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Abstract

The purpose of this thesis is to evaluate the application of the
piecewise constant hazard rates in predicting reserves in general in-
surance. Two types of datasets which include only reported claims
are simulated and studied separately. Three types of events are dis-
tinguished during the development of a claim. The piecewise constant
hazard rates are estimated by maximum likelihood theory. As a com-
parison, a method for smoothing piecewise constant rates is analyzed.
The result shows that piecewise constant hazard rates obtained di-
rectly from maximum likelihood estimation perform excellently. They
give a remarkable fit for predicting future payments of the Reported
But Not Settled (RBNS) claims. The estimators obtained from by
applying the smoothning method are not suitable to predict reserves.
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1 Introduction

Accurate loss reserves are essential for insurers to maintain adequate capital
and to price their insurance products efficiently. Due to the introduction
of new supervisory guidelines (Solvency 2) and reporting standards (IFRS
4 and IFRS 17), the prediction of future cash flows and their uncertainty
becomes more important. Under-reserving may result in failure to meet
liabilities and even insolvency of the insurers. Conversely, excessive reserves
may limit the insurer’s growth opportunities and weaken its competitive
position in the market. Hence, actuaries should develop reserving models
which can predict reserves with better quality.

Figure 1 illustrate the development process of a general insurance claim.
A claim occurs at a certain time point, it is reported to the insurer (possibly

Figure 1: Development of a general insurance claim.

after a period of delay) and a series of payments follow until settlement (or
closing) of the claim. The time gap between the occurrence of the claim and
reporting is called ”reporting delay” and the time gap between reporting
and settlement is called ”settlement delay”. At the present date, the insurer
has to determine reserves for Reported But Not Settled (RBNS) claims and
Incurred But Not Reported (IBNR) claims.

1.1 Macro and Micro Methods

[3] mentions that for more than a century, actuaries have been using run-off
triangles to project future payments in non-life insurance. A run-off triangle
summarizes available information per arrival and development year. The
earliest traditional method which formalized this technique in the ’30s in
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[3] and still widely used is the chain ladder method (CLM). Another com-
monly used macro-level reserving method is the expected claims method.
Other macro-level models, such as the Bornhuetter-Ferguson (B-F) and the
Cape-Cod method, are constructed as a blend of the chain-ladder and the
expected claims technique [26].

All macro-level models are based on aggregate data in a run-off triangle.
The advantages of macro-level models are that they are easy to understand,
and can be mentioned in financial communication, without disclosing too
much information [1]. But recently, see e.g. [4], [14], question the use of
aggregate loss data. Due to aggregation, not all information in data is
taken into account. Problems with triangular data are also mentioned,
for instance, the problem of zero or negative cells in the triangle, see e.g.
[10]. [25] discusses the robustness properties and the influence of outliers
on triangular methods. The separate assessment of true IBNR and RBNS
claims in run-off triangle is not straightforward, see e.g. [6], [19]. These
substantial pieces of literature demonstrate that macro-level models can-
not always adequately capture the complexities of stochastic reserving for
general insurance.

More recently, greater interest has been expressed in estimating the
loss reserving at individual claim level (i.e. micro-level). For that, it is
necessary to be able to estimate a full distribution of possible outcomes,
from which percentiles (or other measures) of the distribution can easily
be obtained. A micro-level model allows much detailed modeling of the
development processes. The quality of reserves and their uncertainty can
be improved by using detailed claims data too. Furthermore, it becomes
possible to predict reserve of IBNR and IBNS claims separately. In the ’70s,
[7] suggested using a marked point process to project future payments and
quantify the reserves. During the last thirty years, more literature about
micro-level models has been presented, e.g. [17], [18] and [20] where the
authors use Position Dependent Marked Poisson Processes to formulate the
development of individual claims. There are several studies which extend
the work of [17] and [18], e.g. [9], [21]. [2] revisited the Marked Poisson
Process theory with a small case-study.

1.2 Overview of the Present Research

A micro-level model often contains several blocks, each handling a part of
the claim development process. For example, [9] introduce a micro-level
model based on the work of [17] and [18], in which the model consists
of four building blocks: A block to model the reporting delay process,
a block to model the number of IBNR claims, a third block is used to
model the payment process and the last one is about the payment amounts.
Distributions for each block can be fitted based on available individual data.
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Of particular interest is that the author uses the statistic framework of
recurrent events to model the payment process. The events are specified to
three types and they are modeled using a piecewise-constant specification
of the hazard rate of an event. How to apply the recurrent events theory
and a piecewise-constant specification in micro models has eventually been
studied, see e.g. [21].

1.3 Objective

In this master thesis, we will focus on using micro models to predict reserves
of RBNS claims. The recurrent events theory and survival hazard rate
function combined with non-homogeneous Poisson process theory will be
applied in this thesis. Most parts of the methods and applications are based
on the work of [9] and [21].

Poisson processes with time-dependent rate functions will be used to
simulate datasets where the rate function is the hazard rate function from
a survival model. More especially, from a Weibull distribution. Two types
of datasets will be simulated by adjusting parameter settings in the rate
function, one type of dataset with a long settlement time and one type
of dataset with a short settlement time. The reason for working with
two types of datasets is that it is of interest to study the performance of
piecewise-constant hazard rate functions on data with different develop-
ment patterns.

The model which will be used to generate the development process of a
claim is based on Poisson processes with three distinguished types: It may
be a process without any payment then being settled or with a payment
to the settlement, or maybe several intermediate payments conduct before
settlement. These three types are mentioned most possibly occur during
the development of a claim in [9]. All these possibilities will be analyzed.

We will concentrate on the situation where the rate function is esti-
mated with the specification that it is piecewise constant in prespecified
subintervals (time intervals). In this thesis, we only consider that the
time intervals are of equal length. Estimators are obtained by using the
maximum-likelihood-method. We will also apply a smoothing method to
one of the ML estimators in each dataset. These three estimated estimator
vectors will be evaluated by comparing their predictive abilities.

Cash flows and total reserves for each dataset will be predicted using
the estimated parameter vectors (piecewise-constant hazard rates). Per-
formance of parameter settings will be compared both by cash flows in
each calendar year and by event types. Analysis of robustness will also be
carried out.

The remainder of the paper is organized as follow. In Section 2, rele-
vant theory, models together with simulation procedures are described. In
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Section 3, the characteristics of the two types of datasets are presented.
Section 4 discusses the results and in Section 5 we will summarize findings
and conclusions.

2 Methodology

Section 2.1 describes the theory for Poisson processes with multi-type re-
current events. In section 2.2 the model outline of this thesis is discussed.
The likelihood function in the Poisson process with totally developed data
and censored data are derived in section 2.3. Section 2.4 presents two pa-
rameter estimation methods and the last two sections describe how the
future events respective the datasets can be simulated.

2.1 The Statistical Models

Theories which are described follow the works and results from [16], [22],
[24]. Especially, the definition of the counting process, Poisson process and
their properties come from [22]. Theory about the relationship between
homogeneous and non-homogeneous Poisson process is from [24]. Defini-
tions about recurrent events, including applications of the Poisson process
in this type of events are based on [16].

2.1.1 The Poisson process

The Poisson process is the most common counting process and it is widely
analyzed and used in science and technology. A stochastic process {N(t), t ≥
0} is said to be a counting process if N(t) represents the total number of
events that occur by time t.

From the definition of the counting process, we see that a counting
process N(t) must satisfy:

(i) N(t) ≥ 0.

(ii) N(t) is integer valued.

(iii) If s < t, then N(s) ≤ N(t).

(iv) For s < t, N(t)−N(s) equals the number of events that occur in the
interval (s, t].

For a Poisson process with constant rate ρ > 0, the following properties
hold:

(i) N(0) = 0

(ii) {N(t), t ≥ 0} has independent increments
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(iii) P (N(t+ h)−N(t) = 1) = ρh+ o(h).

(iv) P (N(t+ h)−N(t) ≥ 2) = o(h)

(v) The number of events N(t) in any interval of length t is Poisson
distributed with mean µ = E(N(t)) = ρt.

where o(h) is a function with property:

lim
h→0

o(h)

h
= 0

A process with such constant linear mean function is said to be homo-
geneous, non-homogeneous otherwise, i.e. the mean value function in the
Poisson process is non-linear.

The non-homogeneous Poisson process has become an important alter-
native to the homogeneous process. This is because its intensity function
can itself be a time-dependent variable. The intensity in the process can
be a function of time or varies by other time-varying variables.

