter estimates calculated in the previous step and by simulating
εij from a standard normal distribution according to the model.

3) Now, for the simulated runoff triangle in 2), consider the lower trian-
gle as unknown and calculate new parameter estimates for each of
the three models a), b) and c) based on the upper triangle.

4) Predict the lower triangle based on the new parameter estimates in
3). Thereafter we are able to calculate:

- The prediction error R − R̂, where R denotes the sum of the
simulated lower triangle in 3) and R̂ denotes the sum of the
predicted lower triangle.

- The cost-of-capital margin, V0, and the approximated risk mar-
gin, RM, in Solvency II for a chosen rate η0 = CoC, based
on the new parameter estimates in 3). We are also able to
predict Vt, RMt and SCRt using these estimates. In the cost-
of-capital margin approach, the latter is predicted according to
the expressions derived in section 2.7 for model a) and c) re-
spectively. For the approximated risk margin in Solvency II
this is predicted by multiplying SCR(0) by the ratio of best
estimate at each time point.

5) Repeat 2)-4) an arbitrary number of times. We then get the empir-
ical distributions for the parameter estimators, the prediction error,
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the cost-of-capital margin, the risk margin and the solvency capital
requirements when simulating underlying data from model a).

6) Repeat 2)-5) but now for model b) and c) instead of a). To simulate
a new fully developed runoff triangle in 2) for these two models, we
will simulate the first column from N(α̂1, σ̂1) as for model a).

The outcome of this algorithm produce empirical distributions of the predic-
tion error for each of the three models when varying the underlying model
for simulating loss triangle data. This makes us able to say something about
how well each model can predict the outstanding liability cash flow when
the loss triangle is simulated by model a), b) and c). Here, it is desirable to
look for a model that is not that much effected by how the underlying trian-
gle data is distributed. Furthermore, the simulation study will give us the
empirical distributions for the cost-of-capital margin and the risk margin in
Solvency II. This makes us able to compare the two methods for assigning a
value to the risk margin in the balance sheet. We are also able to compare
the two approaches when simulating loss triangle data from different under-
lying models, i.e. model a) and c). Note that model b) is not a Gaussian
model and we are therefore not able to calculate the cost-of-capital margin
for it. Moreover, we can compare the two prediction methods for assigning
a value to the future solvency capital requirement, i.e. according to the
proposed approximation and when it is seen as a random variable.

4 Results

In this section, we present results that will lay the foundation for answering
the main questions in this thesis. Our study is first be based on loss triangle
data that is used in the literature, e.g. by Mack in [7] and by Verrall in [11].
Thereafter, we will present results based on data from six lines of businesses
in a Swedish insurance company. Throughout this thesis, all results will be
visualised according to a cost-of-capital rate of 6% if nothing else is stated.

4.1 Simulation study for data used in the literature

We will here present some results after running the simulation algorithm
described in section 3.3 based on the runoff triangle used by Mack in [7].
This triangle data is similar from year to year and we can therefore set
the weights vi = 1 for the stochastic model on incremental payments. The
weights are mainly intended to adjust for a large variety of the claims amount
from year to year, which primarily depends on the size of the business for
each year. Table 4.1 shows the calculated parameter estimates for each
of the three models a), b) and c) based on our loss triangle data. Before
running the simulation algorithm we calculate the residuals, εij , for each
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model with the parameter estimates below. These are found in figure A.1
in the Appendix and should be distributed according to a standard normal
distribution.

After running the simulation algorithm 10.000 times we plot the empirical
distributions of the prediction error, R − R̂, for each model. These results
are found in figure 4.1, where the first row shows the distribution of the
prediction error for each model when simulating the underlying loss triangle
data by model a). Similarly, the second row shows the corresponding dis-
tributions when simulating the underlying loss triangle data with model b)
and the third row when simulating with model c). The empirical expected
values and standard deviations of the prediction errors are found in table
4.2.

Table 4.1: Parameter estimates for each of the three models a), b) and c).

