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Abstract

In this thesis we develop a strategy for tactical asset allocation

that takes into account macroe- conomic variables. The relationship

between the macroeconomic variables and financial asset returns is

modeled by using an M-GARCH error structure. This relationship

will be used as a signaling value and implemented in the asset alloca-

tion strategy. In order to evaluate the effect the signaling value has

on the performance of the portfolio, three allocation strategies will

be compared, two of which will take into account the macroeconomic

environment. We illustrate the benefits of the macroeconomic-based

strategies by looking at three Swedish financial securities while using

inflation and PMI as a macroeconomic factors. The portfolio perfor-

mance will be measured by its’ Sharpe ratio. The results show that

the best performing strategy is the mean-variance allocation including

both of the macroeconomic factors. In this study the dynamic model-

ing techniques that contain the influence of the macroeconomic envi-

ronment outperforms the model that excludes it, thus offering greater

risk-return combinations.
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Abstract

In this thesis we develop a strategy for tactical asset allocation that takes into account macroe-

conomic variables. The relationship between the macroeconomic variables and financial asset

returns is modeled by using an M-GARCH error structure. This relationship will be used as a

signaling value and implemented in the asset allocation strategy. In order to evaluate the effect

the signaling value has on the performance of the portfolio, three allocation strategies will be

compared, two of which will take into account the macroeconomic environment. We illustrate

the benefits of the macroeconomic-based strategies by looking at three Swedish financial securi-

ties while using inflation and PMI as a macroeconomic factors. The portfolio performance will

be measured by its’ Sharpe ratio.

The results show that the best performing strategy is the mean-variance allocation including

both of the macroeconomic factors. In this study the dynamic modeling techniques that contain

the influence of the macroeconomic environment outperforms the model that excludes it, thus

offering greater risk-return combinations.



Sammanfattning

I denna uppsats utvecklar vi en strategi för taktisk tillgångsallokering som tar hänsyn till makroekonomiska

variabler. Sambandet mellan de makroekonomiska variablerna modelleras med en M-GARCH

struktur för feltermerna. Detta samband används som ett signalvärde och implementeras i alloker-

ingsstrategin. För att utvärdera effekten av signalvärdet på portföljens prestanda jämförst tre op-

timeringsstrategier, varav två tar hänsyn till det makroekonomiska klimatet. Vi illustrerar förde-

larna med denmakroekonomiska strategin genom att utvärdera tre index för olika tillgångsklasser,

medan inflation och PMI används som makroekonomiska faktorer. Portföljens prestanda mäts

sedan med sharpe-kvot.

Resultaten visar att denmest framgångsrika strategin är den som tar hänsyn till demakroekonomiska

faktorerna PMI och inflation. I denna studie överträffar modelleringsteknikerna som tar hänsyn

till markoekonomiska faktorer de tekniker som inte gör det, ivad gäller portföljprestanda, mätt

som riskjusterad avkastning.
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1 Introduction

Financial markets have a complex structure and are typically hard to predict. Financial modeling

is defined as building an abstract representation of a real world financial situation. This requires

that all key elements in the model are explicitly and consistently forecasted1.Investors are always

looking for more sophisticated modeling techniques, especially considering the financial crisis of

2007-2008.

This thesis evaluates how macroeconomic factors can be utilized within a tactical asset al-

location model for portfolio improvements. We build a tactical asset allocation model that fo-

cuses primarily on estimating the joint distribution of volatility of financial assets combined with

macroeconomic variables. The model does not try to predict financial asset returns, as previous

studies suggest there is greater accuracy in predicting asset return volatility2. The main idea of

this thesis is to try and find a volatility model that can exploit the volatility contagion between the

financial asset returns andmacroeconomic factors. Wewant to test if macroeconomic information

can help predict the variance-covariance matrix of asset returns. If this is the case, we can then

use the gained information to improve tactical asset allocation. We do this by connecting Harry

Markovitz mean-variance portfolio frontier to volatility time series modeling.

Themean-variance portfolio frontier is traditionally based on a constant, time-invariant volatil-

ity of asset returns. However, evidence suggests that the covariance matrix of asset returns is time-

varying, creating the need for a time-dependent estimation. This means changing the inputs of

the model from the unconditional covariance matrix to a time-varying conditional covariance ma-

trix. When employing a time-varying conditional covariance matrix, the frontier also becomes

time varying. It therefore requires continuous re-balancing of the portfolio weights, based on

the time varying estimations. We model the volatility of returns by using a M-GARCH process

that captures the volatility contagion between assets. This model is then extended by adding the

macroeconomic factors PMI and inflation. The extendedmodel will then account for the influence

that the macroeconomic variables have on the conditional variance estimates of asset returns. The

volatility estimates will then be used in the tactical asset allocation strategy where the holdings

of each asset class are frequently updated based on the those estimates, which in turn take into

account the macroeconomic factors.

We compare the different strategies by looking at measures of risk-adjusted return and plots
1Brealey & Myers (2003), pp. 223.
2Flavin & Wickens (2003), pp. 3
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of the aggregated efficient frontiers. We also test each strategy for a one year period for a number

of different portfolios. We find that the investment strategy that takes into account the macroeco-

nomic variables seem to outperform the strategy that excludes them, for portfolios with relatively

low risk/return targets. We find that portfolios containing macroeconomic variables can offer su-

perior risk-return combinations of asset classes, suggesting investors in the Swedish market to

adding these kinds of variables to their financial model.

We set up the thesis as follows; in chapter 2 we describe the basics of asset allocation and why

investors should allocate among asset classes in the first place. We also introduce the set of assets

that we later use for the financial modeling. Chapter 3 breaks down modern portfolio theory and

explains all the necessary theory regarding the efficient frontier. It also introduces the concept

of tactical asset allocation. Chapter 4 introduces volatility modeling and the necessary inputs in

such models. Here we also discuss how adding the macroeconomic variables to the model will

alter the variance/covariance estimates of asset returns. Chapter 5 shows the modeling procedure

and the data that was used in the analysis. Chapters 6, 7 and 8 shows the results and concludes the

finding of modeling procedure and the data. We also discuss developments that could be made to

the study.

2



2 Asset Allocation

This chapter explains the concept of asset allocation and the reasons behind why investors
should allocate among asset classes. We begin by going through the different asset classes
and what role they play in a portfolio. In this thesis we use one index for each asset class
when looking at performance.

2.1 Asset classes

We will be looking at the following asset classes:

• Swedish Equity

• Swedish Bonds

• Cash

Throughout this thesis we measure the performance of an asset class by the performance
of an underlying broad index. We use one index for each asset class. Each index rep-
resents the average development of the whole market of that asset class, i.e the Swedish
equity index that we use represents the development in the Swedish equity market, the
bond index represents the development in the Swedish bond market, and so on. The com-
bination of the asset classes is what forms our asset allocation. For the asset classes we
have chosen the following indices:

Swedish Equity is represented by SIX PRX, which reflects the average development
of companies on the Stockholm Stock Exchange, adjusted for the investment restrictions
that applies to equity funds. It contains around 250 securities, all listed on the Stockholm
Exchange.

Swedish Bonds is represented by OMRX Total Bond Index, which contains govern-
ment bonds issued by the Swedish state and covered bonds issues by mortgage housing
agencies.

Cash is represented by Swedish 3-month Treasury Bills.

2.1.1 Historical Data

In order to get a better understanding of each asset class and how they perform relative to
each other, we look at the historical data of the returns. Table 2.1 shows the annualized
returns in percent for each asset class, over a 10 year period.

As indicated by the table, the standard deviation of the Swedish equity is almost twice
as large as the average return. This is a common characteristic of equity assets. A risky
asset has the characteristic that the mean return is roughly twice the size as its standard

3
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10 Year Period Annualized
Return

Std. Of
Annual Returns

Growth of
100 SEK

Risk/return
ratio

Swedish Equity 10,15% 16,93% 270,08 kr 1,7
Swedish Bonds 3,80% 2,76% 145,63 kr 0,7
Cash 0,72% 0,44% 107,74 kr 0,6
Inflation 1,42% 0,20% 115,69 kr 0.1

Table 2.1. Table of Annualized Returns of the Asset classes and Inflation. Data from 2008-01-31 to 2018-
01-31.

deviation. However, for bonds and cash, the standard deviation is roughly two thirds of
the size of the return. This informs us that bonds and cash are fixed income asset classes.
Fixed income assets tend to move slower than equities and are also associated with lower
risk.

Another way to investigate how the asset classes behave in terms of risk is to look at
the worst one-year return of the last 10 years and compare it to the average annualized
return. Figure 2.1 shows the average annualized return on the y-axis and worst one-year
return on the x-axis. Each of the dots represents an asset class. We can see that the equity
asset class is placed in the top-right of the plot. In the bottom left part of the plot are the
risk return characteristics of fixed income asset classes, which is where we find the dots
for cash and Bonds. A portfolio typically contains a mixture of asset classes, which is
why we call it asset allocation. So, how do we allocate among the asset classes? The
blue dot for instance (Six PRX) has 250 securities in it. However, investing only in Six
PRX does not ensure diversification. Six PRX is a diversified set within a single asset
class. This is known as intra-diversification, or depth.

Figure 2.1. Risk return Analysis showing worst yearly return in % against Average annualized Return over
the time period 2008-2018.

2.1.2 What is true Diversification?

The idea with allocating between asset classes is to create a dot into the top left corner of
figure 2.1. The objective is to build a portfolio that has relatively high return with as low
risk as possible. Craig Israelsen (2010) states that "meaningful portfolio diversification
requires both depth and breadth". Depth means diversifying within an asset class, while
breadth means investing in a wide variety of funds in different asset classes.

4



3 Modern Portfolio Theory

If we were to break down portfolio management into one key takeaway, it would be that
diversification matters. Harry Markowitz (1952),who later won the nobel price, proved
this in the journal of finance, where he effectively demonstrated benefits of diversification
through the efficient frontier. A few decades later,William Sharpe (1990)made important
extensions the model that was presented by Markowitz by introducing the Sharpe ratio,
which he won the Nobel price for in 1990.

3.1 Modeling requirements in Modern Portfolio Theory

When modeling in the framework of modern portfolio theory, the following inputs must
be considered:

1. The expected returns E[Ri].

2. The variance of the returns σ2
i .

3. The covariance between all assets ρσiσj .

Point one will form a vector of expected returns of each asset and points two and three
will form a variance-covariance matrix. These inputs need to be estimated for the mod-
eling. There are various methods to calculate the expected returns and the variance co-
variance matrix. A common procedure for mean-variance analysis is to use, for example,
the CAPM to calculate the expected returns and to assume a constant covariance matrix
of the asset returns. However, research suggests that the volatility of assets tend to be
time dependent and hence not constant through time1. This is illustrated in figure B.1
in appendix B, which shows historical prices and volatility of the stock index SIX PRX.
As indicated by the purple line in the graph, the standard deviation seems to be time de-
pendent, and spike both in times of recession and economic growth. This suggests we
should extend to a more sophisticated model that is time variant when modeling the co-
variance matrix. More on this in chapter 4, where we introduce multivariate time series
and volatility models. By extending to a time-varying covariance matrix of returns, the
mean variance portfolio frontier also becomes conditionally time varying. This will re-
quire continuous re-balancing of the portfolio weights wi’s. The weightwi is the fraction
of the total value of the portfolio of which is invested in security i. For all portfolios, it
is true that

n∑
i=1

wi = 1. (3.1)

However, in this thesis we require all weights wi ≥ 0, i.e we do not allow short sales.
We make this distinction because we are allocating among asset classes and for some

1Schwert (1989) showed that asset return volatility can change drastically over time, and that aggregate
leverage is significantly correlated with volatility.

5
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of them it is not possible to short sell. If one were to perform a similar study with for
example only stocks as the underlying assets in the portfolio, then short selling would be
acceptable.

3.2 Why does diversification matter?

In order to prove why diversification matters, we start by looking at the risk of an asset,
i.e. its volatility, or standard deviation. The risk of an asset can be decomposed into two
components: its systematic risk and its unsystematic risk, where systematic risk is the
variability due to co-movements with aggregate markets, and the unsystematic risk is the
variability in the asset price due to specific factors of that asset. Through diversification
we can reduce the unsystematic risk drastically. The reason behind why we are able to do
so is as follows: when we diversify, i.e. take multiple assets and combine them together
in a portfolio, the expected return of that portfolio is given by weighted average of the
expected returns of its parts:

E[Rp] = E[

n∑
i=1

wiRi] =

n∑
i=1

wiE[Ri]. (3.2)

However, when we measure the risk of a portfolio the standard deviation is not the
weighted average of its parts, its less. The portfolio variance can is calculated as fol-
lows:

σ2
p = V ar(Rp) =

n∑
i=1

n∑
j=1

wiwjcov(ri, rj) =
n∑
i=1

n∑
j=1

wiσijwj . (3.3)

If we let Σ denote the covariance matrix, and w denotes the vector of weights, then the
variance of the portfolio can be written as

σ2
p = wTΣw. (3.4)

Consider a portfolio with three assets (such as in this thesis). The variance of that portfo-
lio is comprised by three variance terms times the squaredweight of each of the individual
assets plus 6 covariance terms, which are 2wiwjσi,j . Since the portfolio has 3 variance
terms and 6 covariance terms, the covariance becomes the key driver of the portfolio
variance. If we would expand to an n asset portfolio, we see that when n is large, the
variance of the portfolio is almost only determined by the covariance terms between the
assets and the variance terms of the individual stocks is less relevant. This tells us that
the key determinant when deciding which asset to add to a portfolio should be to look at
the correlation between that asset and the underlying assets in our portfolio. The assets
that have the lowest correlation with the assets in the portfolio will provide the greatest
diversification benefits when adding them to the portfolio.