The one-dimensional non-homogeneous Poisson process has many im-
portant characteristic properties such as

(i) the number of points in any interval follows a Poisson distribution

(ii) the number of points in any finite set of non-overlapping intervals are
mutually independent random variables.

The intensity function ρ(t) is a nonnegative integrable function in a
non-homogeneous Poisson process. The mean function which is also called
the cumulative intensity for a non-homogeneous Poisson process

µ(t) =

∫ t

0

ρ(u)du t > 0

is continuous and finite for all t > 0. For a Poisson process, ρ(t) determines
whether there is a trend in the rate of events. If ρ(t) is monotone increasing
or decreasing then a monotone trend is said to exist.

Poisson process models may be parametric or nonparametric. Common
parametric models for ρ(t) are e.g. ρ(t;α, β) = exp(α+βt) and ρ(t;α, β) =
αβtβ−1, see e.g. [15]. These forms are similar with hazard rate functions
in survival models. For example the hazard rate function defining the
Weibull distribution has the form h(t) = γptp−1 and the cumulative rate
function H(t) = γtp (Definition and properties of hazard rate function will
be introduced in the following section). Poisson processes with hazard rate
function h(t) as intensity function, namely ρ(t) := h(t), µ(t) := H(t), are
widely used to simulate the time to the occurrence of the next event. For
instance, it can be used to generate the payment process and the settlement
delay process in micro-level stochastic loss reserving, see e.g. [9], [21].
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2.1.2 Multi-type recurrent events

In general insurance and clinical trial studies it may often lie interest in
studying processes which generate events repeatedly over time, e.g. a poli-
cyholder may receive multiple compensations for en accident, a patient may
receive multiple treatments during the treatment process, etc. Such pro-
cesses are refered to as recurrent event processes and the data they provide
are called recurrent event data, for more details see e.g. [16].

Assume the process starts at t = 0 with N(0) = 0, where N(t) denotes
the number of occurrences of some type of event over the time interval (0, t]
for some individual. In the continuous time setting, models for recurrent
events can be specified generally by considering the probability distribution
for the number of events in short intervals [t, t + ∆t), given the history of
event occurrence before time t. Let ∆N(t) = N(t+ ∆t)−N(t) denote the
number of events in the interval [t, t + ∆t), B(t) = {N(s) : 0 ≤ s < t},
t > 0 denote the history of the process up until time t. We assume that two
events cannot occur at exactly the same time point. Then, the intensity
function is defined as:

λ(t|B(t)) = lim
∆t→0

P (∆N(t) = 1|B(t))

∆t
. (1)

It is assumed that an intensity is bounded and continuous except possibly
at a finite number of points over any finite time interval. The intensity
function defines an event process, and all process characteristics can be
determined from it.

We assume that events are observed over the time interval [τ0, τ ] for an
individual. The time τ0 corresponds to the start time and τ is referred to as
the termination time or end-of-follow-up time. Sometimes it is also called a
censoring time in survival analysis. Conditional on B(τ0), the probability
density of the outcome ”n events, at times t1 < t2 < · · · < tn,” where
n ≥ 0, for a process with intensity as (1), over the specified interval [τ0, τ ],
is

n∏
j=1

λ(tj|B(tj)) · exp
(
−
∫ τ

τ0

λ(u|B(u))du
)
, (2)

Given history B(tj−1) and the (j − 1)st event occurrence time tj−1, the
time to jth event occur at time t has distribution function:

P (Tj ≤ t|Tj−1 = tj−1, B(tj−1)) = 1− exp
(
−
∫ t

tj−1

λ(u|B(u))du
)
. (3)

This function shows that we can generate the next event time by generat-
ing the cumulative function Λj =

∫ t
tj−1

λ(u|B(u))du which has a standard
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exponential distribution with survivor function exp(−u), u > 0; and then
solving (3) for t. By repeating for j = 1, 2, ... we can generate successive
event times tj. For more details, see [16].

The Poisson process is one of the canonical processes for the analysis
of recurrent events which is used to describe situations where events occur
randomly and the numbers of events in nonoverlapping time intervals are
statistically independent. The intensity in a Poisson process is of the form

λ(t|B(t)) = ρ(t), t > 0. (4)

It is seen from (4) that the probability of en event in (t, t + ∆t] may
depend on t but is independent of his histroy B(t). Then the probability
density in (2) can be written as:

n∏
j=1

ρ(tj) · exp
(
−
∫ τ

τ0

ρ(u)du
)
. (5)

Multiple types of recurrent events arise frequently. In the multi-type
recurrent events two or more different types of events may occur repeatedly
over the period of observation. It is mentioned in [16] that it may be
sufficient to study them separately, especially if the occurrences of each
type are more or less independent, but if the occurrence of one type affects
the risk of other events, models for multiple counting processes are needed.
In this case it may be helpful to formulate multivariate models through
assumptions of conditional independence between events given univariate
or multivariate random effects.

The following analysis and derivations of multi-type recurrent events
are taken from [16].

Considering a population with n individuals in which each is at risk of
J different types of recurrent events. Let i indicate individual i = 1, ..., n,
j be the event type, j = 1, ..., J . Let Nij(t) denote the number of type
j events occurring over the time interval [0, t) for individual i, and let
∆Nij(t) = Nij(t + ∆t) − Nij(t). We assume as before that at most one
event can occur at any given time. The event history for individual i is
defined by Bi(t) = {Ni(s) : 0 ≤ s < t} and the intensity function for type
j is defined as

λij(t|Bi(t)) = lim
∆t→0

P (∆Nij(t) = 1|Bi(t))

∆t
. (6)

Let tijk, k = 1, ..., Nij(t), denote the times of type j events over [0, t], j =
1, ..., J and ti1, ..., tiNi.(t) denote the times of all types of events for individual

i over [0, t], with Ni.(t) =
∑J

j=1 Nij(t), ∆Ni.(t) = Ni.(t+∆t)−Ni.(t). Based
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on the assumption that only at most one event can occur at any given time,
then

P (∆Nij(t) = 1|Bi(t)) = λij(t|Bi(t))∆t+ o(∆t)

P (∆Ni.(t) = 0|Bi(t)) = 1−
J∑
j=1

λij(t|Bi(t))∆t+ o(∆t)

P (∆Ni.(t) ≥ 2|Bi(t)) = o(∆t).

If we consider a specific time interval [0, τ ] for individual i, with 0 = v0 <
v1 < ... < vR = τ and ∆vr = vr+1 − vr. Let (∆nir)j = δijr, j = 1, . . . , J ,

where δijr ∈ {0, 1}, such that
∑J

j=1 δijr ∈ {0, 1} which means that in
each little time interval at most one event can occur. Base on these, for
each small ∆vr, the probability distribution of Ni(v0), ..., Ni(vR) can be
approximated by

R∏
r=0

P (∆Ni(vr) = ∆nir | Bi(vr)) =

R∏
r=0

{ J∏
j=1

(
λij(vr|Bi(vr))∆vr

)δijr(
1−

J∑
j=1

λij(vr|Bi(vr))∆vr

)(1−δijr)}
, (7)

plus terms of higher order in the ∆vr. The likelihood is obtained by
dividing by

∏
j

∏
k(∆tijk) and taking the limit as R→∞ to give

Li =

{ J∏
j=1

nij∏
k=1

λij(tijk|Bi(tijk))

}
exp
(
−

J∑
j=1

∫ τi

0

λij(u|Bi(u))du
)

=
J∏
j=1

{ nij∏
k

λij(tijk|Bi(tijk))exp
(
−
∫ τi

0

λij(u|Bi(u))du
)}
. (8)

The factorization in (8) reveals that the intensity functions for multi-
type recurrent event processes are functionally independent and the esti-
mation of each intensity can be solved separately by maximum likelihood.

2.1.3 Weibull Hazard Rates

In the simulation study in section 2.6, events will be generated according to
Poisson processes with Weibull hazard rates. We will now briefly introduce
Weibull hazard rates using definitions and form from [11], [13].

