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Abstract

In this text, we characterize the processing times of a large number
of errands. Our goal with this characterization is to provide certain
key values, such as a number of quantiles and the expected value. We
propose a (finite) mixture distribution, more specifically a weighted
mixture of a lognormal distribution and a truncated normal distri-
bution. Goodness of fit of this mixture model is tested using the
Kolmogorov- Smirnof statistic. We also develop a methodology, using
maximum likelihood techniques and an iterative Expectation Maxi-
mization (EM) algorithm, for estimation of the parameters that define
the mixture distribution. Occasionally, our processing times are only
partially observed, i.e. some of the values are unknown at the time
of estimation. To deal with this, an extension of the Stochastic EM
(SEM) algorithm is adapted, and combined with the above mentioned
estimation methodology for fully observed processing times. In this
extended algorithm, repeatedly updated intermediate estimates, based
on both the observable and randomly generated data, are weighted to
produce the parameter estimates. Computer programs that are needed
for parameter estimation, computation of the key values, evaluation of
the models, etc. are implemented in C++ and R as a part of the work.
The outlined methodology is assessed on simulated data, and finally
applied to subsets of our real word data set.
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1 Introduction

A phenomenon that appears across numerous fields arises when many similar
tasks are being processed in a similar fashion. Examples of such phenomena
are the processing of applications for membership in a community, or the
legal reviews of many similar cases. Developing models that provide the
answer to questions about such processes are therefore important. These
models may be used to, for example:

• optimize the process,

• provide information and increase our understanding about the process,

• make predictions for future instances to be processed,

• etc.

In this text, we develop a model in order to characterize processing times.
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1.1 Characterization of Processing Times

We have data, collected by an agency that processes a large number of er-
rands. The agency would like to gain understanding of the underlying pro-
cess, to be able to optimize it, and to communicate information about the
processing times in terms of a number of key values. These key values are
presented in Section 1.3.

The main task of this work is therefore to characterize the distribution of the
processing times. A parametric model, flexible enough to capture complex
patterns in data, but simple enough to not overfit it, is desired. Ideally, one
would consider exclusively closed errands, i.e. data points where the process-
ing time is known, when characterizing the processing times. However, it
is reasonable to believe that the distribution of the processing times vary
over time, and to wait for all errands to be processed before using a cohort
may not be reasonable. Therefore, a strategy for parameter-estimation using
“partially observed” data is developed and applied.

In summary, the main tasks of this work involve

1) deduction of a parametric model M, that describes the processing
times,

2) verification of M,

3) development of a strategy for estimation of the parameters that define
M on partially observed data,

4) provide runtime-feasible implementations to perform the above listed
tasks.

Due to privacy policies, very little information about data, and about the
underlying process, will be presented in this text.

1.2 Available Work

In similar settings, processing times have been characterized using the log-
normal distribution, see [7] and [8]. The law of the proportionate effect, or
Gibrat’s Law, also provides a theoretical explanation to why the lognormal
assumption is reasonable, see e.g. [1] and [5]. However, a lognormal distribu-
tion does not fit our processing times, and therefore a more complex model
has to be developed.
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1.3 Key Values

Information about the processing times will be communicated in terms of a
number of key values, namely:

• the median (Q0.5),

• the 75th percentile (Q0.75),

• the 90th percentile (Q0.9),

• the 95th percentile (Q0.95),

• the mean, and

• the standard deviation.

1.4 Notation and Preliminaries

In this section we introduce notation and terminology to be used in the
following text.

• N (µ, σ) denotes the normal distribution with mean µ and standard
deviation σ.

• φ(·) and Φ(·) denote the density and the distribution function of a stan-
dard normal, i.e. a N (0, 1)-distributed, random variable, respectively.

• 1 denotes the indicator function, i.e. 1(bool) = 1 if bool evaluates to
true, and 1(bool) = 0 otherwise.

• Qd, where d ∈ [0, 1], denotes the d · 100th percentile. Hence, if Q refers
to a random variable X, then

Qd = inf{x : P(X ≤ x) ≥ d}. (1)

Which distribution Q refers to should be clear from the context.

• CDF will refer to the Cumulative Distribution Function.

• The shorthand std. dev. will occasionally be used to denote standard
deviation.

• The shorthand edf will occasionally be used to denote the empirical
distribution function of a sample.
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1.5 Outline

In Section 2, the model that will be used to characterize our processing times
is introduced, and the problem at hand is described in greater detail. Section
3 describes the data that inspired this work, and carries the information about
our processing times. In Section 4, the mixture distribution that is used to
characterize the processing times, the algorithms that are used to estimate
parameters, the methods that are used to assess the developed methodology,
etc. are described, from a theoretical viewpoint. Section 5 (and Appendix A)
provides a brief treatment of the computer software that has been developed
during the work. Results from experiments, i.e. from applying the developed
methods on simulated data and on the “real world” data described in Section
3, are presented in Section 6. Finally, a short summary and a discussion about
limitations and further work is presented in Section 7.

7



2 Model Description

In this section, the model that is used to characterize the processing times is
introduced and discussed. More detailed descriptions of the components of
the model are given in Section 4.

2.1 Overview

According to the law of proportionate effect, also referred to as Gibrat’s Law,
it is reasonable to assume that processing times, with similar characteristics,
follow a lognormal distribution, see [13] and [5].1 Figure 1 presents a his-
togram over processing times in cohort 1, which is specified in Section 3.2,
where this lognormal assumption holds. The red curve is the density of the
mixture model, explained in Section 4.1, parametrized by

θ = (3.2, 1.3, 1, 99.5, 79),

where the two first numbers define a lognormal component, the last two de-
fine a truncated normal component, and the third weights those components
into a mixture distribution. This value of θ corresponds to a pure lognormal
distribution, since the weight for the normally distributed component, 1 mi-
nus the middle component of θ, equals 0. The statistic from a Kolmogorov
Smirnof -test, a test to assess validity of the hypothesis that data follows the
hypothesized, lognormal distribution,

√
nDn = 0.777,

indicates a good fit (see Section 4.4.2). Figure 2 presents the empirical distri-
bution function (the black piecewise constant “curve”) for cohort 1, together
with the CDF of the mixture distribution, parametrized by θ, i.e. that of a
lognormal distribution (the red curve).

The assumption about lognormally distributed processing times holds only
as an exception for our data, and generally the processing times follow a
more complex pattern. The proper distribution has, at least, a bi-modal
density, which motivates a mixture distribution.2 Figure 3 presents a his-
togram over processing times in cohort 2, which is specified in Section 3.2,

1A Weibull distribution, or more generally a Generalized Gamma-distribution has also
been proposed in this context. However, neither of them fit the complex distribution of
our processing times very well, and therefore only the lognormal distribution is exemplified
here.

2Occasionally, the density is rather multi-modal, than bi-modal.
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together with the density from the mixture distribution presented in Section
4.1, parametrized by

θ = (3.8, 1.8, 0.6, 397, 116.5).

Figure 4 presents the empirical distribution (the black piecewise constant
curve) of cohort 2, together with the CDF of the mixture distribution (the
red curve) for this parameters. The Kolmogorov Smirnof -statistic

√
nDn = 1.31,

provides no strong evidence against the mixture distribution (see Section
4.4.2).

days

0 100 200 300 400

Figure 1: Histogram over processing times in cohort 1 (see Section 3.2),
together with the density of the mixture model, parametrized by θ =
(3.2, 1.3, 1, 99.5, 79). This parameter vector θ corresponds to a pure lognor-
mal distribution, see Section 2.1.

2.2 Model – M

The model that will be used to characterize the processing times, denote it
by M, is
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Figure 2: Empirical distribution (black curve) of processing times in cohort
1 (see Section 3.2), and theoretical CDF (red curve) of the mixture distri-
bution, parametrized by θ = (3.2, 1.3, 1, 99.5, 79). This parameter vector θ
corresponds to a pure lognormal distribution, see Section 2.1.

M: a mixture of a lognormal and a truncated normal distribution.3

M will be explained in greater detail in Section 4, and used to analyze data
in Section 6.

2.3 Discussion

The processing times are integer-valued, they measure a number of days, but
M is based on continuous probability distributions. This is motivated by the
fact that the underlying phenomenon, i.e. that of processing errands, takes
place in continuous time. Furthermore, statistical evidence for M based on
processing times that are “rounded of to integers”, i.e. to discrete days, are
still adequate. If anything, a good fit on such integer valued processing times
strengthens our belief in M.

It is reasonable to believe that deviation from the lognormal distribution is

3The actual distribution to be considered is truncated from above at a constant U , see
Section 3.3.
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days

0 200 400 600

Figure 3: Histogram over processing times in cohort 2 (see Section 3.2),
together with the density of the mixture distribution, parametrized by θ =
(3.8, 1.8, 0.6, 397, 116.5), see Section 2.1.

due to some disturbance, and that lack of fit is due to insufficiently well-
defined cohorts. However, there are no means to partition our data into such
cohorts, and after all the point of having a probabilistic modeling framework
is that of simplification and generalization. See Section 7.1.1 for a further
discussion about partitioning our data into smaller cohorts.
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Figure 4: Empirical distribution (black curve) of processing times in cohort 2
(see Section 3.2), and theoretical CDF (red curve) of the mixture distribution,
parametrized by θ = (3.8, 1.8, 0.6, 397, 116.5), see Section 2.1.
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3 Data

In this section, we present the data that carries information about the pro-
cessing times that inspired this work.