So given the expected return is the weighted average of its parts and the standard
deviation is less than the weighted average of its parts, we already understand a huge part
of why diversification is beneficial.

3.2.1 Sharpe’s Ratio

William Sharpe (1990) created an expression that quantitatively measures portfolio per-
formance in terms of risk adjusted return. The Sharpe’s Ratio Sp of the portfolio is given
by

Sp =
rp − rf
σp

, (3.5)

6



where rp is the portfolio return, rf is the risk free rate of interest, and σp is the volatility
of the portfolio. rp − rf is the excess return. The Sharpe ratio measures excess return
per unit of risk.

If we think in terms of Sharpe ratio as a measurement of portfolio performance, when
we diversify between assets, we keep the numerator constant but reduce the denominator
since the risk is being dampened, hence we increase the Sharpe ratio. Now, the bene-
fits that we achieve from diversification is closely related to the correlation between the
assets. When the assets in a portfolio have low correlation2 the diversification benefits
are greater. That is because when assets have low correlation, there is less co-movement
between their returns and hence there is less covariance in prices. As we add assets to
our portfolio, the reduction in risk increases for each added asset. However, the marginal
benefit of diversification does decrease for each added asset.

3.2.2 Efficient Frontier

Harry Markovitz illustrated the benefits of diversification by developing a system of port-
folio selection where one can identify the efficient set of portfolios that will optimize the
utility for investors. If we assume that an investor adopts a mean-variance utility func-
tion, i.e. they maximize the utility by maximizing the expected return and minimizing
the variance of returns, the investor will achieve the highest utility by maximizing the
Sharpe ratio. When looking at mean-variance plane we can identify that there will be
an efficient frontier, which is a set of optimal risky portfolios that comprises all those
portfolios that have the highest expected return for each unit of risk. The efficient fron-
tier will start in theminimum variance portfolio, which is the portfolio that has the lowest
level of risk. By definition, that portfolio has the minimum variance, i.e. there is no other
portfolio with that low level of risk and hence no portfolio has the same level of risk but
a higher expected return. Therefore the minimum variance portfolio will always be the
start of the the efficient frontier. The frontier will also pass through a very key portfolio
called the optimal portfolio, which is the combination of assets, within our feasible set,
such that the Sharpe ratio is maximized. When an investor adopts mean-variance utility
preferences we know that maximizing the Sharpe ratio is key3.

In order to derive the efficient frontier we need estimate all the necessary inputs in
the model, that is, the vector of expected returns and the variance covariance matrix of
returns. The model assumes an investor forms the portfolio for one time period only,
using the information available at the beginning of that time period. Let

Rt+1 = (R1,t+1, R2,t+1, . . . , Rn,t+1)

denote an nx1 vector of asset returns that were realized during time period t and paid out
in the beginnning of t+ 1. The model assumes that all funds are invested, thus

wT
t1 = 1,

where 1 is a vector of ones and wt
t is the vector of weights at time t. Now, let us adopt

a mean-variance utility function. As presented by Lee (2000), we assume it is sufficient
to express the utility function in terms of expected return and volatility. Under some
simplified assumptions, such as returns follow a multivariate normal distribution, short
selling is accepted, and that investors have a constant relative risk aversion, we can write

2A low correlation corrensponds to a correlation close to 0.
3Maximizing the Sharp ratio for a given level of expected return is obtained by minimizing the volatility

for that lever of expected return. This creates a portfolio located on the efficient frontier.
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the expected utility of wealth as

E[U(W )] = − exp{−γ(E[Rp,t+1]− γ

2
σ2
p,t+1)}, (3.6)

where γ is the CRRA, or constant relative risk aversion coefficient. The portfolio has
expected return

E[Rp,t+1] = wT
tE[Rt+1], (3.7)

and variance
σ2
p,t+1 = wT

tΣt+1wt, (3.8)

where Σt+1 is the variance-covariance matrix. Now we want to maximize the utility in
equation 3.6. This is equivalent to solving:

maximize
w

wT
t E[Rt+1]− γ

2
wT

tΣt+1wt

subject to wT
t 1 = 1, i = 1, . . . ,m.

(3.9)

The Lagrangian becomes

L = wT
tE[Rt+1]− γ

2
wT

tΣt+1wt − λ(wT
t1− 1). (3.10)

We now apply first order conditions and solve, for wt and λ respectively:

∂L

∂wt
= E[Rt+1]− γΣt+1wt − λ1 = 0 (3.11)

⇒ w∗t =
Σ−1
t+1

γ
(E[Rt+1]− λ1). (3.12)

For λ we get:
∂L

∂λ
= −(wT

t1− 1) = 0 (3.13)

⇒ wT
t1 = 1. (3.14)

Now we substitute equation 3.12 into 3.14 and rearrange in order to obtain

λ =
1TΣ−1

t+1E[Rt+1]

1TΣt+11
− γ

1TΣt+11
. (3.15)

Now we can solve the vector of optimal weights by substituting equation 3.15 into equa-
tion 3.12. This gives

w∗t =

(
1−

1TΣ−1
t+1E[Rt+1]

γ

)
Σ−1
t+11

1TΣt+11
+

(
1TΣ−1

t+1E[Rt+1]

γ

)
Σ−1
t+1E[Rt+1]

1TΣ−1
t+1E[Rt+1]

(3.16)
As stated by Lee (2000) 4, equation 3.16 is the the well known-known Mutual Fund
Separation Theorem. This theorem gives an expression for the optimal portfolio in the
mean variance framework.

4Note that Lee (2000) does allow for short selling, while in our analysis we exclude that option for the
investment strategies later to be tested.
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The classical standard Markowitz (1952) setup looks rather similar5:

minimize
w

wT
tΣt+1wt

subject to wT
tE[Rt+1] = µt+1

wT
t1 = 1,

(3.17)

where µt+1 is the target return of the portfolio. By solving this for our feasible set of
expected returns, the optimization will result in the efficient frontier. Every dot on the
frontier represents a portfolio that has the highest expected return of all the possible port-
folios with that same level of risk.

3.2.3 A method for every investor?

Markowitz portfolio selection is a mathematically tractable and a very intuitively ap-
pealing method of investing. So why doesn’t every investor adopt this approach? Even
though it is the most theoretically appealing approach to asset allocation that an investor
can take, there are some key issues with the assumptions of the model. The results rely
on the accuracy of the inputs that are used in the model, which aren’t necessarily perfect
measurements. If we use an asset pricing model such as CAPM to estimate the expected
returns, the results rely on prediction power of the CAPM. It may turn out that CAPM is
an imperfect model for calculating expected returns and that there are factors other than
beta that explain returns. In that case, if we can estimate returns better than if we would
use the CAPM, we can come up with a better combination of assets within the Markovitz
portfolio selection model. There is a lot of empirical evidence that suggests CAPM is
certainly not a perfect model in predicting future returns. Fama & French (2004) states
that "the empirical record of the CAPM is poor, poor enough to invalidate the way it
is used in applications". So where does this leave us? Markowitz portfolio theory will
form the basis of the investment strategy that is used in this thesis. Instead of using the
standard inputs of the model, we want to further improve the portfolio selection model
by identifying better models of expected returns and volatility, one of which will contain
macroeconomic indicators.

3.3 Tactical Asset Allocation

Tactical Asset allocation6, as opposed to strategic asset allocation, is a dynamicmodeling
approach that involves market timing. Its goal is to predict future performances across
asset classes and dynamically allocating across classes based on those predictions. So if
one predicts that certainmarkets in the economy is going to performwell in the future then
one should allocate more of their assets towards those high-growth asses classes, while if
one predicts markets are going to perform poorly then one should allocate towards more
defensive asset class. This allocation shifts with your prediction. One of themain benefits
of this strategy relates to the fact that the vast majority of fund manager performance can
be attributed to the asset allocation decision. This was asserted by Gary P. Brinson, CFA,
Randolph Hood, and Gilbert L. Brinson et al. (1995). They found that asset allocation
is the primary determinant of a portfolio’s returns, while security selection within asset
classes (active management) plays a minor roll. In their study, they conclude that asset
allocation explained 93.6% of the variation in the quarterly returns of the portfolio. Given
this decision is a key component in generating abnormal returns, if we are actually able

5For complete derivation and solution of the Markowits problem, see Luenberger et al. (1997)
6Lecture notes by UON (2016) in Applied Portfolio Management, lecture on tactical asset allocation.
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to predict future movements of asset classes and invest accordingly, we should be able to
generate significantly positive and abnormal returns.

However, there are some negatives with this investment approach. The first issue
lies in fact that predicting future performance of a market is hard. Evidence suggest that
professional fund managers are not able to continually predict future movements of asset
classes7. Another issue is the incurring transaction costs that comes from buying and
selling across asset classes. Also, when applying tactical asset allocation, one can get in
and out of the market at the wrong times. For example, during the end of the financial
crisis of 2008 you might have moved a lot of your assets away from equities. In October
that year we saw some huge downward movement in the equities asset class 8. The asset
allocation strategy then suggest you move away from the equities asset class because
of the recently high volatility. If you were to stay out of that asset class for too long
you would have missed a huge bounce back that occurred in early 2009. The net result
may have been that even though you might have missed some of the downturn in 2008,
you may also have missed the upward bounce back and that you probably performed as
poorly as someone who followed a long term buy and hold strategic asset allocation. This
shows that while tactical asset allocation might be beneficial it also has some significant
drawbacks.

3.3.1 Signaling values

There are three main signals that investors use in order to predict the future movement of
asset classes, they are

• Sentiment indicators,

• Economical indicators,

• Technical indicators.

Nowadays, most market participants will agree that sentiment can have some effect on
price levels. The issue with sentiment is that it is very hard to measure quantitatively. A
study by Baker & Wurgler (2006) found that "when beginning-of-period proxies for sen-
timent are low, subsequent returns are relatively high for small stocks, young stocks, high
volatility stocks, unprofitable stocks, non-dividend-paying stocks, extreme growth stocks,
and distressed stocks. When sentiment is high, on the other hand, these categories of
stock earn relatively low subsequent returns." More recently, people have tried measur-
ing sentiment of for example social media. This may include aggregating the views of
people’s twitter or Facebook accounts.

The second type of signal are economic indicators. The idea behind using economic
indicators to predict market prices is based on the fact that any financial asset should be
the present value of future cash flows. For example, if we look at the equity asset class
and look at an aggregated broad equity index for that asset class, the present value of
future cash flows is the present value of future corporate profits. This is where economic
indicators come into play. Economic indicators suggest that we can measure where in the
business cycle we are and use that information for tactical asset allocation. The idea is to
model the economic indicators combined with the asset class indices in order to predict
which way the asset class as a whole is moving.

The last signal is a technical indicator, which is basically the idea that you can use his-
torical data in order to predict future prices. This is where we apply time series modeling,
more on this in chapter 4.

7see Stockton & Shtekhman (2010)
8see Kosakowski (2017)
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3.4 Asset Returns and Macroeconomics

There are quite a few intuitive reasons for adding macroeconomic variables to an invest-
ment strategy model. We know that asset prices tend to move in the same direction as
aggregate markets, which in turn are largely affected by themacroeconomic environment.
If we define asset returns as nominal returns, and since investors usually are concerned
with real returns, we can assume that nominal returns in the long run is a function of
real returns and inflation. In the short term however, we cannot make any assumptions
as to how large this effect is. During the past 30 years there has been growing literature
in this field. The research in most of the performed studies suggest that the information
obtained from macroeconomic variables can improve asset allocation through better pre-
diction power of expected returns and asset price volatility. Flavin & Wickens (2003)
provide an entire list of previous work done in this field. They also perform a study
of their own, where they illustrate how to model a tactical asset allocation strategy that
incorporates the effects of macroeconomic variables. They use three risky UK assets
and inflation as their macroeconomic factor and model the asset returns by using a VAR
with an M-GARCH error structure. They find that "taking account of inflation generates
portfolio frontiers that lie closer to the origin, and offers investors superior risk-return
combinations." 9

3.5 Re-balancing

When building a portfolio of different asset classes and adopting an investment strategy
such as tactical asset allocation, an investor has to continually re-balance the portfolio to
match the investment strategy. So how often should an investor re-balance the portfolio?
The disadvantages of re-balancing often is the incurring transaction costs from buying
and selling assets, and it tends to be a bigger workload for the investor. In his presenta-
tion on asset allocation, Craig Israelsen (2010) suggests that balancing monthly tends to
have the worst performance. He means that re-balancing quarterly or annually are better
alternatives, and that an investor could gain margins of 30 to 50 basis points adopting
this approach rather than the monthly approach. He suggests annual re-balancing is the
best protocol for an investor. Other people argue that there is no optimal time window for
re-balancing a portfolio. According to Ping (2015) no re-balancing approach produces
significantly superior returns. In this thesis we will use monthly re-balancing when inves-
tigating portfolio strategies. This is due to the fact that we only have 10 years of historical
data and would require a longer data series in order to perform out modeling procedure
on a yearly basis.