Let T be a non-negative random variable representing the time until
some event occurs, F (t) be the distribution function of T and f(t) be the
density function of T . The survival function is defined as:

S(t) = 1− F (t) = P (T > t)
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and the hazard function is defined as:

h(t) = lim
h→0

P (t ≤ T < t+ h|T ≥ t)

h
=
f(t)

S(t)

In many calculations, the cumulative hazard function is more easily
handled and is defined as:

H(t) =

∫ t

0

h(u)du, t > 0

For a Weibull distributed variable T , its hazard function and cumulative
hazard function are

h(t) = γptp−1. and H(t) = γtp, (9)

respectively, with parameters γ and p. When p > 1, the hazard function
is increasing; when p < 1 it is decreasing. When p = 1 the Weibull dis-
tribution reduces to the exponential distribution and the hazard rate is a
constant γ over time.

The inverse function of H(t) is

g(t) = H−1(t) =
t1/p

γ
(10)

2.1.4 Piecewise constant rate functions in Poisson processes

To estimate a continuous rate function in a Poisson process may be com-
putationally heavy, therefore in many studies, e.g. [8], [9], choose to use
piecewise constant rate functions. Piecewise constant rate functions are
easy to estimate and provide easy random-process generation.

As the name implies, under such models the rate function is assumed
to be a constant over prespecified time intervals. It has the form as

h(t) = hk, tk−1 < t ≤ tk

for k = 1, 2, ..., K with K cutpoints. These models have rate functions
with discontinuities at the cutpoints but can provide good approximations
to various shapes of functions. In [16], it is suggested that models involving
three to ten pieces with cutpoints evenly distributed over the event times
are flexible enough for most practical situations. We illustrate these models
and their likelihood functions in Section 2.3.

In rate estimation and process generation there are two advantages with
piecewise-constant form which are stated in [5]. First, piecewise-constant
rates are easily estimated: Considering a single type process, in interval
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(tk−1, tk], with occurrence numbers of events nj of each with total exposed
time Tj, the rate can be calculated by:

hk =
nk
Tk
.

Second, arrival times can be generated by the inverse transformation. The
next arrival time is at time t can be simulated as (3) given the previous oc-
currence time tj−1. The cumulative rate function Λj for piecewise-constant
rate function is piecewise linear, so solving the next arrival time Tj in terms
of the previous arrival time tj−1 and a uniform variable u = P (Tj ≤ t|tj−1)
is straightforward.

It is mentioned in several works that how to choose the number of cut-
points and length of time intervals is most relevant of estimation qualities.
In this paper, we conduct only equidistant time intervals but we will apply
a smoothing method to find better estimations. Theoretical description
will be presented in the following sections.

2.2 Model outline

The data we use are simulated from a non-homogeneous Poisson process
with continuous rate function h(t), where h(t) is the hazard rate function
from a Weibull distribution. The Poisson process generates the develop-
ment of payments and settlements of the reported claims. Three hazard
rate functions hse(t), hsep(t) and hp(t) are used to determine the type of
events during the payment process. The rate functions hse(t) and hsep(t)
define settlement of claims, where hse(t) generates events of type ”se” which
implies the settlement of the claim without a payment while hsep(t) gen-
erates events of type ”sep” which refers to settlement with payment. The
rate function hp(t) is used to define payments without settlement (events
of type ”p”), i.e. intermediate payments. The above setting has been used
in [9] and [21].

One thing we may mention is that the hazard rate functions in survival
models are used to determine the risk of experiencing a single event at time
t, and if the event occurs the process is stopped. But in our situation, we
allow the processes to ”continue” when we generate intermediate payments.
That means at each event time point, if the event has type ”p”, the simu-
lation process will continue. It will be stopped when the event type is ”se”
or ”sep”. The process differs from a renewal process too because the time
that next event occurs depends on the previous occurrence time. Details
about how the next time of an event can be simulated will be introduced
in Section 2.5.

With the simulated data, the focus of this paper is on estimation of
piecewise-constant rate functions and to analyse their predictive abilities.
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That means rate functions in the Poisson process will be estimated as piece-
wise constant in prespecified time intervals. We first use the maximum-
likelihood method to obtain estimators. When we have obtained the ML
estimators, we also test a smoothing method to see if the smoothed esti-
mators improve the reserve predictions. In the following sections, we will
describe in detail how to apply the maximum-likelihood and the smoothing
method.

2.3 The likelihood function

The focus of this section is to apply the maximum likelihood method for
our development processes. The analysis is based on the work from [9] and
[21].

As mentioned, we distinguish between three types of events during the
development of a claim: Type ”se” events imply settlement of the claim
without a payment. A type ”sep” event is a payment with settlement
at the same time. Type ”p” indicates payment without a settlement.
hse(t), hsep(t) and hp(t) denote the rate functions, respectively.

Let Vij denote the time point the jth event occurs of claim i. If the
event follows a payment, we assume the payment amount can be specified
from a distribution with density function fP .

Suppose n reported claims are each under observation from time t = 0
up to time τ . Later we will use τ as the evaluation time. Then we notice
that parts of observations are not yet fully developed. It corresponds to
right censoring. For more on censoring, see e.g. [13].

In a continuous time setting, the likelihood of n observed/reported
claims development processes is

L(h·, θ) =
{ n∏
i=1

(∏
j

hδij1sep (vij)h
δij2
se (vij)h

δij3
p (vij)

)
× exp

(
−
∫ τi

0

(hsep(s) + hse(s) + hp(s))ds
)}

×
n∏
i=1

∏
j′

fP |V
ij
′=v

ij
′ (xij′ ; θ) (11)

where δijk denote the indicator function belonging to claim i defined by

δijk :=

{
1, if j = k
0, j 6= k

where k = 1, 2, 3 corresponds to claim type se, sep and p and τi = min(τ, vi).
j runs over all registered events in the observation period for claims while
j
′

runs over all paid payments before valuation time τi.
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If the rate function is assumed to be piecewise constant, i.e. constant
over prespecified intervals we follow [21] to modify the likelihood function.

Let d0 < d1 < · · · < dK denote K cutpoints such that d0 = 0 and
dK = τ . then the rate function is given as

he(v) ≡ he,l dl−1 < v ≤ dl, e ∈ {sep, se, p}. (12)

Let noce,l denote the number of observed events of type e ∈ {se, sep, p} in
interval (dl−1, dl]. By using the above notation, the likelihood from (11)
can be written as

L(h·, θ) =
K∏
l=1

(
h
noc
se,l

se,l h
noc
sep,l

sep,l h
noc
p,l

p,l

)
× exp

(
−

n∑
i=1

K∑
l=1

(
hse,l + hsep,l + hp,l

) ∫ dl

dl−1

1(s ≤ τi)ds
)

×
n∏
i=1

∏
j′

fP |V
ij
′=v

ij
′ (xij′ ; θ) (13)

In this thesis, we simplify the payment amount as a constant; then
the last double product is equal to 1. Parameters which need to be esti-
mated are only the piecewise constant hazard rates he,l, e ∈ {se, sep, p},
l = {1, ..., K}, K is the number of intervals.

2.4 Estimation of parameters

2.4.1 The Maximum likelihood method

Parameters can be estimated by using the standard maximum likehood
method. With a piecewise constant specification of the hazard rate function
with K cutpoints, he,l with e ∈ {se, sep, p}, l = {1, · · · , K} need to be
estimated.

Due to the independence between the processes, we can estimate the
constant rates he,l separately.

Let ωl(v) = 1(dl−1 < v ≤ dl), l = 1, ..., K indicate whether v ∈ (dl−1, dl],
noce,l indicates the total number of events observed by all claims with type
e ∈ {se, sep, p} over time interval (dl−1, dl], then

noce,l =
ne∑
i=1

ni∑
j=1

ωl(vil), (14)

where ne is the number of claims with type e, ni is the maximum number
exposured in each time interval.

15



Let Sl denote the total explosure time in (dl−1, dl] across all individuals,
then

Sl =
n∑
i=1

∫ dl

dl−1

1(s ≤ τi)ds (15)

The estimate of he,l can be obtained by maximizing the likelihood (13),
then we get

ĥe,l =
noce,l
Sl
, e ∈ {se, sep, p}. (16)

All ĥe,l are independent. Thus, based on (15) and (16), variances of haz-

ard rates are estimated by ĥe,l/Se,l = noce,l/S
2
e,l. The estimated cumulative

hazard function is

Ĥe(t) =
K∑
l=1

ĥe,l ∆d(tl) =
K∑
l=1

ĥe,l

∫ dl

dl−1

1(t ≥ s)ds (17)

where ∆dl(t) is the length of interval.

