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Abstract

In Sweden the public pension premiepension is part of the na-

tional pension and determined by accumulated pension, funds returns,

interest rate and annuity divisor. The annuity divisor therein is deter-

mined by life expectancy tables, interest rate and operating costs. A

closer look into the current methodology used by the Swedish Pension

Agency and Statistics Sweden tell if the methodology could be im-

proved. The future mortality rates are predicted using the Lee-Carter

model which are used to estimate the parameters in the Gompertz-

Makeham mortality law. The force of mortality is the first step in

the calculation of the annuity divisor. Assuming that the number of

deaths have a binomial distribution, simulation of life expectancies

result in annuity divisors close to published values. However, a closer

look reveal that life expectancy simulations are in better agreement

with historical values for women than men. The modelling approach

performs poorer for higher ages, regardless of gender.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: tamara.yung@gmail.com. Supervisor: Mathias Lindholm.



Contents

1 Introduction 1

1.1 Sweden's national public pension and annuity divisor . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Inkomstpension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Premiepension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.3 Annuity divisor for Premiepension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Scope and limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Swedish population data 3

2.1 Historical Swedish population data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Forecasted Swedish life expectancy data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Life expectancy modelling 4

3.1 Formula based computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Lee-Carter model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 Renshaw and Haberman generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.4 Gompertz-Makeham generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.5 Lazarus and Thiele generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Fitting and applying the mortality rates 7

4.1 The Gompertz-Makeham model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1.1 Adapt the parameters in the Gompertz-Makeham model . . . . . . . . . . . . . . . . 7

4.1.2 Parameter estimation for Gompertz-Makeham model . . . . . . . . . . . . . . . . . . 8

4.2 The Lee-Carter model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2.1 Adapt the parameters in the Lee-Carter model . . . . . . . . . . . . . . . . . . . . . 8

4.2.2 Parameter estimation for the Lee-Carter model . . . . . . . . . . . . . . . . . . . . . 9

5 Simulation and re-�tting of the Annuity divisor 12

5.1 Simulation of the Lee-Carter model and mortality rates . . . . . . . . . . . . . . . . . . . . 12

5.2 Re-�tting of the Annuity divisor with simulated mortality rates . . . . . . . . . . . . . . . . 13

6 Comparison of the results of the re-�tted Lee-Carter model 14

6.1 Result of re-�tted Lee-Carter model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.2 Result of annuity divisor with re-�tted Lee-Carter model . . . . . . . . . . . . . . . . . . . . 15

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Appendix 18

A.1 Male QQ-plot of residuals in the Lee-Carter model . . . . . . . . . . . . . . . . . . . . . . . . 19

A.2 Female QQ-plot of residuals in the Lee-Carter model . . . . . . . . . . . . . . . . . . . . . . 23

A.3 Male linear plot of residuals in the Lee-Carter model . . . . . . . . . . . . . . . . . . . . . . 27

A.4 Female linear plot of residuals in the Lee-Carter model . . . . . . . . . . . . . . . . . . . . . 29

A.5 Male linear plot of residuals in the Lee-Carter model for ages 20 to 50 . . . . . . . . . . . . . 31

A.6 Female linear plot of residuals in the Lee-Carter model for ages 20 to 50 . . . . . . . . . . . . 33

Bibliography 35

i



Chapter 1

Introduction

1.1 Sweden's national public pension and annuity divisor

The Swedish public pension is up of three main parts; national public pension, occupational pension
and own savings, see �gure 1.1 (Pensionsmyndigheten 2019). The national public pension is paid
out whole life, unlike the occupational pension and own savings where pay out periods can vary.
The national public pension is administered by Swedish Pensions Agency, PPM, a government
body with the role to administer and pay out national pensions, as well to provide both general
and individual information about pensions.

Figure 1.1: Pyramid illustrating the di�erent parts of the Swedish pension system.

1.1.1 Inkomstpension

Inkomstpension is part of the national public pension for individuals born after 1938, and con-
tribute 16 % to your pensionable income or sickness compensation or activity compensation. The
inkomstpension is paid through taxes and later paid out whole life. The inkomstpension amount is
determined by accumulated pension, interest rate and annuity divisor. The annuity divisor is non-
gender speci�c and obtained from statistical life expectancy tables, time of claim and individual's
age at time of claim (Pensionsmyndigheten 2018).