Parameter estimates

j α̂j β̂j σ̂j f̂j λ̂j f̂j0 σ̂j0
1 367140 0.0 47027 3.5 400 3.4 226558
2 1564926 -1.7 96027 1.7 194 1.7 209652
3 551694 0.4 225279 1.5 205 1.5 273774
4 503533 0.5 307676 1.2 123 1.2 204716
5 786802 -0.3 132968 1.1 117 1.1 187558
6 555288 -0.4 133138 1.1 90 1.1 156684
7 648955 -0.9 105154 1.1 21 1.1 33401
8 88360 0.4 10518 1.1 34 1.1 48285
9 7897 1.6 0.0 1.0 21 1.0 0
10 67948 0.0 0.0 - - - -

In each simulation we have also calculated the the cost-of-capital margin, V0,
and the approximated risk margin, RM , in Solvency II. Thus, we are able to
plot the empirical distributions of these objects when simulating underlying
loss triangle data from model a), b) and c), respectively. The results for
the two prediction models a) and c) are found in figure A.2 and A.3 in the
Appendix. Moreover, table A.1 summarize the empirical expected values
and standard deviations of the parameter estimators that are used when
calculating the risk margin objects. There, one can see the effect on the
estimates when varying the underlying model for simulating loss triangle
data. Note that the parameter estimates for model a) varies more than for
model c) when the underlying data is simulated from another model than
itself. Particularly, one can see that the standard deviation for both β̂j and
σ̂j is larger when data is simulated from model b) and c) than for model a),
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Figure 4.1: Empirical distributions of the prediction error for each model
when varying the underlying model for simulating loss triangle data. The
predicted values of the outstanding liability cash flow R̂ equals 16.6, 18.7
and 18.5 (in millions) for the models a), b) and c) respectively.
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Table 4.2: Table over the corresponding expected values and standard de-
viations of the simulated prediction errors shown in figure 4.1.

Expected values and standard deviations of the prediction errors
(Millions)

Simulation Expected value & Prediction model
model standard deviation Model a) Model b) Model c)

Model a)
E[R− R̂] -0.018 0.051 -0.238

D(R− R̂) 1.306 1.862 1.839

Model b)
E[R− R̂] -0.048 0.008 0.008

D(R− R̂) 28.812 2.366 2.388

Model c)
E[R− R̂] -0.129 0.022 0.020

D(R− R̂) 13.548 2.043 2.029

which explains why the empirical distributions for the risk margin objects
are more skewed for these two models. As for model a), the parameter
estimates for model c), i.e. f̂j0 and σ̂j0, has the smallest standard deviation
when the underlying data is simulated by the model itself. However, the
difference among the estimates is not as large as for model a) and therefore,
the empirical distributions for the risk margin objects resemble each other
to a greater extent for this model.

The ”true” values of the risk margin objects for each of the two models,
together with the best estimate, are shown in table 4.3 for different values
of the cost-of-capital rate. We call these the ”true” values since they are
based on the parameter estimates in table 4.1, which in turn are based on
the observed triangle data. A bar chart of the total outstanding liability for
each approach can be seen in figure 4.2 where we let

A = BE + V0 for model a)
B = BE + RM for model a)
C = BE + V0 for model c)
D = BE + RM for model c).

Furthermore, figure 4.3 shows the predicted values of the cost-of-capital
margin and the risk margin in Solvency II at time t, i.e. Vt and RMt.
The corresponding predicted solvency capital requirements at time t is seen
in figure 4.4, where we denote the prediction of SCR(t) according to the

expressions derived in section 2.7 by S̃CR(t).
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Table 4.3: Assigned values of the risk margin objects and the best estimate
based on the parameter estimates in table 4.1.

Values of risk margin objects and the best estimate
(Thousands)

Rate Model a) Model c)
η0 = CoC BE V0 RM BE V0 RM

3% 16661.7 149.4 119.5 18479.5 266.5 297.8
6% 16661.7 293.4 258.0 18479.5 523.3 626.3
9% 16661.7 429.5 414.0 18479.5 766.0 982.9

Figure 4.2: Bar chart showing the calculated values of the total outstanding
insurance liability for each method.

