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Abstract

Preceding studies demonstrate that the inclusion of cohort spe-
cific effects could improve the fit of stochastic mortality models. To
determine the potential improvements, the aim of this study was to
quantitatively compare the Lee Carter (LC) and Renshaw Haberman
(RH) mortality models explaining the development in mortality rates
in Sweden and the United Kingdom. An exploratory analysis was
conducted to detect cohort effects while the robustness, interpretabil-
ity and prediction accuracy was evaluated by periodic model fittings
and projections. Ultimately, the fitting of the RH model decreased
the occurrence of cross-year and cross-age correlations hence a part of
the systematic effects in mortality data can be explained by includ-
ing a cohort term. However, in contrast to the robust LC model, the
RH model proved sensitive to outliers and changes in the underlying
data. Although the mortality projections by the RH model improved
in terms of forecast accuracy, the lack of robustness in the RH model
emphasise that we can not completely rely on the predictions.
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1 Introduction

Over the past decades, rising longevity and ageing populations have directed
elevated interest to the study of development and projection of mortality
rates. An accelerating improvement of mortality rates impacts financial in-
stitutions providing life insurance and pension. Unexpected improvements
in longevity influence the pay out benefits by prolonging the pay out period
longer than anticipated.

The historical development of mortality rates is commonly modelled by de-
composing the mortality rates into variables of age, period and cohort. Each
of these variables contributes to the understanding of how mortality rates
evolve subject to the ageing of a population, the effect of medical advance-
ments and socioeconomic progress over time as well as the lifelong influence
that follow each individual from birth.

In 1992 Lee and Carter proposed a model widely used to forecast future
mortality rates [21]. The Lee Carter (LC) model consists of a single age and
period term explaining the evolution of mortality rates. In current literature
the LC method is sometimes described as one of the most efficient methods
to generate realistic forecasts of life expectancy [3]. Therefore, the method is
widely used to produce reference values for other modelling methods. Ever
since the LC model was introduced various extensions have been proposed
such as inclusion of higher order and cohort specific effects [22].

The influence that follow an individual from birth is of significance within
mortality research. In 1999 Willets published a paper that dramatically in-
creased attention to the presence of cohort effects in mortality data [31].
He observed the phenomenon of a more rapid improvement in mortality for
people born in the United Kingdom between 1925 and 1945 than the adja-
cent generations. Later on, the subject of cohort effects was also thoroughly
investigated by the Continuous Mortality Investigation [7]. Shortly after, sev-
eral other studies revealed similar mortality improvements in other European
countries such as the Netherlands and Belgium [30]. Following a rising inter-
est in cohort effects, Renshaw and Haberman adapted the original LC model
by incorporating a cohort term which is known as the Renshaw Haberman
(RH) model [25].

The purpose of this study is to investigate if cohort specific effects are present
in the Swedish population and if the incorporation of a cohort term in the
modelling could improve the projection of future mortality rates. UK data
is used as referential data due to the evidence of cohort effects. The study
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attempts a comparison based on quantitative and qualitative properties of
the LC and RH models. Qualitative properties are assessed by considering
the interpretability as well as the applicability of the models. Quantitative
properties are evaluated by examining each model fit with regard to consis-
tency with historical data and robustness of parameter estimates relative to
the range of data employed.

To begin with, we provide initial theory and background on the LC and RH
stochastic mortality models in Section 2. It is followed by specific theory
that is relevant for the modelling and the comparative analysis in Section 3.
In Section 4 we conduct an exploratory analysis and quantify the presence
of cohort effects in the Swedish and UK population data. In Section 5 we
perform a quantitative comparison of the models which is followed by the
most important results. The results are later on discussed and analysed in
Section 6.

2 Mortality models

In the following sections the general theory of the LC and RH model is
provided along with explanation of cohort effects.

2.1 Notation

We define µx,t as the force of mortality which corresponds to the mortality
rate for a specific age x = x1, x2, ..., xk given a certain calender year t =
t1, t2, ..., tn. We define the central mortality rate mx,t as the average number
of deaths at year x during calender year t. Under the assumption that the
force of mortality is constant over a one year interval of age [x, x + 1] and
calendar year [t, t+ 1], mx,t equals µx,t namely

mx,t = µx,t =
Dx,t

Ex,t
. (1)

In the above equation Dx,t refers to the number of deaths occurred at age
x during calender year t. Moreover, Ex,t correspond to the exposure of risk,
thus the period under which the population where exposed to the risk of
death at age x during calender year t [2]. In the following sections we will
continuously use µx,t when referring to the mortality rate.
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2.2 The Lee Carter model

In the original paper from 1992, Lee and Carter proposed a new model for
forecasting mortality rates [21]. Nowadays, the model is commonly used to
make long-run forecasts of age specific mortality.

The LC model integrates the trend that can be observed in a data set ranging
over a long period, which Lee and Carter referred to as the index of mortality.
The model is extrapolative and allows age specific mortality rates to decline
exponentially without limit [22]. The changes in mortality are subject to
both the time measured in calender years t and age k. The model is of the
bilinear form

ln[µx,t] = αx + β(1)
x κt + εx,t (2)

adopting a logarithm transformation of the force of mortality. The parame-
ters αx and β

(1)
x are age functions and κt represent the main time trend index

of the general mortality level. The latter function may also be referred to as
period function.

In detail αx is a static age function describing the general shape of the age
specific mortality rates. Different age groups exhibit different mortality rates
but in general the mortality varies as a function of age in a systematic way.
If we consider eαx we find the general shape of the mortality curve across the
age range without the effects of the overall time trend.

Parameters β
(1)
x determine the pattern of mortality change across ages x.

The coefficients measure the age specific deviations of mortality change from
the overall trend. Therefore β

(1)
x signify which rates decline rapidly or slowly

in response to changes in κt. When β
(1)
x is large at some age x, the mortality

rate at that age is more sensitive to changes in the general level of mortality.
On the contrary, when β

(1)
x is small, the mortality rate at age x fluctuates

modestly in response to changes in the general level of mortality. To illus-
trate, infant mortality is an example of volatile age specific mortality rates
while mortality at older ages is more robust [23].

In theory β
(1)
x are allowed to be both positive and negative indicating that

mortality rates decline for some ages while rising for others. However, in
practice all β

(1)
x are assumed to be positive in the long run when the model

is fitted to relatively long time periods. The age specific mortality rates are
assumed to increase or decrease collectively due to the joint period effect κt.
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However, the model allows the magnitude of the movements to differ across
ages [23].

The κt explain how mortality effects evolve over time often referred to as the
index of the general level of mortality. If κt is decreasing linearly over time
then each age specific mortality rate will decline at its own exponential rate
subject to the value of β

(1)
x . Thus, the slope of the κt curve multiplied by the

value of β
(1)
x determines the proportionate rate of change at any mortality

rate. Consequently, the mortality rates µx,t are modelled as a stochastic

process driven by the process of κt [22]. To summarise, the β
(1)
x parameters

describe how the mortality effects are distributed across ages and the κt
parameters explain how they evolve over time.

The error terms εx,t are assumed to be N(0, σ2) distributed which reflect
systematic and random variations such as age specific historical influences
that are not captured in the model [21].

2.3 Cohort effects

If we consider the mortality rates for some subset of adjacent birth years, the
cohort mortality refers to the mortality rates observed for that generation
from birth to death. In this case, we refer to the individuals born during a
specific amount of time as a cohort. The study of cohort mortality is time
consuming which follow from the fact that it takes a long time before the
last living individual in a generation has deceased. Nonetheless, it proves
important to the insurance business [2].

A cohort effect is defined as variations within a population with some common
characteristic. In this context, the cohort effect refers to the evolution of
mortality rates in a specific generation. The year of birth defines the common
characteristic and the cohort effect is examined by modelling the impact of
birth year on rates of mortality change. Consequently, a cohort effect may
be interpreted as an effect that reduces or increases the mortality at all ages
for a specific generation [19].

Essentially, there exist a dependency between the mortality for a population
and the period under which the population lived. The development of health
care systems, new innovations and other events that are time specific such as
catastrophes, wars or environmental disasters naturally influence longevity.
On the one hand, certain events during a period affect mortality across all
age groups. On the other hand, some alterations in mortality originate from
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events during the birth year. The aftereffects stemming from such events
remain throughout life and may be interpreted as cohort effects. As a re-
sult, a significant amount of information is gathered during these years that
should not be neglected. Ultimately, the information concerning social and
economic conditions under these years improves the understanding of the life
expectancy of an individual at a specific age.

Willets observed a rapid mortality improvement for people born between
1925 and 1945 centred on the generation born in 1931 in the UK population.
The observations was concluded as cohort effects [31]. As a result, the mod-
els allowing for cohort terms outperformed other models that excluded such
terms [8]. Willets discussed several possible factors that may have been fun-
damental in actuating the observed mortality improvement. He emphasised
that the prevalence of smoking along with trends in heart diseases and cancer
where contributing factors to the aggregation of a cohort effect [31,32].