1.1.2 Premiepension

Premiepension is part of the national public pension for individuals born after 1938, and made of
2.5 % of your pensionable income. During savings, the assets can be placed in funds of own choice
or in the state fund AP7 Såfa. At retirement and time of claim, the funds can be transferred to a
traditional insurance with guaranteed pay out amount or kept in fund insurance where the value
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is determined by investment returns. The premiepension amount is determined by accumulated
pension, funds returns, interest rate and annuity divisor. The annuity divisor is obtained from life
expectancy tables published by Statistics Sweden, interest rate and operating costs (Pensionsmyn-
digheten 2018).

1.1.3 Annuity divisor for Premiepension

The annuity divisor, ADx, for premium pension is based on an individual's age x. It is de�ned by
PPM as an integral over a function with survival function and interest rate (Pensionsmyndigheten
2015, page 106).

ADx =

∫ ∞
x

e−δt
lx+t
lx

dt

δ = ln(1 + r)− ξ

lx = exp
(
−
∫ x

0

µ(s)ds
)

µx =

{
a+ becx, if x ≤ 100

µ100 + (x− 100) · 0.01, if x > 100

(1.1)

where

δ = rate intensity

r = interest rate

ξ = rate intensity for operational costs

lx = survival function for age x

µx = force of mortality for age x

The rate intensity is based on lending rate of 3% from 2014-03-01 before any cost deduction,
resulting in an intensity δ = 0.028559 (Statistiska centralbyrån 2015, page 107). The survival
function, lx, is the probability of an individual surviving up to at least age x. The force of
mortality, µx, is modelled by the Gompertz-Makeham formula of rate of mortality, see section 3.4.

1.2 Scope and limitation

This report follows PPM's methodology to calculate the premiepension annuity divisor, section
1.1.3, and SCB's methodology to forecast mortality rates using Lee-Carter model, section 3.2 and
section 4.2.

Historical statistical data for population and number of deaths from 1995 to 2014 are obtained
from SCB's open database. Three manual adjustments are made to historical deaths1, where
recorded number of deaths were null. The records were changed to one number of deaths so
logarithmic rules can apply for the logarithm of central mortality rate.

The data is used to forecast Sweden's population mortality rates for years 2015-2060 in the
software Matlab. The forecast is simulated 10,000 times. The annuity divisor is estimated for
three cohorts and for each forecast of life expectancy, hence 3 times à 10,000. The three cohorts
are represented by the same generations which are used by PPM; they are 1938, 1945 and 1955
representing the cohorts 1930-ies, 1940-ies and 1950-ies. Following PPM's reporting, only age 61
to 70 are published.

1Female records for number of deaths age 7 year 2006 and 2008, and age 9 in 2012.
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Chapter 2

Swedish population data

Statistics Sweden, SCB, is an appointed government agency responsible for o�cial statistics in areas
such as population size, immigration, emigration, amongst many. The statistics are impartial and
made available to the public through their website. SCB are certi�ed according to ISO 20252:2012
for market, opinion and social research surveys, they are also certi�ed to the international stan-
dard ISO 14001 for environmental management system. The certi�cation con�rm SCB ful�l the
fundamental quality requirements in the production of statistics (Statistiska centralbyrån).

2.1 Historical Swedish population data

All historical data for ages 0 to 100+ (age 100 and above) are obtained for years 1995 to 2014, the
data contain information about

• Number of deaths by gender

• Number of new-borns alive by gender

• Population by gender

The data for number of deaths and number of new-borns alive are recorded weeks after the
event. In the early years 1995 to 1997 the events are recorded up to 13 weeks after the occurrence,
from 1998 the record time have been reduced to 4 weeks. The statistics of population by gender
are recorded number of people on 31 December every year (Statistiska centralbyrån 2018).