9Flavin & Wickens (2003). Note that the original study was performed in 1998, but later published in
2003 in the Review of Financial Economics. The quote is from the 2001 update of the study.
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4 Econometric Modeling

This chapter will go through the necessary theory regarding multivariate time series and
volatility models. We begin by introducing some basic concepts of time series analysis.

4.1 Time series Notation

The theory and notation in the following subsections are taken from Tsay (2005) 1. Let zt
be a time series matrix of size k× l, where k is the number of inputs and l is the length of
the time series. In the case of asset returns, k is the number of assets and l is the number
of days/moths/years in the series (depending on the time frame).

4.1.1 Stationarity

zt is weakly stationary if

E[zt] = µ,

Cov(zt) = E[(zt − µ)(zt − µ)T ] = Σz,

and for any t and h, Cov(zt+h, z
>
t ) = Γ(h),

(4.1)

whereµ is a constant vector of length k andΣz is a constant positive definite k×kmatrix.
The last part means that the covariances between two observation vectors depend only
on h, but not on t.

4.1.2 Lag-l Matrices

The lag-l covariance matrix for zt is defined as

Γl = Cov(zt, zt−l) = E[(zt − µ)(zt−l − µ)T ], (4.2)

and the lag-l cross-correlation matrix for zt is defined as

ρl = D−1ΓlD
−1, (4.3)

where D is a diagonal matrix containing the standard deviations of the components of
zt, the volatility of returns.

4.1.3 Vectorization of a matrix

If
A =

[
a b
c d

]
, (4.4)

1see Tsay (2005), page 389-391.
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then the vector operator vec stacks the elements ofA, such as

vec(A) =


a
b
c
d

 . (4.5)

Also, denote vech as the vector-half operator that stacks the lower triangular portion of
a symmetric matrix in a vector. vech is similar to vec but would exclude the letter b in
the example above.

4.2 Modeling Asset Returns

As we discussed in chapter 3, modern portfolio theory requires two key components, that
is, the expected returns and the variance-covariance matrix. We are not interested in
estimating expected returns, since evidence suggest there is more accuracy in predicting
the volatility of an asset rather than the asset return. Therefore we will not use asset price
prediction model in this thesis. We will instead adopt a similar approach as in the study
by Flavin & Wickens (2003), namely to use historical means as expected returns. More
on this in chapter 6.2.

4.3 Multivariate Volatility Models

There are several different approaches to estimating volatility in finance. As a reminder,
the definition of volatility is a periodic standard deviation, i.e. it’s the standard devia-
tion over some time period of interest. Commonly, investors tend to look at annualized
standard deviation, which is the standard deviation for a one-year period. Different time
periods may also be of interest, such as monthly volatility, daily volatility, or even some-
thing more frequent such as intra-day volatility.

The simplest approach of estimating the volatility is by using the historical unweighted
volatility:

volhist =

√√√√ 1

m− 1

m∑
t=1

(Ri,t − R̄i)2 (4.6)

where Ri,t is the return of asset i in time t and R̄i is the average return of asset i. Notice
if we are dealing with daily returns, one can simply create for example the annualized
volatility by multiplying by

√
250 (250 trading days in a year). We look at the historical

volatility as a realized moving average, with a time window that is chosen depending on
the scenario. This approach is considered to be a simple, but perhaps not the most useful
way to measure volatility. There are however more practical approaches to estimating
volatility. The methods we are about to introduce are conditionally weighted volatility
models, meaning today’s estimated volatility is conditional on yesterday’s volatility.

4.3.1 Multivariate GARCH Models

The first selection of multivariate volatility models we introduce are Multivariate gen-
eralized autoregressive conditional heteroskedasticity (MGARCH) -models2. This set
of parametric models are typically used for modeling time-varying dynamic covariances
and dynamic correlations. We know that financial variables usually have time-dependent

2see Rossi (2010) for complete lecture on Multivariate Volatility Models
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conditional moments and therefore an MGARCH model is a natural choice when mod-
eling. We begin by introducing the univariate model and thereafter we extend to the
multivariate model. Let

Rt = (R1,t, . . . , Rn,t) (4.7)

be an nx1 vector of asset returns and let

Rt − µt = εt = Σ
−1/2
t zt, (4.8)

where the zt’s have the following characteristics:

E[zt] = 0,

and E[ztzt
T ] = Id.

(4.9)

Id is the identity matrix of size d. We also know that

E[εtε
T
t |Φt−1] = Σt, (4.10)

where Φt−1 is the σ-field that is generated from the past observations up to time t− 1.
Multivariate volatility models provide a parametric structure for Σt. The models must
satisfy the following constraints:

1. The diagonal elements of Σt must be greater than zero, i.e. diag(Σt) > 0. The
elements cannot have negative or zero variance.

2. Σt is positive definite.

3. Stationarity: meaning there exist a long-run average ofΣt that is finite and constant
with respect to t.

For a univariate GARCH(1,1) model, the variance can be described as:

σ2
t = ω + αε2t−1 + βσ2

t−1. (4.11)

In this case the long-run average variance is

σ2 = E[σ2
t ] = ω(1− α− β)−1 (4.12)

under the assumption that (α+ β) < 1. Engle & Kroner (1995) extended the univariate
GARCH(1,1) to a MGARCH(1,1) model by a general formulation termed BEKK(p,q):

Σt = CCT +

q∑
i=1

Aiεt−1ε
T
t−1A

T
i +

p∑
i=1

BiΣt−1B
T
i (4.13)

For n = 2 assets, and p = q = 1, we get

Σt = [
σ11,t σ12,t

σ21,t σ22,t

]
= CCT +

[
a11 a12

a21 a22

] [
ε21,t−1 ε1,t−1ε2,t−1

ε2,t−1ε1,t−1 ε22,t−1

] [
a11 a21

a12 a22

]
+[

b11 b12

b21 b22

] [
σ11,t−1 σ12,t−1

σ21,t−1 σ22,t−1

] [
b11 b21

b12 b22

]
(4.14)

with number of parameters equal to 11 for n = 2 assets. The number of parameters
to estimate drastically increases as n increases. For n = 3 we have 24 parameters to
estimate. The large number of parameters to estimate is a disadvantage of using the
BEKK(1,1)-model. Since we are working with n = 3 assets classes and a number of
macroeconomic variables, the BEKK(1,1) may be hard to estimate.
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4.3.2 How does the inclusion of Macroeconomic variables affect the volatility of
asset returns?

By adding the return series of a macroeconomic variable to our multivariate GARCH
model, we effectively increase the dimension of the variance covariancematrix. By doing
so, the volatility of the asset returns will be affected by the conditional volatility of the
macroeconomic variable. This is governed by the matricesA andB. If we defineA and
B as lower triangular matrices then

σ11,t = c2
11 + a2

11ε
2
1,t−1 + b211. (4.15)

This implies that the volatility of asset returns is unaffected by the volatility of the added
macroeconomic variable. However, if we instead define A and B as full symmetric
matrices, such as in the BEKK(1,1) model, then

σ11,t = c2
11+

(a2
11ε

2
1,t−1 + 2a11a12ε1,t−1ε2,t−1 + a2

12ε
2
2,t−1)+

(b211σ11,t−1 + 2b11b12σ12,t−1 + b212σ22,t−1).

(4.16)

In this scenario, the volatility of the macroeconomic variable does affect the volatility of
the asset returns through a one period lag. The formulation in equation 4.16 is the one
we use in the modeling procedure. The matrixC is defined as a lower triangular matrix,
and by multiplying CCT we obtain the long-run variance covariance matrixH .

4.3.3 Alternative models

Volatility is a measure of risk and can be estimated using various methods. In appendix
D we introduce another improvement on the simple volatility calculation, namely the
Exponentially weighted Moving Average (EWMA).

The EMWA and the BEKK(1,1) are quite similar models in estimating volatility. The
EMWA essentially lags two variables, variance and squared return, while the MGARCH
adds one more term to the model. The essential difference between the MGARCH and
the EMWA is that the MGRACH is going to incorporate mean reversion by adding the
third term, the long rung average. This comes from the idea that if the variance strays
from a long run average it will be somewhat persistent to that long run average. In this
thesis we will use the BEKK(1,1) model for the modeling procedure, however, one could
have performed the study with a EMWA model 3.

4.4 Testing Conditional Heteroskedasticity

Before using any of the volatility models described above, we need to perform some
test on the data to see if the errors are in fact conditionally heteroskedastic. If no het-
eroskedastic effects are present in the data, then Σt is time invariant. There are various
statistical tests for testing conditional heteroskedasticity. In the following tests εt is a
noise process and we employ the second moment of εt (volatility) when testing for het-
eroskedasticity. We want to test the null hypothesis of an uncorrelated noise process
against the alternative hypothesis of heteroskedastic effects being present.

3Markus Andersson (2018) used a EMWA model to test if macroeconomic variables could improve
Tactical asset allocation in the Swedish stock market.
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4.4.1 The Portmanteau Test

Here we want to test if the firstm values in the autororrelation function is 0. The classical
Portmanteau statistic was proposed by Box & Pierce (1970) and will be used in our time
series framework to test

H0 : ρ
(a)
1 = ρ

(a)
2 = . . . = ρ

(a)
m = 0,

against H0 : ρ
(a)
i 6= 0 for some i ∈ {1, . . . ,m}.

(4.17)

Here ρ(a)i is the i’th lagged correlation matrix of ε2t . We use the Ljung-Box test statistic:

Q∗k(m) = T 2
m∑
k=1

1

T − i
bTi (ρ̂

(a)−1
0 ⊗ ρ̂(a)−1

0 )bi. (4.18)

Where k = dim(εt), T is the length of the time series, bi = vec(ρ̂i) and ⊗ is the
Kronecker product.

4.4.2 The Rank-Based Test

According to Bradley & Taqqu (2003), there is a lot of empirical evidence to suggest
that the distribution of financial returns is in fact not normal. Asset returns tend to have
slightly heavier tails than the normal distribution. Extreme versions of this can have
effects on the Portmanteau Test, and it may result in the test presenting a false result.
Therefore we consider another test, the Rank-Based test, in combination with the Port-
manteau Test. The two tests will both be considered and the results will be compared in
order to get a better result. We will see that when taking into consideration the heavy
tails of asset returns, the likelihood of rejecting H0 becomes slightly larger.

The test statistic for this model is presented by Šiman (2006) and takes the following
form:

QRB =
m∑
i=1

(ρ̃i − E[ρ̃i])
2

V ar(ρ̃i)
, (4.19)

where ρ̃l is the lag-l rank autocorrelation of the series. For a complete derivation of the
test, see Šiman (2006), pages 5− 9.

4.5 Method of Estimation

We estimate the parameters of the models by maximizing the log likelihood function. Let
f denote the multivariate normal density function, then the log likelihood is given by

l =
T∑
t=1

lt,

where lt = −N
2

ln(2π)− 1

2
ln(|Σt|)−

1

2
εTt Σ−1

t εt,

(4.20)

In order to maximize l we use the recursive algorithm introduced by Berndt et al. (1974).
This algorithm is implemented when maximizing the log likelihood, and is very useful
for estimating BEKK(1,1) processes.
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4.6 Asymptotic Theory for the MGARCH process

Under the correct model specification, and a sample size large enough, the univariate
GARCH model enables statistical inference with a good amount of confidence. For the
multivariate GARCH, however, asymptotic theory is rare. Users of the MGARCH typ-
ically assume asymptotic normality as a rule of thumb. The theory of estimation for
MGARCH processes is not as comprehensible as that of the univariate case. Some have
proposed different methods and theory on the asymptotic properties of the MGARCH
process. Tuncer (1994) for example, established weak convergence of the maximum
likelihood estimator of the BEKK(1,1) model. In this section we establish the asymp-
totic theory of the BEKK(1,1) process.