2.4 The Renshaw Haberman model

As a consequence of the increased attention in cohort effects, Renshaw and
Haberman generalised the LC model by incorporating a cohort term. The
model proved to capture the underlying effects related to the birth cohorts
in mortality data. If cohort effects were present in the data the model fit and
the mortality projections improved significantly [25].

Presently, we define the RH model as

ln[µx,t] = αx + β(1)
x κt + β(0)

x γc + εx,t. (3)

We let c = t − x denote the cohort where c ∈ {tn − xk, ..., t1 − x1} hence
ranging from the oldest to the youngest cohort in the data. The notation in
the model along with the interpretation of the parameters αx, β

(1)
x and κt is

analogue to the one in Section 2.2. The final terms β
(0)
x and γc are included

in the LC model specification in order to incorporate the cohort effects. A
decline in the γc suggest a mortality improvement for the generations born
during that period. On the contrary, a pronounced incline in γc would suggest
a negative effect on longevity to those born during that time period. The γc
correspond to the cohort specific effect while the β

(0)
x adjust the impact of

the cohort effect on the age specific mortality rates.

In other papers, issues have been reported regarding robustness of (3) sub-
ject to deviations in the period of data used in the fitting [7,9]. In addition,
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the model have proved to suffer from convergence issues when the model was
fitted to certain periods of data or ranges of age. As a solution, Renshaw and
Haberman suggested a parsimonious model structure by setting β

(0)
x = 1 [16].

Lack of robustness in the parameters can be related to the number of pa-
rameters that are fitted during the fitting algorithm [15]. As the number of
parameters is decreased, a higher rate of convergence is achieved. In follow-
ing studies, increased robustness was observed when the simpler model was
compared to the predecessor hence the simpler model proved less sensitive
to changes in the period of data used [18]. In the continuous investigation,
we refer to (4) as the RH model

ln[µx,t] = αx + β(1)
x κ

(1)
t + γc + εx,t. (4)

The interpretation of the αx, β
(1)
x , κt and εx,t parameters in (4) is analogue

to those defined previously. However, the restriction of setting β
(0)
x = 1

allows the cohort terms to vary over a wider spectrum, thus representing
consistently higher or lower mortality rates.

3 Model fitting

Lee and Carter applied a two-stage estimation procedure to fit the model.
During the first stage Singular Value Decomposition (SVD) was used to ob-

tain estimates of β
(1)
x and κt. However, Lee and Carter noted that the total

observed number of deaths was not guaranteed to equal the total number
of deaths predicted by the model. A second stage estimation was necessary
to compensate the eventual difference in the number of observed versus the
predicted number of deaths. As a solution, they suggested a re-estimation of
κt as a second stage in the estimation procedure. New estimates of κt were
computed for each calendar year t by finding the corresponding value that
equalled the observed and predicted total number of deaths [21].

The proposed two-stage estimation has advantages as well as disadvantages
which have been discussed in several studies [14,33]. Lee and Carter mentions

the occurrence of negative and positive values of the β
(1)
x parameters, which

indicate that mortality is increasing in some age groups while decreasing in
others. However, all β

(1)
x are assumed positive in the long run [21]. While the

LC model was developed for all cause deaths, the occurrence of nonuniform
signs is more common when investigating cause specific effects. In addition,
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Girosi and King points out that the appearance of nonuniform signs could
lead to multiple or even no solutions to the estimation problem [14].

In a later study, Wilmoth noted that the difference between the number of
observed and predicted number of deaths originated from the minimising
of the least square error over log mortality instead of the mortality. As a
consequence, same weights were given to all age groups independent of their
contribution to the number of total deaths [33].

As a solution, Wilmoth proposed that the problem could be avoided by fitting
the model using weighted least squares (WLS) or maximum likelihood esti-
mation (MLE) and setting weights equal to the number of deaths. Both pro-
cedures naturally manage the occurrence of observations where zero number
of deaths are registered which pose as an advantage over SVD. In a discussion
paper, it was mentioned that the SVD approach was not optimal. Alterna-
tively, the author assumed a Poisson regression setting where the parameter
estimates were obtained using MLE [1]. Similar topics have been discussed
in related articles where the MLE has been proposed to achieve a superior
estimation of the parameters along with statistical packages implementing
strategies to model bilinear terms [5].

In the following sections, we choose to exclusively consider the MLE proce-
dure. The model fitting algorithm is described in Section 3.2.

3.1 Parameter estimation

Since the number of deaths are a counting variable, a Poisson distribution
has been proved to be plausible [5]. Assuming that the number of deaths
Dx,t follow a Poisson distribution, it follows that

Dx,t ∼ Po(Ex,t · µx,t) (5)

where the expected value of the number of deaths is defined as

d̂x,t = E[Dx,t] = µ̂x,t · Ex,t. (6)

The interpretation of µx,t and Ex,t remains as previously defined in Section
2.1. As previously discussed, parameter estimates of stochastic mortality
models can be obtained by implementing the maximum likelihood method,
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which essentially maximises the model log likelihood. The likelihood function
is determined as

L(dx,t, d̂x,t) =
∏
x,t

e−d̂x,t · d̂ dx,t
x,t

dx,t!
(7)

Taking the logarithm of the likelihood function, the log likelihood function
is obtained, namely

ln
(
L(dx,t, d̂x,t)

)
=
∑
x,t

ωx,t
{
− d̂x,t + dx,t · ln(d̂x,t)− ln(dx,t!)

}
(8)

where ωx,t is introduced as a {0, 1} weight matrix that determines which
cohorts are to be given zero weight in order to exclude some observations.
Since the last term in (8) is independent of d̂x,t it is sufficient to maximise
the following equation to obtain parameter estimates

l(dx,t, d̂x,t) =
∑
x,t

ωx,t
{
− d̂x,t + dx,t · ln(d̂x,t)

}
. (9)

3.1.1 Lee Carter model

In the case of the LC model defined in (2), the objective is to obtain estimates

of αx, β
(1)
x and κt. Since mortality data is structured as a collection of

elements, the mortality rate is dependent of row and column identified by the
age x and the year t. Models for such array data structure often suffers from
over-parametrization. Consequently, the parametrization in the model (2) is
not unique since the model is invariant with respect to the transformations
of the model parameters

α̃x −→ αx + c1β
(1)
x , β̃(1)

x −→
β
(1)
x

c2
, κ̃t −→ c2(κt − c1). (10)

This can be illustrated by substituting the transformations into (2) which
will result in an identical value of ln[µx,t]. Thus, the over-parametrization
results in an infinite number of solutions to the estimation which in turn
generates equivalent predictions. In order to obtain unique parameter es-
timates, constraints are imposed on the parameters. We choose to impose
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the constraints that were originally introduced by Lee and Carter [21]. The
constraints are

∑
t

κt = 0,
∑
x

β(1)
x = 1. (11)

In order for the parameters to satisfy the restrictions defined in (11), a set of
constants, c1 and c2, is determined to identify a set of parameters given by the
transformations in (10). To illustrate, the constants c1 and c2 are determined
by substituting the transformations (10) into the constraints (11) and solving
for each constant. As such, the constants satisfy the constraints and ensure
that unique parameter estimates are obtained in the model fitting. Thus,
unique parameters are obtained using the following values of c1 and c2

c1 =
1

n

∑
t

κt, c2 =
∑
x

β(1)
x (12)

where n denotes the number of calendar years. The first constraint in (11)
implies that the parameter αx correspond to the main age effects averaged
over time [25].

The second constraint in (11) refrains the β
(1)
x parameters from taking large

values which in turn modulates the influence of the κt parameters on the
mortality rates. However, it does not restrict β

(1)
x from taking negative values.

Finally, it is emphasised the identifiability constraints in (11) are not unique
and it is important to note that other constraints might result in different
interpretations of the parameters [18]. Regardless of the choice of constraints,
the fitted values of the log mortality will be the same, but the parameter
estimates will vary.

3.1.2 Renshaw Haberman model

The original RH model has been subject to criticism due to slow convergence
and insufficient robustness to changes in the underlying data [11]. Other stud-
ies have identified that the model were unable to converge for some subsets
of data and that the model were sensitive to the choice of starting values in
the fitting algorithm [7]. As a solution, it was proposed that a parsimonious
model (4) should be used for making predictions [16]. Consequently, we con-
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duct our analysis using the model specification in (4) with β
(0)
x = 1. Thus,

the objective is to obtain parameter estimates of αx, β
(1)
x , κt and γc.