Figure 4.3: Predicted values of the risk margin objects at time t for model
a) to the left and model c) to the right.
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Figure 4.4: Predicted solvency capital requirements at time t for model a)
to the left and model c) to the right, where wt denotes the best estimate
ratio, i.e. BE(t)/BE(0).

The proxy for future solvency capital requirements that is used in the cost-
of-capital formula (2) is turning SCR(t) into a deterministic value. In the
new more consistent approach for calculating a risk margin, SCR(t) is kept
as a random variable as it actually is. Thus, the predicted best estimate
ratio should equal the predicted value of the solvency capital requirement
at time t divided by the value of the solvency capital requirement at time
0, i.e.

BE(t)

BE(0)
=
S̃CR(t)

SCR(0)
,

where all predictions are based on the information at time 0. Table 4.4
shows the calculated weights where we let wSCRt denote the ”true” weights
˜SCR(t)
SCR(0) and wBEt denote the proposed proportionality weights BE(t)

BE(0) .
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Table 4.4: Table over ”true” weights, i.e. the weights when the future
solvency capital requirement is a random variable, compared to the weights
used in the proposed approximation in Solvency II.

”True” weights vs.
best estimate ratio in Solvency II

Model a) Model c)
t wSCRt wBEt wSCRt wBEt
0 1.000 1.000 1.000 1.000
1 0.911 0.702 0.645 0.719
2 0.675 0.478 0.490 0.496
3 0.528 0.307 0.332 0.329
4 0.411 0.197 0.237 0.216
5 0.357 0.120 0.146 0.133
6 0.047 0.064 0.047 0.069
7 0.000 0.028 0.036 0.029
8 0.000 0.004 0.000 0.005

4.2 Results using data from a Swedish insurance company

We will now consider data from six lines of businesses in a Swedish non-life
insurance company, which we from now on will denote by LoBk, for k ∈
{1, ..., 6}. Here, we will mainly focus on comparing the different approaches
for assigning a value to the risk margin but also to predict the future solvency
capital requirements. Thus, it will be enough to look at these different
calculated objects as a complement to the simulation study performed in
the previous section.

Given the loss triangles for each line of business, we compute parameter
estimates for each of the two prediction models. Thereafter, we are able to
calculate the best estimate and assign values to the cost-of-capital margin
and the risk margin in Solvency II, according to each prediction model.
These values are found in table 4.5, where the cost-of-capital rate equals
6%. We have also performed the same calculations for a cost-of-capital
rate of 3% and 9% respectively, these results are found in table A.2 in
the Appendix. Moreover, figure 4.5 shows a bar chart over the calculated
value of the total outstanding insurance liability for each line of business.
Note here that the risk margin objects are all small compared to the best
estimate. Furthermore, the predicted values of the risk margin objects and
the corresponding solvency capital requirements at time t, is seen in figure
4.6 and 4.7 for each line of business. We have also summarized the values
of the predicted best estimate ratios and the ”true” weights in table A.3,
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A.4 and A.5 in the Appendix. Recall that we denote the ”true” weights by

wSCRt =
˜SCR(t)
SCR(0) and the best estimate ratios by wBEt = BE(t)

BE(0) . Note also
that when studying figure 4.7 and the calculated weights in table A.3, A.4
and A.5, the proxy of future solvency capital requirements gives a better
approximation when most of the liability cash flow is paid in the beginning
of the runoff period, e.g for LoB1 and LoB2, than when the liability cash
flow declines slower, e.g for LoB3 and LoB6. This is also reflected in figure
4.6 showing the value of the risk margin objects at time t.

Table 4.5: Assigned values of the risk margin objects and the best estimate.