2.2 Forecasted Swedish life expectancy data

SCB publish the future population of Sweden annually. Every three years, most recent 2018,
alternative forecasts are made with variations in future fertility, mortality, migration and stochastic
roll-forwards to describe any uncertainties in the variations. In the years in between only population
at the beginning of the year and assumptions are updated (Statistiska centralbyrån 2016, page 8).
Forecasts of Sweden's population mortality rates are estimated using Lee-Carter model of mortality
rates see section 3.2.
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Chapter 3

Life expectancy modelling

Life expectancy is a statistical prediction of the average time a person is expected to live. Several
factors are considered in predicting the life expectancy, most commonly used are gender and age,
but also factors such as if smoker, marital status and socio-economic status (Statistiska centralbyrån
2018) can be considered. The life tables presenting the life expectancies of a certain population
can be of periodical or of cohort type, the former presents the life expectancies in a given time
period with no consideration of the individual's year of birth. The cohort view, used here, present
the life expectancies by the year or time interval an individual is born (Bilius 2014).

3.1 Formula based computation

The life expectancy for an individual of a certain population is assumed to be independent from
each other. The individual's lifetime is de�ned as a non-negative continuous stochastic variable
with the cumulative distribution function, Fx, as (Andersson 2005, page 47)

Fx = P (T ≤ x), x ≥ 0

where x is age and T is lifetime. The cumulative distribution function also describes the survival
function, lx, as

(3.1) lx = P (T > x) = 1− Fx = exp(−
∫ x

0

µ(s)ds)

where µ is mortality rate. For remaining lifetime at age x, denoted Tx, the cumulative distribution
function is de�ned as

Fx,t = P (Tx ≤ t), t ≥ 0

where lifetime and remaining lifetime have following relation

P (Tx > t) = P (T > x+ t|T > x) =
P (T > x+ t)

P (T > x)

and the remaining lifetime can be described using the mortality rate as P (Tx > t) = exp(−
∫ x+t
x

µ(s)ds).

In the insurance industry the companies are more interested in an individual's probability of
survival from one year to the next. This is described by the survival function and the remaining
lifetime Tx as

lx,t = 1− Fx,t = P (Tx > t), t ≥ 0

4



Correspondingly, the risk of an individual of age x dying within the year, t = 1, is referred to
as the one-year death risk, qx, de�ned as

qx = P (Tx ≤ 1) = 1− P (Tx > 1) = 1− e−
∫ x+1
x

µ(s)ds

Similarly, the probability of survival for another year is

(3.2) lx = 1− qx

The life expectancy is commonly displayed as tables where the mortality increases with the age
group. The life tables with the life expectancies use one-year death risk qx to display estimated
likelihood of death occurring in the age span of [x, x+ 1).

3.2 Lee-Carter model

In 1992 Ronald Lee and Lawrence Carter published their study of US death rates between 1933
and 1987 (Lee-Carter 1992). Their work known as the Lee-Carter model of mortality forecast
has been widely used in the insurance industry (Girosi and King 2007). The model describes the
life expectancies as a logarithm of the central mortality rate, ln(mx,t), with a general pattern of
mortality, αx, the relative speed of change in mortality, βx, and level of mortality at time t, kt,

(3.3) ln(mx,t) = αx + βxkt + εx,t

where

αx = constant describing the general pattern of mortality at each age x

βx = constant describing the relative speed of change in mortality at each age x

kt = index of the level of mortality capturing the main time trends in death rates

εx,t = error term

with the constraints

(3.4)
∑
x

βx = 1 and
∑
t

kt = 0

The error term εx,t, mean 0 and variance σ2
ε , re�ect the age-speci�c historical in�uences not

captured by the model and captures all remaining variations. Lee and Carter discovered the results
deviated from data that could be explained by the model giving same weight to old as young people.
To address the logical di�erence of young people contributing as much as older to the total death
rates, a second stage of calibration to the time varying index kt is suggested. The re-estimation of
parameter kt take the ax and bx estimates from the �rst estimation as given, and implied number
of deaths equal the actual number of deaths. The new estimates kt are then found by an iterative
search (Lee-Carter 1992, page 661).