2.4.2 The iterative smoothing method

This smoothing method is developed by [5] and we describe it in this sub-
section.

It is assumed that we already have an estimated rate function vector
ĥ = {ĥ1, ..., ĥK}

′
with K cutpoints. We will now determine a new Poisson

rate function κ which will hopefully be ”better” than ĥ. This method
bases on the estimated result ĥ which indicates that any statistical errors
in the given constant rates ĥ will be remained.

The method requires that for each time interval the mean number of
arrivals remains unchanged, i.e.∫ tk

tk−1

κ(t)dt =

∫ tk

tk−1

h(t)dt.

It is constrained also that the solution should be nonnegative and symmet-
ric in time. That is, reversing the subscripts on h1, ..., hK should result in
reversing the time index of κ.

The ”better” or ”smoother” result is evaluated by the smoothing func-
tion

z =
K−2∑
k=1

(hk+2 − 2hk+1 + hk)
2 (18)
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for piecewise-constant rate functions defined by h = {h1, ..., hK}. In this
definition, the smaller value of z corresponds to a smoother function. Per-
fect smoothness is a straight line and z = 0.

We use only one of the smoothing methods in [5]: the number of in-
tervals are doubled. This method is formulated as follows: Given that we
have a Poisson rate function h(t) in the form of K nonnegative constants
h1, ..., hK corresponding to the time intervals (tk−1, tk] for k = 1, ..., K, then
we will find a solution of returning a piecewise-constant rate function with
2K pieces, each of length half that of the original intervals. The new rate
function is

κ(t) =

{
hk − γk for tk−1 < t ≤ (tk−1 + tk)/2
hk + γk for (tk−1 + tk)/2 < t ≤ tk

With this function, we decrease hk in the left half part of interval by γk and
increase the right half part by γk in interval (tk−1, tk]. Any values of the
decision variables γ1, ..., γK satisfy the constraints will be the answer. It
means any non-negative and symmetric values γ1, ..., γK then the expected
number of arrivals is unchanged for interval.

To obtain the nonnegative solution, we must constrain |γk| ≤ hk for
k = 1, ..., K.

The idea of this method is to choose the value of γk in each interval
k to match the slope of h near interval k. In this sense, the slope of the
original rate function h in segment k is

hk+1 − hk−1

2
,

the difference in the h values adjacent to segment k divided by the time
difference between their midpoints.

Similarly, the slope of the new rate function τ is

(hk + γk)− (hk + γk)

1/2
,

Setting the two slopes equal yields the first-order slope-matching solu-
tion is

γk =
hk+1 − hk−1

8
. (19)

The end intervals, 1 and K are defined by γ1 = 2h1 − h2 and γK = 2hK −
hK−1, respectively.

As soon as the γk is obtained, we get the new hazard rates τk,left and
τk,right.

This method will be applied to smooth the ML-estimators. Evaluation
will be done both through comparing the z values in (18) and the predicted
reserves.
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2.5 Simulating future events

For a claim, as we mentioned in the first section, it follows a development
process from occurrence to settlement. The timeline can be divided into two
parts: The first part is the time between the occurrence and reporting, the
second is between the reporting and settlement. In this thesis, we focus
on the second part. That is, the claims which have been acknowledged
or reported to the insurance company (RBNS claims). Once a claim is
reported and acknowledged, a series of payments occur until the claim is
settled. At present time (say τ), parts of claims are not yet fully developed,
i.e. they are not yet settled (or closed). That means the insurance company
needs simulate, or predict, future payments and set a reserve for them. We
will use a non-homogeneous Poisson process with piecewise-constant rate
functions to do that.

To describe this in more detail, we define the following notations for
claim i.

• si = the time since reporting at valuation time,

• τ = valuation time (time of censoring),

• Vi = time to next event,

• Ei = type of next event,

• e = {se, sep, p} group of event types.

Simulating time to next event.
The time-dependent rate functions he(t), e ∈ {se, sep, p} are specified

as hazard rate functions from the Weibull distribution. From the relation
between hazard rate and distribution function the first event occurs at time
v can be obtained as:

P (V ≤ v) = 1− exp
(
−
∫ v

0

∑
e

he(t)dt
)

(20)

For the reported claims, the time since reporting s is known. For claim
i the next event at time vnext can take place at any time with condition
vnext > si, where si is the time since reporting for claim i. The conditional
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distribution then can be written as:

P (Vi ≤ vnext|Vi > si) =
F (vnext)− F (si)

1− F (si)

=
exp(−

∫ si
0

∑
e he(t)dt)− exp(−

∫ vnext

0

∑
e he(t)dt)

exp(−
∫ si

0

∑
e he(t)dt)

=1− exp
(
−
∫ vnext

si

∑
e

he(t)dt
)
. (21)

We know that
∫ vnext

si

∑
e he(t)dt is the cumulative rate function of all three

types between time si and vnext and we denote it as Hi(si, vnext). To sim-
ulate vnext we use the inverse transformation method in [22] and draw
u ∼ U(0, 1) to get

u = P (Vi ≤ vnext|Vi > si).

In our study we specify the rate functions as piecewise constant which
is defined as (12). The cumulative rate function over time (si, vnext] then
is:

Hi(si, vnext) =
L∑
l=1

(
1{dl−1 < si ≤ dl}(dl − si)

∑
e

he,l

+ 1{si < dl < vnext}(dl − dl−1)
∑
e

he,l

+ 1{dl−1 < vnext ≤ dl}(vnext − dl−1)
∑
e

he,l

)
. (22)

In (22) the first term on the right calculates the cumulative rates be-
tween si and the upper limit where si is located, the second term adds
the cumulative rates of intervals between si and vnext (not including the
interval where si and vnext is located) and the third term calculates the
cumulative rate in the interval where vnext is located.

Then (21) can be rewritten to:

Hi(si, vnext) = −ln(1− u), (23)

then the solution is

Vi = {v : Hi(si, v) = −ln(1− u)} (24)

When vnext is obtained, set si = vnext, as the time of the previous event
and repeat the process. The process will be stopped when the generated
event is of type ”se” or ”sep”. In the next section we describe how to gen-
erate event types.
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Simulating event types. We define three types of events: A type ”se”
event implies settlement without payment, a type ”sep” event indicates
settlement with a payment at the same time and type ”p” events generate
payment without settlement, i.e. intermediate payments. Remember that
type ”sep” and type ”p” events contain a positive payment but not for type
”se” events. A type ”se” or a type ”sep” event means settlement of claims
while a type ”p” event indicates the process will continue to develop. Given
the next event time vnext , dl−1 ≤ vnext < dl, the probability that the next
event is in type ”se”, ”sep” or ”p” can be simulated by

P (Ei = ”se”|one event at vnext) =
hse(vnext)∑
e he(vnext)

P (Ei = ”sep”|one event at vnext) =
hsep(vnext)∑
e he(vnext)

P (Ei = ”p”|one event at vnext) =
hp(vnext)∑
e he(vnext)

plugging in the estimated results, we get:

P (Ei = ”se”|vnext ∈ {dl−1, dl}) =
ĥse,l

(ĥse,l + ĥsep,l + ĥp,l)

P (Ei = ”sep”|vnext ∈ {dl−1, dl}) =
ĥsep,l

(ĥse,l + ĥsep,l + ĥp,l)

P (Ei = ”p”|vnext ∈ {dl−1, dl}) =
ĥp,l

(ĥse,l + ĥsep,l + ĥp,l)
(25)

Payment amount. Given that the process follow the ”sep” and ”p”
type we should simulate a payment amount. In this thesis we simplify the
process and assume the payment is 1 unit.

Summary. The development process for observed claim i which has
developed si time units since reporting before being censored is simulated
according to the following:

(i) Simulate time to next event Vnext from (24).

(ii) Given the next event time vi, calculate the probability of type ”se”,
”sep” or ”p” from (25);

(iii) Set p1 = P (type ”se”), p2 = P (type ”se”) + P (type ”sep”). Draw a
random number u from U(0,1), if

0 ≤ u < p1 =⇒ type ”se” event, stop the process.

p1 < u ≤ p2 =⇒ type ”sep” event, set 1 unit and stop the process.

u > p2 =⇒ type ”p” event, set 1 unit, letsi = vi, go to step (i).
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2.6 Simulating datasets

Different from [9] and [21], we use simulated data in this analysis. A non-
homogeneous Poisson process with a mean function µ(t) can be generated
by using the following theory which is described in [24].