Values of risk margin objects and the best estimate
(Thousands)

CoC = η0 = 6%

Model a) Model c)
BE V0 RM BE V0 RM

LoB1 5644.5 201.2 201.5 5305.5 184.7 198.2
LoB2 20685.3 526.7 564.4 17086.3 367.1 402.6
LoB3 9128.4 652.1 685.4 6717.4 681.1 842.1
LoB4 28887.8 535.2 519.7 29092.1 508.9 481.2
LoB5 54192.2 1112.6 1432.2 45886.3 1194.3 1684.9
LoB6 130025.9 4315.4 3579.1 99023.0 2543.1 1712.1
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Value of the outstanding insurance liability
(Millions)

LoB1 LoB4

LoB2 LoB5

LoB3 LoB6

Figure 4.5: Bar chart showing the calculated values of the total outstanding
insurance liability for each method.
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Values of risk margin objects at time t
(Thousands)

LoB1

LoB2

LoB3
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LoB4

LoB5

LoB6

Figure 4.6: Predicted values of risk margin objects at time t for each line of
business, using model a) to the left and model c) to the right.
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Solvency capital requirement at time t
(Millions)

LoB1

LoB2

LoB3
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LoB4

LoB5

LoB6

Figure 4.7: Predicted solvency capital requirements at time t for each line
of business, using model a) to the left and model c) to the right and where
wt denotes the best estimate ratio, i.e. BE(t)/BE(0).
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4.3 Change in runoff pattern

From what we have seen until now, the assigned values of the risk margin
objects has been small compared to the best estimate. Since the risk margin
account for the risk, this imply that the underlying data is good and not
so volatile for our insurance products. Therefore, we will here consider a
scenario where the runoff pattern is changed for some of the latter accident
years but the corresponding predicted ultimate claims amount is the same.
For this scenario we will only apply model a) and consider LoB1, LoB3 and
LoB6 from the previous section. A description of how this scenario is set up
for each line of business is found in section A.6 in the Appendix.

As before, we have assigned values to the risk margin objects based on the
parameter estimates that is obtained from the new loss triangles. The results
for each line of business together with the best estimate is found in table
4.6. Furthermore, figure 4.8 shows a bar chart over the total outstanding
liability for each line of business both for the original data and our considered
scenario. Moreover, figure 4.9 and 4.10 shows the predicted values of the
risk margin objects and the solvency capital requirements at time t.

Note that the risk margin objects have all been assigned higher values in
our considered scenario than for the original data. A higher value of the risk
margin is associated with a higher concentration of risk, i.e. the prediction of
the future liability cash flow is more volatile. Overall, looking at figure 4.10,
the approximation of future solvency capital requirements underestimate
the requirement compared to the more correct valuation in the beginning of
the runoff period. Moreover, the proxy is less appropriate for the considered
scenarios, particularly for LoB3. This is also reflected in figure 4.9.

Table 4.6: Best estimate together with the assigned values of the risk margin
objects for the observed data and the considered scenario where the runoff
pattern is changed.

Values of risk margin objects and the best estimate
(Thousands)

LoBk Data BE V0 RM

LoB1
Observed

5644.5
201.2 201.5

Scenario 823.2 826.8

LoB3
Observed

9128.4
652.1 685.4

Scenario 1178.2 823.9

LoB6
Observed

130025.9
4315.4 3579.1

Scenario 8248.6 7296.9
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Value of the outstanding insurance liability
(Millions)

LoB1

LoB3

LoB6

Figure 4.8: Bar chart showing the calculated values of the total outstanding
insurance liability for the observed loss triangle to the left and for the new
runoff scenario to the right.
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Values of risk margin objects at time t
(Thousands)

LoB1

LoB3

LoB6

Figure 4.9: Predicted values of risk margin objects at time t for the observed
loss triangle to the left and for the new runoff scenario to the right.
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Solvency capital requirement at time t
(Millions)

LoB1

LoB3

LoB6

Figure 4.10: Predicted solvency capital requirements at time t where wt
denotes the best estimate ratio, i.e. BE(t)/BE(0). The results for the
observed loss triangle is shown to the left and for the new runoff scenario to
the right. 39



5 Discussion

The aim of this thesis was to assign a value to the cost-of-capital margin,
i.e. the value of the residual cash flow, by using loss triangle data. For
comparison, we have focused on the risk margin in the Solvency II framework
which is calculated according to the cost-of-capital formula. A common
way to perform these calculations in the industry, is by using a proposed
approximation technique in the framework for predicting the future solvency
capital requirement. Therefore, this proxy is considered throughout the
thesis. Moreover, we have considered two different stochastic models in
assigning values to these risk margin objects.