3.1 Description of Data

The data is collected by an agency that continuously processes a large number
of errands. It contains information on:

• date of opening (YYYY-MM-DD),

• date of closing (YYYY-MM-DD), and

• several categorical variables.

From this we deduce the crucial entity

processing time := date of closing− date of opening + 1, (2)

which will be denoted by X. Two of the categorical variables, COUNTRY and
CATEGORY, will be used to partition the data into smaller cohorts. COUNTRY

describes the country of origin of the object being processed, and CATEGORY

categorizes the processes into different groups, based on other information
about the objects. Due to privacy policies, no further information about the
data, or about the underlying process it describes, is provided.

In this text, only a subset of data, denote this by D, where

• the date of opening belongs to the first half of 2015, and

• the processing times satisfy X ≤ 2 · 365,4

will be used.

There are no missing values in D.5

4Occasionally, a tighter upper bound on the processing times are used, i.e. 2 · 365 is
replaced by a smaller number. In those cases, the reader will be informed.

5To be precise, erroneous registrations that result in undefined fields are filtered out,
and therefore D is free from missing values.
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3.2 Cohorts

In this section, the cohorts that are used in examples and experiments in this
text, are presented.

cohort 1:
Data in cohort 1 is aggregated over all levels of COUNRTY and no re-
strictions on the opening date, except for those presented in Section
3.1, are imposed. CATEGORY is fixed on one of its levels.

cohort 2:
Data in cohort 2 is aggregated over all levels of CATEGORY. COUNTRY is
fixed on one of its levels, and all errands are opened during the first
month of 2015.

cohort 3 – 6:
Data in these cohorts are aggregated over all levels of CATEGORY, but
contains exclusively one level of COUNTRY. Processes are opened during
months 2015-01, 2015-02, 2015-03, and 2015-04 in cohorts 3, 4, 5 and
6 respectively. Furthermore, the processing times satisfy

X ≤ 1.8 · 365 = 657.

Cohorts 3 through 6 are used in the experiments presented in Section
6.3.

3.3 Truncation of Data

Due to errors in the registration of closing dates of processed errands, some
data points have unreasonably long processing times. Knowledge about the
underlying process motivates the truncation of D that was presented in Sec-
tion 3.1 (X ≤ 2·365).6 This truncation also effects the modelM, as discussed
in Section 4.1.

6Note that cohorts 3-6 are truncated at a lower value, namely 1.8 · 365.
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4 Theory

This section provides a description about the model that is used to charac-
terize our processing times. We also describe how this model is assessed, and
how the parameters that define it are estimated.

4.1 Mixture of a Lognormal and a Truncated Normal
Distribution

M specifies that a processing time, X, has density

fX(x) = βfY (x) + (1− β)fV (x), (3)

where fY (x) is the density of a lognormal random variable Y with parameters
µ1, σ1 > 0, fV is the density of a normal random variable V with parameters
µ2, σ2 > 0, truncated from below at 0, and β ∈ [0, 1] is a real number. More
specifically,

V = W |W > 0, (4)

where W ∈ N (µ2, σ2). Equivalently, X has distribution function

P(X < x) = βP(Y < x) + (1− β)P(V < x) =

βΦ( log x−µ1
σ1

) + (1− β)

(
Φ(x−µ2

σ2
)− Φ(−µ2

σ2
)

1− Φ(−µ2
σ2

)

)
, (5)

for x > 0. Hence, M is completely defined by five parameters

θ = (µ1, σ1, β, µ2, σ2). (6)

The two first moments of the mixture distribution,

E(X) = βE(Y ) + (1− β)E(V ), (7)

and

E(X2) = βE(Y 2) + (1− β)E(V 2), (8)
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follow directly from integrating Equation (3) componentwise. We get the
variance

Var(X) = E(X2)− E(X)2 =

β(E(Y 2)− E(Y )2) + βE(Y )2 + (1− β)(E(V 2)− E(V )2) + (1− β)E(V )2

−β2E(Y )2 − (1− β)2E(V )2 − 2β(1− β)E(Y )E(V ) =

βVar(Y ) + (1− β)Var(V ) + β(1− β) (E(Y )− E(V ))2 ,
(9)

which is the familiar linear combination of the two components’ variances,
plus a term that is proportional to the difference between their expected
values.

Due to practical reasons – at each point in time there is an upper bound on
the length of processing times that can be observed – the observed processing
times in D is truncated from above, see Section 3.3.7 Therefore, when e.g.
estimating the parameters θ from D, one should consider

XU := X|X < U, (10)

for some upper bound U > 0, and the density in Equation (3) becomes

fXU (x) =
fX(x)

P(X < U)
1(x ≤ U) (11)

where 1(·) is the indicator -function (see Section 1.4).

The two first moments for the truncated variable XU are

E(XU) =
∫ U
0 xfX(x)dx

P(X<U)
=

1
P(X<U)

(
β
∫ U
0
xfY (x)dx+ (1− β)

∫ U
0
xfV (x)dx

)
=

1
P(X<U)

[
βE(YU)Φ( logU−µ1

σ1
) + (1− β)E(VU)

(
Φ(U−µ2

σ2
)− Φ(−µ2

σ2
)
)]
,

(12)

7The fact that some processes might abort without being deregistered sometimes mo-
tivate an even “tighter” truncation.
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and

E(X2
U) =

∫ U
0 x2fX(x)dx

P(X<U)
=

1
P(X<U)

(
β
∫ U
0
x2fY (x)dx+ (1− β)

∫ U
0
x2fV (x)dx

)
=

1
P(X<U)

[
βE(Y 2

U )Φ( logU−µ1
σ1

) + (1− β)E(V 2
U )
(

Φ(U−µ2
σ2

)− Φ(−µ2
σ2

)
)]
,

(13)
where

YU
d
= Y

∣∣∣Y < U (14)

and

VU
d
= W

∣∣∣0 < W < U. (15)

No explicit formulas for the mean and variance of XU are derived, but those
are computed as functions of the moments of YU and VU , through (12), (13)
and

Var(XU) = E(X2
U)− E(XU)2. (16)

See Sections 4.2 and 4.3 for details about the lognormal and the truncated
normal distributions respectively, and e.g. [10] to read more about mixture
models.

Table 1 presents the mean value, the standard deviation, and three quantiles
of XU , as defined in Equation (11), for parameters

θ = (4.7, 0.6, 0.8, 365.0, 80.0),

and U = 547. Figure 5 present the density of XU , together with some
characteristics, for this parameter vector θ and U .

mean std. dev. Q0.25 Q0.5 Q0.9

XU 189.5 131.4 82.7 143.9 394.8

Table 1: Characteristics for XU , defined in Equation (11) in Section 4.1, with
θ = (4.7, 0.6, 0.8, 365.0, 80.0) and U = 547.
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Figure 5: Density of XU , defined in Equation (11), Section 4.1, for θ =
(4.7, 0.6, 0.8, 365.0, 80.0) and U = 547. The vertical lines represents some
characteristics of XU , and SD refer to the standard deviation.

4.2 The Lognormal and Truncated Lognormal Distri-
bution

The lognormal distribution constitutes one of the components in the mixture
distributionM. Y has a lognormal distribution, with parameters µ1 and σ1,
if

Y
d
= eσ1Z+µ1 , (17)

where Z is a standard normal random variable, or equivalently if

log Y ∈ N (µ1, σ1). (18)

Clearly, Y ≥ 0. Y has distribution function

P(Y < y) = P(eσ1Z+µ1 < y) = Φ
(

log y−µ1
σ1

)
, (19)
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and density

fY (y) = Φ′
(

log y−µ1
σ1

)
=

1

σ1y
φ( log y−µ1

σ1
) =

1√
2πσ1 y

exp

(
−(log y − µ1)

2

2σ2
1

)
. (20)

Using the variable substitution

y = evσ1+µ ⇔ v = (log y − µ1)/σ1, (21)

we derive the mean

E(Y ) =

∫ ∞
0

yfY (y)dy =

∫ ∞
−∞

1√
2π
e−

1
2
(v−σ1)2dv · eµ+σ2

1/2 = eµ1+σ
2
1/2, (22)

the variance

Var(Y ) = E(Y 2)− E(Y )2 =

∫ ∞
0

y√
2πσ1

exp(− 1
2σ2

1
(log y − µ1)

2)dy − e2µ1+σ2
1 =

(eσ
2
1 − 1)e2µ1+σ

2
1 , (23)

and the median eµ1 , since∫ eµ1

0

1√
2πσ1 y

exp(− 1

2σ2
1

(log y − µ1)
2)dy =

∫ 0

−∞

1√
2π
e−v

2/2dv =
1

2
. (24)

Note that the median satisfies

eµ1 ≤ eµ1eσ
2
1/2 = E(Y ),

with equality in the degenerate case σ1 = 0, i.e. the lognormal distribution
is right skewed.