4.6.1 Notation

Recall the BEKK representation presented in chapter 4.3.1:

Σt = CCT +

q∑
i=1

Aiεt−1ε
T
t−1A

T
i +

p∑
i=1

BiΣt−1B
T
i , (4.21)

where CCT is positive definite, and Ai and Bi are real d × d matrices. The main
superiority of this model comes from the fact that it ensures positive definiteness of Σt.
The model does not necessarily need to be Gaussian, but we choose to work with the
Gaussian likelihood function. So the quasi maximum likelihood estimator θ̂ is given by
minimizing equation 4.20 (here we denote the parameter vector as θ). We also use the
following notation; ||.|| represents the Euclidean norm, applying to both matrices and
vectors. ||A||2 = Tr(ATA) =

∑
iA

2
i . The spectral radius of A is ρ(A). N(A) is the

square root of ρ(ATA).

4.6.2 Strong consistency

Jeantheau (1998) sets up 6 conditions under which the quasi maximum likelihood esti-
mator has strong consistency. They are:

1. Θ is compact (Θ is the parameter space).

2. ∀θ0 ∈ Θ has a unique ergodic, strictly stationary solution.

3. There exist a constant c such that ∀t, ∀θ ∈ Θ, det(Σt,θ) ≥ c.

4. ∀θ0 ∈ Θ, Eθ0 [|log(det(Σt,θ0)|] <∞.

5. The model is identifiable4.

6. Σt,θ0 is a continuous function of θ.

We must now make sure that the conditions hold for the BEKK(1,1) model that we use
in this thesis. To begin with, item 1 is always assumed. Item 2 is shown in the below
theorem by Boussama (1998). Note that we may represent equation 4.21 as

vech(Σt) = vech(CCT ) + Ã vech(εt−1ε
T
t−1) + B̃ vech(Σt−1), (4.22)

where Ã and B̃ are functions of θ.
4A statistical model P is identifiable if the mapping θ 7→ P is one-to-one. i.e. distinct values of θ

correspond to distinct probability distributions.
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Theorem 1 (Boussama, 1998) In the model given by equation 4.21, assume that the εt’s
admit a density absolutely continuous with respect to the Lebesgue measure, positive in
a neighborhood of the origin. Also, assume that

ρ(Ã+ B̃) < 1,

and let Y be defined by

Yt = (vech(Σt+1)T , vech(Σt)
T , . . . , vech(Σt−1)T , εTt , ε

T
t−1.

Then the recurrence relations between model 4.21 and 4.9 for Y have an almost surely
unique strictly stationary causal solution which constitutes a positive Harris recurrent
Markov chain which is geometrically ergodic and β-mixing5.

For full proof of theorem 1, see Comte & Lieberman (2003) and Boussama (1998).
Comte & Lieberman (2003) also prove that the remaining conditions are fulfilled for
the BEKK model. This is summarized in the theorem below.

Theorem 2 (Comte and Lieberman, 2003) For the BEKK(1,1) process defined in equa-
tion 4.21, and for θ̂ defined above, assume that

1. Θ is compact, (C), Ã, B̃ are continuous functions of θ, and there exists a c > 0
such that infθ∈Θ detC(θ) ≥ c ≥ 0.

2. The model is identifiable.

3. The rescaled error admit a density absolutely continuous w.r.t. the Lebesgue mea-
sure and positive in a neighborhood of the origin.

4. ∀θ ∈ Θ, ρ(Ã(θ) + B̃(θ)) < 1.

Then θ̂ is strongly consistent, that is, θ̂n → θ0, as n→∞.

4.6.3 Asymptotic normality

As employed by Basawa et al. (1976), the conditions for asymptotic normality of the
maximum likelihood estimator for a general stochastic process are:

1. − 1
T

∑T
t=1

∂2lt(θ0)
∂θ∂θ

P→ C1 when T → +∞ for a positive definite, nonrandom ma-
trix C1.

2. 1√
T

∑T
t=1

∂lt(θ0)
∂θ

L→ N(0, C) when T → +∞ for a nonrandom C.

3. For all i, j, k E(sup||θ−θ0||≤δ |
∂3lt(θ)

∂θi∂θj∂θk
|) is bounded for all δ > 0.

Under the assumptions of theorem 1 and 2 we see that condition 1 is satisfied if C1 is
finite and positive definite. Since

∂lt(θ)

∂θi
= TR(

∂Σt,θ

∂θi
Σ−1
t,θ − εtε

T
t Σ−1

t,θ

∂Σt,θ

∂θi
), (4.23)

we get, by using 4.10, that

Eθ0 [
∂lt
∂θi

(θ0)|Φt−1] = 0 a.s. (4.24)

5see Comte & Lieberman (2003), page 61-84.
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Further, by using theorem 1 and 2 it follows that

∂lt(θ0)

∂θ
(4.25)

is an ergodic, strictly stationary process. Hence, condition 2 is obtained6. Lastly, note
that the third condition follows from Basawa et al. (1976)’s condition B7.

Now that we have verified the conditions for asymptotic normality we can present a
theorem for convergence of the MLE. Before doing so, we must state that we require the
zt’s to be independent.

Theorem 3 (F. Comte, O.Lieberman, 2003) Under the assumptions

1. 1-4 of theorem 2, and C(θ), Ã(θ), B̃(θ) admit continuous derivatives up to order
3 on Θ,

2. the components of zt are independent,

3. εt admits bounded moments of order 8,

4. the initial value in Σ is drawn for the stationary ergodic law,

√
n(θ̂ − θ) D→ N(0, C−1

1 CC−1
1 ) as n→∞, under Pθ0 .

For complete derivation and proof of theorem 3, see Comte & Lieberman (2003), pages
61-81. The theorem establishes the asymptotic theory for the MGACH model (and more
specifically, the BEKK(1,1)model). By appealing to the conditions presented by Jeantheau
(1998) and by satisfying the assumptions of theorem 2, we can achieve asymptotic nor-
mality7. The result justifies applying statistical inference tools of the BEKK(1,1) model
by trusting the asymptotic normality, whereas without this theorem the tools were used
inattentively.

6see Comte & Lieberman (2003), pages 61-84.
7proven with the help of Basawa et al. (1976).
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5 Data issues Modeling Procedure

This chapter begins by discussing the choice of macroeconomic variables and by stating
the source of data. Section 5.3 covers the modeling part of the study.

5.1 Macroeconomic Variables

There are many potential macroeconomic variables that could be added to our allocation
model. However, we choose only to include two variables in our model, Swedish inflation
(CPI) and Purchaser Manager Index (PMI), as we find these variables most relevant and
since previous studies suggest including them. The motivation behind using inflation
in the model is because since investors seek real returns, the nominal return depend on
inflation. Also, Schwert (1989) argues that if inflation is uncertain, then volatility of asset
returns is reflected by the volatility of inflation. Theoretically there is a positive relation
between returns and inflation1. However, some research on the relation between asset
returns and inflation suggests the opposite of a positive relation 2. We want to investigate
the effects of inflation on the three chosen asset classes.

The Purchasing Managers Index measures the current business cycle of the Swedish
economy, partly for the manufacturing industry, and partly for the service sector. An in-
dex of PMI over 50 indicates growth while an index below 50 indicates economic decline.
The inclusion of PMI could positively effect our asset allocation strategy as we may get
a better understanding of where in the business cycle we are.

5.2 Data

We include three financial assets, each representing an asset class. These are Swedish
Equity, Swedish Bonds and Cash (a short government bond). As stated in section 2.1,
the asset classes are represented by one index each:
Swedish Equity is represented by SIX PRX, which reflects the average development of
companies on the Stockholm Stock Exchange.

Swedish Bonds is represented by OMRX Total Bond Index, which contains govern-
ment bonds issued by the Swedish state and secured mortgage bonds issues by mortgage
housing agencies.

Cash is represented by Swedish 3-month Treasury Bills.

The data consists of the monthly returns of the 3 market indexes as well as the monthly
1Irving Fisher’s theory on the nominal interest rate suggests that the real interest rate equals the nominal

interest rate minus the expected inflation rate. The theory of rational expectations also suggests a positive
relation between inflation and interest rates of returns.

2see Fama & Schwert (1977)
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(Swedish) CPI and PMI. The data is from 2008 to 2018 andwere sourced from theMercer
Data Bank. 3

5.3 Modeling Procedure

When looking at mutually traded public funds, there are essentially two main forms of
portfolio management, passive- and active management. Passive funds track a market
index and active funds aim to beat the index and generate alpha. In this thesis we consider
a passive strategy within each asset class, but actively managing how much of each asset
class to hold. The idea is to model the three financial assets with the goal of obtaining the
highest risk-adjusted return (sharpe’s ratio). We want to prove that the model containing
the influence of macroeconomic variables outperform the other investment strategies.

5.3.1 Investment strategies

Consider the following investment strategies of three investors:

Investor A invests under the mean-variance framework and invests using time varying
estimates of the Σt from a BEKK(1,1) model.

Investor B also invests using time varying estimates for Σt, similar to investor A. How-
ever, Investor B also incorporates the effects of the macroeconomic factor Swedish infla-
tion into the model.

Investor C invests with time varying estimates for Σt and the effects of macroeconomic
variables, similar to investor B. Investor C incorporates the effects of Swedish inflation
and PMI into the model.

The strategies adopted by Investor A, B and C are all self financing, meaning no ad-
ditional money is invested after time t = 0. Also, none of the investment strategies allow
short selling. Notice that the portfolios of investor A-C consists of three assets, where
w1 + w2 + w3 = 1. This means each investor has to be invested with his entire capital
in at least one of the three asset classes at all times. In this thesis we do not account for
any transaction costs for buying and selling assets. Since this simplification is adopted
by all investors, it should not affect the main result if macroeconomic variables can have
a positive influence on the asset allocation. For the same reason we assume all manager
fees are zero. In reality, passively managed funds tend to have lower manager fees that
funds with active management. However, we will not make any assumptions as to how
big price difference there is between the investors, we instead assume they all charge zero
in manager fee.

5.3.2 Time-varying procedure

Investor A, B and C compute the historical mean and the time-variant historical variance-
covariance matrix in each time step. Based on those estimates the weights are computed.
The investors then compute a new vector of means and a new variance covariance matrix
in each time point based on data from the past 9 years. Preferably we would have chosen
a longer time period, however, the data of the chosen indexes does not stretch back further
in time. In the study by Flavin & Wickens (2003) they use 30 years of historical data.

3Mercer Data Bank is a large collection of financial data, provided by Mercer Sweden
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Only using 9 years of historical data may be a slight drawback, however, since 2008 the
Swedish financial market has experienced both extreme bullish- and bearish conditions,
which indicates the data should be sufficient to draw some conclusions.

The investment strategies are compared by the following procedure: 4

1. Begin by creating log returns of the data.

2. Test for Cross-correlation.

3. Test for Conditional heteroscedasticity.

4. Estimate the expected returns by using a 9-year rolling average.

5. Estimate the Σt with the BEKK(1,1) model.

6. Compute portfolio weights w at time t.

7. Calculate the return for the investor by multiplying the weights w by the actual
returns at time t+ 1.

8. Repeat step 1-7 for the remaining time periods.

For Investor A, µ is a 3× 1 vector and Σt is a 3× 3 matrix. Investor B incorporates the
macroeconomic variable inflation in the model, and thus µ becomes a 4 × 1 vector and
Σt becomes a 4 × 4 matrix. In that case, a sub-vector and sub-matrix of µ and Σt are
used to calculating the portfolio weightsw. Hence, for investor C, Σt is a 5× 5 matrix.
This means the macroeconomic variables inflation and PMI both effect both µ and Σt,
but neither are part of the weights, i.e. investor B and C do not invest in inflation nor
PMI, since those are not asset classes.
All of the investment strategies are conducted from the perspective of a Swedish investor.
Each of the investors is assumed to choose an optimal portfolio, a minimum variance
portfolio, and a few other portfolios with the lowest possible level of volatility for a given
return on investment.

As mentioned above, the variance covariance matrix is modeled by using the BEKK(1,1)
model, and the portfolio weights are rebalanced each month based on the estimates of the
BEKK model. The returns of the portfolios are then computed by

Rp = Co

12∏
t=1

(w1,tR1,t + w2,jR2,t + w3,jR3,t), (5.1)

where C0 is the invested capital at t = 0, which is 2017-01-31. The re-balancing is
performed for next 12 months for a number of different portfolios. The goal is to compare
the three investment strategies in terms of risk adjusted returns and ultimately comment
if the addition of macroeconomic variables can be beneficial for tactical asset allocation.