First of all, studying the empirical distributions of the prediction error for
the stochastic model on incremental payments (model a)) and the stochastic
model inspired by chain-ladder (model c)), we observed that each model had
the smallest prediction error when the underlying data was simulated by the
model itself, which comes naturally. However, model a) had a significantly
larger standard deviation for the prediction error than model c) when vary-
ing the underlying model for simulating loss triangle data. Thus, model c)
is less sensitive according to how the underlying triangle data is distributed
in predicting the outstanding liability cash flow.

When comparing the assigned values of the cost-of-capital margin, V0, and
the risk margin in Solvency II, RM , by the proposed approximation, we
could see that the relation between V0 and RM was similar for both model
a) and c). More specifically, if V0 was smaller than RM for model a) it
was the same for model c) and the other way around. Although one excep-
tion was found when we used Mack’s data in section 4.1. One thing worth
mentioning is that we only had one fully developed accident year for this
loss triangle, which could be a reason for the difference between the model
predictions. For the insurance data considered in section 4.2 several fully
developed accident years was included in the loss triangle data for the dif-
ferent lines of businesses. Moreover, RM was larger than V0 for all lines of
businesses, except for LoB4 and LoB6. This is explained by the predicted
solvency capital requirements at time t, which was strictly smaller for the
approximation than for the stochastic solvency capital requirement. Hence-
forth, when comparing the predicted values of the risk margin objects at
time t, i.e. Vt and RMt, the risk margin in Solvency II may overestimate
as well as underestimate the value of the risk compared to the more correct
valuation procedure. The same goes for the prediction of the future solvency
capital requirement.

The proportionality weight proposed by EIOPA assumes that the future sol-
vency capital requirement is decreasing with the ratio of the best estimate.
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By analyzing the results of the predicted future solvency capital require-
ments according to the different approaches, we could see that the proxy
was performing well when most of the liability cash flow was expected to
be paid in the beginning of the runoff period, e.g for LoB1 and LoB2. The
contrary was observed when a larger amount of the liability was expected
to be paid in future years, e.g for LoB3 and LoB6. Therefore, we also con-
sidered a scenario where the runoff pattern was changed for some of the
latter accident years. The aim with this procedure was to see if the value
of the risk margin objects and the predictions of the future solvency capital
requirements would be different. This was done for LoB1, LoB3 and LoB6

using model a) and resulted in larger solvency capital requirements for fu-
ture years and hence also larger values for the risk margin objects for all
three lines of businesses. This result is natural since the loss triangle data
varies more between the accident years for this scenario. Consequently, the
prediction of the outstanding liability cash flow is more volatile which in-
duce a larger risk. Thus, the value of the risk margin should be higher.
We could also observe that the difference between the predictions of future
solvency capital requirement was larger among the two methods for the con-
sidered scenario for each line of business. Thus, the approximation of the
future solvency capital requirement seems to be less appropriate for insur-
ance products that is more volatile, i.e. where the best estimate is more
difficult to predict. Although the total outstanding insurance liability does
not seem to be very different according to the two approaches, our results
give an indication of how the approximation behaves in various situations.

The final choice of a prediction model should be based on studying the resid-
uals after fitting a model. In our case, these were all distributed according
to a standard normal distribution as they should be. As a complement, fully
developed accident years can be used to perform back-testing. This makes
it possible to validate the models against real data where the model that
predicts the outstanding liability cash flow the best should be used.

5.1 Future work

To valuate the aggregate outstanding liability for an insurance company con-
taining several lines of businesses, dependence between loss triangles must
be handled. In our work, the covariance between the value of the residual
cash flows for the different lines of businesses has been assumed to equal
zero. For this case, we only have to calculate the sum of the best estimates
and cost-of-capital margins for each line of business to get the aggregate
value of the insurance liability cash flow. This assumption is unrealistic and
future work may include a closer look how to handle this. If independence
between accident years is assumed, one could find bounds for the correlation

between the
∑T

t=1X
o,(k)
t , k ∈ K.
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[10] Möhr, C. (2011) Market-consistent valuation of insurance liabilities by
cost of capital. ASTIN Bulletin, 41, 315-341.