We derive the moments of

YU = Y |Y < U (25)

for some U > 0, that was used in Section 4.1. We have density

fYU (y) =
fY (y)

P(Y < U)
1(y < U) =

fY (y)

Φ( logU−µ1
σ1

)
1(y < U), (26)
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and mean

E(YU) =
1

P(Y < U)

∫ U

0

yfY (y)dy =

E(Y )−
∫∞
U

1√
2πσ1

e
− (log y−µ1)

2

2σ21 dy

Φ( logU−µ1
σ1

)
. (27)

Using the variable substitution presented in Equation (21), we get∫ ∞
U

1√
2πσ1

e
− (log y−µ1)

2

2σ21 dy =

∫ ∞
(logU−µ1)/σ1

1√
2π
e−

1
2
(v−σ1)2dv eµ1+σ

2
1/2 =

eµ1+σ
2
1/2

∫ ∞
(logU−µ1)/σ1−σ1

1√
2π
e−

1
2
t2dt =

eµ1+σ
2
1/2

[
1− Φ(

logU − µ1 − σ2
1

σ1
)

]
, (28)

and with E(Y ) = eµ1+σ
2
1/2,

E(YU) = eµ1+
σ2
1

2
Φ(

logU−µ1−σ2
1

σ1
)

Φ( logU−µ1
σ1

)
. (29)

Similarly we obtain∫ ∞
U

y2fV (y)dy = e2(σ
2
1+µ1)

∫ ∞
(logU−µ1)/σ1

e−
1
2
(y−2σ1)2

√
2π

dy =

e2σ
2
1+2µ1

[
1− Φ(

logU−µ1−2σ2
1

σ1
)
]
, (30)

and

E(Y 2
U ) =

∫ U
0
y2fV (y)dy

Φ( logU−µ1
σ1

)
=

E(Y 2)−
∫∞
U
y2fV (y)dy

Φ( logU−µ1
σ1

)
=

e2µ1+2σ2
1
Φ(

logU−µ1−2σ2
1

σ1
)

Φ( logU−µ1
σ1

)
. (31)
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More details about the lognormal distribution can be found in e.g. [9].

Table 2 presents the mean, the standard deviation, and three quantiles, of a
lognormal random variable Y with parameters µ1 = 4.8 and σ1 = 0.8, and of
it’s truncated version YU , as defined in Equation (26), for U = 547. Figure
6 presents the densities of Y and YU , together with some characteristics, for
these parameters and U .

mean std. dev. Q0.25 Q0.5 Q0.9

Y 174.4 179.5 68.5 121.5 361.2
YU 148.9 110.5 66.7 116.6 310.9

Table 2: Characteristics of a lognormal variable Y , and its’ truncated version
YU , as defined in Equation (26), for µ1 = 4.8, σ1 = 0.8 and U = 547.

0 200 400 600

y

fY(y)
fYU

(y)
E(Y)
E(YU)
E(Y) ± SD(Y)
E(YU) ± SD(YU)

Figure 6: Densities of a lognormal variable Y , and its’ truncated version
YU , as defined in Equation (26), for µ1 = 4.8, σ1 = 0.8 and U = 547. The
vertical lines represents some characteristics of Y and YU , and SD refer to
the standard deviation.
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4.3 The Truncated Normal Distribution

The truncated normal distribution constitutes one of the components in the
mixture distribution M. Let W be a normal random variable with parame-
ters µ2 and σ2, and consider

VU = W |0 < W < U, (32)

for some real number U > 0.

In order to deduce some important properties of the truncated normal dis-
tribution, we derive the moment-generating function

MVU (t) = E(etW |0 < W < U) =

1
P(0<W<U)

∫ U

0

1√
2πσ2

exp
(
− 1

2σ2
2
(y2 − 2y(µ2 + tσ2

2) + µ2
2)
)
dy =

1
P(0<W<U)

exp
(
− 1

2σ2
2
(µ2

2 − (µ2 + tσ2
2)2)

)∫ U

0

1√
2πσ2

exp
(
− 1

2σ2
2
(y − µ2 − tσ2

2)2
)
dy =

eµ2t+t
2σ2

2/2
Φ(

U−µ2−σ2
2t

σ2
)− Φ(

−µ2−σ2
2t

σ2
)

Φ(U−µ2
σ2

)− Φ(−µ2
σ2

)

(33)

Differentiation of MVU (t) with respect to t gives

M ′
VU

(t) = eµ2t+t
2σ2

2/2(µ2 + tσ2
2)

Φ(
U−µ1−σ2

2t

σ2
)− Φ(

−µ2−σ2
2t

σ2
)

Φ(U−µ2
σ2

)− Φ(−µ2
σ2

)

−eµ2t+t2σ2
2/2σ2

φ(
U−µ1−σ2

2t

σ2
)− φ(

−µ2−σ2
2t

σ2
)

Φ(U−µ2
σ2

)− Φ(−µ2
σ2

)
. (34)

Letting t→ 0 we get

E(VU) = M ′
VU

(t)
∣∣∣
t=0

= µ2 − σ2
φ(U−µ2

σ2
)− φ(µ2

σ2
)

Φ(U−µ2
σ2

)− Φ(−µ2
σ2

)
. (35)
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Similarly

E(V 2
U ) = M ′′

VU
(t)
∣∣∣
t=0

=

µ2
2 + σ2

2 − 2µ2σ2

(
φ(U−µ2

σ2
)− φ(µ2

σ2
)

Φ(U−µ2
σ2

)− Φ(−µ2
σ2

)

)
+ σ2

(
φ(

U−µ2−σ2
2t

σ2
)− φ(

−µ2−σ2
2t

σ2
)
)′ ∣∣∣

t=0

Φ(U−µ2
σ2

)− Φ(−µ2
σ2

)
=

µ2
2 + σ2

2 − 2µ2σ2

(
φ(U−µ2

σ2
)− φ(µ2

σ2
)

Φ(U−µ2
σ2

)− Φ(−µ2
σ2

)

)
+ σ2

2

(
U−µ2
σ2
· φ(U−µ2

σ2
) + µ2

σ2
· φ(µ2

σ2
)

Φ(U−µ2
σ2

)− Φ(−µ2
σ2

)

)
,

(36)

and

Var(VU) = E(V 2
U )− E(VU)2

= σ2
2

1 +

(
U−µ2
σ2
· φ(U−µ2

σ2
) + µ2

σ2
· φ(µ2

σ2
)

Φ(U−µ2
σ2

)− Φ(−µ2
σ2

)

)
−

(
φ(U−µ2

σ2
)− φ(µ2

σ2
)

Φ(U−µ2
σ2

)− Φ(−µ2
σ2

)

)2
 .

(37)

Figure 7 presents W (the blue curve) and VU (the red curve), together with
some characteristics, for µ2 = 200.0, σ2 = 150.0, and U = 547. Table 3
presents the mean, the standard deviation, and three quantiles of W and VU ,
for these parameter values and U .

mean std. dev. Q0.25 Q0.5 Q0.9

W 200.0 150.0 98.8 200.0 392.2
VU 222.8 170.4 128.1 215.2 392.1

Table 3: Characteristics of a normal random variable W , and of VU as defined
in Equation (32), for µ2 = 200.0, σ2 = 150.0, and U = 547.

4.4 Testing Hypothesis

Our basic assumption is that M provides an adequate description of the
processing times X, i.e. our null hypothesis H0 is that

H0 : the processing times follow the mixture distribution defined by M.
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Figure 7: Densities of a normal random variable W , and of VU as defined in
Equation (32), for µ2 = 200.0, σ2 = 150.0, and U = 547. The vertical lines
represents some characteristics of W and VU , and SD refer to the standard
deviation.

This is tested against the alternative that

H1 : the processing times do not follow the mixture distribution defined by
M.

Different methods, each of which has its advantages and weaknesses, have
been used when testing H0 against the alternative H1. In this text, we focus
on the Kolmogorov Smirnof -test and on graphical comparisons of empirical
distribution-functions to their theoretical counterparts. Also the χ2-test has
been important in the work, but it will not be presented in this text.
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4.4.1 Discussion

The aim of hypothesis testing is to make an overall judgment of our as-
sumptions, and we do not expect M to fit well in each cohort of our data.
Occasional rejections of H0 in some cohorts do not violate the choice of M,
as long as the overall picture is good.

4.4.2 Kolmogorov-Smirnof Test

The Kolmogorov-Smirnof test, named after it’s inventors, is a statistical test
with null-hypothesis H0: a sample X = (X1, . . . , Xn) is realized from a con-
tinuous, one-dimensional, null-distribution F0. The intuition is that, if H0

holds, then the empirical distribution of the sample should be close to F0.
More specifically, let

Fn(x) =
1

n

n∑
i=1

1(Xi ≤ x), (38)

be the empirical distribution function of the sample X. Then

Dn = sup
x∈R
|Fn(x)− F0(x)|, (39)

measures the difference between the empirical distribution function and the
hypothesized distribution function (as an example, Dn is the largest absolute
distance between the black and the red curves in Figures 2 and 4). For suffi-
ciently large n, and under H0, the distribution of

√
nDn is well approximated

by the Kolmogorov-Smirnof -distribution. See e.g. [11] for a more detailed de-
scription of the Kolmogorov-Smirnof test, and about the Kolmogorov-Smirnof
distribution.

The null-hypothesis is rejected when Dn exceeds a critical value, i.e. a quan-
tile from the Kolmogorov-Smirnof distribution. The CDF of this distribution,
i.e. the probability that a random variable from the Kolmogorov-Smirnof dis-
tribution is less than say x, is

1− 2
∞∑
k=1

(−1)k−1e−2k
2x2 =

√
2π

x

∞∑
k=1

e−(2k−1)
2π2/(8x2). (40)

Equation (40) contains an infinite sum for which no explicit expression is
available. A common approach is to use critical values from a table. For a
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sample size n ≥ 50, as is the case in our cohorts, we use critical values from
Table 4, where

P(
√
nDn > Dα) = α.

The values in Table 4 are approximations that rely on Dn having a distribu-
tion function as specified in Equation (40).

α 0.02 0.05 0.1 0.15 0.2
Dα 1.51743 1.35810 1.22385 1.13795 1.07275,

Table 4: Critical values for the Kolmogorov Smirnof-test, for samples of size
greater than or equal to 50.