4Procedure suggested by Markus Andersson (2018) in an interview on tactical asset allocation modeling
in R based on macroeconomic variables. Markus performed a similar study in 2015, where he investigated if
therewas a connection between the components in themacroeconomic environment and portfolios consisting
of equities from OMX Stockholm 30.
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5.4 Testing

After transforming the price data to log returns, we start of with testing for cross corre-
lation by using the Portmanteau test. See section 4.4.1 test details. In R, the function mq
from theMTS package can be utilized for obtaining the Portmanteau test statistic. We test

Listing 5.1. R output Portmanteau test
> test <- mq(rtnn3 , lag = 10)
Ljung -Box Statistics:

m Q(m) df p-value
[1,] 1 121 25 0
[2,] 2 243 50 0
[3,] 3 343 75 0
[4,] 4 436 100 0
[5,] 5 532 125 0
[6,] 6 619 150 0
[7,] 7 702 175 0
[8,] 8 774 200 0
[9,] 9 827 225 0

[10,] 10 871 250 0

for 10 lags and find that the null hypothesis of zero cross correlation can be rejected on
any level of significance. We also test for zero conditional heteroscedasticity. By using
the Marchtest in R, we get:

Listing 5.2. R output Testing for conditional heteroscedasticitytest
> MarchTest(rtnn3 , lag = 10)
Q(m) of squared series(LM test):
Test statistic: 137.8069 p-value: 0
Rank -based Test:
Test statistic: 66.34859 p-value: 0.0000000002236091
Q_k(m) of squared series:
Test statistic: 776.4933 p-value: 0
Robust Test (5%) : 504.3756 p-value: 0

The results show that the null hypothesis of zero conditional heteroscedasticity can be
rejected on any level of significance. This indicates we can start modeling with a time
series model such as the BEKK(1,1).
The next step is to calculate the historical means of each of the assets, by creating a 9-
year rolling average. After this, the BEKK(1,1) model is formed for each of the investors.
Portfolio weight are hereby computed based on the historical means and the time depen-
dent variance covariance matrices from each time point
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6 Results

6.1 What does the data say?

Figure 6.1 shows the development of the market indexes SIX PRX, OMRX Bond, T-bill
and the macroeconomic variables the most recent 10-year period. SIX PRX, OMRX
Bond, T-bill and CPI (inflation) are all indexed to 100 in the beginning of 2008, while
PMi is not transformed, taking on values from around 50, where values over 50 indicates
bullish market conditions and values below 50 indicate bearish market conditions. The

Figure 6.1. Figure showing historical data of the 10-year period 2008-2018 of the the securities SIX PRX,
OMRX Bond, T-bill combined with the macroeconomic variables Swedish CPI (inflation) and PMI

graph shows that the development on the Swedish equity market has been very strong
over the past 10 years, while the bond market has progressed slower. An interesting
observation is the seemingly large correlation between PMI and SIX PRX, especially
during the first 2-3 years of the 10-year period. After the end of 2013, the correlation
seems to vanish, and one can even suspect a negative relation between the two time series.
Based on the figure, it seems that PMI is strongly correlated with the Stock market during
times of extreme market stress, while not as strongly connected during calmer market
conditions.

6.2 Conditional Mean

The 9-year rolling averages from the data can be found in table A.1 in appendix B. One
could have adopted a time series model in order to predict the expected means, however,
Flavin & Wickens (2003) argues that there is little evidence in good predictability of
asset returns. In their study, the estimates for their asset returns based on a BEKK(1,1)
model show that the financial asset returns cannot be easily predictable, based on their
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data. They found that the only significant coefficient in their BEKK model was for UK
equities. They argue that obtaining significance in the coefficient for equity is consistent
with having a substantial equity premium.

Because of the lack of significance we choose to adopt another approach for calcu-
lating expected returns. Given the poor evidence of good predictability in the time series
models, we choose to use a vector of historical means as our expected return data. Job-
son & Korkie (1981) show that this approach can improve portfolio performance when
adopting the Markovitz portfolio selection. In their original paper from 1998, Flawin
and Wickens also argue that this approach can be beneficial over the estimated parameter
means from the BEKKmodel. Re-balancing based on changes in the predicted returns is
counter productive because the lack of evidence of good predictability of asset returns.
This means taking on transactions costs that ultimately may not lead greater portfolio
performance.

6.3 Conditional Variance-Covariance Matrix

Due to greater persistence, the same argument is not true for re-balancing due to changes
in the conditional variance. The estimated time varying variance-covariances matrices
show that both inflation and PMI play an important role, both short term and long term.
The long run variance-covariance matrix is obtained by multiplying CCT = H . For
investor C, it’s given by (in %):

H =

EQ Bonds Cash Inf PMI


0, 1679 −0, 0559 0, 0007 0, 0000 −0, 0046
−0, 0559 0, 0198 −0, 0002 −0, 0013 −0, 0019
0, 0007 −0, 0002 0, 0002 0, 0063 −0, 0019
0, 0000 −0, 0013 0, 0063 0, 0024 −0, 0110
−0, 0046 −0, 0019 −0, 0019 −0, 0110 0, 3393

(6.1)

It seems that the strongest correlation between a macroeconomic variable and the
securities is the one between inflation and T-bill, which isH43 = 0.0063%. This makes
intuitive sense because inflation and inflation expectations are key factors in determining
the interest rates of Treasury bills. Historically, periods of high inflation are usually
associated with with relatively high interest rates on Treasury bills.1. We also make the
observation that there is a negative sign on the covariance between Swedish equities and
PMI (H51). Based on figure 6.1 it seems that in times of market stress PMI and Swedish
equity have a strong positive correlation, whilst in the long run the correlation between
the two time series is not as strong, and has a negative coefficient. Of course, some
of the relationships inflation has with the securities may in large be explained by the
strong negative correlation between inflation and PMI. Therefore it could be of interest
to look at the long run correlation matrix of investor B, where inflation is the only present

1This is consistent with an article published by the Federal Reserve of San Fransisco in the Dr. ECON
(December 2000) educational section, titled "What makes Treasury bill rates rise and fall? What effect does
the economy have on T-Bill rates?"
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macroeconomic variable. H for investor B is given by (in %):

H =

EQ Bonds Cash Inf


0, 203 −0, 003 0, 028 −0, 018
−0, 003 0, 005 0, 012 0, 008
−0, 028 0, 012 0, 115 0, 073
−0, 018 0, 008 0, 073 0, 046

(6.2)

The matrix shows there is a positive relationship between inflation and both the
Swedish Bond market and the Swedish Treasury bill, however, the relation with the T-bill
is of much greater significance. This can be explained, in part, by the actions taken by
the Swedish central bank based on inflation and inflation expectations. Rising inflation
may cause the central bank to raise the interest rate on the (short term) Treasury bill in
order to reduce the demand for credit and thus prevent the economy from overheating.
When the central bank imposes such a raise to the short term interest rate, then long term
interest rates tend to go up as well. This can be seen in the positive sign of both the
correlation between inflation and the bond marketH42, and the correlation between the
short term treasury bill and the bond marketH32. The negative sign on the covariance
between Swedish equity and inflationH41 indicates a long term inverse relationship be-
tween equity returns and inflation. This is consistent with the findings by Groenewold
& Fraser (1997) in their study on share prices and macroeconomic factors. A negative
long-run covariance between the Swedish stock market and inflation suggests that high
inflation volatility is associated with lower volatility on Swedish equity returns.

There is quite a large number of significant estimates in the matrices A and B, to
be found in appendix A.2 with their corresponding t-statistics. This suggests that the
in the short run, the conditional variance covariance matrices differ from the long run
covariance H . In models such as the BEKK(1,1), there are quite a large number of
coefficients to estimate. The most relevant ones are placed along the main diagonals of
the matricesC,A andB. Those parameters should be statistically significant, otherwise
there might be some doubt in using the MGARCH error structure in the first place. Many
of the coefficients in the off diagonal are not significant, which suggests they may be zero.
However, one can still choose to keep them in the model. In rough terms, the greater the
diagonal elements ofA andB, the larger deviation in the short run covariances from the
long run covariances.

Figures B.2, B.3 and B.4 in appendix B, show the conditional variances, together
with the long run variance for each of the three securities, based on investor B’s volatil-
ity model. We see that the short term deviances from the long run are quite substantial
during certain times (especially during 2008-2009). The conditional variances are usu-
ally above the long-run values, especially for the Swedish equity. This indicates that
Investor B could, for some time periods, hold less less Swedish equity compared to what
the long-run variance implies. The inverse is true for other time periods. Similar plots
can be found for investor C (B.5,B.6,B.7), where a similar pattern can be spotted. The
impact of the macroeconomic variables on the short term volatility of asset returns is an
important factor. When looking at the t-values for investor C, presented in appendix A.2,
one can see that bothB51,A51 andA15 are highly significant coefficients. This suggests
PMI does have a strong impact on Swedish equity variance in the short-run. PMI does
seem to impact OMRX Bond and the treasury bill as well, but not to the same extent as
the impact on SIX PRX. The coefficientsA52 andA53 are marginally significant, while
B52 and B53 are not. Inflation also seems to play a vital role in determining short term
volatility. SIX PRX seems to be least affected of the impact of inflation, suggested by the
low t-values of the coefficient affecting inflation in matrices A and B, both for investor
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B and C. Inflation seems to have greater impact on T-bill and OMRX Bond. Taking all
the t-values of the estimated coefficients into account, the results as a whole suggest that
even though asset returns are seemingly hard to predict, asset return volatility is both time
varying and more predictable, especially given the effects of the macroeconomic envi-
ronment. This preliminary result suggests that the inclusion of macroeconomic variables
will cause some different re-balancing compared to a model without macroeconomic
variables, especially for portfolios with expected return between the minimum variance
portfolio and the optimal portfolio.
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7 Portfolio Selection

7.1 The Efficient Frontier

In chapter 3 we described all the necessary tools that are needed to calculate portfolios
along the efficient frontier. To do so, one needs estimates of the expected returns and the
variance covariance matrix. With the theory on modern portfolio theory combined with
the theory on volatility modeling (presented in chapter 4), we are now able to calculate
a set of efficient portfolios that lie on the efficient frontier. Based on the historical data,
we calculate monthly 9-year rolling averages as a proxy for the expected returns. Next
we use the BEKK model to generate time varying variance covariance matrices, one for
each of the 12 time periods.For each investor, the distribution of frontiers generated from
the 12-month re-balancing period will be plotted in the mean-variance field. Figure 7.1
shows the aggregated set of portfolios for the three investors. We see that the inclusion of
the macroeconomic factor offers superior risk return combinations for portfolios with rel-
atively low expected return. For portfolios with higher expected return, the effect seems
to vanish, and none of the compared investment strategies seems to be superior. Another

Figure 7.1. Figure showing the distributions of efficient frontiers aggregated in the mean-variance plane.

important observation is that the optimal portfolio for each of the investors is drastically
reduced when including the macroeconomic variables. Investor B and C achieve their op-
timal portfolio at a monthly return of 0.13% and 0.11% respectively, while investor A’s
optimal portfolio has a expected return of 0.31%. Figure 7.1 really shows that taking into
account the macroeconomic factors results in part of the distribution of efficient frontiers
shifts to the left. It seems that the macroeconomic factors help to predict the asset return
volatilities and thus making investors shift away from more volatile asset classes when
needed, based on the macroeconomic environment. Tables 7.1,7.2, and 7.3 show each of
the the portfolios with their corresponding mean and standard deviation, for each of the
investors.
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7.2 Portfolio Selection

When comparing the different investors and their investment strategies, we look at 5 dif-
ferent portfolios along the efficient frontier. They include the minimum variance portfo-
lio (MVP), the optimal portfolio (OP), the portfolios with 0.2%,0.3%- and 0.4% monthly
target return. We also calculate some other dots along the portfolio line to match the ex-
pected return of investor A optimal portfolio with investor B- and C’s optimal portfolio,
and vice versa.

Table 7.1. Average mean, standard deviation, sharpe ratio and weightings for investor A over the 12 re-
balancing periods.

Averages Minimum 0.13% Optimum
Target Return: 0.05% 0.13% 0.31% 0.20% 0.30% 0.40%
SD 0.29% 0.38% 0.74% 0.51% 0.78% 0.99%
Sharpe 0.23 0.37 0.44 0.40 0.39 0.40
Average Weights
SIX PRX 0.19% 2.51% 7.55% 4.30% 6.97% 12.54%
OMRX Bond 0.00% 20.14% 69.66% 39.86% 67.54% 87.41%
T-bill 99.81% 77.35% 22.79% 55.84% 25.49% 0.05%

Tables 7.1, 7.2 and 7.3 show the aggregate set of portfolios for different levels of
expected return for each of the investors. By comparing the average Sharpe ratios over
for the different investors, we see that for the lower values of expected return, investor B
and C clearly outperform investor A in terms of Sharpe’s ratio.

Table 7.2. Average mean, standard deviation, Sharpe ratio and weightings for investor B over the 12 re-
balancing periods.

Averages Minimum 0.30% Optimum
Target Return: 0.06% 0.30% 0.13% 0.20% 0.40% 0.50%
SD 0.16% 0.71% 0.27% 0.45% 1.02% 1.79%
Sharpe 0.34 0.44 0.49 0.47 0.41 0.31
Average Weights
SIX PRX 0.25% 5.49% 2.25% 3.40% 13.17% 30.31%
OMRX Bond 0.39% 71.47% 21.11% 42.18% 84.59% 69.69%
T-bill 99.36% 23.04% 76.64% 54.42% 2.25% 0.00%

We also notice some differences in terms of the weights of each of the strategies,
especially for portfolios that lie in-or around the optimum. As expected return increases,
the weightings of the investors converge and the difference between the strategies fades.