[11] Verall, R.J. (1990) Bayes and empirical Bayes estimation for the chain
ladder model. ASTIN Bulletin, 20, 217-243.
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A Appendix

A.1 Residuals

Residuals
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Figure A.1: Residuals calculated for each model with the parameter esti-
mates in table 4.1. The dotted line in red marks the standard deviation
equal to one.
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A.2 Empirical distributions of risk margin objects

Figure A.2: Empirical distributions of risk margin objects (in thousands)
with model a) as prediction model and where η0 = CoC = 6%. The under-
lying data is simulated using model a) in the upper two figures, model b)
for the two figures in the middle and model c) in the two bottom figures.
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Figure A.3: Empirical distributions of risk margin objects (in thousands)
with model c) as prediction model and where η0 = CoC = 6%. The under-
lying data is simulated using model a) in the upper two figures, model b)
for the two figures in the middle and model c) in the two bottom figures.
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A.3 Distribution of parameter estimates

Table A.1: Expected values and standard deviations of the parameter esti-
mates that is used for calculating V0 and RM , when CoC = η0 = 6%.

Distribution of parameter estimates

Simulating from model a)

j E[β̂j ] D(β̂j) E[σ̂j ] D(σ̂j) E[f̂j0] D(f̂j0) E[σ̂j0] D(σ̂j0)

1 0.0 0.0 43507 10289 3.5 0.197 202389 50852
2 -1.7 0.83 81614 22247 1.7 0.062 205927 55820
3 0.4 0.79 187861 54952 1.5 0.051 276417 81222
4 0.5 0.66 247114 80078 1.2 0.026 178920 57900
5 -0.3 0.23 101444 36699 1.1 0.018 125065 45196
6 -0.4 0.59 95444 40074 1.1 0.021 143567 60675
7 -0.9 0.69 65527 34205 1.0 0.008 45385 23949
8 0.3 0.14 4869 3655 1.1 0.014 52921 40178
9 1.6 0.00 0 0 1.1 0.001 0 0
10 0.0 0.00 0 0 - - - -

Simulating from model b)

j E[β̂j ] D(β̂j) E[σ̂j ] D(σ̂j) E[f̂j0] D(f̂j0) E[σ̂j0] D(σ̂j0)

1 0.0 0.00 43346 10401 3.5 0.221 220956 52376
2 2.5 2.11 206154 56373 1.7 0.063 197823 50924
3 0.8 0.37 184916 56161 1.5 0.053 268369 71760
4 0.8 0.52 254956 84513 1.2 0.028 190410 57887
5 0.3 0.35 178671 65614 1.1 0.028 189738 57536
6 0.3 0.64 1170921 73511 1.1 0.023 145746 52241
7 0.2 0.76 126257 67727 1.1 0.006 31687 12604
8 0.2 0.73 2649 24923 1.1 0.011 40868 20732
9 1.7 73.40 0 0 1.0 0.001 0 0
10 0.0 0.00 0 0 - - - -

Simulating from model c)

j E[β̂j ] D(β̂j) E[σ̂j ] D(σ̂j) E[f̂j0] D(f̂j0) E[σ̂j0] D(σ̂j0)

1 0.0 0.0 43352 10271 3.4 0.203 207017 52534
2 2.4 1.93 193183 52368 1.7 0.058 189232 51432
3 0.8 0.37 176296 51114 1.5 0.047 241927 71167
4 0.8 0.48 231313 74811 1.2 0.026 178209 58185
5 0.3 0.34 165104 60058 1.1 0.022 157958 57310
6 0.3 0.59 141588 60515 1.1 0.019 124718 52879
7 0.3 0.98 109498 56466 1.1 0.004 24078 12623
8 0.2 0.85 28222 21298 1.1 0.008 27386 20906
9 1.0 43.13 0 0 0.0 0.000 0 0
10 0.0 0.00 0 0 - - - -
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A.4 Values of risk margin objects for different cost-of-capital
rates

Table A.2: Assigned values of risk margin objects together with the corre-
sponding best estimate for different values of the cost-of-capital rate.

