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Abstract

In this text, we characterize the processing times of a large number
of errands. Our goal with this characterization is to provide certain
key values, such as a number of quantiles and the expected value. We
propose a (finite) mixture distribution, more specifically a weighted
mixture of a lognormal distribution and a truncated normal distri-
bution. Goodness of fit of this mixture model is tested using the
Kolmogorov- Smirnof statistic. We also develop a methodology, using
maximum likelihood techniques and an iterative Expectation Maxi-
mization (EM) algorithm, for estimation of the parameters that define
the mixture distribution. Occasionally, our processing times are only
partially observed, i.e. some of the values are unknown at the time
of estimation. To deal with this, an extension of the Stochastic EM
(SEM) algorithm is adapted, and combined with the above mentioned
estimation methodology for fully observed processing times. In this
extended algorithm, repeatedly updated intermediate estimates, based
on both the observable and randomly generated data, are weighted to
produce the parameter estimates. Computer programs that are needed
for parameter estimation, computation of the key values, evaluation of
the models, etc. are implemented in C++ and R as a part of the work.
The outlined methodology is assessed on simulated data, and finally
applied to subsets of our real word data set.

“Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: simon.berggren@gmail.com. Supervisor: Ola Héssjer.
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1 Introduction

A phenomenon that appears across numerous fields arises when many similar
tasks are being processed in a similar fashion. Examples of such phenomena
are the processing of applications for membership in a community, or the
legal reviews of many similar cases. Developing models that provide the
answer to questions about such processes are therefore important. These
models may be used to, for example:

optimize the process,

provide information and increase our understanding about the process,
e make predictions for future instances to be processed,
e ctc.

In this text, we develop a model in order to characterize processing times.



1.1 Characterization of Processing Times

We have data, collected by an agency that processes a large number of er-
rands. The agency would like to gain understanding of the underlying pro-
cess, to be able to optimize it, and to communicate information about the
processing times in terms of a number of key values. These key values are
presented in Section 1.3.

The main task of this work is therefore to characterize the distribution of the
processing times. A parametric model, flexible enough to capture complex
patterns in data, but simple enough to not overfit it, is desired. Ideally, one
would consider exclusively closed errands, i.e. data points where the process-
ing time is known, when characterizing the processing times. However, it
is reasonable to believe that the distribution of the processing times vary
over time, and to wait for all errands to be processed before using a cohort
may not be reasonable. Therefore, a strategy for parameter-estimation using
“partially observed” data is developed and applied.

In summary, the main tasks of this work involve

1)  deduction of a parametric model M, that describes the processing
times,

2)  verification of M,

3) development of a strategy for estimation of the parameters that define
M on partially observed data,

4)  provide runtime-feasible implementations to perform the above listed
tasks.

Due to privacy policies, very little information about data, and about the
underlying process, will be presented in this text.

1.2 Available Work

In similar settings, processing times have been characterized using the log-
normal distribution, see [7] and [8]. The law of the proportionate effect, or
Gibrat’s Law, also provides a theoretical explanation to why the lognormal
assumption is reasonable, see e.g. [1] and [5]. However, a lognormal distribu-
tion does not fit our processing times, and therefore a more complex model
has to be developed.



1.3 Key Values

Information about the processing times will be communicated in terms of a
number of key values, namely:

e the median (Q5),

the 75th percentile (Qo.75),
the 90th percentile (Qg),

the 95th percentile (Qo.o5),

the mean, and

the standard deviation.

1.4 Notation and Preliminaries
In this section we introduce notation and terminology to be used in the
following text.

e N(u,0) denotes the normal distribution with mean p and standard
deviation o.

e ¢(-) and ®(-) denote the density and the distribution function of a stan-
dard normal, i.e. a N'(0, 1)-distributed, random variable, respectively.

e 1 denotes the indicator function, i.e. 1(bool) = 1 if bool evaluates to
true, and 1(bool) = 0 otherwise.

e ()4, where d € [0, 1], denotes the d - 100th percentile. Hence, if @ refers
to a random variable X, then

Qq=inf{z:P(X <zx)>d}. (1)

Which distribution @ refers to should be clear from the context.
e CDF will refer to the Cumulative Distribution Function.

e The shorthand std. dev. will occasionally be used to denote standard
deviation.

e The shorthand edf will occasionally be used to denote the empirical
distribution function of a sample.



1.5 Outline

In Section 2, the model that will be used to characterize our processing times
is introduced, and the problem at hand is described in greater detail. Section
3 describes the data that inspired this work, and carries the information about
our processing times. In Section 4, the mixture distribution that is used to
characterize the processing times, the algorithms that are used to estimate
parameters, the methods that are used to assess the developed methodology,
etc. are described, from a theoretical viewpoint. Section 5 (and Appendix A)
provides a brief treatment of the computer software that has been developed
during the work. Results from experiments, i.e. from applying the developed
methods on simulated data and on the “real world” data described in Section
3, are presented in Section 6. Finally, a short summary and a discussion about
limitations and further work is presented in Section 7.



2 Model Description

In this section, the model that is used to characterize the processing times is
introduced and discussed. More detailed descriptions of the components of
the model are given in Section 4.

2.1 Overview

According to the law of proportionate effect, also referred to as Gibrat’s Law,
it is reasonable to assume that processing times, with similar characteristics,
follow a lognormal distribution, see [13] and [5].! Figure 1 presents a his-
togram over processing times in cohort 1, which is specified in Section 3.2,
where this lognormal assumption holds. The red curve is the density of the
mixture model, explained in Section 4.1, parametrized by

0 = (3.2,1.3,1,99.5,79),

where the two first numbers define a lognormal component, the last two de-
fine a truncated normal component, and the third weights those components
into a mixture distribution. This value of 8 corresponds to a pure lognormal
distribution, since the weight for the normally distributed component, 1 mi-
nus the middle component of 6, equals 0. The statistic from a Kolmogorov
Smirnof-test, a test to assess validity of the hypothesis that data follows the
hypothesized, lognormal distribution,

VnD,, = 0.777,

indicates a good fit (see Section 4.4.2). Figure 2 presents the empirical distri-
bution function (the black piecewise constant “curve”) for cohort 1, together
with the CDF of the mixture distribution, parametrized by 6, i.e. that of a
lognormal distribution (the red curve).