The homogeneous and the non-homogeneous Poisson process are very
closely related [24]. The relationship is defined as follows:

Let N be a Poisson process on [0,∞) with mean function µ(t). Let Ñ
be a standard homogeneous Poisson process, i.e. a homogeneous Poisson
process with intensity ρ = 1. Then:

� The process (Ñ(µ(t))t≥0 is Poisson process with mean value function
µ.

� If µ is continuous, increasing and the invers µ−1 exists thenN(µ−1(t))t≥0

is a standard homogeneous Poisson process.

With these relationships a non-homogeneous Poisson process N(t) with
mean value function µ(t) can be interpreted as a time change of a standard

homogeneous Poisson process Ñ :

(N(t))t≥0
d
= (Ñ(µ(t)))t≥0.

Therefore the occurrence time of events from a non-homogeneous Pois-
son process with mean value function µ have representation

Tn = µ−1(T̃n), T̃n = W̃1 + · · ·+ W̃n, n ≥ 1, W̃i ∼ Exp(1). (26)

When assuming a continuous Weibull hazard rate, i.e. ρ(t) = γptp−1,
see Section 2.1.3. the expected cumulative number of events at time t is
given by

µ(t) = H(t) = γtp. (27)

By using this, it is not difficult to calculate the inverse of µ(t):

g(T ) = µ−1(T ) =
(T
γ

)1/p
. (28)

Given the values of parameters γ and p, using (26) and (28) we can
now illustrate the occurrence time of events. We vary values of γ and p to
generate three parallel Poisson processes. They compete with each other to
decide how long the process will be developed and which settlement type
will be generated.

Each sample contains 10 000 reported claims during 5 accident years
with on average 2 000 claims each accident year. We assume all claims are
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reported to the insurance company immediately after the accident, i.e. no
reporting delay. Let i = 1, ...,10 000 index each claim. For claim i, we
will generate the full development process with {Vij, Eij : j = 1, ..., Ji}
where Vij, Eij are the occurrence time and event type of the jth event,
respectively.

For claim i, the sampling procedure can be summarized as follows.

(i) Simulate a time point Tsep. Draw W1 ∼ Exp(1) and calculate Tsep =
g(W1) with parameters γsep, psep according (26) & (28).

(ii) Simulate a time point Tse by using the same mechanism as in (i) but
with parameters γse and pse.

(iii) Simulate the first time point Tp,1 by using the same method as in (i),
but with prameters γp and pp.

(iv) Stop or continue the process. Set Tstop = min(Tsep, Tse) and compare
with Tp,1, if Tp,1 > Tstop, the procedure is stopped, otherwise make a
payment 1, and continue the process.

(v) Simulate time points in case of process will continue. Draw W2 ∼
Exp(1) and obtain Tp,2 by calculating Tp,2 = g(W1 +W2) from (26) &
(28). Thereafter Compare Tp,2 with Tstop. If Tp,2 < Tstop repeat this
simulating procedure, so we get Tp,3, · · ·Tp,i until Tp,i ≥ Tstop and the
procedure is stopped.

(vi) Settlement time in case of process is stopped. Set Tstop as the settle-
ment time. If Tstop = Tse it indicates that claim i is settled without
payment and the settlement time is Tse otherwise claim i is settled
at time Tsep with a last payment.

(vii) Repeat the sampling procedure for all claims.

(viii) Draw a random number from a uniform distribution in time interval
(0, τ), where τ denotes the available time for data (60 months in our
case), to place claims into different accident years.
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3 Data

Two types of datasets with sample size n = 10 000 in each are generated
by selecting values of parameters γ and p from continuous hazard rate
functions h(t) = γptp−1. Set γ = a−b, p = b, where a and b are the scale
and shape parameters in the Weibull model, respectively, see [11]. The
mean and variance in the Weibull distribution are aΓ(1+1/b) and a2

[
Γ(1+

2/b) −
(
Γ(1 + 1/b)

)2]
. This thus corresponds to the expected value and

variance of the time to the first event of a type of event. Here Γ(.) means
the Gamma function. For more information about the Gamma function,
see e.g. [23]. Two types of datasets are assumed to be available for five years
back in time (uniformly distributed under five years). These two simulated
types of datasets reflect two types of insurance products: one with long
settlement time and another with short settlement time. It is important
to analyze two distinct lines of business since the settlement time has an
important effect on the work of reserving. Therefore it is also of interest
to investigate if the method works differently on the long-settlement-time
data and short-settlement-time data. Details about the parameters used
to generate each dataset are documented in Table 1. For simplicity, we call
the long-settlement-time data ”Data1” and the short-settlement-time data
”Data2”.

Table 1: Parameter settings: γse, pse are used to generate Type ”se” events;
γsep, psep are used to generate Type ”sep” events; γp, pp are used to generate
events with Type ”p”.

γse γsep γp pse psep pp

Data1 0.65 0.5 0.8 0.15 0.06 0.32
Data2 0.55 0.2 0.4 0.63 1.4 0.35

We present descriptive statistics for two simulated types of datasets
with complete development process in Table 2. Number of payments and
settlement delay are shown in Figure 2 and 3, respectively. Claims from
Data1 have a payment pattern with more intermediate payments and longer
settlement time. The average settlement time is 18 months and 93% of
events are settled after five years. Maximum number of payments can be
more than 40 times before settlement. With maximal observation time
s = 60 months, it remains about 25% active claims from all five accident
years. Typical products with similar development pattern as claims from
Data1 are e.g. bodily injury liability insurance, errors & omissions liability
insurance. These insurance products are complicated to predict future
payments due to big variation and heavier right tail. It is also common
with extreme payment amounts.
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Table 2: Initial categories: Average number of payment, average settlement
time, number of settlement during five development years.

Data1 Data2

Average no. of payments 3.98 1.19
Average settlement time (month) 18.12 1.34
No. of settl. Y1 (%) 61.9 99.2
No. of settl. Y2 (%) 15.6 0.6
No. of settl. Y3 (%) 7.7 0.1
No. of settl. Y4 (%) 4.5 0.07
No. of settl. Y5 (%) 3 0.04
No. of settl. > Y6 (%) 7.3 0

Figure 2: A histogram of number of payments based on 10 000 simulated
data: Data1 (left) and Data2 (right).

In contrast, claims from Data2 have a relatively simple process and
develop quickly to settlement. Most of claims are settled within 12 months
(99%) and future payments are small. With a maximal observation time
of 60 months, there are no active claims anymore. Insurance products
which have similar development pattern as claims from Data2 are plenty,
for instance, material damage insurance [9] and animal insurance.

We follow the studies of [9] and [21] and distinguish three types of
events during the development of a claim for both datasets. With param-
eter settings in Table 1, for claims from Data1, process with type ”se”,
i.e. settlement without payment has an expected settlement time of 25
months while the process with type ”sep” (settlement with payment) has
500 months. The first three expected payment times which simulated from
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Figure 3: A histogram of settlement delay : Data1 (left) and Data2 (right).

Figure 4: Cumulative number of events as a function of development years:
Data1 (left) and Data2 (right).

the process with parameters γp and pp are 2, 17 and 62 months, respec-
tively. The left panel of Figure 4 gives the cumulative number of events
with the three types over development years for Data1 claims.

The expected settlement times for claims from Data2 with types ”se”
and ”sep” are 13 and 22 months respectively, while the first three average
payment times are 14, 99 and 316 months. Comparing the average set-
tlement and each payment time, the differences between the development
patterns of the two datasets are obvious. The cumulative number of events
for Data2 claims are shown in the right panel of Figure 4.

Both type ”sep” and ”p” events generate a payment. In this thesis we
are only interested in quantifying the effect on the best estimate reserve
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when using piecewise constant hazard rates in a non-homogeneous Poisson
process. Due to this we will not simulate the payment amount but let it
queal to 1 for both types of events and datasets.

4 Analysis and result

In this section, we will go through a more detailed description of parameter
estimation, reserve prediction as well as uncertainty test.