Similar to the LC model, the RH model is subject to over-parametrization
and to ensure identifiability in the model three constraints are imposed. The
constraints select one set out of a range of equivalent parameter sets which
yields the same fitted mortality rates. Consequently, the parametrization in
the model is not unique since the model (4) is invariant with respect to the
parameter transformations

α̃x −→ αx + c1β
(1)
x + c2, β̃(1)

x −→
β
(1)
x

c3
κ̃t −→ c3(κt − c1), γ̃c −→ γc − c2

(13)

As discussed in the previous section, there exists several potential constraints
that may be imposed to ensure identifiability. We choose to impose the
constraints that was proposed in a recent paper [19]. In the aforementioned
study, the constraints were developed based on observations in an earlier
study [8]. The constraints are

∑
t

κt = 0,
∑
x

β(1)
x = 1

∑
x,t

c=t−x

γc = 0. (14)

The third constraint in (14), which is imposed on the cohort terms, yields
the interpretation that the average level of the cohort parameters fitted by
the model should be zero. The constraint on the cohort term does however
not change the interpretation of the other parameters [5].

Analogous to the LC model, a number of constants, c1, c2 and c3, is de-
termined by substituting the transformations in (13) into the constraints in
(14) and solving for each constant. Thus, unique parameter estimates are
obtained using the following values of c1, c2 and c3

c1 =
1

n

∑
t

κt, c2 =
1

n+ k − 1

tn−x1∑
c=t1−xk

γc, c3 =
∑
x

β(1)
x . (15)

In (15), the n and k refers to the number of calendar years and the number
of cohorts respectively.
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3.2 Fitting algorithm

There are various R packages available in the literature that have been de-
veloped over the years to fit stochastic mortality models. We utilised the R
packages ilc and StMoMo to fit the LC and RH model respectively [6, 29].

In order to fit the LC model we applied a fitting procedure which is based
on an iterative algorithm that minimises the deviance [25]. The procedure
was adapted using previous work on fitting algorithms based on the log like-
lihood [5, 33]. The aforementioned fitting procedure is incorporated in the
ilc package [6]. Similarly, we applied a fitting procedure which is based on
the maximising of the log likelihood in (9) to fit the RH model [5]. The
fitting methodology was implemented by using the StMoMo package [29].
Since both procedures follow a similar updating process, we describe the
general structure of the fitting algorithm with regard to the minimising of
the deviance in this section. Later on, in Appendix B, both procedures are
described in detail.

As previously stated, the LC model fitting was conducted by implementing
an iterative algorithm that minimises the deviance. The iterative fitting
process generates the maximum likelihood estimates of the parameters. The
updating mechanism followed a Newton Raphson iteration technique where
the parameters were updated subject to the minimisation of the deviance.
Given the parameter θ and the iteration step v to v+ 1, the parameters were
updated according to

θ̂{v+1} = θ̂{v} − δD{v}/δθ

δ2D{v}/δθ2
(16)

where D is the deviance of the model. Assuming Poisson errors, the deviance
can be expressed as

D(dx,t, d̂x,t) =
∑
x,t

ωx,t · dev(x, t) (17)

=
∑
x,t

2ωx,t

{
dx,t ln(

dx,t

d̂x,t
)− (dx,t − d̂x,t)

}
(18)

where d̂x,t = Ex,t exp{α̂x+ β̂
(1)
x κ̂t} and d̂x,t = Ex,t exp{α̂x+ β̂

(1)
x κ̂t+ γ̂c} in the

LC and RH model fitting respectively. In the above notation dev(dx,t, d̂x,t)

denotes the unit deviance. The deviance D(dx,t, d̂x,t) ultimately compare the
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log likelihood of the fitted model with the saturated model that is, the model
corresponding to a perfect fit. In Appendix B, the updating schemes for the
LC and RH fitting are described in detail.

3.3 Forecasting

In order to produce forecasts of mortality rates using the LC and RH model,
the age specific parameters αx and β

(1)
x are assumed to remain invariant of

time. As a consequence, the forecasting of mortality rates relies on time series
projections of the period and cohort parameters, κt and γc. The mortality
rate projections are calculated by using

µ̂x,tn+s = exp{α̂x + β̂(1)
x κ̂tn+s + β̂(0)

x γ̂tn+s−x} (19)

where κ̂tn+s and γ̂tn+s−x are projected values of the period and cohort effects.
The range of s is determined by the number of years that are included in the
prediction and tn correspond to the last calendar year in the model fitting.
Note that β̂

(0)
x are set to 1 and 0 to obtain the forecasts of the RH and LC

model respectively.

In practice, it is common to extrapolate the period and cohort terms by
stochastic Auto Regressive Integrated Moving Average (ARIMA) processes,
which are dependent of the parameters (p, d, q) [21, 25]. The ARIMA model
is an extension of an ARMA model that is necessary to consider when a
non-stationary time series is investigated. The component p correspond to
the number of lag observations in the model, commonly recognised as the lag
order. The value of p implies the number of times that the variable of interest
is regressed on its prior values. The d represents the degree of differencing
which indicates the number of nonseasonal differences. Differencing is applied
to a non-stationary time series in order to make it stationary. Lastly, the
component q is the number of lagged forecast errors in the prediction equation
[28].

In the original paper, Lee and Carter considered several univariate ARIMA
specifications to model κt. However, they found that the random walk with
drift, ARIMA(0, 1, 0), deemed most appropriate [21]. In agreement with most
practices, the κt is therefore modelled and projected as a random walk with
drift which is recognised as

κ̂t = θ + κ̂t−1 + εt (20)
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where θ equals the drift term that captures the steady trend between time
periods and the εt ∼ N(0, σ2). In other words the time trend index at time
t equals last years value κt−1 increased by a slow steady change θ and some
noise εt. If the drift term is positive then the κt are subject to an upward
trend while a negative value implies a declining trend. An estimate of the
drift term can be obtained by using MLE, namely

θ̂ =
κ̂tn − κ̂t1
tn − t1

(21)

where t1 and tn correspond to the first and last calendar year within the
investigated interval [28]. Consequently, the estimate is dependent of the
first and last estimate of κ̂t.

In agreement with previous studies, the cohort effects are extrapolated by an
ARIMA(1, 1, 0) process under the assumption that there exists independence
between the period and cohort effects [10,25]. Thus, we regress the difference
of γc according to

γ̂c = θ + γ̂c−1 + φ1(γ̂c−1 − γ̂c−2) + εc (22)

where φ1 equals the autoregressive coefficient. The models in (20) and (22)
are used to produce forecasted values of the period and cohort terms which
in turn are used to derive the forecasted mortality rates in (19). For fur-
ther information on the technical details of the parameter estimation and
forecasting of ARIMA models, we refer the reader to prior literature [4, 28].

As a remark, despite previous findings, it is reasonable to examine the trend
of the above effects during the model fitting. If there exists a linear tendency
in the annual mortality improvements, the ARIMA(0, 1, 0) remains appro-
priate in accordance with previous studies. However, if non-linear structures
appear then other ARIMA processes should be considered. Similar argumen-
tation applies to the fit of an ARIMA(1, 1, 0) process in the case of cohort
effects.

Accuracy of a forecast can be evaluated by considering the level of consistency
between the realised and the predicted mortality rates associated with each
forecast. In Section 5 we choose to forecast the mortality rates between 2000
and 2017 thus for every predicted value we have a corresponding realised
value. As a result, it is possible to measure forecast accuracy by comparing
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each set of values. The forecast error (FE) relative to the realised value is
quantified by

FE =
|µx,tn+s − µ̂x,tn+s|

µx,tn+s
, s > 0. (23)

Ultimately, the forecast accuracy can be measured by taking the inverse of
the forecast error.

4 Data

Data on human mortality is available from the Human Mortality Database
(HMD) [17]. We specifically use the death rates and central exposures of risk
of Swedish and UK mortality data in 1 × 1 intervals corresponding to age
and time intervals respectively.

Given the population we divide the data into two sub-populations of males
and females respectively. Their mortality rates differ hence the analysis
should be held separate of gender. Due to legislation implemented from
2012 insurers are not allowed to use gender-based factors in the calculation
of premiums and benefits [12]. However, every insurance business may in-
ternally distinguish females and males in order to ensure that a sufficient
amount of capital is deposited to cover future claims.

Furthermore, it is important to distinguish between the observed mortality
for the population as a whole and for the part of the population with in-
surance coverage. Naturally, every individual is not obliged to buy private
insurance and the ability to purchase insurance cover relies on macroeco-
nomic as well as socioeconomic factors. As a result, mortality data for the
insured population is a subset of the population as a whole wherefore it is
not sufficient to accurately determine the mortality trend. One proposed
solution is to conduct the analysis using data for the population as a whole
and then calibrate the results using the information obtained from the data
on the insured population [13].