The assumption about lognormally distributed processing times holds only
as an exception for our data, and generally the processing times follow a
more complex pattern. The proper distribution has, at least, a bi-modal
density, which motivates a mixture distribution.? Figure 3 presents a his-
togram over processing times in cohort 2, which is specified in Section 3.2,

LA Weibull distribution, or more generally a Generalized Gamma-distribution has also
been proposed in this context. However, neither of them fit the complex distribution of
our processing times very well, and therefore only the lognormal distribution is exemplified
here.

2Qccasionally, the density is rather multi-modal, than bi-modal.



together with the density from the mixture distribution presented in Section
4.1, parametrized by

0 = (3.8,1.8,0.6,397, 116.5).

Figure 4 presents the empirical distribution (the black piecewise constant
curve) of cohort 2, together with the CDF of the mixture distribution (the
red curve) for this parameters. The Kolmogorov Smirnof-statistic

vnD, = 1.31,

provides no strong evidence against the mixture distribution (see Section
4.4.2).

[ I I I |
0 100 200 300 400

days

Figure 1: Histogram over processing times in cohort 1 (see Section 3.2),
together with the density of the mixture model, parametrized by 6 =
(3.2,1.3,1,99.5,79). This parameter vector € corresponds to a pure lognor-
mal distribution, see Section 2.1.

2.2 Model - M

The model that will be used to characterize the processing times, denote it
by M, is
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Figure 2: Empirical distribution (black curve) of processing times in cohort
1 (see Section 3.2), and theoretical CDF (red curve) of the mixture distri-
bution, parametrized by 6 = (3.2,1.3,1,99.5,79). This parameter vector 6
corresponds to a pure lognormal distribution, see Section 2.1.

M: a mizture of a lognormal and a truncated normal distribution.?

M will be explained in greater detail in Section 4, and used to analyze data
in Section 6.

2.3 Discussion

The processing times are integer-valued, they measure a number of days, but
M is based on continuous probability distributions. This is motivated by the
fact that the underlying phenomenon, i.e. that of processing errands, takes
place in continuous time. Furthermore, statistical evidence for M based on
processing times that are “rounded of to integers”, i.e. to discrete days, are
still adequate. If anything, a good fit on such integer valued processing times
strengthens our belief in M.

It is reasonable to believe that deviation from the lognormal distribution is

3The actual distribution to be considered is truncated from above at a constant U, see
Section 3.3.
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Figure 3: Histogram over processing times in cohort 2 (see Section 3.2),
together with the density of the mixture distribution, parametrized by 6 =
(3.8,1.8,0.6,397,116.5), see Section 2.1.

due to some disturbance, and that lack of fit is due to insufficiently well-
defined cohorts. However, there are no means to partition our data into such
cohorts, and after all the point of having a probabilistic modeling framework
is that of simplification and generalization. See Section 7.1.1 for a further
discussion about partitioning our data into smaller cohorts.

11
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Figure 4: Empirical distribution (black curve) of processing times in cohort 2
(see Section 3.2), and theoretical CDF (red curve) of the mixture distribution,
parametrized by 6 = (3.8,1.8,0.6,397,116.5), see Section 2.1.
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3 Data

In this section, we present the data that carries information about the pro-
cessing times that inspired this work.

3.1 Description of Data
The data is collected by an agency that continuously processes a large number
of errands. It contains information on:

e date of opening (YYYY-MM-DD),

e date of closing (YYYY-MM-DD), and

e several categorical variables.

From this we deduce the crucial entity
processing time := date of closing — date of opening + 1, (2)

which will be denoted by X. Two of the categorical variables, COUNTRY and
CATEGORY, will be used to partition the data into smaller cohorts. COUNTRY
describes the country of origin of the object being processed, and CATEGORY
categorizes the processes into different groups, based on other information
about the objects. Due to privacy policies, no further information about the
data, or about the underlying process it describes, is provided.

In this text, only a subset of data, denote this by D, where
e the date of opening belongs to the first half of 2015, and
e the processing times satisfy X < 2365,

will be used.

There are no missing values in D.°

4Qccasionally, a tighter upper bound on the processing times are used, i.e. 2 - 365 is
replaced by a smaller number. In those cases, the reader will be informed.

5To be precise, erroneous registrations that result in undefined fields are filtered out,
and therefore D is free from missing values.

13



3.2 Cohorts

In this section, the cohorts that are used in examples and experiments in this
text, are presented.

cohort 1:
Data in cohort 1 is aggregated over all levels of COUNRTY and no re-
strictions on the opening date, except for those presented in Section
3.1, are imposed. CATEGORY is fixed on one of its levels.

cohort 2:
Data in cohort 2 is aggregated over all levels of CATEGORY. COUNTRY is
fixed on one of its levels, and all errands are opened during the first
month of 2015.

cohort 3 — 6:
Data in these cohorts are aggregated over all levels of CATEGORY, but
contains exclusively one level of COUNTRY. Processes are opened during
months 2015-01, 2015-02, 2015-03, and 2015-04 in cohorts 3, 4, 5 and
6 respectively. Furthermore, the processing times satisfy

X <1.8-365 = 657.

Cohorts 3 through 6 are used in the experiments presented in Section
6.3.