4.1 Data1

4.1.1 Estimating hazard rates

A key point of estimating piecewise-constant rate function is the choice of
time intervals. In practice, as noticed by [15] for Poisson regression, ”the
choice of time intervals should generally be guided by subject matter aspects,
but the numbers of events and numbers at risk within intervals may also be
considered when specifying the number and lengths of the intervals. In our
situation, we have no prior knowledge for the choice of the time intervals so
a reasonable choice is to use equidistant time intervals. Two lengths of time
intervals for Data1 claims will be analysed: six months and three months.
Times of events, therefore, are divided into multiple non-overlapping sub-
groups. In case of hazard rates that are constant on six month intervals,
the times of events with type e, e ∈ {sep, se, p} are subsetted into 21 inter-
vals, namely [0, 6) months, [6, 12) months,..., [114, 120) months and ≥ 120
months, generating a parameter vector h6m

e . For hazard rates that are
specified as constant on three month intervals, the time intervals are set by
[0, 3) months, ..., [117, 120) months and ≥ 120 months, producing a total
of 41 intervals. we store these in the vector h3m

e .
ML estimates of piecewise-constant hazard rates is straightforward and

can be obtained as (16).
Furthermore, since we are estimating a continuous function of time,

it is of interest to analyse the effect of smoothing the ML-estimates. In
particular, we want to see how the smoothed estimators perform w.r.t. the
reserve prediction. We will apply the iterative smoothing method from
Section 2.4.2 to the six-month-constant estimators. The estimators are
in vector hsmooth

e . Notice that this smoothing method can be applied
iteratively, see [5], but we only do one step in this thesis.

Figure 5 presents the mean of the fitted hazard rates of type ”se” events
as well as the 5% and 95% empirical percentiles (simulation size m = 500).
Results of hazard rates with type ”sep” and type ”p” can be found in
Appendix 1.
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Figure 5: Fitted hazard rates of process with type ”se”. Bold red lines
describe the mean of estimates; dashed lines are the 5% and 95% empirical
percentiles based on 500 simulations. Black lines show the true continuous
hazard rate functions. Left panel: hazard rates are constant on six month
intervals; Middle panel: hazard rates are constant on three month intervals;
Right panel: smoothed results based on the six-month-constant hazard
rates.

The left panel of Figure 5 shows the estimated results with the spec-
ification that hazard rates are constant on six-month intervals. It seems
that the estimated hazard rate in the first time interval is overestimated
but works quite well in other ranges. The 90% confidence interval widens
during the development year which indicates a increased uncertainty for
estimates during the development time.

The middle panel of Figure 5 shows the estimated hazard rates with a
three-month constant specification. The mean values perform better than
six-month-constant hazard rates, but the 90% confidence intervals widen
larger. The differences appear more clearly as the process develops. It is
not a surprise. More cut points yields an increased number of subgroups
together with a decreased number of observations in each subgroup. Fewer
observations of course leads to a more substantial uncertainty.

The right panel of Figure 5 shows the results when we apply the smooth-
ing method to the estimated six-month-constant hazard rates. The figure
clearly shows that the ML-estimators have become smoother, but at the
same time, producing wider confidence intervals. One thing we should note
is that the smoothed hazard rate in the first time interval is still overesti-
mated.

We see from Appendix 1 the estimated hazard rates of type ”sep” and
”p” events perform similarly to those of type ”se” events.

As we noticed, the variation increases over time in all three panels due
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to the decreased number of observations for larger observation times. So it
may be useful to decrease variation by aggregating those time intervals with
too few observations. For Data1 we choose to aggregate the intervals after
60 months. Reasons for this are first after 60 months there are less than 3%
of total events in each interval which makes it hard to estimate the hazard
rates. Then the total numbers of events after 60 months distribute 7% of the
total events which we believe that it does not loss much information after
the aggregation. Estimates for type ”sep” and type ”p” events perform
similarly to the type ”se” events therefore the same aggregating procedure
will be applied to these two types too.

After aggregation, the performance of the estimated results of the three
types are presented in Figure 6. The fitting of mean value in the aggregated
interval is not much worse while the variation has decreased dramatically.

The values of z in (18) for corresponded ĥ6m
e and ĥsmooth

e based on the
aggregated data are presented in Table 3. Remember that the smaller value
of z corresponds to a smoother result. The result in Table 3 shows that
the smoothing method has not significantly smoothed the ML-estimators
after we aggregate the time intervals.

Table 3: Smoothing function value z for hazard rates estimators.

ĥ6m ĥsmooth

Type ”se” 0.0015 0.0021
Type ”sep” 0.00019 0.00024
Type ”p” 0.0029 0.0024

4.1.2 Effect of sample size and simulating size on estimation
errors

The reported results above are based on 10 000 claims. To explore the im-
pact of the number of claims on the estimated results, we will also compare
the estimations by using 5 000, 50 000 and 100 0000 claims. For reducing
the computational load, only the events with type ”se” are experimented
and the estimated hazard rates in the first six months are presented in
Figure 7. (Estimations in the interval [54, 60) are shown in Appendix 2).
For each sample size, there are not any significant changes in the expected
values of the estimations, the standard deviations decrease proportionally
with the square root of the number of claims.

Another possible factor which may affect uncertainty of estimation is the
simulation size. Considering both the computational load and the results
seen in Figure 7, we decide to fix the sample size to 10 000 and experiment
500, 5 000 and 10 000 estimations to explore this effect.
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Figure 6: Estimated hazard rates together with 5% and 95% empirical
percentiles based on 500 simulations. Columns : hazard rates are constant
on six month intervals; hazard rates are constant on three month intervals;
Smoothed results based on the six-month-constant hazard rates. Rows:
type ”se”, type ”sep” and type ”p” events. All results are assumed with no
further changes efter 60 months in the hazard rates. The solid black lines
show the true continuous hazard rates

As shown in Figure 8, it has no significant changing in the mean values
and standard deviations when we increase the simulation size. This phe-
nomenon indicates that if the sample size is sufficiently large simulation
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Figure 7: Histogram of piecewise constant hazard rates estimated from
events with type ”se” on the first six months. The sample size is 5 000,
10 000, 50 000 and 100 000. The solid black lines present the mean value of
simulations.

Figure 8: Histogram of piecewise constant hazard rates estimated from
events with type ”se” on the first six months. Sample size is 100 000,
simulation size m is 500, 5 000 and 50 000. The solid black lines present
the mean value of estimations.

size will not affect the estimation uncertainty to any greater extent.

4.1.3 Reserves

In this section, we will study the performance of the three estimated haz-
ard rates by comparing predicted reserves. Five-year-ahead cash flows,
total reserves as well as predictions of each type are obtained according
to the Simulating procedure described in Section 2.5. Three estimated pa-
rameter vectors ĥ6m

e , ĥ3m
e and ĥsmooth

e will be used to simulate the future
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payments.
To evaluate the performance of a reserving model, we use the percentage

reserve error (RE) which is defined by

RE =
R̂−Rsim.

Rsim.
. (29)

Where R̂ means the predicted results obtained from constant hazard rates,
Rsim. denotes the actual future payments from the simulation. The per-
centage reserve error is easily calculated and its standard deviation can also
be estimated empirically. The disadvantage of RE is that we lose infor-
mation about prediction size and distribution of cash flows in total reserve
which we may be interested in. Thus we choose to analyse the predicted
cash flows/reserves R̂ and the actual future payments Rsim. in each year.
Due to the actual future payments are not unchanged when we each time
simulate claims, the mean value of simulations R̄sim. will be calculated.

As we mentioned before, we have simplified this micro model by assum-
ing the payment amount is 1 unit. Then the cash flows in calendar year k
can be obtained by:

Rk = Nk = Nsep,k +Np,k =
∑
j≥0

1
(
k ≤ T ij ≤ k + 1, Ei

j ∈ {sep, p}
)

(30)

where T ij is the time of jth event of claim i since reporting. Ei
j denotes

type of jth events for claim i. Only events with type ”sep” and type ”p”
contribute to the reserve predictions. The total reserve for five years is

Rtot. =
5∑

k=1

Rk (31)

We use RE to perform the comparison of three types while we use R̂
and R̄sim. to illustrate the development of cash flows and total reserves.

Cash flows and total reserves in five years are shown in Figure 9. The
red lines present kernel densities of cash flows/reserves with six-month-
constant hazard rates as intensities in the Poisson process. The blue lines
show the kernel densities of cash flows/reserves with three-month-constant
rate function. The green lines show results obtained from the smoothed
hazard rates. The solid black lines correspond the mean value of future
payments R̄sim. from the simulations.