Table 7.3. Average mean, standard deviation, Sharpe ratio and weightings for investor C over the 12 re-
balancing periods.

Averages Minimum 0.30% Optimum
Target Return: 0.06% 0.30% 0.11% 0.20% 0.40% 0.50%
SD 0.16% 0.76% 0.23% 0.48% 1.07% 2.25%
Sharpe 0.39 0.39 0.48 0.42 0.38 0.24
Average Weights
SIX PRX 0.00% 9.39% 1.64% 5.39% 13.76% 29.30%
OMRX Bond 3.56% 60.53% 14.27% 36.72% 83.16% 72.80%
T-bill 96.44% 30.08% 84.10% 57.90% 3.08% 0.15%
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The average equity shares for the optimal portfolios differs quite substantially be-
tween investor A and B,C. This is due to the large difference in expected return in the
optimal portfolio of each investor. When looking at other portfolios, we see that investor
C has increased equity shares compared to the other investors. This can be explained by
the negative correlation of Swedish equity returns and PMI. Another difference is in the
MVP weightings, where we can see that investor C seems to prioritize OMRX Bond over
Swedish equity, compared to the other investors. This seems to yield an overall greater
Sharpe’s ratio for the MVP, especially compared to investor A.

7.3 Performance

In order to further determine whether the macroeconomic factors improve portfolio per-
formance, we now compare the returns of each of the investment strategies for the given
12-month testing period. Ultimately, a longer testing period would be preferable, but
longer data for some of the indexes was not available by the data provider1. For a number
of different portfolios, we compare the portfolio returns of each investor and compare
the weights in each time period. Table 7.4 shows the weights for each of the investors

Table 7.4. Returns and calculated weights in each time period for each investor in the Minimum Variance
Portfolio.

MVP 2017-03-31 2017-04-30 2017-05-31 2017-06-30 2017-07-31 2017-08-31 2017-09-30 2017-10-31 2017-11-30 2017-12-31 2018-01-31 2018-02-28 Total 12 month

Weight Manager A SIX PRX 0.19% 0.19% 0.19% 0.19% 0.19% 0.19% 0.19% 0.19% 0.18% 0.19% 0.19% 0.19%
Weight Manager B SIX PRX 0.48% 0.00% 0.53% 0.00% 0.03% 0.22% 0.00% 0.36% 0.55% 0.18% 0.00% 0.65%
Weight Manager C SIX PRX 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Return SIX PRX 2.12% 4.27% 1.71% -1.98% -3.07% -0.86% 5.45% 2.10% -3.56% -1.27% 1.56% -0.73% 5.426%
Weight Manager A OMRX Bond 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Weight Manager B OMRX Bond 1.11% 0.00% 0.00% 0.00% 0.00% 1.48% 0.00% 0.00% 0.00% 0.00% 1.27% 0.80%
Weight Manager C OMRX Bond 2.32% 1.09% 2.39% 5.25% 4.52% 3.78% 2.18% 3.94% 2.49% 4.93% 6.00% 3.85%
Return OMRX Bond -0.21% 0.23% 0.40% -0.58% -0.05% 0.33% -0.26% 0.42% 0.30% -0.36% -0.30% 0.40% 0.312%
Weight Manager A T-bill 99.81% 99.81% 99.81% 99.81% 99.81% 99.81% 99.81% 99.81% 99.82% 99.81% 99.81% 99.81%
Weight Manager B T-bill 98.41% 100.00% 99.47% 100.00% 99.97% 98.30% 100.00% 99.64% 99.45% 99.82% 98.73% 98.55%
Weight Manager C T-bill 97.68% 98.91% 97.61% 94.75% 95.48% 96.22% 97.82% 96.06% 97.51% 95.07% 94.00% 96.15%
Return T-bill -0.06% -0.06% -0.05% -0.04% -0.07% -0.09% -0.07% -0.05% -0.05% -0.08% -0.12% -0.02% -0.742%
Total return A -0.06% -0.05% -0.05% -0.04% -0.07% -0.09% -0.06% -0.04% -0.05% -0.08% -0.11% -0.02% -0.7300%
Total return B -0.05% -0.06% -0.04% -0.04% -0.07% -0.08% -0.07% -0.04% -0.06% -0.08% -0.12% -0.02% -0.7369%
Total return C -0.06% -0.06% -0.04% -0.07% -0.06% -0.07% -0.07% -0.03% -0.04% -0.10% -0.13% 0.00% -0.7292%

allocation in each time period during the twelve months. The actual returns of each asset
class is also shown. As indicated by the table, all investors perform poorly for the MVP.
This is due to the clear overweight in T-bill for each investor, and T-bill has had negative
returns throughout the entire time period. We see a slight superiority in in the return
of investor C, but the difference is minimal. When we look at portfolios with higher
expected return than for the MVP, investor C outperforms investor A in most cases. It
seems that investor C produces better risk adjusted returns for lower values of expected
returns, but the effect seems to vanish as expected return goes up. Table 7.5 shows that
investor C is the only investor that generates a positive return over the 12-month period
for portfolios with expected return 0.2%. In fact, for all the investigated portfolios, the
only times investor A outperforms investor C in the 12-month period is for the optimal
portfolio and for the portfolio with expected return of 0.4%. This result in the OP can be
explained by the fact that investor A has much higher expected return in the OP (0.31%
for investor A compared to 0.11%).This means investor A will likely generate a higher
return than investor C in the OP, but compensated with a much larger volatility. As sug-
gested by figure 7.1, the superiority of adding macroeconomic factors seems to vanish
when increasing expected return, and thus when we reach the point of 0.4% it seems that
the effect has faded. Based on our data, the fast majority of excess gains that can be made

1Mercer data bank.
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from taking into account the macroeconomic environment lies in the portfolios ranging
between the MVP and the OP of investor A. Similar tables for the optimal portfolio, and
portfolios with expected return of 0.3% and 0.4% can be found in appendix B. ( B.1, B.2,
B.3).

Table 7.5. Returns and calculated weights in each time period for each investor, with expected return 0.2%.

0.20% 2017-03-31 2017-04-30 2017-05-31 2017-06-30 2017-07-31 2017-08-31 2017-09-30 2017-10-31 2017-11-30 2017-12-31 2018-01-31 2018-02-28 Total 12-month

Weight Manager A SIX PRX 3.35% 3.55% 3.47% 3.36% 3.56% 3.81% 3.89% 4.29% 5.03% 5.35% 6.06% 5.93%
Weight Manager B SIX PRX 1.45% 0.00% 4.03% 1.11% 3.36% 2.95% 0.88% 4.18% 8.08% 6.05% 5.09% 3.62%
Weight Manager C SIX PRX 5.46% 4.83% 5.69% 4.08% 4.17% 4.35% 6.83% 4.99% 5.79% 4.96% 6.27% 7.25%
Return SIX PRX 2.12% 4.27% 1.71% -1.98% -3.07% -0.86% 5.45% 2.10% -3.56% -1.27% 1.56% -0.73% 5.426%
Weight Manager A OMRX Bond 38.40% 39.45% 39.29% 39.43% 37.37% 40.19% 41.67% 39.37% 38.08% 39.48% 43.75% 41.82%
Weight Manager B OMRX Bond 42.83% 48.24% 37.94% 44.50% 37.91% 42.52% 49.71% 39.74% 24.38% 36.19% 48.56% 53.65%
Weight Manager C OMRX Bond 33.47% 36.27% 33.96% 37.79% 35.72% 38.72% 33.82% 37.01% 34.69% 41.33% 42.70% 35.11%
Return OMRX Bond -0.21% 0.23% 0.40% -0.58% -0.05% 0.33% -0.26% 0.42% 0.30% -0.36% -0.30% 0.40% 0.312%
Weight Manager A T-bill 58.25% 57.00% 57.24% 57.22% 59.07% 56.00% 54.44% 56.34% 56.88% 55.17% 50.19% 52.24%
Weight Manager B T-bill 55.72% 51.76% 58.03% 54.39% 58.73% 54.53% 49.41% 56.07% 67.54% 57.76% 46.34% 42.73%
Weight Manager C T-bill 61.08% 58.90% 60.35% 58.13% 60.11% 56.93% 59.35% 58.00% 59.52% 53.71% 51.02% 57.65%
Return T-bill -0.06% -0.06% -0.05% -0.04% -0.07% -0.09% -0.07% -0.05% -0.05% -0.08% -0.12% -0.02% -0.742%
Total return A -0.05% 0.21% 0.19% -0.32% -0.17% 0.05% 0.06% 0.23% -0.09% -0.26% -0.10% 0.11% -0.119%
Total return B -0.09% 0.08% 0.19% -0.30% -0.16% 0.07% -0.12% 0.23% -0.25% -0.26% -0.12% 0.18% -0.545%
Total return C 0.01% 0.25% 0.20% -0.32% -0.18% 0.04% 0.24% 0.23% -0.13% -0.26% -0.09% 0.08% 0.071%

The OP’s of investor B and C has a lot lower expected return than the OP of investor
A, however the main difference lies in the risk of the OP’s. In every time period the
risk associated with the OP is much lower for investor B and C. This is evidenced by the
increased average Sharpe ratio of 0.48 for investor C, compared to 0.44 for investor A,
which is an increase of 9%.

In order to get a better view of how the different investors re-allocate between asset
classes we study figure 7.2 below, which shows the portfolio weight of equities for each
of the investors combined with the development of SIX PRX during the given time pe-
riod, with a monthly target return of 0.20%. The figure shows that Investor C is slightly

Figure 7.2. Figure showing the portfolio weights of Equities for each of the investor for the whole testing
year. The weights are based on a target portfolio return of 0.20%.

superior at predicting asset returns of SIX PRX, compared to the other two investors.
This can be recognized by looking at the first three months of the observed time period.
Here the stock market is performing well, and hence Investor C has an overweight in eq-
uities compared to the other investors. However, in the poorly performing months of the
year, such as in November, Investor C has a relative underweight in equities compared
to his competitors. A similar plot for the fixed income portion of the portfolio can be
found below in figure 7.3. The figure shows the weight of OMRX Bond for each of the
investors, with a monthly target return of 0.20%. As indicated by figure 7.3, investor C
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Figure 7.3. Figure showing the portfolio weights of Bonds for each of the investor for the whole testing year.
The weights are based on a target portfolio return of 0.20%.

seems to time the market slightly better than his opponents. Let us look at the month
of November again. We saw in figure 7.2 that equities were performing poorly during
this month, and thus investor C had an underweight in equities. We can also see that the
Bond market had two consecutive good months in October and November, and investor
C seems to catch that upward trend slightly better than investor A and B. This is indicated
by the relative overweight of OMRX bond of investor C relative to other months of the
year. Other months, when the Bond market wasn’t performing as well, we can see that in-
vestor C shifts away from that asset class relative to the other investors. Look at June and
December for instance. Those are both months of negative monthly return and the two
lowest returns of the entire year. During those months investor C had the least amount of
share in the bond market of the three investors. This indicates that the investment strategy
adopted by investor C seems to move away from certain asset classes during times of mar-
ket stress and decline, while shifting capital towards more attractive asset classes during
those time periods. Similar patterns can be spotted for investors A and B, but the pace
which which those patterns occur is somewhat decreased when comparing to investor C.
This can be explained by the inclusion of the macroeconomic variables in investor C’s
investment strategy. Similar plots with a different monthly return target of 0.30% can be
found in appendix B. Analogous conclusions can be drawn from those plots as well.

Table 7.6 below shows a summary of the performance data from each of the portfo-
lios along the efficient frontier. The returns presented in the table are the realized yearly
returns for each of investors during the one year time period. The performance figures
marked bold show the winning investor for each given level of target return. We see that

Table 7.6. Table summarizing the results of each portfolio for the three investor strategies over the 12-month
testing period.

Portfolio Minimum 0,13% 0,20% Optimum 0,30% 0,40%
Total return A -0,7300% -0,422% -0,119% 0,345% 0,282% 1,260%
Total return B -0,7379% -0,683% -0,545% -0,618% -0,346% 0,857%
Total return C -0,7295% -0,345% 0,071% -0,489% 0,666% 1,156%

investor C is superior in most cases in regards to portfolio returns, followed by Investor A,
and thereafter investor B. Investor C outperforms investor A for every level of expected
return, except for the OP and the portfolio with 0.4% target return. The former can be
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explained in the increased target return in the OP for investor A makes creates an over-
weight equity compared to investor C. However, investor C compensates for the lower
return by a lower portfolio standard deviation and thus an increase in the Sharpe’s ratio
in the OP.