3.3 Truncation of Data

Due to errors in the registration of closing dates of processed errands, some
data points have unreasonably long processing times. Knowledge about the
underlying process motivates the truncation of D that was presented in Sec-
tion 3.1 (X < 2-365).5 This truncation also effects the model M, as discussed
in Section 4.1.

6Note that cohorts 3-6 are truncated at a lower value, namely 1.8 - 365.

14



4 Theory

This section provides a description about the model that is used to charac-
terize our processing times. We also describe how this model is assessed, and
how the parameters that define it are estimated.

4.1 Mixture of a Lognormal and a Truncated Normal
Distribution

M specifies that a processing time, X, has density

fx(@) = Bfy(x) + (1= B)fv(z), (3)

where fy (z) is the density of a lognormal random variable Y with parameters
p1,01 > 0, fi/ is the density of a normal random variable V' with parameters
2, 09 > 0, truncated from below at 0, and § € [0, 1] is a real number. More
specifically,

V=W|W >0, (4)
where W € N (12, 02). Equivalently, X has distribution function

PX <z)=p0PY <2)+ (1 -B)P(V <x) =

log z— (=) -
ﬁq)(cgj—lm)—i_(l_B) < 1_@(_@)

for x > 0. Hence, M is completely defined by five parameters

9: (#1701757M27O_2)' (6)

The two first moments of the mixture distribution,
E(X) = BE(Y) + (1 = B)E(V), (7)
and

E(X?) = BE(Y?) + (1 - B)E(V?), (8)

15



follow directly from integrating Equation (3) componentwise. We get the
variance

VAR(X) = E(X?) —E(X)? =

BEY?) —E(Y)?) + BE(Y)* + (1 = B)([E(V?) = E(V)?) + (1 — B)E(V)*
—B*E(Y)? — (1= B)’E(V)* — 28(1 = B)E(Y)E(V) =

BVAR(Y) + (1= B)VAR(V) + B(1 — ) (E(Y) — E(V))*,
(9)
which is the familiar linear combination of the two components’ variances,

plus a term that is proportional to the difference between their expected
values.

Due to practical reasons — at each point in time there is an upper bound on
the length of processing times that can be observed — the observed processing
times in D is truncated from above, see Section 3.3.7 Therefore, when e.g.
estimating the parameters 6 from D, one should consider

Xy = X|X < U, (10)
for some upper bound U > 0, and the density in Equation (3) becomes

fx(z)

fxy(z) = m

1(z < U) (11)
where 1(-) is the indicator-function (see Section 1.4).

The two first moments for the truncated variable X;; are

zfx (x)dx
E(Xy) = Do _

X<U <5fo zfy(x)dr + (1 -0 fo zfy(z ) _

sty BB 4 (1 - BE(V) ((522) - @(72))],
(12)

"The fact that some processes might abort without being deregistered sometimes mo-
tivate an even “tighter” truncation.

16



and
. fU{EQf (z)dx
E(X{) = “przrs—

]P(X<U) (5fOU 22 fy(z)dr + (1 - 3 fo 2 fy(z ) =

sy |PEODR(2) + (1 - BB(VE) (@(%22) - 2())]

" - (13)
where
Yy L Y‘Y <U (14)
and
VU$W‘0<W<U. (15)

No explicit formulas for the mean and variance of Xy are derived, but those
are computed as functions of the moments of Y;; and Vy, through (12), (13)
and

VAR(Xy) = E(XZ) — E(Xy)> (16)

See Sections 4.2 and 4.3 for details about the lognormal and the truncated
normal distributions respectively, and e.g. [10] to read more about mixture
models.

Table 1 presents the mean value, the standard deviation, and three quantiles
of Xy, as defined in Equation (11), for parameters

0 = (4.7, 0.6, 0.8, 365.0, 80.0),

and U = 547. Figure 5 present the density of Xy, together with some
characteristics, for this parameter vector 6 and U.

‘ mean ‘ std. dev. ‘ Qo.25 ‘ Qo5 ‘ Qoo
Xy [ 189.5 | 1314 | 82.7] 143.9 | 394.8

Table 1: Characteristics for Xy, defined in Equation (11) in Section 4.1, with
6 = (4.7, 0.6, 0.8, 365.0, 80.0) and U = 547.

17



fx,(X)
- = E(Xy)
"""" E(Xy) £ SD(Xu)
-=-- Qos
-=-= Qo

0 100 200 300 400 500

Figure 5: Density of Xy, defined in Equation (11), Section 4.1, for § =
(4.7, 0.6, 0.8, 365.0, 80.0) and U = 547. The vertical lines represents some
characteristics of Xy, and SD refer to the standard deviation.

4.2 The Lognormal and Truncated Lognormal Distri-
bution

The lognormal distribution constitutes one of the components in the mixture
distribution M. Y has a lognormal distribution, with parameters p; and oy,
if
y LemZhm, (17)
where Z is a standard normal random variable, or equivalently if
logY € N(pq,01). (18)

Clearly, Y > 0. Y has distribution function

g1

P(Y < y) = P(en“ < y) = @ (e ), (19)

18




and density

Friy) = @ (et ) = (st -

Using the variable substitution
y=e""" o v=_ogy—m)/o,
we derive the mean
e &0 ]. 1 2 2 2
E(Y :/ d :/ ——e (V) gy L e HOL/2 = e tel/2
( ) 0 ny (y) Yy - \/%
the variance

VAR(Y) = E(Y?) — E(Y)? =

/ . exp(—ﬁ(logy — 1)?)dy — e¥atet =
0

vV 2moy

(e”% - 1)62’“+"%,

and the median e*!, since

1 1 0 1 2 1
——exp(—==(logy — p1)%)d :/ ——e TV Py = =
/0 oy p( 20%( gy — )°)dy I 5

Note that the median satisfies

e < etetl? = B(Y)

Y

(20)

(21)

(22)

with equality in the degenerate case o7 = 0, i.e. the lognormal distribution

is right skewed.