It seems that the predictive kernel densities obtained from the six-
month-constant and three-month-constant hazard rates are more realistic
than those from the smoothed estimators. The best estimate with six-
month-constant and three-month-constant hazard rates in year 1, 4 and 5
are very close to the ”true” reserve, but in year 2 and 3 are underestimated.
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Figure 9: Predicted cash flows and total reserves for five years. First five
results (from left to right, from top to bottom) are cash flows in five years.
The last panel (bottom row on the right) shows the total reserves. It is
based on 1 000 simulations and 10 000 claims. Red line: six-month-constant
hazard rates; Blue line: three-month-constant hazard rates; Green line:
smoothed hazard rates. Solid black line: the mean of the actual future
payments obtained from the simulation.
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According to the results from the smoothed hazard rates, it seems that
this method has not improved the performance of ML-estimators. It results
in an obvious bias for each calendar year. It overstates the reserve in year
1 and understates in the other years.

For the total reserves, from the right panel on the bottom row in Figure
9, it is seen that all three parameter settings ĥ6m

e , ĥ3m
e and ĥsmooth

e predict
well. Even though the smoothed estimates do not give a good fit to the
cash flows in each year, it results in a quite good performance in total
reserves.

If we focus on the kernel densities of cash flows in total reserve, it shows
that the cash flow in year 1 distributes around 45% of the total reserve
which almost corresponds to the total sum of the remaining years. That
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is maybe an explanation of why the smoothed estimates give unrealistic
predictions of cash flows but this is not shown in the total reserve.

To qualify the predictive ability of constant hazard rates in each type,
we illustrate the kernel densities of the percentage reserve errors in Figure
10. Note that for type ”sep” and type ”p” events, the results correspond
the reserve errors, but for type ”se” event, it does not generate reserve
so the results are just the percentage predictive errors of the numbers of
settlement where no payment occurs. We still use name ”Reserve error”
for type ”se” in Figure 10 just for consistency considering.

Figure 10: Kernel densities of percentage Reserve Errors by event type. Red
line: six-month-constant hazard rates; Blue line: three-month-constant
hazard rates; Green line: smoothed hazard rates. The black lines present
value zero. Note that for type ”se” event, it does not generate the reserve
but the predictive errors of the numbers of events.
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The six-month-constant hazard rates give a mild positive bias for type
”sep” events and a negative bias for type ”p” events but it gives outstanding
predicted results of events with type ”se”. Its best estimate matches almost
the actual value and the variation is little.

Three-month-constant hazard rate works well too. It produces a slightly
larger variation of reserve errors with type ”p” events than those with the
six-month-constant setting but they are not significant when we compare
the errors with type ”se” and type ”sep” events.

The smoothed hazard rates do not perform as good as the other two.
The best estimates of errors for type ”se” and type ”sep” are positive which
mean the overstatement while the best estimate is negative for type ”p”
events, i.e. it results in fewer payments than the actual one. The positive
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results for type ”sep” and the negative value for type ”p” offset each other
which leads to the total predicted reserve is much closer the actual value
(the bottom-right panel in Figure 9). The percentage reserve errors are
larger than those obtained from six-month-constant hazard rates. It seems
that the smoothing method enlarges the estimation errors what the ML
estimates have.

We see that predictions from type ”se” and ”p” have smaller variation
than type ”sep”. It may depend on the number of observations in each
type. For Data1 claims, The number of events with type ”sep” is the least
among all types.

From Figure 9 and 10 we can conclude that the piecewise constant
hazard rates with six-month and three-month specifications provide a re-
markably good fit for the simulated claims. The predicted reserves from
the smoothed hazard rates are either over- or underestimated. It can be
stated that the smoothing method has not improved ML-estimators on the
predictive ability.

Thus the results both in Section 4.1.1 and 4.1.3 show that the smoothing
method fails not only to give a smoother estimate but also to improve the
predictive ability.

4.2 Data2

Data2 has another development pattern than Data1. Claims in this type
of dataset develop quickly into the settlement and most of them are settled
with a single payment. Settlement times are mostly short. 99% of claims
have been settled within the reported year. So the active claims and future
payments are relatively low.

Based on the above information, we should consider a new feasible
number of cut points and length of time intervals which may differ from the
settings of Data1 claims. As we mentioned, there are less than 1% of claims
that are active after 12 months, so it seems reasonable that we aggregate
the events which occur after 12 months and assume no further changes in
the hazard rates after 12 months. To be able to capture the development
pattern under the 12 months, we test both three-month-constant and one-
month-constant specifications. Furthermore, we continue to study how
the smoothning method performs in this type of dataset by smoothing
the ML estimators with the three-month specification. Conclusions about
the quality of each method will be drawn based on both performances in
parameter fit and predictive abilities.

4.2.1 Estimating hazard rates

Estimated hazard rates and the 90% confidence intervals obtained from the
empirical percentiles are shown in Figure 11. The first row presents the
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Figure 11: Estimated hazard rates together with 5% and 95% empirical
percentiles based on 500 simulations. Columns : hazard rates are constant
in three month intervals; hazard rates are constant in one month interval;
Smoothed results based on the three-months-constant hazard rates. Rows:
type ”se”, type ”sep” and type ”p” events. All results are assumed with no
further changes after 12 months in the hazard rates. The solid black lines
show the true continuous hazard rate functions.

estimated results with type ”se” events. It seems that the three-month-
constant hazard rates (left panel) cannot describe the continuous change of
hazard rates. The gap between the first and second interval is big which is
problematic. The reason for this is that the continuous rate functions for
Data2 decrease rapidly in the first three months, therefore to assume the
hazard rate is constant in this interval is not realistic. Thence one-month-
constant hazard rates which are shown on the middle panel in Figure 11
fit much better. The mean values of the estimated hazard rates capture
better the accurate trend. But at the same time, a larger uncertainty is
expected (wider 90% confidence intervals on the middle panel). From the
right panel in Figure 11 we find that the gap between the first and second
interval has been reduced but the fit is still not good. It, in this case, may
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be necessary to apply the smoothing method iteratively. But we stay in
the first step and take this result to further analysis.

The estimated hazard rates in the process with type ”sep” are presented
on the second rows. The three-month specification and the smoothed re-
sults perform similarly on those in the process with type ”se”. The one-
month-constant hazard rates give a better adaptation, but the fit in the
first two months are still unrealistic. It is due to the hazard rate function
in this type declines even faster in the first several months than those with
type ”se” and ”p” which leads to an even poorer adaptation.

Hazard rates from type ”p” events give a similar result as those from
type ”se”.

Value of the smoothing function z for ĥ3m
e and ĥsmooth

e are shown in
Appendix 3. It shows the smoothed estimators give almost the same results
as the ML estimators.

4.2.2 Reserve

For Data2 claims, we only forecast cash flows and total reserves in three
years.

The left panel on the top row of Figure 12 shows the one-year-ahead cash
flows. Kernel densities of reserves show that all three parameter settings
give quite good predictions. The best estimates are slightly lower than
the actual one. For cash flows in year 2 and year 3 (on the top right and
bottom left in Figure 12), the one-month-constant hazard rates generate
overestimation while the three-month-constant and smoothed hazard rates
result in an excellent prediction. Total reserves from all three parameter
settings are entirely close to the actual one.

Comparing the reserve amounts (x-axis value), we find that the best
estimate of the cash flows in year 1 (around 280 ∼ 290) account for almost
80% of the total reserve (370 ∼ 380).

Same as for Data 1, we illustrate the kernel densities of the percent-
age reserve errors in Figure 13. From Figure 13, we see that the kernel
densities from three hazard rates vectors are different. It shows from the
left panel that the smoothed hazard rates for type ”se” events (the green
line) generate considerable negative bias and total kernel density locates
on the left of zero which means that this model dramatically understates
the reserve. The three-month-constant hazard rates for type ”sep” events
(the red line) perform poorly as well. It has a smaller negative bias than
the smoothed hazard rates but most parts of the kernel density are still on
the left of zero. One-year-constant hazard rates show the best predictive
ability. The best estimate is closer to zero and the line seems symmetric.

Moving to the middle panel in Figure 13, we see that the results are
in contrast to the left panel. The three-month-constant specification, as
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Figure 12: Predicted cash flows and total reserves in three years. First
three results (from left to right, from top to bottom) are cash flows in three
years. The last panel (bottom row on the right) shows the total reserves.
The results are based on 1 000 simulations and 10 000 claims. Red line:
three-month-constant hazard rates; Blue line: one-month-constant hazard
rates; Green line: smoothed hazard rates. Solid black line: the mean of the
actual future payments obtained from simulation.
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well as the smoothed hazard rates, overstate the number of events. The
kernel density obtained from the one-month-constant hazard rates is more
realistic than the others. Its best estimate is closer to zero.