Based on this data, combined with the aggregated efficient frontier figure, we can
conclude that the greatest benefit of adding inflation and PMI to to the asset allocation
model lies in the potential of lowering the portfolio risk. This suggests that investors
who seek monthly returns in line with investor A’s optimal portfolio (or lower) should
consider adding macroeconomic factors to their investment model in order to reduce risk
and thus potentially generating greater risk adjusted returns.
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8 Conclusion

In this thesis we describe an asset allocation method that involves taking into account
the effects of macroeconomic variables. The model is based on the standard Markowitz
(1952) minimum-variance portfolio selection, but extended to such that we allow the
variance-covariance matrix to vary over time, and to reflect changes in the macroeco-
nomic environment. We build a tactical asset allocation strategy that involves continuous
re-balancing based on the predictions of short term changes in the variance covariance
matrix. We show that investors who extend this time varying model by adding macroe-
conomic factors can offer superior risk adjusted combinations of assets. We also show,
based on our data, that this methodology allows for significant increase in the Sharpe’s
ratio by gains in risk reduction.

The analysis involves three types of financial assets, and two macroeconomic vari-
ables. The financial assets are Swedish Equity, Swedish Bonds, and a 90-day Swedish
Treasury Bill. The macroeconomic variables are Swedish inflation and PMI. We model
the joint distribution of asset returns and the macroeconomic variables in such a way that
permits a time-varying variance-covariance structure of the joint distribution. This allows
the macroeconomic variables to influence the estimated variance-covariance matrices in
each time step, and thus influencing the portfolio weights and the efficient frontier. We
use a variant of a M-GARCH(1,1), called BEKK(1,1), to model the covariance of the
joint distribution. Other methods such as the EMWA could also be used.

We show that the impact of macroeconomic factors seem to reduce the risk compared
to the portfolio model with only asset returns. This is reflected in the Sharpe’s ratios sig-
nificant increase when adding CPI and PMI to the model. This means that risk-adjusted
returns are significantly higher when modeling with the influence of macroeconomic fac-
tors, compared to the model excluding them. As we saw in figure 7.1, the efficient fronter
shifts to the left in the lower part of the graph, allowing for greater risk adjusted returns.
The effect however, seems to fade as we increase expected return. Inflation and PMI
have significant impact on the conditional covariance of the financial asset returns. PMI
is negatively correlated with equity in the long run, but short run deviances from the long
run estimates are very obvious. Inflation also plays a vital role in estimating the short
term covariance matrices.

For future studies it could be of interest to investigate how this model would behave
when adding different types of asset classes. One could for instance categorize the eq-
uity asset class by adding indexes for small cap, mid cap and large cap. One could also
add foreign stocks and bonds, in addition to foreign CPI. Then comes the addition of al-
ternative investments, such as real estate and hedge funds. It would be interesting to see
how these asset classes would behave in relation to macroeconomic factors. Allowing a
greater number of asset classes might result in further diversification benefits and ulti-
mately greater risk-return combinations, especially considering macroeconomic factors.
Another interesting addition to this fairly simple model would be adding a more complex
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model for predicting asset returns. By using historical means we are able to prove that
macroeconomic factors may in fact improve asset allocation, but we could perhaps have
generated better returns by using a more complex model for calculating expected returns.

Another interesting extension to the study would be to test this tactical allocation with
annual re-balancing instead of monthly. As argued by Craig Israelsen (2010), annual re-
balancing seems to be the best protocol for a financial investor.

Conclusivelywe see that the gained informationwe get by taking into account themacroe-
conomic environment clearly refines the allocation procedure under theMPT framework.
From a risk-return perspective, investors adding macroeconomic variables to their tacti-
cal asset allocation model can offer greater risk-return combinations, notably for low
return/low risk targets.
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A Appendix Estimations

A.1 Historical Means

Table A.1. Table presenting the 9 year rolling averages of monthly mean log returns

Dates 9 year monthly return
Start date End date SIX PRX OMRX Bond T bill

2008-02-29 2017-01-31 0,71% 0,33% 0,08%
2008-03-31 2017-02-28 0,71% 0,35% 0,07%
2008-04-30 2017-03-31 0,74% 0,34% 0,07%
2008-05-31 2017-04-30 0,74% 0,35% 0,07%
2008-06-30 2017-05-31 0,72% 0,36% 0,06%
2008-07-31 2017-06-30 0,87% 0,36% 0,06%
2008-08-31 2017-07-31 0,84% 0,34% 0,05%
2008-09-30 2017-08-31 0,82% 0,34% 0,05%
2008-10-31 2017-09-30 1,01% 0,33% 0,05%
2008-11-30 2017-10-31 1,22% 0,30% 0,04%
2008-12-31 2017-11-30 1,22% 0,29% 0,04%
2009-01-31 2017-12-31 1,16% 0,26% 0,03%
2009-02-28 2018-01-31 1,24% 0,27% 0,03%

A.2 Bekk model estimates

A.2.1 Investor A

Investor A, parameter estimates of matrix C, A and B

C =

 0, 0546
−0, 0015 0, 0085
−0, 0001 0, 0006 0, 0009

 (A.1)

A =

0, 0999 0, 0996 0, 0990
0, 1000 0, 1000 0, 1000
0, 1000 0, 1000 0, 1000

 (A.2)

B =

−0, 0051 −0, 0053 −0, 0054
−0, 0051 −0, 0053 −0, 0053
−0, 0051 −0, 0053 −0, 0053

 (A.3)
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Investor A, t statistic of matrix C, A and B

t-values for the parameters in C =

30, 412
−1, 986 13, 969
−0, 135 3, 197 18, 421

 (A.4)

t-values for the parameters inA =

3, 216 0, 871 4, 495
0, 147 2, 472 5, 582
0, 009 0, 134 1, 796

 (A.5)

t-values for the parameters inB =

−2, 030 −0, 394 −1, 874
−0, 036 −3, 265 −0, 304
−1, 033 −1, 401 −1, 954

 (A.6)

A.2.2 Investor B

Investor B, parameter estimates of matrix C, A and B

C =


0, 044
0, 000 0, 006
0, 000 0, 000 0, 000
0, 008 −0, 004 −0, 034 −0, 021

 (A.7)

A =


−0, 070 0, 042 −0, 001 −0, 487
1, 531 −0, 271 0, 016 2, 016
2, 676 −2, 118 −1, 050 1, 570
−0, 097 −0, 006 0, 002 0, 603

 (A.8)

B =


−0, 006 0, 028 0, 008 −0, 050
−2, 211 −0, 265 −0, 023 0, 166
2, 629 0, 208 0, 013 −2, 016
0, 074 0, 000 −0, 001 −0, 227

 (A.9)

Investor B, t statistic of matrix C, A and B

t-values for the parameters in C =


5, 619
−0, 203 5, 596
−0, 371 −12, 224 0, 186
0, 460 −0, 483 −12, 231 −6, 216


(A.10)

t-values for the parameters inA =


−3, 589 1, 679 −0, 610 −3, 735
1, 734 −5, 872 1, 054 2, 209
0, 205 −2, 543 −6, 190 0, 199
−1, 409 −0, 173 0, 891 3, 662

 (A.11)

t-values for the parameters inB =


−4, 024 1, 810 3, 245 −0, 473
−2, 177 −3, 261 −0, 614 0, 221
0, 518 0, 514 3, 119 −0, 756
0, 288 −0, 063 −0, 845 −2, 011

 (A.12)
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A.2.3 Investor C

Investor C, parameter estimates of matrix C, A and B

C =


0, 0410
−0, 0136 −0, 0035
0, 0002 −0, 0001 0, 0013
0, 0000 0, 0036 0, 0001 0, 0033
−0, 0011 0, 0098 −0, 0143 −0, 0441 0, 0339

 (A.13)

A =


0, 212188 0, 069795 0, 017215 0, 04577 −0, 2061
1, 716601 0, 436405 −0, 04125 0, 248986 0, 670923
0, 461565 −0, 91643 −0, 0836 −1, 14787 0, 319919
−0, 32118 −0, 13101 0, 052992 −1, 85551 0, 844907
−1, 28298 0, 190471 −0, 01326 0, 023403 −0, 37688

 (A.14)

B =


−0, 29025 0, 007705 −0, 00393 0, 051305 0, 194701
0, 47728 0, 079119 −0, 03775 0, 114304 1, 158644
0, 354745 −0, 10254 −0, 19427 −0, 38245 0, 405342
0, 497329 −0, 24222 −0, 02131 −0, 21961 0, 002724
0, 669242 0, 017128 0, 004693 −0, 04322 0, 239951

 (A.15)

Investor C, t statistic of matrix C, A and B

t-values for the parameters in C =


9, 471
−39, 467 −2, 261

0, 326 −0, 449 11, 076
0, 002 3, 006 0, 098 2, 919
−0, 166 1, 077 −1, 463 −3, 551 4, 551


(A.16)

t-values for the parameters inA =


6, 146 2, 945 1, 736 1, 266 −3, 199
1, 262 5, 879 −1, 009 2, 972 2, 589
0, 055 −2, 405 −4, 178 −1, 652 0, 060
−1, 073 −0, 272 0, 689 −5, 899 0, 385
−14, 751 3, 363 −2, 049 1, 074 −3, 526


(A.17)

t-values for the parameters inB =


−2, 976 0, 203 −0, 600 2, 941 1, 995
1, 204 6, 220 −3, 237 4, 278 1, 928
0, 076 −0, 111 −4, 536 −1, 461 0, 180
1, 775 −2, 872 −0, 970 −4, 059 0, 003
6, 538 0, 561 1, 735 −1, 712 2, 093


(A.18)
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B Figures and Tables

Figure B.1. Figure showing historical data of the 10-year period 2008-2018 of the equity index Six PRX.

B.0.1 Investor B Conditional Variance plots

Figure B.2. Figure showing conditional volatility of the Swedish equity index Six PRX.
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Figure B.3. Figure showing conditional volatility of the Swedish Bond index OMRX Bond.

Figure B.4. Figure showing conditional volatility of the Swedish 90 day Treasury bill.

B.0.2 Investor C Conditional Variance plots

44



Figure B.5. Figure showing conditional volatility of the Swedish equity index Six PRX.

Figure B.6. Figure showing conditional volatility of the Swedish Bond index OMRX Bond.

B.1 Performance tables with weights
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Figure B.7. Figure showing conditional volatility of the Swedish 90 day Treasury bill.

Figure B.8. Figure showing the portfolio weights of Equities for each of the investor for the whole testing
year. The weights are based on a target portfolio return of 0.30%.

Figure B.9. Figure showing the portfolio weights of Bonds for each of the investor for the whole testing year.
The weights are based on a target portfolio return of 0.30%.
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Table B.1. Returns and calculated weights in each time period for each investors optimal portfolio.

Optimal 2017-03-31 2017-04-30 2017-05-31 2017-06-30 2017-07-31 2017-08-31 2017-09-30 2017-10-31 2017-11-30 2017-12-31 2018-01-31 2018-02-28 Totalt 12 mån

Weight Manager A SIX PRX 0.76% 7.70% 3.22% 7.60% 5.34% 8.03% 8.12% 2.13% 12.56% 11.29% 12.15% 11.70%
Weight Manager B SIX PRX 0.85% 0.00% 2.29% 0.01% 1.84% 1.62% 0.29% 3.10% 7.21% 4.30% 3.23% 0.65%
Weight Manager C SIX PRX 0.91% 0.23% 1.23% 0.75% 0.70% 0.66% 1.77% 1.75% 2.34% 2.15% 3.29% 0.00%
Return SIX PRX 2.12% 4.27% 1.71% -1.98% -3.07% -0.86% 5.45% 2.10% -3.56% -1.27% 1.56% -0.73% 5.426%
Weight Manager A OMRX Bond 3.51% 92.30% 36.01% 0.00% 59.40% 91.97% 91.88% 16.17% 87.44% 88.71% 87.85% 88.30%
Weight Manager B OMRX Bond 16.87% 2.85% 17.92% 0.00% 19.20% 22.61% 30.58% 28.21% 20.83% 24.94% 31.76% 29.53%
Weight Manager C OMRX Bond 7.97% 6.82% 9.40% 5.25% 11.44% 10.75% 10.81% 16.00% 15.52% 21.26% 25.82% 20.73%
Return OMRX Bond -0.21% 0.23% 0.40% -0.58% -0.05% 0.33% -0.26% 0.42% 0.30% -0.36% -0.30% 0.40% 0.312%
Weight Manager A T-bill 95.74% 0.00% 60.77% 0.00% 35.26% 0.00% 0.00% 81.70% 0.00% 0.00% 0.00% 0.00%
Weight Manager B T-bill 82.28% 97.15% 79.79% 91.94% 78.97% 75.77% 69.14% 68.70% 71.96% 70.76% 65.00% 68.21%
Weight Manager C T-bill 91.12% 92.95% 89.37% 84.56% 87.86% 88.59% 87.42% 82.26% 82.14% 76.59% 70.89% 75.43%
Return T-bill -0.06% -0.06% -0.05% -0.04% -0.07% -0.09% -0.07% -0.05% -0.05% -0.08% -0.12% -0.02% -0.742%
Total return A -0.05% 0.54% 0.17% -0.15% -0.22% 0.24% 0.20% 0.07% -0.19% -0.47% -0.07% 0.27% 0.345%
Total return B -0.07% -0.05% 0.07% -0.04% -0.12% -0.01% -0.11% 0.15% -0.23% -0.20% -0.12% 0.10% -0.618%
Total return C -0.05% -0.03% 0.01% -0.08% -0.08% -0.05% 0.01% 0.06% -0.07% -0.17% -0.11% 0.07% -0.489%

Table B.2. Returns and calculated weights in each time period for each investor, with an expected monthly
return of 0.3%.