We derive the moments of
Yo =YY <U

for some U > 0, that was used in Section 4.1. We have density

P 0) = i gl < U) = Dy < )

o1

19
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and mean

1 U
E(Yy) = m/o yfy(y)dy =
o N _ (log zﬁQM1)2
E(Y) — fU \/2——ﬂ_gl€ 291 dy
(I)(log U—m) :

o1

Using the variable substitution presented in Equation (21), we get

5
3

o0 1 (log y—p1)? o] 1
- 2 = — 2 2
/ e Tiody :/ e 207 gy e toi/2 =
U 2moy (

log U—Ml)/Ul

eu1+a§/2/ 1
(logU—p1)/o1—01 \/27'('

logU — g — o3

oot fi 1

g1
and with E(Y) = em1+9i/2,
o2 q)(logUf,ulfa%)
_ + o1
E(Yy) = e gl

o1

Similarly we obtain

1 2
/Oo 9 2(0241) o0 6_2(?!_20'1)
Y fv(y)dy = e” 71 / ——=dy =
U (logU—p1)/or V2T

2024211 log U—p1—202
e 1—o(=—"—)],

and

U2 fedy  EOY?) — [ e (y)dy
- (I)(logUf,ul) T q)(logUf,ul) -

o1 g1

E(Y7)

( logU—p1 720% )
62M1 —|—20’% o1
1 —
B2l

o1

20

1
e~ 2t dt =

(27)

(28)

(29)

(30)



More details about the lognormal distribution can be found in e.g. [9].

Table 2 presents the mean, the standard deviation, and three quantiles, of a
lognormal random variable Y with parameters p; = 4.8 and o, = 0.8, and of
it’s truncated version Yy, as defined in Equation (26), for U = 547. Figure
6 presents the densities of Y and Y7, together with some characteristics, for
these parameters and U.

| mean | std. dev. | Qo2s | Qos | Qoo
174.4 179.5 | 68.5 | 121.5 | 361.2

148.9 110.5 | 66.7 | 116.6 | 310.9

Y
Yo

Table 2: Characteristics of a lognormal variable Y, and its’ truncated version
Yy, as defined in Equation (26), for u; = 4.8, 07 = 0.8 and U = 547.

fy(y)

fyv, ()

= = E()

= = E(Yu)

-------- E(Y) £ SD(Y)
"""" E(Yy) £SD(Yy)

0 200 400 600

Figure 6: Densities of a lognormal variable Y, and its’ truncated version
Yy, as defined in Equation (26), for p; = 4.8, 07 = 0.8 and U = 547. The
vertical lines represents some characteristics of ¥ and Y, and SD refer to
the standard deviation.
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4.3 The Truncated Normal Distribution

The truncated normal distribution constitutes one of the components in the
mixture distribution M. Let W be a normal random variable with parame-
ters o and oy, and consider

Vo =WI0<W <U, (32)

for some real number U > 0.

In order to deduce some important properties of the truncated normal dis-
tribution, we derive the moment-generating function

My, (t) =EE"|0<W <U) =

U
1
L ex (—L 2_2 +to3) + 2)d =
]11>(0<W<U)/0 S0 p 20—§<y y(pe 5) T H3) ) dy

U
BT eXP <—%(M§ — (p2 + tag)z)) /0 5 OXP (—%(y — p2 — tag)Q) dy =

( U—ug—o%t N (I)( —ug—a%t)

ethQU%/Q o2 02
O(722) — 0(—L2)
(33)

Differentiation of My, (t) with respect to t gives

(U*/Llfo'gt) . q)( 7#270'§t)

M. (+) = €u2t+t205/2 —I—t0'2 o2 o9

p(Utarity _ (it

__pat+t202/2 o2
eh2tttoo3 /2, DUy (i) (34)
o9 o9

Letting t — 0 we get

U—poy _ 4rp2
E(Vy) =My, (0)] _, = #a = 02 djgf_fé))— @qb((_if

o2 o2

(35)

22



Similarly

U—pp=oty _ yo—ma=oity)’
p(U=t) _ ¢<02>)+02(¢< 2ol — g(=teeit))

2 2
+ 05 — 200
S ““(@(U ) — p(—L2) o () — p(—12)

Ng+03—2/1202< (?EJ - (/;_z) >+ 2<__N_ (b( )+& s ))7

ey o) ) P\ T e e

o2

and

VAR(Vy) = E(V?) — E(Vyy)?

N e I AN R IR
B O(Th) — @(—52) (5% — (=)

o2 o2 02

o2

(37)

Figure 7 presents W (the blue curve) and Vi (the red curve), together with
some characteristics, for ps = 200.0, oo = 150.0, and U = 547. Table 3
presents the mean, the standard deviation, and three quantiles of W and V,
for these parameter values and U.

‘ mean ‘ std. dev. ‘ Q0.25 ‘ Q0.5 ‘ Qo‘g
200.0 150.0 | 98.8 | 200.0 | 392.2
222.8 170.4 | 128.1 | 215.2 | 392.1

W
Vi

Table 3: Characteristics of a normal random variable W, and of V;; as defined
in Equation (32), for us = 200.0, 05 = 150.0, and U = 547.

4.4 Testing Hypothesis

Our basic assumption is that M provides an adequate description of the
processing times X, i.e. our null hypothesis Hj is that

Hy : the processing times follow the mizture distribution defined by M.
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Figure 7: Densities of a normal random variable W, and of V; as defined in
Equation (32), for pus = 200.0, o9 = 150.0, and U = 547. The vertical lines
represents some characteristics of W and V7, and SD refer to the standard
deviation.