In the following two sections Swedish and UK data are discussed emphasis-
ing the properties of mortality data in each country. We choose to include
figures depicting the life expectancy of each population. The development of
mortality rates across time and age was also investigated but the summarised
measures of life expectancy is included to illustrate the general development.
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4.1 Swedish mortality data

The rates are available for the Swedish population between 1751 to 2007 and
may be extracted subject to sex, age and time. Due to uncertain quality
of the collected data during the early years we will exclude data prior to
1860. The collection and administration of data has subsequently improved
such that data from the beginning of the 20th century is considered of good
quality [27]. Consequently, we will confine the analysis to data collected
between 1900-2017.
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Figure 1: Sweden: Development of life expectancy at birth in years between
1900 and 2017.

We refrain from analysing infant mortality since the trends in mortality rates
for infants differ from the trends observed among older ages. Additionally,
the infant mortality levels observed for developed countries have been steadily
decreasing and are currently very low. This trend is also observed in Swe-
den which is shown in Figure 19. Therefore, they have little impact on the
summary measures such as life expectancy and for investigating trends for
adults. Further, we restrict the analysis to the age range 20-95 which is of
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most interest to providers of pensions and annuities.

In Figure 1 life expectancy at birth indicate a steady augmenting trend for
female and males in Sweden between 1900 and 2017. Initially, most of the
increasing life expectancy is due to improved health in the younger popu-
lation especially for infants. As time progresses, the health improvements
shift to the older population. During the war period in the first part of the
20th century we observe larger fluctuations in life expectancy. One major
downturn is observed around year 1918 which originates from the Spanish flu
pandemic that spread shortly after the ending of the World War 1. Individu-
als at younger ages between 20 and 40 were more susceptible to dying in the
pandemic, thus the peak in the mortality rate originate mainly from those
ages. Over time, there is a consistent augmenting trend in life expectancy
and the fluctuations slowly diminishes toward the latter part of 1900.

Consequently, a general decline is observed in the overall mortality rates
during this period but the trend of decline is not constant over the years.
Instead the degree of decline varies at different ages whereas a significant
amount of variation is visible at older ages.

4.2 UK mortality data

The HMD data is available for the UK population since 1922. During the war
period between 1939 to 1950 the data comprises only the civilian population.
Furthermore, we note that the UK population is more than six times larger
than the Swedish population. As a result, there exist more underlying data
to calculate the mortality rates, especially at higher ages.

As seen in Figure 2, the observations for Swedish life expectancy applies
to the UK life expectancy. The general mortality trend is similar to the
Swedish data. We observe large fluctuations during the earlier years in the
data. There are two revealing downturns observed shortly before 1930 and
in 1940. In 1930, an increase in mortality rates was probably caused by a
higher frequency of deaths from lung cancer and heart disease. A similar
argument was presented regarding the downturn in 1940 [32]. Around 1950
the trend changes and the slope of the curve becomes less steep during the
latter part of the 20th century. In contrast to the Swedish data, there is
a larger difference between the male and female life expectancy during the
years shortly after the war period. However, the mortality rates in both pop-
ulations seem to have evolved similarly over time. During 2016 the mortality
rates were 82.84 and 79.18 years respectively for females and males in the UK
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Figure 2: UK: Development of life expectancy at birth in years between 1922
and 2016.

population. The corresponding rates for the Swedish population are 84.09
and 80.57 respectively.

5 Analysis

In the following sections a comparative analysis of the LC and RH models
is conducted. Initially, we explored the full data from the Swedish and UK
population in order to evaluate if cohort effects were present. Later on, the
focus was to investigate the model fit to historical data. Each model fit
was assessed by inspection of the standardised residuals. Under the Pois-
son distributional assumption that the number of deaths are independent of
age and calender year, the standardised residuals are independent and iden-
tically distributed. In addition, the robustness of the parameter estimates
was investigated by exploring the parameter estimates relative to changes in
the period of data used to fit the models. Thereafter, we investigated how
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robustness issues impact the mortality projections. Based on initial our ob-
servations, we proceeded to analyse a subset of the population data in depth
in order to closely evaluate the error of prediction.

5.1 Standardised deviance residuals

Residuals can be utilised to assess the model fit to the data. Diagnostic checks
of the fitted model is conducted by visual inspection of the plotted residuals.
In order to investigate if cohort effects are present in the Swedish and UK
data the LC model is fitted to the full range of data. Failure to capture any
effect emerges as non-random patterns in the residuals. Therefore, residual
patterns demonstrate eventual features in the data which are not successfully
captured by the fitted model.

The standardised deviance residuals were computed according to the follow-
ing formula

rDi =

√
ωx,t · dev(dx,t, d̂x,t)

φ
· sign(dx,t − d̂x,t) (24)

where φ is the dispersion parameter and dev(dx,t, d̂x,t) denotes the unit de-
viance which was defined in (17). Essentially, the dispersion parameter is
estimated based on the deviance

φ̂ =
D(dx,t, d̂x,t)

n− r
(25)

where n and r are the numbers of observations and parameters respectively.
Additionally, the definition of D(dx,t, d̂x,t) in (17) remains. Residuals are
graphed and analysed based on the pattern of standardised residuals against
age, year of birth and calendar year. Heat maps are constructed by plotting
age against calendar year.

In Figure 3 and 4 we observe the heat maps for Swedish and UK female
data. The corresponding heat maps for male data is observed in Figure 21
and 22. The different colours designate the value of the residuals ranging
from negative to positive. A negative sign demonstrates a larger fitted than
observed value whereas a positive sign demonstrates the opposite. In Figure
3 there are wider diagonal bands along with narrow diagonal lines. The
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Figure 3: UK: Standardised residual plot depicting the LC model fit to female
data between 1922 and 2016. Diagonal clusters of residuals signify cohort
effects.

existence of two distinct lines centred around 1920 and 1940 reflects linear
relationships that the model failed to capture. The diagonal clustering of
negative and positive residuals in Figure 3 provide evidence of a cohort effect.
In addition, there seems to be a bias toward negative residuals which indicate
a prevalent underestimation. Additional light clustering for ages 20 and 80
is present which demonstrates an overestimation.

In contrast to the distinct patterns observed in Figure 3, the residual pat-
terns in Figure 4 are less defined. Firstly, we observe a vertical line at 1918
depicting an overestimation at younger ages and an underestimation at older
ages. As previously observed, a peak in mortality rates during this period
were presumably emanating from the outbreak of the Spanish flu. Secondly,
it appears to be a clustering of the residuals in the upper centre, suggesting
some variability that the model is incapable to capture. In the upper centre
this is viewed as a lighter shaded area which implies an underestimation of
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Figure 4: Sweden: Standardised residual plot depicting the LC model fit to
female data between 1900 and 2017. Diagonal clusters of residuals signify
cohort effects.

the observed values. However, the overall bias toward positive residuals is
substantially different from Figure 3. A slightly curved diagonal clustering
is apparent from age 40 from the 1945.

Similar conclusions are drawn in response to the observations in Figure 21
and 22. The major difference between the male and female Swedish data
appears as an increased bias toward negative residuals. In the UK male data
a clear underestimation is present at younger ages between 1945 and 1990.

As a complement to the heat maps we investigated the residual patterns in
scatter plots which are displayed in Figure 23, 24, 25 and 26. Especially,
the residual patterns in sub figures 23a, 24a, 25a and 26a are particularly
revealing. The patterns suggest that there exists some variability due to year
of birth that is not accounted for in the model. From the 1950, the plots
exhibit positive trends. It becomes evident that the LC model is unable
to integrate this feature. The patterns in Figure 24a and 26a are however
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notably different from the corresponding plots in Figure 23a and 25a. Clearly,
the cohort effect is stronger in the UK data.

In the preceding analysis, different non-random patterns appeared in the
plotted residuals. The observations suggest that some features in the data are
not incorporated by the LC model. Furthermore, the occurrence of diagonal
clusters in the heat maps suggests some dependence between the mortality
rate and the year of birth. Although the residual patterns in the heat maps
of the Swedish data are less distinct, the patterns reflect a similar trend as
in the corresponding plots for the UK data. Therefore, we can not neglect
that the LC model fails to capture all the predictive information in the data.

5.2 Robustness in the parameter estimates

Since mortality rate time series span over a long time period it is necessary to
consider the non-stationarity in the data. Over time, each decade possesses
particular characteristics that is reflected indirectly in the mortality rate. As
a result, the effect of certain time specific events persists over a longer period
of time.

In order to sufficiently capture the mortality trend there is a trade-off between
the amount of data used and the non-stationarity, making it difficult to
forecast. In particular, the decision to use more recent data or to widen the
range of data is highly relevant. The wider scope of the study, the more
probable it is to include effects that may not be relevant to the current
mortality. Either the fitting provides better estimates of the time trend or a
less stable estimate, but nonetheless more accurate.