Lee and Carter studied the correlation across ages assuming that all death rates to be a function
of the same time varying index. They discovered the time varying index followed an autoregressive
integrated moving average (ARIMA) model for the selected data. Each rate can be modelled by
di�erent order ARIMA process but in practice the random walk with a drift, ARIMA(0,1,0), has
been used almost exclusively (Girosi and King 2007). The random walk describes the time varying
index as kt = kt−1 + θ + ζt, with ζt ∼ N(0, σ2

ζ ). For example, to roll forward 3 years the time
varying index kt is rolled forward by an iterative process

5



k̂t = k̂t−1 + θ̂ + ζt

= (k̂t−2 + θ̂ + ζt−1) + θ̂ + ζt

= ((k̂t−3 + θ̂ + ζt−2) + θ̂ + ζt−1) + θ̂ + ζt

= k̂t−3 + 3θ̂ + (ζt−2 + ζt−1 + ζt)

3.3 Renshaw and Haberman generalization

The Lee-Carter model have been adopted by Renshaw and Haberman with an extra parameter for
cohort e�ects (Renshaw and Haberman 2006)

ln(mx,t) = αx + βxkt + β(1)
x γt−x + εx,t

where the new term β
(1)
x γt−x show the additional cohort e�ects as a function of the year of birth,

t − x. Like the Lee-Carter model, restrictions are made with the new parameter considered, the
restrictions are ∑

x

βx = 1,
∑
x

β(1)
x = 1,

∑
t

kt = 0, γt−x = 0

3.4 Gompertz-Makeham generalization

The force of mortality, the rate which an individual is dying at the age of x, was �rst introduced
by Benjamin Gompertz in 1825 as law of mortality and amended by William Makeham in 1860
(Hooker 1965). Makeham introduced an age independent component, a, to the law of mortality,
de�ning the mortality rate as following Gompertz-Makeham formula (Andersson 2005, page 60)

(3.5) µ(x) = a+ becx

with the constraints

a+ b > 0, b > 0, c ≥ 0

Hence, if a = 0 we have Gompertz force of mortality.

3.5 Lazarus and Thiele generalization

Several generalizations have been made to Gompertz-Makeham formula (Pitacco 2016), one pro-
posed by Lazarus 1867 was to capture infant mortality with a negative exponential term, which
decreases as the age increases

µ(x) = a+ becx + ϕe−ψx

with the constraints,

a+ b > 0, b > 0, c ≥ 0, ϕ > 0, ψ > 0

Thiele generalized the formula further in 1871 (Pitacco 2016), by proposing an age-pattern of
mortality over the whole life span

µ(x) = a+ becx + ϕe−ψx + λe−δ(x−ε)
2

with the constraints,

a+ b > 0, b > 0, c ≥ 0, ϕ > 0, ψ > 0, λ > 0, δ > 0, ε > 0

6



Chapter 4

Fitting and applying the mortality

rates

4.1 The Gompertz-Makeham model

4.1.1 Adapt the parameters in the Gompertz-Makeham model

The Swedish observed mortality rate reconciles well with Gompertz-Makeham's model, however,
for higher ages the di�erence increases (Andersson 2005). Therefore, PPM have chosen a simpli�ed,
linear, representation of the force of mortality from age 100, outlining Gompertz-Makeham model
by age as (Pensionsmyndigheten 2015, page 106)

(4.1) µ(x) =

{
a+ becx, if x ≤ 100

µ100 + (x− 100) · 0.01, if x > 100

For data PPM use SCB life expectancy forecast for years 2015 to 2060 and ages 0 to 106, male
and female. The Gompertz-Makeham model is estimated for three generations; 1938, 1945 and
1955, where each generation represent age groups; 77+, 70-76 and 60-69 years. Calculations and
estimations are done individually for each generation using similar methodology. From age of 65,
number of survivors for male , l

′(m)
x,generation, and female, l

′(f)
x,generation, are estimated as

l
′(m)
x,generation =

{
P

(m)
2014, generation, for x = 65

l
′(m)
x−1,generation(1− q(m)

x−1, generation), for x = 66, · · · , 106

l
′(f)
x,generation =

{
P

(f)
2014, generation, for x = 65

l
′(f)
x−1,generation(1− q(f)x−1, generation), for x = 66, · · · , 106

where

P
(m)
2014, generation = Male population 2014-12-31 for generation ∈ {1938, 1945, 1955}

P
(f)
2014, generation = Female population 2014-12-31 for generation ∈ {1938, 1945, 1955}

q
(m)
x, generation = Male one-year death risk at the age of x years for generation ∈ {1938, 1945, 1955}

q
(f)
x, generation = Female one-year death risk at the age of x years for generation ∈ {1938, 1945, 1955}