Values of risk margin objects and the best estimate
(Thousands)

CoC = η0 = 3%

Model a) Model c)
BE V0 RM BE V0 RM

LoB1 5644.5 102.5 99.2 5305.5 94.0 97.8
LoB2 20685.3 268.2 279.1 17086.3 187.0 199.3
LoB3 9128.4 332.1 324.7 6717.4 346.9 403.0
LoB4 28887.8 272.5 256.2 29092.1 259.2 236.8
LoB5 54192.2 566.6 712.2 45886.3 608.2 839.4
LoB6 130025.9 2197.6 1661.7 99023.0 1295.1 783.5

CoC = η0 = 6%

Model a) Model c)
BE V0 RM BE V0 RM

LoB1 5644.5 201.2 201.5 5305.5 184.7 198.2
LoB2 20685.3 526.7 564.4 17086.3 367.1 402.6
LoB3 9128.4 652.1 685.4 6717.4 681.1 842.1
LoB4 28887.8 535.2 519.7 29092.1 508.9 481.2
LoB5 54192.2 1112.6 1432.2 45886.3 1194.3 1684.9
LoB6 130025.9 4315.4 3579.1 99023.0 2543.1 1712.1

CoC = η0 = 9%

Model a) Model c)
BE V0 RM BE V0 RM

LoB1 5644.5 294.6 306.7 5305.5 270.3 300.9
LoB2 20685.3 771.0 855.2 17086.3 537.4 609.7
LoB3 9128.4 954.6 1079.2 6717.4 997.0 1314.2
LoB4 28887.8 783.4 790.0 29092.1 744.9 732.4
LoB5 54192.2 1628.6 2159.4 45886.3 1748.2 2535.7
LoB6 130025.9 6316.6 5731.4 99023.0 3722.4 2773.8
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A.5 ”True” weights vs. best estimate ratio in Solvency II

Table A.3: Table over ”true” weights, i.e. the weights when the future
solvency capital requirement is a random variable, compared to the weights
used in the proposed approximation in Solvency II for LoB1 and LoB2.

”True” weights vs.
best estimate ratio in Solvency II

LoB1 LoB2

Model a) Model c) Model a) Model c)

t wSCRt wBEt wSCRt wBEt wSCRt wBEt wSCRt wBEt
0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 0.277 0.255 0.257 0.277 0.242 0.234 0.226 0.234
2 0.120 0.105 0.106 0.120 0.091 0.088 0.079 0.089
3 0.086 0.047 0.048 0.086 0.039 0.035 0.039 0.035
4 0.048 0.018 0.018 0.048 0.018 0.012 0.017 0.012
5 0.036 0.009 0.009 0.036 0.011 0.005 0.008 0.005
6 0.025 0.004 0.004 0.025 0.008 0.002 0.007 0.002
7 0.021 0.002 0.002 0.021 0.005 0.001 0.005 0.001
8 0.006 0.000 0.000 0.006 0.003 0.000 0.004 0.000

Table A.4: Table over ”true” weights, i.e. the weights when the future
solvency capital requirement is a random variable, compared to the weights
used in the proposed approximation in Solvency II for LoB3 and LoB4.

”True” weights vs.
best estimate ratio in Solvency II

LoB3 LoB4

Model a) Model c) Model a) Model c)

t wSCRt wBEt wSCRt wBEt wSCRt wBEt wSCRt wBEt
0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 0.488 0.633 0.459 0.662 0.261 0.184 0.291 0.189
2 0.406 0.429 0.384 0.453 0.094 0.077 0.113 0.078
3 0.339 0.274 0.296 0.294 0.080 0.040 0.093 0.041
4 0.283 0.167 0.171 0.182 0.039 0.021 0.036 0.022
5 0.238 0.108 0.145 0.125 0.025 0.012 0.022 0.013
6 0.202 0.070 0.134 0.066 0.019 0.007 0.019 0.008
7 0.112 0.033 0.060 0.038 0.016 0.004 0.015 0.004
8 0.060 0.021 0.049 0.019 0.014 0.002 0.012 0.002
9 0.050 0.011 0.032 0.011 0.012 0.001 0.011 0.001
10 0.015 0.005 0.028 0.001 0.002 0.000 0.003 0.000
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Table A.5: Table over ”true” weights, i.e. the weights when the future
solvency capital requirement is a random variable, compared to the weights
used in the proposed approximation in Solvency II for LoB5 and LoB6.