In the following sections, the robustness of the estimated parameters are as-
sessed by considering their values relative to different time periods in the
fitting procedure. The parameter estimates are considered robust if shorter
data periods induce marginal deviations in the estimated values. Based on
our observations in Section 4, we divide the Swedish and UK data into sub-
sets. As such, we subsequently exclude the most volatile years. Thereafter,
the LC and RH model is fitted to each subset. The aim is to investigate how
sensitive the parameter estimates are to trends or events observed during
certain decades.
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5.2.1 Models fitted to Swedish data

Earlier in Section 4.1, we discussed the development of life expectancy at
birth. Two discontinuities was observed in 1918 and 1940 where the latter was
not as severe as the first. The adjacent years did not display a similar increase
whereas the event did not affect the overall mortality rate. In addition, we
observed larger fluctuations during the years predating the world wars than
the years that followed. The point marking the clear trend change seemed
to be around year 1950. As a consequence, data from the earlier part of the
20th century might not be representative of the current mortality trend. In
Figure 5 and 6, we observe the results of respective model fitting.
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Figure 5: Sweden: Parameter estimates of LC model fitted to different time
periods of female data.

In Figure 5c, the general trend of the mortality index κt appears consistent
over the model fittings. The general trend is linear and decreasing which
confirms the expectation that mortality declines over time. The discontinuity
at year 1918 clearly marks the impact of the Spanish flu. In the full data the
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Figure 6: Sweden: Parameter estimates of RH model fitted to different time
periods of female data.

estimates of κt seem to accelerate toward the latter part of the 20th century.
As κt goes to a large negative number, the age specific effects decline and
converges to zero. The overall linear trend concludes that the age specific
mortality has fallen nearly exponentially over time. During the second half
of the 20th century, the development of the mortality index is smooth and
linear.

As seen in Figure 5b, there are particular differences in the estimated values
of β

(1)
x across all ages. The estimates are all positive indicating a decreasing

mortality. In the models fitted to the wider data ranges, the figure illustrates
a pronounced decline at younger ages between 20-60. Thereafter, the curve
flattens before a modest decline at older ages between 70-95. As a result,
the age specific mortality rates were subject to larger reduction at younger
than at older ages. The pattern of the estimates obtained from the models
fitted to the shorter periods is different from the previous fits. For ages
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between 30-60 the estimates are decreasing while increasing at older ages
with a peak at approximately age 75. The increase in β

(1)
x at older ages

signifies an abundant fall in mortality. Large fluctuations in the estimates
are observed for the models fitted to the shorter time periods whereas a less
volatile diminishing trend is observed for the estimates based on the full time
period. Clearly, the estimates are sensitive to the time period considered in
the fitting. However, the results seem to be consistent over adjacent time
periods.

In Figure 5a, which depicts the estimates of α̂x, the main difference appears
at younger ages. The general trend of αx is similar in every model which con-
firms the assumption that the general level of age specific mortality increases
as age increases.

Corresponding plots of the parameter estimates obtained from the RH model
are found in Figure 6. There is a strong resemblance between the estimates of
αx for the RH and LC model, whereas previous observations apply. However,
the deviation in between time periods is larger than previously observed.

In Figure 6b, the produced estimates of the interaction terms β
(1)
x appears to

be smoother than observed previously in Figure 5b. All estimates are positive
except for some of the youngest and oldest ages, which indicate that mortality
is increasing for some ages while decreasing for others. The estimates of the
model fitted to wider data ranges follow a decreasing slope similar to the
observation in Figure 5b. The other estimates follow an increasing slope
which signify an abundant decrease in mortality at older ages.

Large deviations are observed in between the fitted models. This is espe-
cially prominent in Figures 6b and 6d where the models fitted to the shorter
data ranges exhibit dissimilar patterns. In Figure 6d, the estimates of γc ob-
tained from the longer time periods show a modest decrease during the early
birth years with a more prominent decrease between 1875 and 1900. For the
youngest cohorts born in 1950 and above, the estimates of γc significantly
increase in some cases, while a decrease occurs in others. Over all time pe-
riods, both negative and positive estimates of γc occur. The negative sign of
the cohort terms results in lower age specific mortality rates. The estimates
of the cohort term obtained from the shorter time periods, show opposite
results. The estimates follow a concave shape between the birth years from
the late 19th century to the latter part of the 20th century. Thus, the results
indicate a decrease in mortality for the youngest and oldest cohorts.

Opposite to the findings in Figure 5c, the estimates of the period effect
in Figure 6c appear to be non-linear. Extending further back in time the
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linearity of decline cease to hold. In Figure 6c the fitted values from the
widest data range exhibits a flat region between 1900 and 1935 except for
the peak in 1918. A similar flat region is observed between 1955 and 1970.
Since the κt reflects the annual changes in the general level of mortality, this
interprets as if no annual changes occurred during these years. Moreover, it
is observed that as the scope of the time series decreases the linear decline
returns.

5.2.2 Models fitted to UK data

As observed in Section 4.2, the UK mortality trend indicate two discrepancies
present in year 1930 and 1940. The overall trend of the life expectancy in
Figure 2 implies a volatile period before year 1950, followed by a less volatile
period. The estimated parameters obtained from each of the LC and RH
model fit are illustrated in Figure 7 and 8.

In Figure 7a, it is observed that the estimates of αx are steadily augmenting.
A larger variation in between the model fits appears for the younger ages
while the estimates converge toward the older ages. The observations corre-
spond to the familiar characteristics of the αx. The results of αx obtained
from the models fitted to UK data indicate that the overall mortality level
is similar to the Swedish trend.

In Figure 7b, it is found that the estimates of β
(1)
x obtained from the model

fitted to the wider data ranges exhibit similar trends as in the Swedish data.
The mortality declines faster at ages 20-60 before slowing down at ages be-
tween 60-95. The estimates obtained from the shorter time periods show two
distinctive peaks, one in between 40-50 and the other at approximately age
80. Thus, the observations indicate a more abundant decrease in mortality
at those ages.

As seen in Figure 7c, the κt estimates is subject to discontinuities at year
1930, 1940 and 1950. The peak at year 1940 is significantly prominent. The
estimates obtained from the model fitted to the wider data ranges follow a
steeper curve in contrast to the shorter data ranges. However, the mortality
index is clearly linearly decreasing.

In Figure 8d we observe particularly distinguishing patterns of the cohort
term. The overall trend seem to be similar to that observed for the Swedish
models. However, we observe a pronounced decline in γc during the inter-
war years between 1925 and 1945 as well as a discontinuity around year
1918. The discontinuity at year 1918 can be identified as effects stemming
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Figure 7: UK: Parameter estimates of LC model fitted to different time pe-
riods of female data.

from the influenza epidemic. The impact of the epidemic was not integrated
in the mortality index as in the Swedish data, thus the influence emerges
in the cohort terms. However, the estimates obtained from the model fitted
to the wider data ranges show a modest decline. The findings of a decline
between 1925 to 1945 are consistent with the observed mortality improvement
that occurred for the generations born during this period. For the youngest
cohorts and the wider period ranges, an abundant increase in the estimates is
observed which in turn influence the mortality negatively. A similar increase
was observed in Figure 6d. Consequently, additional analysis is required to
establish the potential causes that may have induced an increase. In absence
of such an analysis, it may be argued if the results are reasonable relative to
the observed level of mortality.

In Figure 8c, the estimates of κt depicts nonlinear patterns. However, the
curvature is most prominent for the wider data ranges where the mortality
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Figure 8: UK: Parameter estimates of RH model fitted to different time pe-
riods of female data.

index seem to decelerate at year 1960 followed by an acceleration toward the
later part of the 20th century. Since the overall trend is decreasing, the obser-
vations conclude that the age specific mortality has decreased exponentially
over time.

Lastly, we observe similar patterns in the estimates of β
(1)
x in Figure 8b, as

was observed in the model fittings to the Swedish data. A rapid decline is
observed at younger ages which devolves into a modest decline at older ages.
As the data range in the fitting decreases the slope of the β

(1)
x changes to an

upward trend indicating a faster mortality decline at the older ages.

5.3 Forecasting mortality rates

In the following sections we investigate the sensitivity of the mortality pro-
jections due to changes in the fitting period. We forecast mortality rates
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between 2000 and 2017 using the fitted models in the previous section.

Mortality projections for the UK and Swedish data by the LC and RH models
are generated and presented in Figure 9 to 12. As the period range of the
fitted model decreases, the difference between mortality rates per projected
year decreases. Due to a shorter time period in the fitting procedure, the
volatility of the projections increase.

In Figure 9 it appears that the LC model produces fairly similar mortal-
ity projections subject to all time periods. The main difference appears in
Figures 9a, 9b and 9c which depict lower mortality rates especially at the
younger ages. The broader band of projections at the younger ages also sug-
gest that they are subject to a more rapid mortality improvement than the
older ages. This is especially apparent up to age 40. In the other projections
the projected mortality improvement is modest.

In particular, there are significant differences in the projections produced by
the LC and RH model. The LC model generates over all smooth mortality
projections except at younger ages. On the contrary, the RH model generates
fluctuating projections as observed in Figure 10 and 12.