One crucial observation when computing Dn is that the supremum in Equa-
tion (39) is always found at one of the n discontinuities of Fn, i.e. at an
instance in the sample. Therefore, given that the data is ordered, we only
have to perform O(n) computations (we have to consider F0(xi)− (i− 1)/n
and i/n− F0(xi) for i = 1 . . . n).8 Pseudocode 1, where F0(x) is the hypoth-
esized distribution function of X, describes how the Kolmogorov-Smirnof
statistic is computed.

Pseudocode 1: Computation of the Kolmogorov-Smirnof Statistic

input: parameters θ, n data points x = (x1, . . . ,xn)1

output: Dn2

3

sort x in ascending order;4

D <- −∞;5

for (i=1..n):6

if (F0(x[i])− (i− 1)/n > D) then7

D <- F0(x[i])− (i− 1)/n;8

if(i/n− F0(x[i]) > D) then9

D <- i/n− F0(x[i]);10

11

return D;12

8Sorting the data has complexity O(n log n), and this is computationally “cheap” in
the present context. Therefore it is not problematic to assume that data is ordered.
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4.4.3 Kolmogorov-Smirnof Test and Composite Hypotheses

One drawback of the Kolmogorov-Smirnof test is that the asymptotic distri-
bution of Dn, presented in Equation (39), is invalid for composite null hy-
potheses. More specifically, for composite null hypothesis, the Kolmogorov-
Smirnof statistic is conservative, i.e. the actual significance level of the test is
smaller than the nominal one (α in Table 4). In our case this means that the
computed tail-probabilities are too generous after estimating θ on the same
cohort as we conduct the test on.

Monte-Carlo simulation strategies to estimate the critical region for com-
posite hypotheses have been proposed, but this will not discussed further
here. See [4] for a treatment of the Kolmogorov-Smirnof test for composite
hypotheses.

Discussion

Despite the fact that critical values from Table 4 are invalid, and that the
belief in a good fit based on those might become too optimistic, a low value of
Dn still indicates a better fit than a higher one. Therefore, the Kolmogorov-
Smirnof statistic may serve as a “relative” goodness of fit measure, and it
will be presented in some of the experiments in Section 6.
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4.5 Parameter Estimation in a Mixture Distribution

In this section a description of the algorithm that is used to estimate the
paramter vector θ that defines M (see Section 2.2), is given. First follows
a general description of a strategy for parameter estimation in a mixture
model.

4.5.1 A General Description

One could think of a mixture distribution as describing a population where
each observation comes from one of two subpopulations. More specifically,
the mixture distribution corresponds to

X = ZY + (1− Z)V, (41)

where Z is a Bernoulli random variable with parameter β ∈ [0, 1], i.e.

P(Z = 1) = β = 1− P(Z = 0), (42)

and where Y and V are random variables defined by parameters θ1 and θ2
respectively.

Denote by θ = (θ1, β, θ2) the parameters that define X. When estimating
θ from a sample x = (x1, . . . , xN) of X, we do not know if a given xi is a
realization of Y or V , and the log-likelihood

l(θ|x) =
N∑
n=1

log (βfY (xn|θ) + (1− β)fV (xn|θ)) (43)

is intractable. However, suppose that we know the “source” of each xi, i.e.
we “know”

z = (z1, . . . , zN),

with zi ∈ {0, 1} for i = 1, . . . , N , the outcomes of the Bernoulli random
variables. Then, for each n, one of the summands in Equation (43) cancels
out and we could consider an alternative,

l(θ|x, z)

=
N∑
n=1

(zn[log β + log fY (xn|θ)] + (1− zn)[log(1− β) + log fV (xn|θ)]) .

(44)
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We use this idea in an iterative Expectation Maximization (EM) algorithm
to be described. See e.g. [2] or [6] for a more detailed treatment.

Given values θ(i), from the ith iteration, we replace zn in Equation (44) by

rn =
β(i)fY (xn|θ(i))

β(i)fY (xn|θ(i)) + (1− β(i))fV (xn|θ(i))
. (45)

The resulting expression. i.e. that in Equation (44) with the zn’s replaced
by the rn’s, can be factored into different components corresponding to the
parameters θ1, θ2. Hence we maximize

N∑
n=1

rn log fY (xn|θ1), (46)

and

N∑
n=1

(1− rn) log fV (xn|θ2), (47)

separately w.r.t. θ1 and θ2, and

N∑
n=1

(rn log β + (1− rn) log(1− β))

=
N∑
n=1

(
rn log(

β

1− β
)

)
+N log(1− β), (48)

w.r.t. β, by setting

0 =
d

dβ

(
N∑
n=1

(
rn log(

β

1− β
)

)
+N log(1− β)

)
=⇒

0 =
N∑
n=1

rn
β(1− β)

− N

1− β
=⇒

β =
1

N

N∑
n=1

rn. (49)
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To get the algorithm going, θ has to be initialized (e.g. to parameters that are
typical for the phenomenon at hand). Then it is iterated until some criterion
of “convergence” is met.

More details on how this algorithm is adapted to estimate the parameter
vector θ that defines our mixture distribution M, and about initialization
and convergence in this case, is given in Section 4.5.2.

4.5.2 Parameter Estimation - M

If we consider XU = X|X < U instead of X as in Section 4.5.1, the density
fX(·) is multiplied by a factor 1/P(X < U), and the term term

− logP(X < U)

is to be added to the log-likelihood presented in Equation (43). However, the
assumed “knowledge” about which sub-population each observation comes
from, i.e. the information encoded in the zn’s, should effect the likelihood,
and instead of the expression in Equation (44) we get

l(θ|x, z) =

N∑
n=1

(zn [log β + log fY (xn|θ)− logP(Y < U |θ)]1(xn < U))

+
N∑
n=1

((1− zn) [log(1− β) + log fW (xn|θ)− logP(0 < W < U |θ)]1(xn < U)) ,

(50)

where the indicator functions ensure that each xi satisfies

0 < xi < U,

and where W is a (non-truncated) N (µ2, σ2) distributed random variable.

With fY being the density of a lognormal random variable, parametrized by
µ1 and σ1, we have

log fY (x|θ) = − log(2π)/2− log σ1 − log x− (log x− µ1)
2

2σ2
1

. (51)

and with fW being the density of a normal random variable, parametrized
by µ2 and σ2, we have
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log fW (x|θ) = − log(2π)/2− log σ2 −
(x− µ2)

2

2σ2
2

. (52)

The updating equation for rn, presented in Equation (45), becomes

rn =

β(i) fY (xn|θ(i))
P(Y < U |θ(i))

β(i)
fY (xn|θ(i))

P(Y < U |θ(i))
+ (1− β(i))

fW (xn|θ(i))
P(0 < W < U |θ(i))

=
β(i)fY (xn|θ(i))

β(i)fY (xn|θ(i)) + (1− β(i))fW (xn|θ(i))
P(Y < U |θ(i))

P(0 < W < U |θ(i))

, (53)

where the CDF’s also depends on the most recent value of the parameter vec-
tor θ (with θ(i) as in (53), we would get the (i+1)th rn estimate). The mixing
parameter β is not effected by the truncation and it is updated according to
Equation (49). Given the rn’s from Equation (53), we maximize

N∑
n=1

(rn [log fY (xn|µ1, σ1)− logP(Y < U |θ)]1(xn < U)) =

−
N∑
n=1

(
rn

[
log(2π)/2 + log σ1 + log xn +

(log xn − µ1)
2

2σ2
1

]
1(xn < U)

)

−
N∑
n=1

rn logP(Y < U |θ)1(xn < U) (54)

and
N∑
n=1

((1− rn) [log fW (xn|µ2, σ2)− logP(0 < W < U |θ)])1(0 < xn < U) =

−
N∑
n=1

(
(1− rn)

[
log(2π)/2 + log σ2 +

(xn − µ2)
2

2σ2
2

]
1(0 < xn < U)

)

−
N∑
n=1

(1− rn) log[Φ(U−µ2
σ2

)− Φ(−µ2
σ2

)]1(0 < xn < U),

(55)
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w.r.t. µ1, σ1 and µ2, σ2 respectively.

Pseudocode 2 describes the outlined procedure.

Pseudocode 2: Estimation of θ in M

input: vector with n data points, initial θ01

output: θ2

3

θ <- θ0;4

r <- empty n-vector; // to hold ‘‘responsibilities’’5

6

repeat until stopping-criterion is satisfied: // (see Section 4.5.3)7

update r according to Equation (53);8

update theta by Equation (49)9

and to maximize Equations (54) and (55);10

11

restrict θ to given interval; // (see e.g. Table 5)12

13

compute log likelihood of θ given data;14

15

if (β < 0.02) then β<-0.0;16

if (β > 0.98) β<-1.0;17

18

return θ;19

Note that the procedure on line 12 in Pseudocode 2 only effects β, since the
remaining parameters are constrained already when when updated on line
10 (see Section 4.5.4).

4.5.3 Initialization and Convergence

The parameter vector θ has to be initialized and we use

θ0 = (4.8, 0.8, 0.8, 280.0, 60.0).

Sometimes, the estimation procedure in Pseudocode 2 is used as an inter-
mediate step of an iterative, “outer”, algorithm. In these cases, the initial
values θ0 in line 1 of Pseudocode 2, are given by the most recently updated θ
from the outer algorithm. For a more detailed description of this, see Section
4.6.
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The stopping-criterion in line 7 of Pseudocode 2 is based on quantifying
changes of in the log likelihood of θ. More specifically, when a sequence of
three consecutive θ-values result in a log likelihood that does not increase
with more than some constant (this “tolerance” defaults to 0.05) we stop
iterating. There is also a lower bound on the number of iterations (this
defaults to eight), to make sure, or at least to it make more likely, that the θ-
space is properly examined, and an upper bound on the number of iterations,
to terminate the algorithm if no convergence is achieved (this defaults to 100).