This is tested against the alternative that

H, : the processing times do not follow the mizture distribution defined by

M.

Different methods, each of which has its advantages and weaknesses, have
been used when testing H, against the alternative H;. In this text, we focus
on the Kolmogorov Smirnof-test and on graphical comparisons of empirical
distribution-functions to their theoretical counterparts. Also the y2-test has
been important in the work, but it will not be presented in this text.
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4.4.1 Discussion

The aim of hypothesis testing is to make an overall judgment of our as-
sumptions, and we do not expect M to fit well in each cohort of our data.
Occasional rejections of Hy in some cohorts do not violate the choice of M,
as long as the overall picture is good.

4.4.2 Kolmogorov-Smirnof Test

The Kolmogorov-Smirnof test, named after it’s inventors, is a statistical test
with null-hypothesis Hy: a sample X = (X3, ..., X,,) is realized from a con-
tinuous, one-dimensional, null-distribution Fy. The intuition is that, if H,
holds, then the empirical distribution of the sample should be close to Fj.
More specifically, let

n

Fo(z) ==Y 1(X; <), (38)

i=1
be the empirical distribution function of the sample X. Then

Dy, = sup | F(x) — Fo(x)], (39)

zeR

measures the difference between the empirical distribution function and the
hypothesized distribution function (as an example, D, is the largest absolute
distance between the black and the red curves in Figures 2 and 4). For suffi-
ciently large n, and under Hy, the distribution of \/nD,, is well approximated
by the Kolmogorov-Smirnof-distribution. See e.g. [11] for a more detailed de-
scription of the Kolmogorov-Smirnof test, and about the Kolmogorov-Smirnof
distribution.

The null-hypothesis is rejected when D,, exceeds a critical value, i.e. a quan-
tile from the Kolmogorov-Smirnof distribution. The CDF of this distribution,
i.e. the probability that a random variable from the Kolmogorov-Smirnof dis-
tribution is less than say x, is

1-9 Z(_l)k—le—2k2x2 _V 2m Z o~ (2k—1)%2/(82?) (40)
k=1

X
k=1

Equation (40) contains an infinite sum for which no explicit expression is
available. A common approach is to use critical values from a table. For a
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11

12

sample size n > 50, as is the case in our cohorts, we use critical values from
Table 4, where
P(v/nD, > D) = a.

The values in Table 4 are approximations that rely on D,, having a distribu-
tion function as specified in Equation (40).

a | 0.02 0.05 0.1 0.15 0.2
D, | 151743 1.35810 1.22385 1.13795 1.07275,

Table 4: Critical values for the Kolmogorov Smirnof-test, for samples of size
greater than or equal to 50.

One crucial observation when computing D,, is that the supremum in Equa-
tion (39) is always found at one of the n discontinuities of F,, i.e. at an
instance in the sample. Therefore, given that the data is ordered, we only
have to perform O(n) computations (we have to consider Fy(x;) — (i — 1)/n
and i/n — Fy(z;) for i = 1...n).% Pseudocode 1, where Fy(x) is the hypoth-
esized distribution function of X, describes how the Kolmogorov-Smirnof
statistic is computed.

Pseudocode 1: Computation of the Kolmogorov-Smirnof Statistic

input: parameters #, n data points x = (Xy,...,Xp)
output: D,

sort X in ascending order;
D <- —o0;
for (i=1..n):
if (Fo(x[i]) — (¢ —1)/n > D) then
D <= Fy(z[i]) = (i =1)/n;
if (i/n — Fo(z[i]) > D) then
D <- i/n— Fy(x[i]);

return D;

8Sorting the data has complexity O(nlogn), and this is computationally “cheap” in
the present context. Therefore it is not problematic to assume that data is ordered.
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4.4.3 Kolmogorov-Smirnof Test and Composite Hypotheses

One drawback of the Kolmogorov-Smirnof test is that the asymptotic distri-
bution of D,,, presented in Equation (39), is invalid for composite null hy-
potheses. More specifically, for composite null hypothesis, the Kolmogorov-
Smirnof statistic is conservative, i.e. the actual significance level of the test is
smaller than the nominal one (« in Table 4). In our case this means that the
computed tail-probabilities are too generous after estimating 6 on the same
cohort as we conduct the test on.

Monte-Carlo simulation strategies to estimate the critical region for com-
posite hypotheses have been proposed, but this will not discussed further
here. See [4] for a treatment of the Kolmogorov-Smirnof test for composite
hypotheses.

Discussion

Despite the fact that critical values from Table 4 are invalid, and that the
belief in a good fit based on those might become too optimistic, a low value of
D,, still indicates a better fit than a higher one. Therefore, the Kolmogorov-
Smirnof statistic may serve as a “relative” goodness of fit measure, and it
will be presented in some of the experiments in Section 6.
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4.5 Parameter Estimation in a Mixture Distribution

In this section a description of the algorithm that is used to estimate the
paramter vector 6 that defines M (see Section 2.2), is given. First follows
a general description of a strategy for parameter estimation in a mixture
model.

4.5.1 A General Description

One could think of a mixture distribution as describing a population where
each observation comes from one of two subpopulations. More specifically,
the mixture distribution corresponds to

X=ZY+(1-2)V, (41)

where Z is a Bernoulli random variable with parameter § € [0, 1], i.e.
PZ=1)=p=1-P(Z=0), (42)
and where Y and V' are random variables defined by parameters 6, and 6,

respectively.