In Figure 10a, the mortality rates are predicted to increase at ages ranging
between 30-70. Instead in Figure 10b, the exclusion of the first 20 years
including 1918 eliminates the effect which suggests that the model is sensitive
to outliers. However, the pattern is restricted to the first projection using
the full data. Due to the extrapolation of the period and cohort effects, the
previous steep declining and inclining trends observed in Figures 6c and 6d
are reflected by a projected continuous decrease and increase of both effects.
As a result, an increase in future mortality is observed for the youngest
cohorts. As previously discussed, such results may not be reasonable which
suggest that the wider data ranges may not be suitable to predict current
mortality. A similar, but less distinct pattern, is observed in Figure 10f.
The development diminishes as the period range decreases and the reverse is
observed for the shorter data ranges.

In Figure 11, the mortality projections based on the LC model appear to be
less sensitive to the period range. In Figures 11a, 11b and 11c the predictions
exhibit similar patterns and the trend slowly changes as the period range
decreases. Consequently, it can be concluded that the LC model appears to
be robust to changes in the period of data used. Similar to the observations in
Figure 9, the band of mortality projections subsequently contracts implying
a lower rate of mortality improvement over time.

In Figure 12, an increase in mortality rates is observed at younger ages in
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Figure 9: Sweden: Log mortality rate projections for 2001-2016 from LC
models fitted to different periods of data. Each line represent a 1-year forecast
indexed by age. Colours are ordered from darkest to lightest representing 2000
to 2017.
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Figure 10: Sweden: Log mortality rate projections for 2001-2017 from RH
models fitted to different periods of data. Each line represent a 1-year forecast
indexed by age. Colours are ordered from darkest to lightest representing 2000
to 2017.
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Figure 11: UK: Log mortality rate projections for 2001-2016 from LC models
fitted to different periods of data. Each line represent a 1-year forecast in-
dexed by age. Colours are ordered from darkest to lightest representing 2001
to 2016.
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Figure 12: UK: Log mortality rate projections for 2001-2016 from RH models
fitted to different periods of data. Each line represent a 1-year forecast in-
dexed by age. Colours are ordered from darkest to lightest representing 2001
to 2016.
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the first three figures of mortality projections. This effect can be traced to
the trends of the period and cohort term preceding the extrapolation, as
was observed previously for the Swedish data. In Figure 12e and 12f, the
development due to decreasing period range is notably different. The older
ages are subject to a higher mortality improvement while the younger ages
induce a modest improvement which is consistent with the observations in
Figure 8b and 8d.

5.4 Fitting period 1960-2000

In order to investigate the mortality projections further we focus on one
period range. The data range need to be sufficiently long in order to generate
reliable estimates. Since the overall trend in the mortality projections seem
to stabilise as a shorter data range is used, further analysis is conducted using
the data between 1960 and 2000. The data range is also chosen in order to
achieve a result that is comparable to previous studies [25].

To begin with, the deviance residuals are observed in Figure 13 and 14. In
Figure 14 there is a significant reduction in residual patterns for the RH
model in contrast to the patterns observed for the LC model. On the con-
trary, the residual patterns look more or less the same in Figure 13. Since
the assessment depends on a visual inspection, a simple correlation test was
performed in order to quantify the existence of significant correlations across
year and age groups. A t-test was used to determine if the correlation co-
efficients were significantly different from zero. The null hypothesis denotes
that the correlation coefficient equals zero and the alternative hypothesis de-
notes that the correlation coefficient is different from zero. The test follows
a t-distribution under the null hypothesis with N −2 degrees of freedom and
the test statistic used was ρ(

√
N − 2)/(1− ρ2) where ρ denotes the Pearson

correlation coefficient. The null hypothesis is rejected on a 99% significance
level if the p value < 0.01. Thereafter, we computed the fraction of significant
correlations and summarised the results in Table 1. A significant reduction
in both cross-age and cross-year correlations is observed for the UK. A less
distinct reduction is present for Sweden. However, the results quantifies a
reduction in correlations even in Sweden but nonetheless it proves to be small.
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Figure 13: Sweden: Standardised deviance residuals of LC and RH model.
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Figure 14: UK: Standardised deviance residuals of LC and RH model.

Country UK Sweden
Model LC RH LC RH

Cross-age 12.59 3.62 2.22 1.73
Cross-year 32.06 6.90 3.69 3.21

Table 1: Percentage of significant correlations on a 99% significance level.

In addition, a Shapiro-Wilks normality test was conducted to investigate if
the residuals are consistent with the normality assumption. We found that
the null hypothesis could not be rejected hence the normality assumption
held in any of the tests.

In Figure 15 and 16, the projected mortality rates from 2000 to 2017 for
ages 50, 60 and 70 is graphed along with the historical and fitted rates for
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the LC and RH model respectively. In Figure 15a, the projected Swedish
mortality rates appears to be a good approximation of the realised values. In
particular, the model captures the volatilities observed for age 80. However,
the model underestimates the mortality rates at that age. As seen in Figure
15b, the mortality projections from the RH model clearly underestimates
the mortality rates at age 70. However, the model seems to approximate the
observed mortality rates at age 50 and 60. None of the models captured the
upward turn observed for age 70 which is observed exclusively at that age.

In Figure 16a, the LC model fitted to the UK data overestimates the future
mortality rates at age 60 and 70. In particular, the difference between the
forecasted and observed values is larger at age 70. In addition, it appears
that the result is subject to increased volatility which is result of to the
fluctuations in the observed values between 1960 and 2000. On the contrary,
the forecasted mortality rates at age 50 correspond to the observed mortality
rates. Furthermore, the observed mortality rates for the lower ages are less
volatile year to year.

As seen in Figure 16b, the projected mortality rates by the RH model appear
to be a better approximate of the observed mortality rates at every age.
Especially, the RH model captures the pronounced decline in mortality that
is eminent for age 70 during the first projected years. From year 2005 the
decline in the observed mortality rates cease and shifts upward. At this
point, the projected mortality rates continue the previous diminishing trend
which result in an overestimation of the future mortality rates. However, the
projected mortality rates at age 50 and 60 clearly capture the observed trend
during these years.

In addition, the short term forecasting accuracy of each model was assessed
by relating the predicted mortality rates to the realised mortality rates. In
Section 3.3, we defined the forecast error as the difference between the pre-
dicted and observed values, normalised by the observed values. Intuitively
the forecast error can be addressed as a percentage of deviation measuring
the degree of fault in each prediction. The inverse of the forecast error, the
forecast accuracy, is demonstrated in Figures 17 and 18.
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Figure 15: Sweden: Projected mortality rates from 2000 for ages 50, 60 and
70 indicated by the dashed lines. The solid lines correspond to the historical
mortality rates between 1960 and 2017. The dots demonstrate the fitted rates
for the respective model.
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Figure 16: UK: Projected mortality rates from 2000 for ages 50, 60 and 70
indicated by the dashed lines. The solid lines correspond to the historical
mortality rates between 1960 and 2017. The dots demonstrate the fitted rates
for the respective model.
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The forecast accuracy in Figure 17a fluctuates between 42.76 and 99.98 per-
cent while the observations in Figure 17b ranges between 70.43 and 99.87
percent. The highest errors are observed for the forecast at age 50 in Fig-
ure 17a. The forecast error clearly improves when the RH model is used to
project the future mortality rates at that age. However, the pattern in Figure
17b suggests that the forecast accuracy slightly declines over time. In Figure
17a, the forecast accuracy seem to fluctuate similarly over the age groups 60
and 70. The pattern confirms that the LC model produce a highly accurate
projections for age 70 as was observed in Figure 15a.

The observations in Figure 18a is notably different from Figure 17a. The LC
model produce a highly accurate forecast of the mortality rates at age 50,
while increasing errors are observed for the other ages. The observations in
Figure 18b demonstrates a significant increase in forecast accuracy at ages
60 and 70 when the RH model is used in the projections. Additionally, the
high forecast accuracy at age 50 is maintained.

In Figure 27 and 28, the forecast error is indexed by age and each line repre-
sents one annual forecast between 2000 and 2017. In the Swedish projections
observed in Figures 27a and 27b, the forecast error converges to zero at ages
above 60 while most of the variability is restricted to the younger ages. Shift-
ing from the LC to RH model, an improvement of the forecast accuracy is
obtained. In the UK projections, the forecast error in Figure 28a fluctuates
around zero, with a higher variability at the youngest and oldest ages. In
Figure 28b the forecast error converges to zero at ages above 80. For ages
between 50 and 60, the forecast error increased compared to the LC model.
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Figure 17: Sweden: Forecast accuracy of 17 annual predictions of mortality
rates for ages 50, 60 and 70 from the LC and RH models fitted to the period
of data 1960-2000.
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Figure 18: UK: Forecast accuracy of 16 annual predictions of mortality rates
for ages 50, 60 and 70 from the LC and RH models fitted to the period of
data 1960-2000.
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6 Discussion

Ever since the introduction of mortality models the overall development
demonstrates that simplicity and interpretability in the model is premiered
before complexity. Even though more complex models surpass the simpler
models the question remains whether the incorporation of more effects are
relevant to the forecasting of future mortality trends. Essentially, the main
objective is to improve the forecasts by selecting a model that captures the
persisting trend and represents the fundamentals of mortality patterns.