4.5.4 Heuristics

Numerical methods are required to carry through the steps of the algorithm
that maximize the likelihood, i.e. the step that maximize the expressions in
Equations (54) and (55). This is due to the CDF in the normalizing factor.9

Instead of finding the zeros of the differentiated expressions by numerical
methods, a “robust” heuristic is used. For each parameter of θ except for β,
say θj, the likelihood, or rather the logarithm of the likelihood, is evaluated
for a number of values as this parameter varies, while keeping the remaining
parameters in θ fixed. The value of θj that maximize the likelihood is then
returned as the estimate. Pseudocode 3 exemplifies this procedure for µ1,
but it generalizes to σ1, µ2 and σ2 in the obvious way. The quantity ll(µ) in
Pseudocode 3 is proportional to the expression in Equation (54), but only
the terms that depend on µ = µ1 are kept. The parameter σ1 is taken from
θ0, and the responsibilities r are given as inputs to the algorithm.

9A factor Φ(·) is present also after differentiation of log Φ(·).
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Pseudocode 3: µ1 heuristic

input: data, vector with responsibilities r, initial θ0, U1

output: µ2

3

µ <- µ1 from θ0;4

LL = ll(µ);5

6

find the direction d along the µ1-axes in θ-space7

in which the likelihood increases;8

while µ is in accepted range [LB, UB]:9

depending on d, increase or decrease µ with INCR;10

if ll(µ) ≥ LL:11

LL = ll(µ);12

else:13

break;14

15

return µ;16

LB and UB in Pseudocode 3 are lower and upper bounds on µ1 to make
sure we stay in a range of values that are “reasonable” for the application at
hand. In our case, these bounds default to the values presented in Table 5.

parameter LB UB
µ1 3.0 7.0
σ1 0.3 1.9
µ2 90 600
σ2 20 220

Table 5: Bounds for parameters in θ.

The size of the steps, i.e. INCR in line 10 of Pseudocode 3, defaults to 0.01
for µ1 and σ1 that control the lognormal part of M, and 0.1 for µ2 and σ2
that control the truncated normal part of M.
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4.6 Estimation with Partially Observed Data

As mentioned in Section 1.1, a method to estimate the parameters that
defines the distribution of the processing times, even though just a subset
of the errands in data are processed, is desired. To be clear, the mixture
distribution M is truncated from above at a positive value U , but now we
face the problem of estimating θ, that defines M, based on data in which
a subset of the processing times, those that are longer than some constant
A ≤ U , cannot be observed. A general description follows.

4.6.1 General Description

Consider a sample X = (X1, . . . , XN) from a distribution with density f(·|θ)
parametrized by θ. For convenience, and without loss of generality, assume
that X is ordered in ascending order. Suppose that we cannot observe Xi if
Xi ≥ A for a known constant A ∈ R, i.e. we observe just a subset

X̃ = (X1, . . . , Xn) ⊂X,

with Xi < A for i = 1, . . . , n and n ≤ N . The values of the m = N − n data
points in X\X̃ are unknown, but they are all greater than, or equal to A.10

The idea behind the following procedure is to repeatedly generate m points,
assuming that we know θ. We generate data from our “known” distribu-
tion, conditioned on the observations being larger than, or equal to A, and
iteratively update θ until some criterion of convergence is satisfied.

Let θ0 be the initial parameters, reflecting some “prior knowledge” about X.
Then Pseudocode 4 explains this iterative procedure for estimation of θ.

10In M, we must have A ≤ U for this to be meaningful.
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Pseudocode 4: Parameter estimation with partially observed data

input: initial parameters θ0, data X̃ = (X1, . . . , Xn), size of full sample N1

output: θ2

3

θ = θ0;4

repeat until convergence: // (see Section 4.6.4)5

generate m variables Xh = Xn+1, . . . , XN from f(·|X≥A, θ);6

estimate θ̂ based on X̃ ∪Xh;7

θ <- w · θ + (1− w) · θ̂; // (see Section 4.6.3)8

9

return θ;10

The main ideas presented in this section, as summarized in Pseudocode 4, for
the special case where w = 0, was proposed by Celeux and Diebolt [3] under
the name Stochastic EM (SEM). A similar approach, the Monte Carlo EM
algorithm (MCEM), utilize and extend the same ideas, see [12] for further
details.

4.6.2 Application to M

In our setting, the density in Pseudocode 4 is fX|X<U(·|θ), and clearly we
must have A ≤ U . The estimation on line 7 in Pseudocode 4 invokes the ideas
presented in Section 4.5.2, initialized by the most recent estimate of θ. In
particular, this implies that the algorithm from Section 4.5.2, for computing
θ̂ on line 7, is nested within another algorithm that reduces to the SEM-
algorithm when w = 0 on line 8. See Section 4.6.3 for a discussion about the
weighting parameter w.

4.6.3 Heuristics

Occasionally, running the algorithm indicates overly vivid movements in θ,
due to the randomly generated data points in X̃ (line 6 of Pseudocode 4).
Therefore, a strategy to slow down the procedure is used. At each step, the
θ is updated as a weighted average of the new, and the last estimate of θ.
Default w ∈ [0, 1] in line 8 of Pseudocode 4 is set to 2/3, in which case a
slightly higher weight is put on the previous parameter estimate, than on the
one based on the latest augmented data set. This choice of w is based on
empirical studies, and the resulting decrease of the variation in consecutive
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parameter estimates seems to produce good results for a variety of simulated
test data sets. No results from these studies will be presented in this text.

4.6.4 Initialization and Convergence

The initial parameter vector θ is default set to

θ0 = (4.8, 0.8, 0.8, 280.0, 60.0).

The criterion of convergence in line 5 of Pseudocode 4 is based on quantifying
changes in the explicit parameter vector θ, rather than in the likelihood.11

More specifically, let

C(i) = max

{
j = 1, . . . , 5;

∣∣∣∣∣θ
(i)
j − θ

(i−1)
j

θ
(i)
j

∣∣∣∣∣
}
, (56)

be the maximal, relative absolute difference of two consecutive θ vectors (see
the remark in Section 4.6.5 for a short treatment of the obstacle of dividing
by small numbers in this expression). To deduce convergence, we require C to
be smaller than some tolerance level (this defaults to 0.1) in three consecutive
iterations. See Section 4.6.6 for a discussion about this.

4.6.5 Remark

With j = 3 in Equation (56), i.e. when concerned with the β component
of θ, the denominator in (56) might be close to zero. If this is the case, a
small value (default 0.001) is added in the denominator. This is done to
avoid undesired, uncontrolled results due to limitations in the floating-point
precision (or even division by zero).

4.6.6 Discussion

One might deduce convergence in line 5 of Pseudocode 4 based on the like-
lihood of the parameters, conditioned on the full sample Xh ∪ X̃, instead
of based on the ideas presented in Section 4.6.4. However, the likelihood

11A criterion of convergence based on quantifying changes in the likelihood also deduces
convergence based on the parameters in θ, but through their functional relationship to the
likelihood.
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crucially depends on the simulated data in Xh, and might not even increase
through the iterations. Likewise, evaluating the likelihood of X|X < A,
based exclusively on the “observed” part of data, could be misleading if A is
small.12 Therefore, a convergence criterion based on quantifying changes in
the parameter vector θ, is a reasonable choice.

12This argument applies, of course, to the strategy of deducing convergence based on C
in Equation (56) as well.
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5 Computer Software – Implementation

A part of the work has been focused on development of a stable and “fast”
computer software to handle the tasks that arise. The programming lan-
guage C++ has been used for the algorithms and for computations, while the
graphics in this text are produced in R. A list of some of the implemented
“functions” are available in Appendix A. Functions, for which corresponding,
reliable open source software is available, have been bench-marked against
those other implementations, to ensure efficiency and correctness.13 No run
time comparisons or similar results from these investigations are presented
in this text though.

5.1 Discussion

Implementing algorithms in a “low level” language, such as C++, builds up
understanding and intuition, not only for their own strengths and weaknesses,
but also for the underlying problem that they attempt to solve. Therefore,
the construction of a well performing computer software has been important
also for developing the methods.

13Examples of such are functions available in the R-base, such as densities and distribu-
tion functions.
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6 Experimental Results

In this section, experimental results from applying the methods that were
presented in Section 4 to simulated data and D, are presented.

6.1 Parameter Estimation in a Mixture Model.

In this section the iterative algorithm for parameter estimation that was de-
scribed in Section 4.5.2 is examined. We generate a sample from the mixture
distribution M (see Section 2.2), parametrized by

θ0 = (4.3, 0.8, 0.75, 365, 70),

and truncate it from above at U = 600. The size of the resulting sample is
n = 300. Estimation of θ0 gives

θ̂ = (4.28, 0.82, 0.75, 350, 78.8),

after 9 iterations. Figure 8 presents a histogram from the sample, together
with the densities of X and X|X < U , for θ0 and θ̂. The Kolmogorov-Smirnof
statistics, with respect to X|X < U , parametrized by θ̂ and θ0 respectively,
are √

nDn,θ̂ = 0.61,

and √
nDn,θ0 = 0.54.14

As expected, a comparison with the critical values in Table 4 provides no
evidence against the null hypothesis that the sample is realized from X|X <
U . As addressed in Section 4.4.3, the tabulated values are invalid after
estimation of θ, but the low values on Dn still indicate a good fit. Figure 9
presents the empirical distribution function and the theoretical CDF’s, based
on θ0 and θ̂.