”True” weights vs.
best estimate ratio in Solvency II

LoB5 LoB6

Model a) Model c) Model a) Model c)

t wSCRt wBEt wSCRt wBEt wSCRt wBEt wSCRt wBEt
0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 0.096 0.181 0.096 0.202 0.919 0.615 0.762 0.574
2 0.035 0.096 0.035 0.107 0.850 0.411 0.694 0.367
3 0.027 0.059 0.027 0.066 0.682 0.271 0.638 0.231
4 0.017 0.037 0.017 0.041 0.165 0.174 0.495 0.142
5 0.014 0.024 0.014 0.027 0.100 0.106 0.359 0.081
6 0.009 0.015 0.009 0.016 0.063 0.059 0.276 0.041
7 0.008 0.009 0.008 0.010 0.007 0.028 0.173 0.016
8 0.007 0.005 0.007 0.005 0.001 0.010 0.097 0.004
9 0.003 0.002 0.003 0.002 0.001 0.001 0.001 0.000
10 0.002 0.001 0.002 0.001 0.000 0.000 0.000 0.000

A.6 Set up for changing the runoff pattern

We will here describe the set up where we consider a change in the runoff
pattern for some of the latter accident years but the corresponding ultimate
claims amount to be the same. The ultimate claims amount (or the ultimate
loss) is the final amount that is paid for an accident year and the runoff
pattern describes how this amount is distributed over the development years.
The runoff pattern that characterize LoB1, LoB3 and LoB6 is found in table
A.6 below. There the percentage of the ultimate claims amount that is
paid during development year j is seen. Thus, for LoB1, about 55% of the
ultimate loss is paid during year 1, 36% during year 2 and so on. Now, let
us assume a scenario where the runoff pattern is changed for the last third
of the observed accident years but the ultimate loss is the same, i.e. we have
a breakpoint where the runoff pattern changes. This can be obtained by
distributing the predicted ultimate loss, based on the observed loss triangle
at time 0, for these latter accident years according to a new runoff pattern.
We then obtain a new modified loss triangle having the structure shown
in figure A.4. Based on this upper triangle we calculate new parameter
estimates that we use to predict the risk margin objects and future solvency
capital requirements. In this way we are able to see the effect of a sudden
change in the runoff pattern but where the ultimate loss is considered to be
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the same. The new runoff pattern is set according to table A.6 where we have
chosen a runoff pattern that deviates quite a lot from what is characteristic
for each line of business. This is done to clearly see the consequences when
there exists a larger variety in the underlying loss triangle data.

Accident Development year j
year i 1 . . . j . . . J

i0

...

J − j

...

J

Figure A.4: Structure of data when considering a breakpoint in the runoff
pattern for latter accident years, i.e. the data above the dashed line is
our observed data but the data below the dashed line is now modified and
distributed according to the new runoff pattern.

Table A.6: Runoff pattern that is characteristic for LoBk to the left and the
new considered runoff pattern to the right.

Runoff pattern for
LoBk

j LoB1 LoB3 LoB6

1 55% 24% 46%
2 36% 34% 28%
3 5% 10% 9%
4 3% 10% 6%
5 1% 10% 3%
6 0% 4% 2%
7 0% 2% 2%
8 0% 3% 2%
9 0% 1% 1%
10 0% 1% 0%
11 - 0% 0%
12 - 0% 0%

New runoff pattern for
LoBk

j LoB1 LoB3 LoB6

1 20% 10% 10%
2 15% 10% 15%
3 10% 10% 10%
4 10% 10% 10%
5 10% 10% 5%
6 10% 10% 5%
7 10% 10% 10%
8 10% 5% 5%
9 5% 3% 15%
10 0% 2% 10%
11 - 1% 5%
12 - 0% 0%
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