In agreement with preceding studies, the UK cohort effect was observed for
the population born between year 1925 and 1945 centred on 1931 [31, 32].
The residual patterns observed in Section 5 supports the findings reviewed
in earlier papers. Less distinct residual patterns was observed during the
investigation of Swedish data which suggested that some variability was not
accounted for by the LC model. As such, the findings supported the inclusion
of an additional term incorporating cohort effects. The declaration of a
Swedish cohort effect of such magnitude as observed in the UK is however
unfeasible. Nonetheless, models that include cohort effects such as the RH
model, persist as competitive candidates to model mortality rates.

Initially, robustness of the parameter estimates was investigated for each of
the models. The analysis showed that the period of data used affects the vari-
ability of the estimates. Moreover, the results proved that the LC model was
less sensitive to outliers and to changes in the period of data used than the
RH model. Similar conclusions regarding robustness applied to both Sweden
and the UK. The parameter estimates obtained from the RH model were
subject to larger deviations in relation to adjacent periods of data used. Al-
though, the deviations diminished between the periods 1960-2000 and 1970-
2000 which suggested some stability, the overall results declared a lack of
robustness in the model. The inconsistency in between time periods aggra-
vates the interpretation of the estimates. Therefore, the plausibility of the
RH model is uncertain. To summarise, the conducted analysis suggested that
in terms of robustness in the parameters the LC model would be preferred.

Based on each fitting period, mortality rates were forecasted 17 years ahead.
To begin with, it is important to note the difference between short term and
long term forecasts. In terms of long term forecasts, irregular short term
trends might not be relevant. Thus, the period used during the model fitting
depends on the objective of the forecast of life expectancy. In general, a
longer forecast requires a longer period of data to fit the model. In this study,
the results implied that the more recent data that is used, the lower are the
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forecasted mortality rates, which is in agreement with previous observations
[1, 18,20].

The LC model produced stable forecasts that were resistant to outliers and
changes in the period of data used in the fitting. On the contrary, the
observed robustness issues of the RH model was reflected in the mortality
projections. As the period of data used decreased, a subsequent change
was observed in the projected mortality rates. In terms of reliability of the
mortality projections, the RH model proved less stable and therefore the LC
model would be preferred.

In order to obtain additional information on the appropriateness of the RH
and LC models an in-depth analysis was conducted based on the period of
data 1960 to 2000. The Shapiro-Wilks test determined that the underlying
normality assumption was fulfilled. In addition, cross-age and cross-year cor-
relations was computed which quantified a decrease in the residual patterns.
Despite a slight decrease in correlations for Sweden, the RH model overesti-
mated the projected mortality improvement specifically at age 70. However,
it is noted that the mortality at higher ages are subject to larger fluctuations
making them difficult to forecast. Therefore, a similar but not as severe
overestimation was obtained from the LC model. Moreover, the RH model
proved to be a significantly better fit to the UK data which demonstrated
the advantage of the RH model when a cohort effect is detected. In that
case, the LC model failed to capture the predictive information dependent of
year of birth, thus incorporating a cohort term improved the future mortality
projections. This was especially eminent in the projections at age 70 where
the RH model accurately captured the diminishing trend that was observed
during the first forecasted years.

In terms of forecast accuracy a general improvement was obtained shifting
from the LC to the RH model in the analysis of both Swedish and UK data.
In the projections based on the Swedish data, the convergence of the fore-
cast error at older ages improved thus demonstrating a reduced amount of
variability. In the UK projections, the forecast error in the RH model exhib-
ited decreased fluctuations in between forecast years but increased deviance
in between age groups. Consequently, the RH model expressed improved
forecast accuracy in comparison with the LC model.

Altogether, it was concluded that the RH model increased the understanding
of the systematic effects in Swedish and UK mortality data. However, when
a weak cohort effect is present, such as in the Swedish data, the inclusion of
a cohort term do not exclusively result in improved prediction accuracy. The
results points out the necessity of diversifying the analysis of mortality data
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by considering a number of competitive models.

From an insurance business point of view, the reliability and accuracy of
mortality projections is of great importance. The assumptions regarding
mortality improvement directly affects pricing and reserving especially for
life annuities. In the case of life and pension benefits, the calculation requires
a suitable mortality projection such that underestimation of future costs are
avoided. The consequences of a rapid and unexpected mortality improvement
for one or several generations could lead to a potential loss of business capital.
Essentially, life insurers aspire to reserve a correct amount of capital hence
avoiding to reserve more than necessary. Ultimately, close monitoring of
mortality and longevity risk is required in order to balance between too low
and high assumptions.

Furthermore, it has been concluded that the tolerance level in the conver-
gence criterion in the model fitting influence the parameter estimates [18,25].
An important note is to consider how the estimates change relative to a de-
creasing tolerance level. A disruptive pattern as compared to other tolerance
levels may act as an indicator of problems in the fitting procedure. In this
study, the tolerance level did not influence the parameter estimates. How-
ever, convergence issues occurred during the model fitting procedure of the
RH model which was resolved by imposing an additional constraint in the
fitting algorithm. Similar observations have been made in previous studies
which has a negative influence on the usage of the RH model due to the
amount of excessive work that is required [7, 18].

This study demonstrates that the field of mortality modelling and forecasting
requires extensive research. Possible variations of the study could be to
investigate grouped cohort effects by assigning a cohort factor to 5 year
incremental data. Furthermore, it is noted that this study was conducted
exclusively on population statistics to allow for a referential study against the
UK. Since mortality rates are assumed to be lower among the population with
private insurance coverage, this study could be continued by extending the
investigation to analyse mortality data among such a population. Both the
LC and RH models seem to underestimate the observed mortality rates thus
additional investigation of other models could elaborate on the underlying
factors.

A competitive model named Cairns-Blake-Dowd (CBD) was proposed in 2006
which included multiple age period terms [8]. Similar to the development of
the LC model, various extensions to the CBD model has been proposed [9].
In addition, the Plat model was created as a hybrid using the advantages
from the LC, RH and CBD models. The model incorporated the static age
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function from LC model, the cohort term from RH model and the multiple
parametric age function in CBD model [24]. Furthermore, the assessment of
uncertainty in the mortality projections is an important topic which could
be another possible extension of this study. The extrapolated time depen-
dent parameters might not capture the full amount of variability in the future
predicted values since it does not allow for uncertainty in the other model pa-
rameters. Other measures, such as bootstrapping, have later been proposed
in order to explore the uncertainty in mortality risk [15,26].

Finally, we remark that the results reported are restricted to the analysis
of female mortality data. Difference in mortality data of female and males
occur due to features in respective data. In male data larger variations are
observed in older ages than in female data. Consequently, a similar analysis
on male data yields a different outcome.

7 Conclusion and further remarks

The purpose of this study was to explore the possibility to obtain improved
mortality rate projections by incorporating a cohort term in the modelling
of Swedish morality data. We performed an exploratory analysis to investi-
gate the presence of cohort effects followed by a quantitative comparison of
the Lee Carter and Renshaw Haberman mortality models. Due to the well
documented cohort effects in the UK population, we utilised UK mortality
data as a reference to evaluate the findings in the Swedish mortality data.

A significant cohort effect of such magnitude as observed in the UK data was
not present in the Swedish data. The ability to declare the presence of a
cohort effect requires further research of socioeconomic and macroeconomic
factors that influence the mortality rates in a population. However, the
analysis demonstrated that a part of the systematic effects in the Swedish
mortality data can be explained by including a cohort term. To demonstrate,
the impact of the cohort effect was quantified by a decrease in cross-year and
cross-age correlations.

The analysis proved that the LC model was less sensitive to outliers and
changes in the data which resulted in stable predictions, while the opposite
was observed for the RH model. Nonetheless, the comparison of forecasts
against the realised outcomes revealed a good performance of the RH model.
As a result, the RH model should not be neglected when analysing future
mortality improvements, especially in terms of mortality projections. How-
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ever, the lack of robustness in the RH model implies that we can not wholly
rely on the predictions.

A good fit to the historical data and high forecast quality is of great impor-
tance to achieve reliable projections of mortality rates. In purpose of using
mortality models in actuarial applications, a model with good forecasting
performance is suitable. Therefore, the LC model may be preferred to the
RH model due to the prominent stability in the projections. However, mod-
els without the inclusion of cohort effects may neglect important information
in the underlying data wherefore the LC model may not be preferable in case
of forecasting mortality. In conclusion, there is no model that outperforms
the other in every aspect.