6.2 Parameter Estimation with Partially Observed Data

The following three experiments are conducted to test the methodology that
was presented in Section 4.6. Data is generated from M, parametrized by

14The statistic that is based on θ0, i.e. Dn,θ0 , is included as a reference for Dn,θ̂.
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Figure 8: Histogram and densities of X and X|X < U , for U =
600, θ0 = (4.3, 0.8, 0.75, 365, 70), and estimated parameters θ̂ =
(4.28, 0.82, 0.75, 350, 78.8). The histogram is based on a (truncated) sam-
ple of size 300, drawn from M, parametrized by θ0.

θ0,
15 and truncated from above at U = 730, and the parameter vector θ̂ is

estimated for different “boundaries” between the “observed” and “hidden”
parts. More specifically, for different values of A (see Section 4.6), we “ob-
serve” the subset X̃ ⊂X of the generated sample X, that satisfies

X̃ = {xi ∈X; xi < A},

and consider X\X̃, the simulated data points that are at least as large as
A, as “hidden”. We then estimate the data-generating parameters θ0 by the
methods that were described in Section 4.6. The estimate obtained after
observing exclusively data points that are smaller than a boundary A will
be denoted θ̂A. The Kolmogorov-Smirnof statistics that are presented in
the three following experiments are computed based on the full sample X,
regardless of the truncation point A.

15The value of θ0 will be specified in each experiment separately.
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Figure 9: Black piece-wise curve: Empirical distribution function based
on a sample of size 300, drawn from M, parametrized by θ0 =
(4.3, 0.8, 0.75, 365, 70), and truncated from above at U = 600.
Red and blue curves: CDF’s of X|X < U , parametrized by θ0, and estimated
parameters θ̂ = (4.28, 0.82, 0.75, 350, 78.8) respectively.

6.2.1 Experiment 1

We generate data points from M, parametrized by

θ0 = (4.2, 0.55, 0.75, 260, 70),

and truncate them from above at U = 730. N = 750 is the size of the
truncated sample. Figures 10 and 11, and Table 6 present the results. In
Figure 10, the dashed, vertical, lines indicate three different values of A,
beyond which data is “hidden”. We use

A ∈ {90, 140, 220}.

The parameter estimates that result from each of these A-values give rise to
densities that are plotted together with the histogram of the simulated data,

42



and the density of the mixture distributionM, parametrized by θ0. Figure 11
presents the corresponding distribution functions. The Kolmogorov-Smirnof
statistics, Dn, in Table 6, is computed based on all N data points in the
interval (0, U), regardless of the truncation point A.

(µ1, σ1, β, µ2, σ2) Dn

θ0 (4.2, 0.55, 0.75, 260, 70) 0.032

θ̂90 (4.34, 0.63, 0.91, 165, 52.93) 3.899

θ̂140 (4.37, 0.67, 0.86, 243.27, 115.07) 1.628

θ̂220 (4.15, 0.55, 0.71, 230.07, 71.67) 1.029

Table 6: Estimates of the data-generating parameter vector θ0, for different
values of A ∈ {90, 140, 220}. See Section 6.2.1 for more information.

6.2.2 Experiment 2

We perform a similar experiment as that in Section 6.2.1. A sample is gen-
erated from the mixture distribution M, parametrized by

θ0 = (4.7, 0.8, 0.75, 365, 100),

and truncated at U = 730. N = 500 is the size of the truncated sample.
Figures 12 and 13, and Table 7 present the results.

(µ1, σ1, β, µ2, σ2) Dn

θ0 (4.7, 0.8, 0.75, 365, 100) 0.032

θ̂90 (4.83, 0.75, 0.9, 244.47, 109.07) 3.088

θ̂150 (4.95, 0.86, 0.9, 290.47, 98.4) 1.464

θ̂240 (4.92, 0.87, 0.84, 329.6, 93.73) 0.950

Table 7: Estimates of the data-generating parameter vector θ0, for different
values of A ∈ {90, 150, 240}. See Section 6.2.2 for more information.

6.2.3 Experiment 3

We perform a similar experiment as that in Section 6.2.1. A sample is gen-
erated from the mixture distribution M, parametrized by

θ0 = (4.9, 1.2, 0.25, 365, 150),

and truncated at U = 730. N = 500 is the size of the truncated sample.
Figures 14 and 15, and Table 8 present the results.
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Figure 10: Histogram over data generated from the mixture distributionM,
parametrized by θ0 = (4.2, 0.55, 0.75, 260, 70), together with densities forM,
parametrized by θ0 and estimates of θ for three values of A ∈ {90, 140, 220}.
See Section 6.2.1 for more information.

(µ1, σ1, β, µ2, σ2) Dn

θ0 (4.9, 1.2, 0.25, 365, 150) 0.026

θ̂100 (6.62, 1.72, 0.51, 257.07, 98.33) 4.730

θ̂200 (7, 1.66, 0.77, 314.33, 60.13) 2.536

θ̂300 (6.93, 1.66, 0.73, 334.67, 71.8) 1.953

Table 8: Estimates of the data-generating parameter vector θ0, for different
values of A ∈ {100, 200, 300}. See Section 6.2.3 for more information.

6.2.4 Discussion

Intuitively, it might be hard to capture a second component in the mixture
model if it’s mode exceeds A (the further away from the border between
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Figure 11: Empirical distribution function (edf) for data generated from
the mixture distribution M, parametrized by θ0 = (4.2, 0.55, 0.75, 260, 70),
together with CDF’s forM, parametrized by estimates of θ0, for three values
of A ∈ {90, 140, 220}. See Section 6.2.1 for more information.

the “observed” and the “hidden” data points that this mode is located, the
harder this is). The experiments in Sections 6.2.1 through 6.2.3 confirm this,
and obviously, the fit improves with increasing A. The Kolmogorov-Smirnof
statistics in Tables 6 through 8 do not justify using the estimation strategy
for small A-values. However, the experiments indicate that the method could
be useful if the exact fit is not crucial, as is the case when we “only” desire
estimates for the key values presented in Section 1.3.
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Figure 12: Histogram over data generated from the mixture distributionM,
parametrized by θ0 = (4.7, 0.8, 0.75, 365, 100), together with densities forM,
parametrized by θ0 and estimates of θ for three values of A ∈ {90, 150, 240}.
See Section 6.2.2 for more information.
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Figure 13: Empirical distribution function (edf) for data generated from
the mixture distribution M, parametrized by θ0 = (4.7, 0.8, 0.75, 365, 100),
together with CDF’s for M, parametrized by estimates of θ for three values
of A ∈ {90, 150, 240}. See Section 6.2.2 for more information.
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Figure 14: Histogram over data generated from the mixture distributionM,
parametrized by θ0 = (4.9, 1.2, 0.25, 365, 150), together with densities forM,
parametrized by θ0 and estimates of θ for three values of A ∈ {100, 200, 300}.
See Section 6.2.3 for more information.
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Figure 15: Empirical distribution function (edf) for data generated from
the mixture distribution M, parametrized by θ0 = (4.9, 1.2, 0.25, 365, 150),
together with CDF’s for M, parametrized by estimates of θ for three values
of A ∈ {100, 200, 300}. See Section 6.2.3 for more information.
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6.3 Real World Data - D

In this section we will use the methods that were presented in Section 4 to
characterize the distribution of the processing times in four subsets of D,
namely cohorts 3, 4, 5 and 6 that was presented in Section 3. We need to
consider cohorts in which also long errands are processed by the time of the
data collection. Therefore we use data with processes initiated during the
first four months of 2015, and processing times that are no longer than

U = 1.8 · 365 = 657 days.16

This data is partitioned into four cohorts based on the month of opening.
Furthermore, the data that we consider is restricted so that COUNTRY is kept
on one of its levels (see Section 3).17 Again, privacy policies prevent us from
giving more details about data from these cohorts.

We assume that the data is realized from the mixture distributionM, parametrized
by the unknown parameter vector θ0 (see Section 2.2). The key values, pre-
sented in Section 1.3, obtained from the estimate θ̂U of θ0, θ̂U itself, and the
corresponding statistic for the Kolmogorov-Smirnof test, Dn, for the fours
cohorts from 2015-01, 2015-02, 2015-03, and 2015-04 are presented in Ta-
bles 10 through 13. Note that θ̂U is the parameter estimate based on the
complete, i.e. not just partially observed, cohort. The sample sizes N , for
these four cohorts are 1344, 1189, 1326 and 1141 respectively (they are also
summarized in Table 9).

When the Kolmogorov-Smirnof statistic, Dn is computed, it is based on
the difference between the empirical distribution function of the full sample,
and the CDF of M, truncated at U , and parametrized by the estimated
parameters.

We also assess the estimation-procedure that was developed for partially
observed data, using A ∈ {225, 125}, by obtaining estimates θ̂A (see Section
4.6). The “observed” sample sizes, NA, i.e. the number of data points that
are smaller that A, are given in Table 9.

Figures 16 through 23 present histograms of the data, together with densi-
ties of the mixture distribution M, based on estimated parameters, and the
empirical distribution functions of data together with CDF’s of M, based
on estimated parameters. The vertical lines divide data into the “observed”
and the “hidden” parts.

16By the time of the data collection, this was the most recent data that was available
and quality assured.