Denote by 6 = (61, 5,02) the parameters that define X. When estimating
0 from a sample * = (x1,...,2zy) of X, we do not know if a given z; is a
realization of Y or V, and the log-likelihood

[(6l@) = Y 1og (Bfy(xal0) + (1 = B) fv(2.]6)) (43)

is intractable. However, suppose that we know the “source” of each z;, i.e.
we “know”

Z:(Zl,...,ZN),

with z; € {0,1} for i = 1,..., N, the outcomes of the Bernoulli random
variables. Then, for each n, one of the summands in Equation (43) cancels
out and we could consider an alternative,

10|z, z)

] =

(znllog § +log fy (za]0)] + (1 = 2n)[log(1 = ) + log fy (z,|0)])

(44)

3
Il
—
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We use this idea in an iterative Ezpectation Mazimization (EM) algorithm
to be described. See e.g. [2] or [6] for a more detailed treatment.

Given values %), from the ith iteration, we replace z, in Equation (44) by

ﬁ(i)fY(xnw(i)) (45)
B fy (2|0@) + (1 = BD) fy (2] 0)

Ty =

The resulting expression. i.e. that in Equation (44) with the z,’s replaced
by the r,,’s, can be factored into different components corresponding to the
parameters ¢, 5. Hence we maximize

N
ZTn 1Og fY(:L‘n|01)7 (46)
n=1
and
N
Z(l - Tn) log fV(xan)v (47)
n=1

separately w.r.t. 8, and 6, and

N
> (ralog B+ (1 —r,)log(1 = B))
n=1

> (rn 1og(%)> + Nlog(1 — B), (48)

n=1

w.r.t. 8, by setting

0= % (Z <7“n 1@%)) + Nlog(1 — ﬂ)) —

n=1

1 N
B:NZrn. (49)
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To get the algorithm going, 6 has to be initialized (e.g. to parameters that are
typical for the phenomenon at hand). Then it is iterated until some criterion
of “convergence” is met.

More details on how this algorithm is adapted to estimate the parameter
vector @ that defines our mixture distribution M, and about initialization
and convergence in this case, is given in Section 4.5.2.

4.5.2 Parameter Estimation - M

If we consider Xy = X|X < U instead of X as in Section 4.5.1, the density
fx () is multiplied by a factor 1/P(X < U), and the term term

—logP(X < U)

is to be added to the log-likelihood presented in Equation (43). However, the
assumed “knowledge” about which sub-population each observation comes
from, i.e. the information encoded in the z,’s, should effect the likelihood,
and instead of the expression in Equation (44) we get

[(O|lx, z) =

WE

(2 [log B + log fy (2,|0) — logP(Y < U|0)] 1(x, < U))

n=1

N
+) (1= 2,) [log(1 = B) + log fiw(x,]0) — log P(0 < W < U[0)] Lz, < U)),
" (50)
where the indicator functions ensure that each xz; satisfies
O<uz;<U,
and where W is a (non-truncated) N (uz, 02) distributed random variable.

With fy being the density of a lognormal random variable, parametrized by
(1 and oy, we have

(logw — p1)?
202 '

log fy (z]0) = —log(2m)/2 — log oy — log x — (51)

and with fy being the density of a normal random variable, parametrized
by pe and oy, we have
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log fw (z|0) = —log(2m)/2 — log oy — %. (52)
2

The updating equation for r,, presented in Equation (45), becomes

fr(za|07)
P(Y < U|60)

+ (1 89)

5(@‘)

Ty = .
fY<xn|9(l))
P(Y < U|6D)

fw(l’n|9(i))

E0) ,
PO < W < U|60®)

4 . , O P(Y <UI69)

() fy (2,100 + (1 — BO) 160 ,
where the CDF’s also depends on the most recent value of the parameter vec-
tor 6 (with 0% as in (53), we would get the (i+1)th r,, estimate). The mixing
parameter 3 is not effected by the truncation and it is updated according to
Equation (49). Given the r,’s from Equation (53), we maximize

Mz

(rn [log fy (xp|p1,01) — logP(Y < U|0)] 1(x,, < U)) =

n=1

N
log z,, — j11)?
- E <rn [log(?w)/2 +log oy + logz, + (0ng2—th)1 I(x, < U))
g7

n=1

Y rlogP(Y < Ul0)1(z, < U) (54)

and

NE

(1 = 7,) [log fw (znlp2, 02) —logP(0 < W < U|0)]) 1(0 < z, < U) =

- ; ((1 — 1) [log(?w)/Q +log oy + %] 100 < x, < U))
= (1= 1) log[@(2) — B(—£2)]1(0 < a, < U),

(55)
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w.r.t. py,01 and o, o9 respectively.

Pseudocode 2 describes the outlined procedure.

Pseudocode 2: Estimation of 6 in M
input: vector with n data points, initial 6,

output: ¢

0 <- 90,

r <- empty n-vector; // to hold ‘responsibilities’’

repeat until stopping-criterion is satisfied: // (see Section 4.5.3)
update r according to Equation (53);
update theta by Equation (49)
and to maximize Equations (54) and (55);

restrict # to given interval; // (see e.g. Table 5)
compute log likelihood of € given data;

if (8 < 0.02) then (<-0.0;
if (8 > 0.98) f<-1.0;

return 6;

Note that the procedure on line 12 in Pseudocode 2 only effects /3, since the
remaining parameters are constrained already when when updated on line
10 (see Section 4.5.4).

4.5.3 Initialization and Convergence

The parameter vector 6 has to be initialized and we use
0o = (4.8,0.8,0.8,280.0,60.0).