0.30% 2017-03-31 2017-04-30 2017-05-31 2017-06-30 2017-07-31 2017-08-31 2017-09-30 2017-10-31 2017-11-30 2017-12-31 2018-01-31 2018-02-28 Totalt 12 mån

Weight Manager A SIX PRX 5.67% 5.94% 5.74% 5.49% 5.78% 6.12% 6.20% 6.79% 7.88% 8.34% 9.37% 10.27%
Weight Manager B SIX PRX 2.27% 0.00% 6.59% 2.07% 5.59% 4.91% 1.88% 6.70% 12.54% 9.62% 8.24% 5.47%
Weight Manager C SIX PRX 10.08% 9.00% 10.18% 7.79% 7.62% 7.72% 11.66% 8.56% 9.58% 8.33% 10.41% 11.78%
Return SIX PRX 2.12% 4.27% 1.71% -1.98% -3.07% -0.86% 5.45% 2.10% -3.56% -1.27% 1.56% -0.73% 5.426%
Weight Manager A OMRX Bond 69.70% 70.54% 69.42% 68.70% 64.79% 68.68% 70.41% 66.19% 63.41% 65.29% 71.30% 62.06%
Weight Manager B OMRX Bond 77.67% 85.25% 67.37% 76.41% 65.31% 71.97% 81.95% 66.51% 42.43% 59.28% 76.94% 86.57%
Weight Manager C OMRX Bond 59.39% 62.96% 58.75% 63.49% 59.84% 64.33% 55.82% 60.19% 55.75% 65.37% 66.12% 54.29%
Return OMRX Bond -0.21% 0.23% 0.40% -0.58% -0.05% 0.33% -0.26% 0.42% 0.30% -0.36% -0.30% 0.40% 0.312%
Weight Manager A T-bill 24.63% 23.52% 24.84% 25.81% 29.43% 25.20% 23.39% 27.02% 28.72% 26.37% 19.33% 27.68%
Weight Manager B T-bill 20.07% 14.75% 26.03% 21.52% 29.11% 23.12% 16.17% 26.80% 45.02% 31.11% 14.82% 7.96%
Weight Manager C T-bill 30.53% 28.05% 31.07% 28.72% 32.55% 27.95% 32.52% 31.25% 34.67% 26.31% 23.47% 33.93%
Return T-bill -0.06% -0.06% -0.05% -0.04% -0.07% -0.09% -0.07% -0.05% -0.05% -0.08% -0.12% -0.02% -0.742%
Total return A -0.04% 0.40% 0.37% -0.52% -0.23% 0.15% 0.14% 0.41% -0.11% -0.37% -0.09% 0.17% 0.282%
Total return B -0.13% 0.19% 0.37% -0.49% -0.22% 0.18% -0.12% 0.41% -0.34% -0.36% -0.12% 0.31% -0.346%
Total return C 0.07% 0.51% 0.40% -0.53% -0.28% 0.12% 0.47% 0.42% -0.19% -0.37% -0.06% 0.12% 0.666%

Table B.3. Returns and calculated weights in each time period for each investor, with an expected monthly
return of 0.3%.

0.40% 2017-03-31 2017-04-30 2017-05-31 2017-06-30 2017-07-31 2017-08-31 2017-09-30 2017-10-31 2017-11-30 2017-12-31 2018-01-31 2018-02-28 Totalt 12 mån

Weight Manager A SIX PRX 14.72% 15.06% 13.40% 12.06% 8.11% 11.70% 13.09% 10.25% 10.72% 5.35% 15.58% 13.84%
Weight Manager B SIX PRX 14.72% 15.06% 13.40% 12.06% 8.11% 11.70% 13.09% 10.25% 17.00% 13.19% 15.58% 13.84%
Weight Manager C SIX PRX 14.72% 15.06% 14.67% 12.06% 11.06% 11.70% 16.49% 8.56% 13.37% 11.99% 15.58% 16.32%
Return SIX PRX 2.12% 4.27% 1.71% -1.98% -3.07% -0.86% 5.45% 2.10% -3.56% -1.27% 1.56% -0.73% 5.426%
Weight Manager A OMRX Bond 85.28% 84.94% 86.60% 87.94% 91.89% 88.30% 86.91% 39.37% 88.73% 88.01% 84.42% 86.16%
Weight Manager B OMRX Bond 85.28% 84.94% 86.60% 87.94% 91.89% 88.30% 86.91% 39.74% 60.49% 82.36% 84.42% 86.16%
Weight Manager C OMRX Bond 85.28% 84.94% 83.54% 87.94% 83.95% 88.30% 77.82% 60.19% 76.81% 88.01% 84.42% 73.48%
Return OMRX Bond -0.21% 0.23% 0.40% -0.58% -0.05% 0.33% -0.26% 0.42% 0.30% -0.36% -0.30% 0.40% 0.312%
Weight Manager A T-bill 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 56.34% 0.55% 0.00% 0.00% 0.00%
Weight Manager B T-bill 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 56.07% 22.51% 4.45% 0.00% 0.00%
Weight Manager C T-bill 0.00% 0.00% 1.79% 0.00% 4.99% 0.00% 5.68% 31.25% 9.82% 0.00% 0.00% 10.20%
Return T-bill -0.06% -0.06% -0.05% -0.04% -0.07% -0.09% -0.07% -0.05% -0.05% -0.08% -0.12% -0.02% -0.742%
Total return A 0.13% 0.84% 0.58% -0.75% -0.29% 0.19% 0.49% 0.35% -0.12% -0.39% -0.01% 0.24% 1.260%
Total return B 0.13% 0.84% 0.58% -0.75% -0.29% 0.19% 0.49% 0.36% -0.44% -0.47% -0.01% 0.24% 0.857%
Total return C 0.13% 0.84% 0.59% -0.75% -0.38% 0.19% 0.69% 0.42% -0.25% -0.47% -0.01% 0.17% 1.156%
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C Efficient frontier calculations and
plots

C.1 Investor A

Table C.1. Table of the first months weight for investor A

Start date End date
2008-02-29 2017-01-31
Weights: 1.00000061 0 0

SIX PRX OMRX Bond T bill
1.00000061 SIX PRX 0.2993% -0.0077% 0.00023% Mean 0.70%
0 OMRX Bond -0.0077% 0.00823% 0.00123% SD 5.34%
0 T bill 0.00023% 0.00123% 0.0008% Sharpe 0.13
1.00000061 0.2351% 0.0000% 0.0000%

Table C.2. Weights, mean, SD and Sharpe’s ratio for the first month of investor A

Minimum Optimum
Mean 0.08% 0.13% 0.23% 0.20% 0.40% 0.50% 0.70%
SD 0.28% 0.34% 0.55% 0.47% 1.12% 2.39% 5.34%
Sharpe 0.28 0.385 0.423 0.4219 0.3571 0.2087 0.1309
SIX PRX 0.001886 0.01759 0.04284 0.03505 0.1749 0.44244 0.97737
OMRX Bond 0 0.16379 0.49456 0.39242 0.8250 0.55755 0.02262
T bill 0.998113 0.81860 0.46258 0.57252 0 0 0

This re-balancing procedure would then continue in a similar manner for the entire
12-month testing period, for each investor.
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C.2 Investor B

Table C.3. Table of the first months weight for investor B

Start date End date
2008-02-29 2017-01-31
weights 0.0600 0.7188 0.2211 0

SIX PRX OMRX Bond T bill Inflation
0.0600 SIX PRX 0.2149% 0.0152% 0.0020% 0.0005% Mean 0.30%
0.7188 OMRX Bond 0.0152% 0.0131% 0.0013% 0.0010% SD 0.97%
0.2211 T bill 0.0020% 0.0013% 0.0004% 0.0007% Sharpe 0.31
0 Inflation 0.0005% 0.0010% 0.0007% 0.0033%
1.000000007 0.0015% 0.0076% 0.0003% 0.0000%

Table C.4. Weights, mean, SD and Sharpe’s ratio for the first month of investor B

Minimum Optimum
Mean 0.08% 0.30% 0.09% 0.20% 0.40% 0.50% 0.70%
SD 0.19% 0.97% 0.22% 0.59% 1.41% 2.32% 4.54%
Sharpe 0.40 0.31 0.41 0.34 0.28 0.22 0.15
SIX PRX 0.000 0.060 0.006 0.034 0.175 0.442 0.977
OMRX Bond 0.000 0.719 0.038 0.394 0.825 0.558 0.023
T bill 1.000 0.221 0.956 0.572 0.000 0.000 0.000
Inflation 0.000 0.000 0.000 0.000 0.000 0.000 0.000

This re-balancing procedure would then continue in a similar manner for the entire
12-month testing period, for each investor.

C.3 Investor C

Table C.5. Table of the first months weight for investor B

Start date End date
2008-02-29 2017-01-31
Weights 0.0133 0.0742 0.9125 0.0000 0.0000

SIX PRX OMRX Bond T bill Inflation PMI
0.0133 SIX PRX 0.77% -0.12% 0.00% 0.03% 0.20% Mean 0.10%
0.0742 OMRX Bond -0.12% 0.03% 0.00% -0.01% -0.02% SD 0.17%
0.9125 T bill 0.00% 0.00% 0.00% 0.00% 0.00% Sharpe 0.63

Inflation 0.03% -0.01% 0.00% 0.01% 0.00%
0.0000 PMI 0.20% -0.02% 0.00% 0.00% 0.44%
1 0.00% 0.00% 0.00% 0.00% 0.00%

The Re-balancing occurs every time period and new weights and Sharpe ratios are
calculated for each portfolio. In addition, a plot of the efficient frontiers is generated
for every time period. As an example, see plot C.1 below, which shows the plot from
2017-04-30.
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Table C.6. Weights, mean, SD and Sharpe’s ratio for the first month of investor C

Minimum Optimum
Mean 0.08% 0.20% 0.10% 0.30% 0.40% 0.50% 0.70% 0.13%
SD 0.14% 0.42% 0.17% 0.73% 1.03% 2.77% 7.49% 0.22%
Sharpe 0.57 0.47 0.63 0.41 0.39 0.18 0.09 0.59
SIX PRX 0.000 0.055 0.009 0.101 0.147 0.422 0.970 0.022
OMRX Bond 0.023 0.335 0.080 0.594 0.853 0.578 0.030 0.153
T bill 0.977 0.611 0.911 0.305 0.000 0.000 0.000 0.825
Inflation
PMI 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure C.1. Figure showing Efficient frontier generated 2018-04-30
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D Additional Models and Measure-
ments

D.1 Tracking Error

In practice, a portfolio that adopts tactical asset allocation is usually compared to a passive
benchmark portfolio. If the tactical asset allocation strategy outperforms the benchmark
portfolio, one talks about the manager has successfully generated alpha. This is defined
as

αt = Rp,t −RBM,t,

where Rp,t is the return of the portfolio that is adopting tactical asset allocation at time
t, and RBM,t is the return of the benchmark at time t. The volatility of alpha is called
tracking error and is defined as

TEt =

√√√√ 1

T − 1

T∑
i=1

(
αt −

1

T

T∑
i=1

αt

)2

(D.1)

The performance of an investment strategy can be measured by the information ratio,
which is the ratio between alpha and tracking error. Investors seek to obtain as high
information ratio as possible1.

D.1.1 Exponentially weighted Moving Average Model

Volatility is a measure of risk and can be estimated using various methods. We will now
introduce another improvement on the simple volatility calculation, namely the Exponen-
tially weighted Moving Average (EWMA). If we look at the simple unweighted approach
of estimating volatility we see that this approach gives all return the same weight. This
works under the assumption that the covariance between assets is constant through time.
We know, however, that covariances tend to increase during periods of market stress
and decrease during periods of normality. This problem can be addressed by using the
EWMA, in which the more recent returns obtain a greater weight than past returns. It
introduces a parameter λ, called the smoothing parameter, to the model. It results in the
following expression for Σt:

Σt = λΣt−1 + (1− λ)εt−1ε
T
t−1, (D.2)

where 0 < λ < 1. This formula states that the variance at time t is a function of λ
multiplied by the variance on the day before plus (1−λ) multiplied by the squared return
on the day before. This recursion incorporates the entire infinite series that proceeded
time t. Notice that the sum of the weights always equals one. The parameter λ is either

1Lee (2000)
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fixed or can be estimated by using QMLE. Hull & White (1998) use λ = 0.94 in their
study on Value at Risk when daily changes in the market variables are not Normally
distributed. In many financial applications the estimates λ = 0.94 or λ = 0.96 tend to
be used.
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