17This level on COUNTRY is one of the most frequent, during this period.
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2015-01 2015-02 2015-03 2015-04
N 1344 1189 1326 1141

N225 510 529 566 521
N125 329 379 364 312

Table 9: Sample sizes of the complete cohorts (cohorts 3 through 6), and the
“observed” parts for A ∈ {225, 125}. See Section 6.3 for more information.

data θ̂U θ̂225 θ̂125
mean 276.25 285.15 265.6 215.19

sd 166 169.93 147.3 134.76
Q0.5 289 300.08 279.37 217.4
Q0.75 404 410.04 366.88 304.41
Q0.9 493 498.19 445.56 381.95
Q0.95 539 547.47 503.59 431.12
µ1 NA 5.08 5.79 4.66
σ1 NA 1.8 1.77 1.77
β NA 0.4 0.57 0.27
µ2 NA 355 321.2 239.53
σ2 NA 126 86.4 110.73√

NDN NA 1.87 4.23 8.42

Table 10: Key values (see Section 1.3) based data from 2015-01 (cohort 3 as
specified in Section 3), and the mixture modelM, parametrized by estimates
of θ. See Section 6.3 for more information.

6.3.1 Discussion

The hypothesized model M appears to fit the examined cohorts reasonably
well. The experiments also indicate that the estimation procedures perfor-
mance depends on A. A threshold of A = 225 results in a decent fit, and key
values that are reasonably close to their observed counterparts. A threshold
of A = 125, on the other hand, appears to be far too small to obtain a good
fit in terms of the Kolmogorov-Smirnof statistic, and in this case, the key
values are strongly underestimated.
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Figure 16: Data from 2015-01 (cohort 3 as specified in Section 3) together
with the density curves for the mixture distribution M, parametrized by
estimates of the parameter vector θ. The vertical lines, representing A from
Section 4.6, partition the data into an “observed” and a “hidden” part. See
Section 6.3 for more information.

data θ̂U θ̂225 θ̂125
mean 246.41 236.09 224.26 187.29

sd 171.6 205.64 173.13 149.46
Q0.5 245 244.63 230.95 191.79
Q0.75 387 376.66 347.67 289.41
Q0.9 468 483.27 442.62 372.86
Q0.95 524.6 540.4 496.72 422.29
µ1 NA 3.08 3.26 3.05
σ1 NA 1.8 1.77 1.77
β NA 0.24 0.27 0.22
µ2 NA 294.2 282.2 220.6
σ2 NA 172.4 142.07 127.07√

NDN NA 1.07 2.72 6.72

Table 11: Key values (see Section 1.3) based on data from 2015-02 (cohort 4
as specified in Section 3), and the mixture distribution M, parametrized by
estimates of θ. See Section 6.3 for more information.
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Figure 17: Empirical distribution function based on data from 2015-01 (co-
hort 3 as specified in Section 3), together with CDF’s for the mixture dis-
tribution M, paramterized by estimates of θ’s. See Section 6.3 for more
information.

data θ̂U θ̂225 θ̂125
mean 259.11 254.09 231.32 197.3

sd 165.07 187.53 167.74 151.7
Q0.5 257 264.22 239.07 203.47
Q0.75 399 383.72 348.22 298.4
Q0.9 465.5 481.69 439.56 381.39
Q0.95 534 535.6 492.31 430.73
µ1 NA 3.55 3.43 3.05
σ1 NA 1.8 1.77 1.77
β NA 0.23 0.23 0.16
µ2 NA 306.6 276.87 220.8
σ2 NA 155.2 139.33 130.4√

NDN NA 1.91 4.34 7.92

Table 12: Key values (see Section 1.3) based on data from 2015-03 (cohort 5
as specified in Section 3), and the mixture distribution M, parametrized by
estimates of θ. See Section 6.3 for more information.
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Figure 18: Data from 2015-02 (cohort 4 as specified in Section 3) together
with the density curves for the mixture distribution M, parametrized by
estimates of the parameter vector θ. The vertical lines, representing A from
Section 4.6, partition the data into an “observed” and a “hidden” part. See
Section 6.3 for more information.

data θ̂U θ̂225 θ̂125
mean 251.01 232.03 219.79 197.23

sd 161.82 213.49 176.14 156.28
Q0.5 240 245.2 225.87 203.9
Q0.75 385 369.2 338.9 300.12
Q0.9 456 475.51 435.31 385.06
Q0.95 529 533.88 491.04 435.62
µ1 NA 2.99 3.43 3.05
σ1 NA 1.8 1.77 1.77
β NA 0.13 0.21 0.14
µ2 NA 258.2 256.27 216.53
σ2 NA 182.6 150.53 135.27√

NDN NA 1.31 3.2 5.64

Table 13: Key values (see Section 1.3) based on data from 2015-04 (cohort 6
as specified in Section 3), and the mixture distribution M, parametrized by
estimates of θ. See Section 6.3 for more information.
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Figure 19: Empirical distribution function based on data from 2015-02 (co-
hort 4 as specified in Section 3), together with CDF’s for the mixture distri-
bution M, paramterized by estimates of θ. See Section 6.3 for more infor-
mation.
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Figure 20: Data from 2015-03 (cohort 5 as specified in Section 3) together
with the density curves for the mixture distribution M, parametrized by
estimates of the parameter vector θ. The vertical lines, representing A from
Section 4.6, partition the data into an “observed” and a “hidden” part. See
Section 6.3 for more information.
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Figure 21: Empirical distribution function based on data from 2015-03 (co-
hort 5 as specified in Section 3), together with CDF’s for the mixture distri-
bution M, paramterized by estimates of θ. See Section 6.3 for more infor-
mation.
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Figure 22: Data from 2015-04 (cohort 6 as specified in Section 3) together
with the density curves for the mixture distribution M, parametrized by
estimates of the parameter vector θ. The vertical lines, representing A from
Section 4.6, partition the data into an “observed” and a “hidden” part. See
Section 6.3 for more information.
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Figure 23: Empirical distribution function based on data from 2015-04 (co-
hort 6 as specified in Section 3), together with CDF’s for the mixture distri-
bution M, paramterized by estimates of θ. See Section 6.3 for more infor-
mation.
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7 Discussion

The time frame of this work is limited and the development of a method-
ology for characterization of our processing times is not complete. In this
section, limitations and drawbacks of the developed methodology are dis-
cussed, and an outlook towards potential improvements and further work is
given. Finally, a short summary concludes the text.

7.1 Limitations and Further Work

7.1.1 Smaller Cohorts

As the experiments in Section 6.3 reveal, our mixture model M and esti-
mation procedures (see Sections 2.2 and 4) provide a far from perfect char-
acterization of our processing times. Experiments, which are not presented
in this text, indicate that “better separated” cohorts, i.e. cohorts that result
from partitioning the data into smaller subsets, defined by more variables
and their levels, result in a better fit. According to e.g. the law of the pro-
portionate effect, one could even expect that e.g. a lognormal, or a power-law
distribution, on its own would provide an adequate characterization of the
processing times in such cohorts, see the discussion in Section 2, [13] and [5],
and the brief description of the power-law distributions in e.g. [14]. Note that
these distributions are not flexible enough to fit the multi modal densities
that our current cohorts exhibit (see Section 3.2). In conclusion, when we
desire exclusively the key values presented in Section 1.3, our current frame-
work is sufficient, but a “scheme” to partition data into more well separated
cohorts could provide further improvements. Put another way, our mixture
model M and the outlined methodology, could be used for characterization
of processing times on a “more aggregated” level,18 and as a complement to
this, a more detailed characterization could be given for smaller cohorts.

7.1.2 Theoretical Motivation

Another drawback of the outlined methodology is the lack of a theoretical
motivation for the mixture model M. An attempt would be that the log-
normally distributed component of our mixture model constitutes a “true,
representative kernel” of a given sub-population, and that some disturbance,

18Like the cohorts that are considered in Section 6.3.
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such as data points that really belong to other sub-populations, result in the
observed displacement towards longer processing times. This latter collection
of displaced processing times could, by the central limit theorem, be mod-
eled by a normal distribution, and hence constitute the normally distributed
component of M.

However, this motivation is very loose, and a rigorous, mathematical de-
scription of the mechanisms behind the mixture modelM, would justify our
methodology and give it a higher degree of credibility.

7.1.3 Estimation

As mentioned, a more sophisticated alternative to the algorithm presented in
Section 4.6 is available, namely the Monte Carlo EM or MCEM procedure, see
[12]. Experiments with MCEM’s performance on our processing times, and
adaption of this algorithm to meet our needs, could be interesting. However,
lack of fit, i.e. the mixture modelM’s inability to fit our data D, is likely not
due to an inadequate performance of our estimation procedures. It is rather
due to the complex patterns of the processing times in aggregated cohorts
of data (see Section 7.1.1 for a discussion about partitioning D into smaller
cohorts).