Sometimes, the estimation procedure in Pseudocode 2 is used as an inter-
mediate step of an iterative, “outer”, algorithm. In these cases, the initial
values 6y in line 1 of Pseudocode 2, are given by the most recently updated 6
from the outer algorithm. For a more detailed description of this, see Section
4.6.
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The stopping-criterion in line 7 of Pseudocode 2 is based on quantifying
changes of in the log likelihood of 6. More specifically, when a sequence of
three consecutive f-values result in a log likelihood that does not increase
with more than some constant (this “tolerance” defaults to 0.05) we stop
iterating. There is also a lower bound on the number of iterations (this
defaults to eight), to make sure, or at least to it make more likely, that the -
space is properly examined, and an upper bound on the number of iterations,
to terminate the algorithm if no convergence is achieved (this defaults to 100).

4.5.4 Heuristics

Numerical methods are required to carry through the steps of the algorithm
that maximize the likelihood, i.e. the step that maximize the expressions in
Equations (54) and (55). This is due to the CDF in the normalizing factor.’
Instead of finding the zeros of the differentiated expressions by numerical
methods, a “robust” heuristic is used. For each parameter of 8 except for 3,
say 0;, the likelihood, or rather the logarithm of the likelihood, is evaluated
for a number of values as this parameter varies, while keeping the remaining
parameters in 6 fixed. The value of 6; that maximize the likelihood is then
returned as the estimate. Pseudocode 3 exemplifies this procedure for uq,
but it generalizes to o1, s and oy in the obvious way. The quantity [I(x) in
Pseudocode 3 is proportional to the expression in Equation (54), but only
the terms that depend on pu = u; are kept. The parameter oy is taken from
6y, and the responsibilities r are given as inputs to the algorithm.

9A factor ®(-) is present also after differentiation of log ®(-).
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Pseudocode 3: p; heuristic

1 input: data, vector with responsibilities r, initial 6y, U
2 output: pu

s o <= puy from 6;
s LL = ll(,u),

7 find the direction d along the p;-axes in f-space

8 in which the likelihood increases;

o while p is in accepted range [LB, UB]:

10 depending on d, increase or decrease pu with INCR;
1 if l(p) > LL:

12 LL = ll(u),

13 else:

14 break;

15

16 return p,

LB and UB in Pseudocode 3 are lower and upper bounds on p; to make
sure we stay in a range of values that are “reasonable” for the application at
hand. In our case, these bounds default to the values presented in Table 5.

parameter | LB | UB
pr | 3.0 7.0
oy 1031 1.9
e |90 | 600
oo | 20 | 220

Table 5: Bounds for parameters in 6.

The size of the steps, i.e. INCR in line 10 of Pseudocode 3, defaults to 0.01
for p; and o; that control the lognormal part of M, and 0.1 for uy and oy
that control the truncated normal part of M.
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4.6 Estimation with Partially Observed Data

As mentioned in Section 1.1, a method to estimate the parameters that
defines the distribution of the processing times, even though just a subset
of the errands in data are processed, is desired. To be clear, the mixture
distribution M is truncated from above at a positive value U, but now we
face the problem of estimating #, that defines M, based on data in which
a subset of the processing times, those that are longer than some constant
A < U, cannot be observed. A general description follows.

4.6.1 General Description

Consider a sample X = (X7, ..., Xy) from a distribution with density f(-|0)
parametrized by 6. For convenience, and without loss of generality, assume
that X is ordered in ascending order. Suppose that we cannot observe X; if
X; > A for a known constant A € R, i.e. we observe just a subset

X =(X1,...,X,) CX,

with X; < Afori=1,...,n and n < N. The values of the m = N —n data
points in X\ X are unknown, but they are all greater than, or equal to A.'°

The idea behind the following procedure is to repeatedly generate m points,
assuming that we know 6. We generate data from our “known” distribu-
tion, conditioned on the observations being larger than, or equal to A, and
iteratively update 6 until some criterion of convergence is satisfied.

Let 6y be the initial parameters, reflecting some “prior knowledge” about X.
Then Pseudocode 4 explains this iterative procedure for estimation of 6.

0Tn M, we must have A < U for this to be meaningful.
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Pseudocode 4: Parameter estimation with partially observed data

input: initial parameters f,, data X = (Xi,...,X,), size of full sample N

output: ¢
0 = 90;
repeat until convergence: // (see Section 4.6.4)
generate m variables Xj, = Xp;1,..., Xy from fOIX>A,0);

estimate 0 based onAXUXh;
f <-w-0+(1—w)-0; // (see Section 4.6.3)

return 6;

The main ideas presented in this section, as summarized in Pseudocode 4, for
the special case where w = 0, was proposed by Celeux and Diebolt [3] under
the name Stochastic EM (SEM). A similar approach, the Monte Carlo EM
algorithm (MCEM), utilize and extend the same ideas, see [12] for further
details.

4.6.2 Application to M

In our setting, the density in Pseudocode 4 is fx|x<u(:|f), and clearly we
must have A < U. The estimation on line 7 in Pseudocode 4 invokes the ideas
presented in Section 4.5.2, initialized by the most recent estimate of 6. In
particular, this implies that the algorithm from Section 4.5.2, for computing
0 on line 7, is nested within another algorithm that reduces to the SEM-
algorithm when w = 0 on line 8. See Section 4.6.3 for a discussion about the
weighting parameter w.

4.6.3 Heuristics

Occasionally, running the algorithm indicates overly vivid movements in 6,
due to the randomly generated data points in X (line 6 of Pseudocode 4).
Therefore, a strategy to slow down the procedure is used. At each step, the
0 is updated as a weighted average of the new, and the last estimate of 6.
Default w € [0,1] in line 8 of Pseudocode 4 is set to 2/3, in which case a
slightly higher weight is put on the previous parameter estimate, than on the
one based on the latest augmented data set. This choice of w is based on
empirical studies, and the resulting decrease of the variation in consecutive
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parameter estimates seems to produce good results for a variety of simulated
test data sets. No results from these studies will be presented in this text.

4.6.4 Initialization and Convergence

The initial parameter vector 6 is default set to

0o = (4.8,0.8,0.8,280.0, 60.0).