For the prediction to the events with type ”p” (see the right panel
in Figure 13), the three-month-constant and the smoothed hazard rates
simulate fewer numbers of events while one-month-constant generates a
more realistic result.

4.2.3 Effect of sample size on reserve errors

Differences of percentage reserve errors by type of three parameter settings
are significant. We may wonder if it is dependent on the number of active
claims. A robustness check is necessary. Data2 in above analyses are based
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Figure 13: Kernel densities of the Percentage Reserve Errors by event
type. Red line: three-month-constant hazard rates; Blue line: one-month-
constant hazard rates; Green line: smoothed hazard rates. The black lines
present value zero. Note that for type ”se” event, it does not generate the
reserve but the predictive errors of the numbers of events.
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on 10 000 reported claims which are distributed into five accident years
uniformly. As mentioned, there are only 1% claims are not settled after 12
months which means the prediction is based on approximately 100 active
claims. To explore the impact of the number of claims on the results, we
also experiment by using 50 000 claims in Data2 in which around 500 claims
are needed to set reserves. We present the results by type from which we
can see how the predictions are affected.

Results are shown in Figure 14. Comparing results in Figure 13 and 14,
we see the best estimates are not significantly changed while the standard
deviations decrease when the number of claims in the dataset increase. It
tells us that the adaptation of the model does not be substantially affected
by the sample size. Whether the model is suitable for data or not can be
captured even for a small data size in the micro-level model study.
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Figure 14: Kernel densities of the Percentage Reserve Errors by event type.
Sample size is 50 000 and simulating size is 1 000. Red line: with three-
month-constant hazard rates; Blue line: with one-month-constant hazard
rates; Green line: with smoothed hazard rates. The black lines present
value zero. Note that for type ”se” event, it does not generate the reserve
but the predictive errors of the numbers of events.

−60 −40 −20 0 20

0.0
0

0.0
5

0.1
0

0.1
5

Reserve Error (%)

De
ns

ity

Type "se" 

0 50 100

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Reserve Error (%)

De
ns

ity

Type " sep" 

−40 −20 0 20 40 60

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

Reserve Error (%)

De
ns

ity

Type "p" 

5 Discussion

The purpose of this thesis is to study how the piecewise constant hazard
rates perform in a micro-level model in general insurance. We choose to
simulate two types of datasets whose development patterns are entirely
different. One contains complex processes with multiple payments and
long settlement times. The development processes in the other dataset are
much simpler, in which most of the claims are closed with a single payment
and 99% of the claims are settled during the first accident year. By using
piecewise constant hazard rates on both types of datasets, we would like
to see if the model works differently on two distinct lines of business.

Data are generated using non-homogeneous Poisson processes. The
Poisson processes have hazard rate functions from survival models as inten-
sities. We specify that the hazard rates are from the Weibull distribution.
In the processes, each claim is assumed to have been reported to the insur-
ance company and, once acknowledged, a series of payments are made until
the claim is settled or the process is closed. When modelling payments,
three types are used: Type ”se” event means the claim is settled but no
payment occur, a type ”sep” event indicate the claim is settled with a last
payment and type ”p” events corresponds to intermediate payments. All
events are simulated by their corresponding hazard rate functions hse, hsep
and hp.

With these two types of datasets, we examine how well the piecewise
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constant specification can present the continuous rate functions. We ana-
lyze the two types of data separately. For data with long settlement time
(called ”Data1”), we test two lengths of time intervals: six months and
three months. For Data2 (the data with quick settlement time), we apply
three-month and one-month intervals which we believe are the most suit-
able. Note that for Data1, only few events occur after approximately 60
months. Due to this, it is hard to estimate hazard rates after 60 months.
We therefore choose to assume no changing in hazard rates after 60 months
for Data1. Similarly for Data2, we assume that hazard rates are unchanged
after 12 months for Data2.

The Estimates of parameter vectors he = {h1,e, ..., hK,e}, where e ∈
{se, sep, p} and K is the number of intervals, can be obtained by using
maximum likelhood theory. Based on ML estimators we also test to smooth
one of the ML-estimators (ĥ6m

e for Data1 and ĥ3m
e for Data2) by using an

iterative smoothing method which is introduced in [2], where ĥ6m
e and ĥ3m

e

mean the ML-estimators with six-month-constant respective three-month-
constant specification. The level of smoothness is evaluated by comparing
the smoothing function value z which is presented in Table 3 for Data1 and
Table 4 for Data2.

The results show that the smoothing method has not efficiently smoothed
the ML-estimators for neither of the datasets.

Another evaluation of piecewise-constant specification is to see their
performance in prediction. This is done for Data1 in Section 4.1.3 and in
Section 4.2.2 for Data2. The results show that reserves from the three-
month-constant hazard rates for Data1 are much closer to the actual one.
It gives a stable prediction regardless of cash flows, total reserves or types.
The six-month-constant hazard rates in Data1 perform well too. The pre-
dictive ability of the six-month-constant hazard rates does not notably
differ from those of the three-month-constant hazard rates. The smoothed
results create a significant bias in the prediction of cash flows and each type
of events, but it results in a good prediction on the total reserve for Data1
claims.

For Data2 claims, kernel densities of reserves obtained from three-
month-constant specification reflect actual cash flows and total reserve.
The smoothed estimators give a good fit in the prediction of cash flows
and total reserve too. But these two parameter settings perform critically
wrong when they are used to predict events by types. The one-month-
constant hazard rates create a slight bias on the prediction of cash flows
but perform more stable to predict the events in each type.

In Section 4.1.2 we study the effect of sample size and simulation size
on estimation errors. It shows that the expected value of estimates is not
significantly changed on the changing of the sample size while the standard
deviation decreases proportionally with the number of claims. By testing
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different simulation size, we conclude that if the sample size is sufficiently
large the simulation size will not affect the estimation uncertainty to any
greater extent.

Due to the predictive results by types differ obviously, we study even
whether the prediction can be improved by increasing the number of active
claims in Data2. The results tell us that the best estimate of simulation
is not affected much by the sample size. It only decreases the standard
deviation.

Due to time limitations, we only studied one basic rate function in
the non-homogeneous Poisson process. The rate function, more generally,
depends not only on time t but also on other internal or external covariates.
To apply the piecewise constant specification to such Poisson process may
be more complex and the conclusions may differ.

We may discuss the limitation of the smoothing method in [2] too. This
method is based on several constraints. One of them is that it is used to
smooth an estimated rate function vector, and the smoothed estimators will
”inherit” the statistical errors from the original estimated rate function.
It means that this method can not ”correct” the issues but it looks like
somehow enlarged them in the prediction, i.e. created a larger bias than
the ML estimators.
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7 Appendix

Appendix 1: Hazard rates estimates of type ”sep” and type ”p”
events for Data1 claims

Figure 15: Fitted hazard rates of process with type ”sep”. Bold red lines
describe the mean of estimates; dashed lines are the 5% and 95% empirical
percentiles based on 500 simulations. Black lines show the true continuous
hazard rate functions. Left panel: hazard rates are constant on six month
intervals; Middle panel: hazard rates are constant on three month intervals;
Right panel: smoothed results base on six-month-constant hazard rates.

Figure 16: Fitted hazard rates of process with type ”p”. Bold red line
describe the mean of estimates; dashed lines are the 5% and 95% empirical
percentiles based on 500 simulations. Black lines show the true continuous
hazard rate functions. Left panel: hazard rates are constant on six month
intervals; Middle panel: hazard rates are constant on three month interval;
Right panel: smoothed results base on six-month-constant hazard rates.
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Appendix 2: Effect of sample size on estimation errors. Haz-
ard rates in interval [54, 60) months

Figure 17: Histogram of piecewise constant hazard rates estimated from
events with type ”se” in the time interval [54,60) months. The sample size
is 5 000, 10 000, 50 000 and 100 000. The solid black lines present the mean
value of the simulations.

Appendix 3: Smoothing function value z for hazard rates es-
timators for Data2.

Table 4: Smoothing function value z for hazard rates estimators.

ĥ3m ĥsmooth

Type ”se” 0.0019 0.003
Type ”sep” 0.0003 0.0004
Type ”p” 0.0035 0.0021
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