7.1.4 A Shorter Horizon

A major improvement would be if one was able to provide a good character-
ization of our processing times, based on smaller “observed parts” of data.
More specifically, as we saw in Section 6, when the upper threshold A of
the observable processing times as specified in Section 4.6, is small, we fail
to fit the distribution of our processing times through parameter estimation.
A good fit, based on smaller A would provide a tool to make more accurate
characterizations, and better predictions of the processing times, if those vary
rapidly over time. This is since, with a smaller A, more recent data would
effect the parameter estimates, than if we need to use a bigger A and hence
older data for estimation. Therefore further development towards a “shorter
horizon” is desired.
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7.2 Summary

We have characterized the processing times in our data by a mixture model,
more specifically by a weighted mixture of a lognormal and a truncated nor-
mal distribution. Iterative methods, based on maximum likelihood techniques
and simulation, have been adapted, developed and implemented to estimate
the parameters that define this mixture distribution. Those methods were
designed to obtain the parameter estimates based on only “partially ob-
served” data, i.e. based on data in which a subset of the processing times is
unknown. A study of the developed methodology on simulated data, and on
subsets of our “real world data”, has been conducted and presented, where
goodness of fit of the proposed mixture model was assessed using e.g. the
Kolmogorov-Smirnof statistic.
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Appendices

A Computer Software - List of Functions

Here we present the function heads of some of the functions that are imple-
mented as a part of this work. Each function is preceded by a descriptive
comment. The results that are presented in Section 6 rely on these imple-
mentations. See Section 5 for further information.19

// density of N(mu, s)

double dNormal(double x, double mu=0.0, double s=1.0)

// P(X<x) where X in N(mu, s)

double pNormal(double x, double mu=0.0, double s=1.0)

// density of X|X>0 where X in N(mu, s)

double dNormal0(double x, double mu, double s)

// P(X<x|X>0) where X in N(mu, s)

double pNormal0(double x, double mu, double s)

// density of X|0<X<U where X in N(mu, s)

double dNormal0U(double x, double mu, double s, double U)

// P(X<x|0<X<U) where X in N(mu, s)

double pNormal0U(double x, double mu, double s, double U)

// density of lognormal(mu, s)

double dLogNormal(double x, double mu, double s)

// P(X<x) where X in lognormal(mu, s)

double pLogNormal(double x, double mu, double s)

// density of X|X<U where X in lognormal(mu, s)

double dLogNormalU(double x, double mu, double s, double U)

// P(X<x|X<U) where X in lognormal(mu, s)

double pLogNormalU(double x, double mu, double s, double U)

// mean of lognormal(mu, s)

double mLogNormal(double mu, double s)

19All functions in this list are implemented in C++.
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// standard deviation of lognormal(mu, s)

double sLogNormal(double mu, double s)

// mean of X|X<U where X in lognormal(mu, s)

double mLogNormalU(double mu, double s, double U)

// E(X^2|X<U) where X in lognormal(mu, s)

double E2LogNormalU(double mu, double s, double U)

// variance of X|X<U where X in lognormal(mu, s)

double varLogNormalU(double mu, double s, double U)

// standard deviation of X|X<U where X in lognormal(mu, s)

double sLogNormalU(double mu, double s, double U)

// mean of X|0<X<U where X in N(mu, s)

double mNormal0U(double mu, double s, double U)

// E(X^2|0<X<U) where X in N(mu, s)

double E2Normal0U(double mu, double s, double U)

// variance of X|0<X<U where X in N(mu, s)

double varNormal0U(double mu, double s, double U)

// standard deviation of X|0<X<U where X in N(mu, s)

double sNormal0U(double mu, double s, double U)

// L*100th percentile of lognormal(mu, s)

double qLogNormal(double L, double mu, double s,

double INCR=0.0001)

// L*100th percentile of X|X<U where X in lognormal(mu, s)

double qLogNormalU(double L, double mu, double s, double U,

double INCR=0.0001)

// L*100th percentile of N(mu, s)

double qNormal(double L, double mu, double s, double INCR=0.0001)

// L*100th percentile of X|0<X<U where X in N(mu, s)

double qNormal0U(double L, double mu, double s, double U,

double INCR=0.0001)

// density (1): beta*f1(x)+(1-beta)*f2(x),

// where f1 is density of lognormal(mu1, s1),

// f2 is density of N(mu2, s2) truncated from below at 0,

// and beta in [0,1]

double dMixture(double x, double mu1, double s1,

double beta, double mu2, double s2)
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// P(X<x) where X has density (1)

double pMixture(double x, double mu1, double s1,

double beta, double mu2, double s2)

// P(X<x|X<U) where X has density (1)

double pMixtureU(double x, double mu1, double s1,

double beta, double mu2, double s2, double U=HUGE_VAL)

// density of X|X<U where X has density (1)

double dMixtureU(double x, double mu1, double s1,

double beta, double mu2, double s2, double U=HUGE_VAL)

// mean of X|X<U where X has density (1)

double mMixtureU(double mu1, double s1,

double beta, double mu2, double s2, double U)

// E(X^2|X<U) where X has density (1)

double E2MixtureU(double mu1, double s1,

double beta, double mu2, double s2, double U)

// variance of X|0<X<U where X has density (1)

double varMixtureU(double mu1, double s1,

double beta, double mu2, double s2, double U)

// standard deviation of X|0<X<U where X has density (1)

double sMixtureU(double mu1, double s1,

double beta, double mu2, double s2, double U)

// L*100th percentile of X|0<X<U where X has density (1)

double qMixtureU(double L, double mu1, double s1,

double beta, double mu2, double s2, double U,

double INCR=0.0001)

// compute KS-test statistic given vector of data points

// NULL-distribution: X|0<X<U where X has density (1)

// do not reject null hypothesis on NULL-distribution if

// KS < critical value from KS-distribution

double KS_Mixture(vector<double> data, double mu1, double s1,

double beta, double mu2, double s2, double U=HUGE_VAL)

// generate n variables from X|A<X<Upper,

// where X in Normal(mu, si)

// (adaption of Box-Muller polar method)

// process aborts after MAX_ITER traverses

vector<double> generate_normal(int n, double mu=0.0, double si=1.0,

double A=0.0, double Upper=HUGE_VAL, int MAX_ITER=500000)

// generate n variables from X|A<X<Upper,
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// where X in lognormal(mu, si)

// (adaption of Box-Muller polar method)

// process aborts after MAX_ITER traverses

vector<double> generate_lognormal(int n, double mu=4.5, double si=0.8,

double A=0.0, double Upper=HUGE_VAL, int MAX_ITER=500000)

// generate m variables from X|A<X<Upper,

// where X has density (1)

// (using generate_normal and generate_lognormal)

vector<double> generate_mixture(unsigned int m, double mu1, double s1,

double beta, double mu2, double s2, double A,

double Upper=HUGE_VAL)

// loglikelihood of (mu1, s1, beta, mu2, s2) for X|X<U

// where X has density (1)

double logLik0U(vector<double> data, double mu1, double s1,

double beta, double mu2, double s2, double U)

// maximize likelihood of X|X<U

// where X has density (1),

// w.r.t. mu1, s1, mu2 and s2:

double mu1HeuristicU(vector<double> data, vector<double> r,

double mu1, double s1,

double mu_low, double mu_high, double U, double INCR)

double s1HeuristicU(vector<double> data, vector<double> r,

double mu1, double s1,

double s_low, double s_high, double U, double INCR)

double mu2HeuristicU(vector<double> data, vector<double> r,

double mu2, double s2,

double mu_low, double mu_high, double U, double INCR)

double s2HeuristicU(vector<double> data, vector<double> r,

double mu2, double s2,

double s_low, double s_high, double U, double INCR)

// defines sum that skips NA points

double sum_NA(vector<double> x)

// estimate parameters in distribution of X|X<U

// where X has density (1),

// limit parameters by param_limits_*

// INCR_* is size of increment in heuristic optimization

// perform at most LIMIT iterations

// TOL defines the stopping criterion

vector<double> emLnNMixU(vector<double> data,

vector<double> param_limits_low,

vector<double> param_limits_high,

double U,

double mu10=4.8, double s10=0.8,

double beta0=0.8, double mu20=280.0, double s20=60.0, // initial values:
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double INCR_LN = 0.01, double INCR_N=0.2,

unsigned int LIMIT=100, double TOL=0.15)

// estimate mixed model with partially observed data

// (we cannot observe > A)

// parameters limited by param_limits_*

// iterate no more than MAX_ITERATIONS

// TOL controls criterion of convergence.

vector<double> trunc_EM_MIX_L(vector<double> data_obs,

int N, // size of FULL sample

vector<double> params, // (mu1, s1, beta, mu2, s2), initial values when called

vector<double> param_limits_low,

vector<double> param_limits_high,

int A, // truncation point

double U = 600.0, // X|X<U

double TOL=0.02, int MAX_ITERATIONS=150)

// compute chi2 test statistic (goodness of fit) of data

// w.r.t. X|X<U where X has density (1)

// exp_num is the min expected count in a bin

// take steps of size INCR when computing quantiles

vector<double> chi2_test(vector<double> data,

unsigned int exp_num,

double mu1, double s1, double beta, double mu2, double s2,

double U, double INCR=0.1)
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för socialförsäkringen, Effektiv köhantering § exemplet Tidig bedömning,
Rapport 2010:7.

[9] Johnson N.L., Kotz S. and Balakrishnan N., Continuous Univariate Dis-
tributions. Volume 1, Second edition, New York 1994.

[10] McLachlan G. and Peel D., Finite Mixture Models, New York 2000.

[11] Sprent P. and Smeeton N. C., Applied Nonparametric Statistical Meth-
ods, Third Edition, 2000, Chapman & Hall/CRS

[12] Wei G.C.G and Tanner M.A., A Monte Carlo implementation of the EM
algorithm and the poor man’s data augmentation algorithm, Journal of
American Statistical Association, Vol.85, No. 411 (Sep. 1990)

[13] ”Gibrats Law”, Wikipedia: The Free Encyclopedia, 2018-01,
https://en.wikipedia.org/wiki/Gibratslaw

[14] ”Power Law”, Wikipedia: The Free Encyclopedia, 2018-01, URL:
https://en.wikipedia.org/wiki/Power law

68