The criterion of convergence in line 5 of Pseudocode 4 is based on quantifying
changes in the explicit parameter vector #, rather than in the likelihood.!!

More specifically, let
L

be the maximal, relative absolute difference of two consecutive 0 vectors (see
the remark in Section 4.6.5 for a short treatment of the obstacle of dividing
by small numbers in this expression). To deduce convergence, we require C' to
be smaller than some tolerance level (this defaults to 0.1) in three consecutive
iterations. See Section 4.6.6 for a discussion about this.

(@) (i-1)

() — _ .
C max{j 1,....5; o)
j

4.6.5 Remark

With j = 3 in Equation (56), i.e. when concerned with the § component
of §, the denominator in (56) might be close to zero. If this is the case, a
small value (default 0.001) is added in the denominator. This is done to
avoid undesired, uncontrolled results due to limitations in the floating-point
precision (or even division by zero).

4.6.6 Discussion

One might deduce convergence in line 5 of Pseudocode 4 based on the like-
lihood of the parameters, conditioned on the full sample X5 U X, instead
of based on the ideas presented in Section 4.6.4. However, the likelihood

1A criterion of convergence based on quantifying changes in the likelihood also deduces
convergence based on the parameters in 6, but through their functional relationship to the
likelihood.
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crucially depends on the simulated data in X}, and might not even increase
through the iterations. Likewise, evaluating the likelihood of X|X < A,
based exclusively on the “observed” part of data, could be misleading if A is
small.!? Therefore, a convergence criterion based on quantifying changes in
the parameter vector 6, is a reasonable choice.

12This argument applies, of course, to the strategy of deducing convergence based on C
in Equation (56) as well.
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5 Computer Software — Implementation

A part of the work has been focused on development of a stable and “fast”
computer software to handle the tasks that arise. The programming lan-
guage C++ has been used for the algorithms and for computations, while the
graphics in this text are produced in R. A list of some of the implemented
“functions” are available in Appendix A. Functions, for which corresponding,
reliable open source software is available, have been bench-marked against
those other implementations, to ensure efficiency and correctness.'> No run
time comparisons or similar results from these investigations are presented
in this text though.

5.1 Discussion

Implementing algorithms in a “low level” language, such as C++, builds up
understanding and intuition, not only for their own strengths and weaknesses,
but also for the underlying problem that they attempt to solve. Therefore,
the construction of a well performing computer software has been important
also for developing the methods.

13Examples of such are functions available in the R-base, such as densities and distribu-
tion functions.
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6 Experimental Results

In this section, experimental results from applying the methods that were
presented in Section 4 to simulated data and D, are presented.

6.1 Parameter Estimation in a Mixture Model.

In this section the iterative algorithm for parameter estimation that was de-
scribed in Section 4.5.2 is examined. We generate a sample from the mixture
distribution M (see Section 2.2), parametrized by

6o = (4.3,0.8,0.75, 365, 70),

and truncate it from above at U = 600. The size of the resulting sample is
n = 300. Estimation of 6, gives

0 = (4.28,0.82,0.75, 350, 78.8),

after 9 iterations. Figure 8 presents a histogram from the sample, together
with the densities of X and X|X < U, for 6y and §. The Kolmogorov-Smirnof
statistics, with respect to X|X < U, parametrized by 6 and 6, respectively,
are

VnD, ;= 0.61,

and
VnD,,g, = 0.54.14

As expected, a comparison with the critical values in Table 4 provides no
evidence against the null hypothesis that the sample is realized from X|X <
U. As addressed in Section 4.4.3, the tabulated values are invalid after
estimation of 6, but the low values on D, still indicate a good fit. Figure 9
presents the empirical distribution function and the theoretical CDF’s, based
on #y and 0.

6.2 Parameter Estimation with Partially Observed Data

The following three experiments are conducted to test the methodology that
was presented in Section 4.6. Data is generated from M, parametrized by

4 The statistic that is based on 6y, i.e. Dy, 9, is included as a reference for D_ 5.
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Figure 8: Histogram and densities of X and X|X < U, for U =
600, 6, = (4.3,0.8,0.75,365,70), and estimated parameters § =
(4.28,0.82,0.75,350,78.8). The histogram is based on a (truncated) sam-
ple of size 300, drawn from M, parametrized by 6.

0o,° and truncated from above at U = 730, and the parameter vector 6 is
estimated for different “boundaries” between the “observed” and “hidden”
parts. More specifically, for different values of A (see Section 4.6), we “ob-
serve” the subset X C X of the generated sample X, that satisfies

X:{QZZEX, .CCi<A},

and consider X \X , the simulated data points that are at least as large as
A, as “hidden”. We then estimate the data-generating parameters 6y by the
methods that were described in Section 4.6. The estimate obtained after
observing exclusively data points that are smaller than a boundary A will
be denoted 4. The Kolmogorov-Smirnof statistics that are presented in
the three following experiments are computed based on the full sample X,
regardless of the truncation point A.

15The value of Ay will be specified in each experiment separately.
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Figure 9: Black piece-wise curve: Empirical distribution function based
on a sample of size 300, drawn from M, parametrized by 6, =
(4.3,0.8,0.75,365,70), and truncated from above at U = 600.

Red and blue curves: CDF’s of X|X < U, parametrized by 6y, and estimated
parameters 6 = (4.28,0.82,0.75, 350, 78.8) respectively.

6.2.1 Experiment 1

We generate data points from M, parametrized by
0o = (4.2,0.55,0.75, 260, 70),

and truncate them from above at U = 730. N = 750 is the size of the
truncated sample. Figures 10 and 11, and Table 6 present the results. In
Figure 10, the dashed, vertical, lines indicate three different values of A,

beyond which data 