The conducted analysis emphasises the challenges of predicting future mor-
tality rates. It is likely that the declining mortality trend will continue.
However, the persistence and the proportion of declination as well as the
question which effects that will best explain the trend remains ambiguous.
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[20] Koissi, M. C., Shapiro, A., & Högnäs, G. (2005). Fitting and Forecast-
ing Mortality Rates for Nordic Countries Using the Lee-Carter method.
Actuarial Research Clearing House, 1, 21.

[21] Lee, R. D., & Carter, L. R. (1992). Modeling and forecasting US mor-
tality. Journal of the American statistical association, 87(419), 659-671.

[22] Lee, R. (2000). The Lee-Carter method for forecasting mortality, with
various extensions and applications. North American actuarial journal,
4(1), 80-91.

[23] Lee, R., & Miller, T. (2001). Evaluating the performance of the Lee-
Carter method for forecasting mortality. Demography, 38(4), 537-549.

[24] Plat, R. (2009). On stochastic mortality modeling. Insurance: Mathe-
matics and Economics, 45(3), 393-404.

[25] Renshaw, A. E., & Haberman, S. (2006). A cohort-based extension to
the Lee-Carter model for mortality reduction factors. Insurance: Math-
ematics and economics, 38(3), 556-570.

49



[26] Renshaw, A. E., & Haberman, S. (2008). On simulation-based ap-
proaches to risk measurement in mortality with specific reference to
Poisson Lee-Carter modelling. 42(2), 797-816.

[27] Statistics Sweden. (2010). Cohort mortality in Sweden. Mortality statis-
tics since 1861. Stockholm, Sweden.

[28] Stoffer, D. S., Shumway, R. H. (2006). Time series analysis and its ap-
plications: With R examples.

[29] Villegas, A., Kaishev, V. K., & Millossovich, P. (2015). StMoMo: An R
package for stochastic mortality modelling.

[30] van Berkum, F., Antonio, K., & Vellekoop, M. (2013). Structural
changes in mortality rates: with an application to Dutch and Belgian
data. AFI Research Report, (AFI-1379).

[31] Willets, R. (1999). Mortality in the next millennium. Staple Inn Actu-
arial Society, 7.

[32] Willets, R. C. (2004). The cohort effect: insights and explanations.
British Actuarial Journal, 10(4), 833-877.

[33] Wilmoth, J. R. (1993). Computational methods for fitting and extrapo-
lating the Lee-Carter model of mortality change. Technical report, De-
partment of Demography, University of California, Berkeley.

50



Appendix A Figures
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Figure 19: Sweden: Development of infant mortality rates between 1900 and
2017.
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Figure 20: UK: Development of infant mortality rates between 1922 and 2016.
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Figure 21: UK: Standardised deviance residual plot depicting the LC model
fit to male data between 1922 and 2016. Diagonal clusters of residuals signify
cohort effects.
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Figure 22: Sweden: Standardised residual plot depicting the LC model fit
to male data between 1900 and 2017. Diagonal clusters of residuals signify
cohort effects.
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Figure 23: Sweden: Standardised deviance residuals plotted against year of
birth, age and calendar year of LC fit to female data between 1900 and 2017.
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Figure 24: UK: Standardised deviance residuals plotted against year of birth,
age and calendar year of LC fit to female data between 1922 and 2016.
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Figure 25: Sweden: Standardised deviance residuals plotted against year of
birth, age and calendar year of LC fit to male data between 1900 and 2017.
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Figure 26: UK: Standardised deviance residuals plotted against year of birth,
age and calendar year of LC fit to male data between 1922 and 2016.
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Figure 27: Sweden: Forecast error indexed by age for the LC and RH models.
Each line represent one annual forecast between 2000 and 2017. As the colour
fades, the forecasts are extending farther away in time.
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Figure 28: UK: Forecast error indexed by age for the LC and RH models.
Each line represent one annual forecast between 2000 and 2017. As the colour
fades, the forecasts are extending farther away in time.
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Appendix B Fitting Algorithms

B.0.1 Lee Carter model

The updating scheme for the LC fitting is determined by the following steps

1. Initial starting values conforming with the constraints in (11) are set

to κ̂t = 0, β̂
(1)
x = 1

k
and α̂x = 1

n

∑
tmx,t

2. Parameter α̂x is updated as

α̂{v+1}
x = α̂{v}x +

∑
t 2ωx,t(dx,t − d̂x,t)∑

t 2ωx,td̂x,t

and the fitted values d̂x,t is calculated along with the devianceD(dx,t, d̂x,t).

3. Parameter κ̂t is updated as

κ̂
{v+1}
t = κ̂

{v}
t +

∑
x 2ωx,t(dx,t − d̂x,t)
2ωx,td̂x,t(β̂

(1)
x )2

and the fitted values d̂x,t is calculated along with the devianceD(dx,t, d̂x,t).
After the updating of κ̂t is adjusted to satisfy

∑
t κt = 0, which is im-

posed by centring κ̂t = κ̂t − κ̂t.

4. Parameter β̂
(1)
x is updated as

β̂(1){v+1}
x = β̂(1){v+1}

x +

∑
t 2ωx,t(dx,t − d̂x,t)∑
t 2ωx,td̂x,t(κ̂x)2

and the fitted values d̂x,t is calculated along with the devianceD(dx,t, d̂x,t).

5. The criterion to stop the iteration procedure is determined by the de-
viance decrease. If the deviance decrease is sufficiently small given a
tolerance level set to 10−6, the iteration procedure ends.

6. Once convergence is achieved the parameters are rescaled to satisfy the

LC model constraints in (11) namely κ̂t = κ̂t·
∑

x β̂
(1)
x and β̂

(1)
x = β̂

(1)
x∑

x β̂
(1)
x

.
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B.0.2 Renshaw Haberman model

In order to circumvent convergence issues in the RH model we implement an
alternative fitting procedure using an iterative Newton Raphson algorithm
with an additional constraint. The alternative procedure was suggested to
improve the fit to the data while resulting in faster convergence. We re-
frain from discussing the technical details of the derivation of the additional
constraint. Profound information regarding the underlying study and math-
ematical derivation is made available in a recent paper [18]. The fitting pro-
cedure is however a replication of the previous section, but the parameters
are instead updated using the log likelihood function.

The updating scheme for the RH fitting is determined by the following steps

1. Initial starting values of α̂x, β̂
(1)
x and κ̂t are set to the estimated values

obtained from the LC fitting, while the γ̂c parameters are set to γ̂c = 0.

2. Parameter α̂x is updated as

α̂{v+1}
x = α̂{v}x +

∑
t ωx,t(dx,t − d̂x,t)∑

t ωx,td̂x,t

and the fitted values d̂x,t is calculated.

3. Parameter κ̂t is updated as

κ̂{v+1}
x = κ̂{v}x +

∑
t ωx,tβ̂

(1)
x (dx,t − d̂x,t)∑

t ωx,td̂x,t(β̂
(1)
x )2

and the fitted values d̂x,t is calculated. After the updating of κ̂t, the es-
timates are adjusted to satisfy

∑
t κt = 0, which is imposed by centring

κ̂t = κ̂t − κ̂t and setting α̂x = α̂x + κ̂tβ̂
(1)
x .

4. Parameter β̂
(1)
x is updated as

β̂(1){v+1}
x = β̂(1){v}

x +

∑
t ωx,t(dx,t − d̂x,t)∑
t ωx,td̂x,t(κ̂x)

2

and the fitted values d̂x,t is calculated. After the updating of β̂
(1)
x ,

the estimates are adjusted to ensure
∑

x β
(1)
x = 1 by imposing κ̂t =
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κ̂t ·
∑

x β̂
(1)
x and β̂

(1)
x = β̂

(1)
x∑

x β̂
(1)
x

.

5. Parameter γ̂c is updated as

γ̂{v+1}
c = γ̂{v}c +

∑
x,t

c=t−x
ωx,t(dx,t − d̂x,t)∑
x,t

c=t−x
ωx,td̂x,t

and the fitted values d̂x,t is calculated. After the updating of γ̂c is
adjusted to satisfy

∑
t γc = 0, which is imposed by centring γ̂c = γ̂c− γ̂c

and setting α̂x = α̂x + γ̂c.

6. The estimates are adjusted through a final transformation to ensure
that

∑tn−x1
c=t1−xk(c − c)γ̂c = 0. As previously mentioned, this step is

evaluated and described in detail in a recent paper whereas we refrain
from including the details here [18]. Thereafter the fitted values d̂x,t is
calculated.

7. The criterion to stop the iteration procedure is determined by the in-
crease in the log likelihood function. If the increase of the log likelihood
function is sufficiently small given a tolerance level set to 10−6, the it-
eration procedure ends and the parameter estimates are returned.
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