Following regulations1 the one-year death risk is weighted to be gender neutral (gn), qx,gn, by
considering the number of survivors and one-year death risk as (Pensionsmyndigheten 2016)

11998:674 Lagen om inkomstgrundad ålderspension 5 kap. 11�, and 2010:110 Socialförsäkringsbalken 62 kap. 34�
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(4.2) qx,gn =
l
′(m)
x q

(m)
x + l

′(f)
x q

(f)
x

l
′(m)
x + l

′(f)
x

The gender neutral one-year death risk is adjusted for 6 months in the approximation for mor-
tality intensity µx+0.5,gn = − ln(1− qx+0.5,gn) for short durations (Andersson 2012, page 81). The
Gompertz-Makeham parameters are estimated by minimizing the square di�erence in equation (4.3)
below. Table 4.1 show reported Gompertz-Makeham's estimates for 2015 (Pensionsmyndigheten
2015, page 107).

Table 4.1: Reported Gompertz-Makeham's parameters 2015 by PPM based on forecast data for
years 2015 to 2060.

Cohort a b c
1930-ies 0.00005 0.00000198 0.1239
1940-ies 0.00460 0.00000053 0.1373
1950-ies 0.00470 0.00000019 0.1416

4.1.2 Parameter estimation for Gompertz-Makeham model

The Gompertz-Makeham parameters are estimated by PPM using forecast data on life expectancies
for the years 2015 to 2060 and Excel problem solver GRG Nonlinear, a non-linear generalized
reduced gradient algorithm. PPM assign individuals by year of birth to a population cohort.
Each cohort is estimated on so called prognosis basis with the view that the retrospective reserve
and future premiums should cover future claims. This is expressed in the equation de�ning the
retrospective reserve as (Alm 2006)

VW (t) = BW (t)AW (t)− PW (t)aW (t)

where

VW (t) = Retrospective reserve

BW (t) = Contracted sum insured

AW (t) = Capital value at time t of remaining future pay out of 1 SEK according contract

PW (t) = Contracted premium

aW (t) = Premium payment annuity of 1 SEK

The parameters are estimated using Excel function GRG Nonlinear solver, by taking the square
di�erence between calculated force of mortality using SCB probability of deaths and Gompertz-
Makeham mortality rate using SCB forecast data of life expectancies. The solver has the objective
to minimize the di�erence by calibrating the variables a, b and c in Gompertz-Makeham model as
following

(4.3) S = min
â,b̂,ĉ

∑
x

(
µ̂x+0.5 − (â+ b̂eĉ(x+0.5))

)2
4.2 The Lee-Carter model

4.2.1 Adapt the parameters in the Lee-Carter model

SCB assume the Swedish population to be homogenous and have therefore omitted the second stage
calibration of time varying index kt, see section 3.2 (Statistiska centralbyrån 2015, page 194). This

8



report apply the same methodology as SCB in life expectancy forecasting, thus this step will not
be carried out here.

The sophisticated approach to estimate the time varying index, kt, as an ARIMA process is
simpli�ed for a linear approach only considering the minimum and maximum of estimated indices
in vector k̂t. The approach de�ne the drift parameter, θ̂, used for forecasting as (Statistiska
centralbyrån 2015, page 194),

(4.4) θ̂ =
max(k̂)−min(k̂)

n− 1

to forecast n number of years, the drift parameter is multiplied with number of years to forecast,
hence nθ̂. For example, to estimate conditional mean of the time varying index 3 years, it would
be E[kt + 3|kt] = kt + 3θ̂.

It has been suggested by Lundström and Qvist (Lundström and Qvist 2004) to use 25 years of
historical data to capture Swedish gender mortality trends, however we adopt the SCB approach
using a shorter time period from 1995 to 2014. The SCB method forecast individuals in two age
groups; 0-49 years and 50-100 years. The younger age group use historical data for all ages between
0 to 106 years and the older age group consider historical data between ages 50 and 100 years.
The �rst year of forecast, year 2015, is based on estimated mortality rate up to year 2014, by not
using 2014 data smoothen the forecast (Statistiska centralbyrån 2015, page 198). For higher ages,
101 to 106, the mortality rate is not stable and therefore a smoothing method is used instead. The
method multiply a factor to the mortality rate at age 100, for example the mortality rate for age
102 is µ102 = µ100×Factor102. Table 4.2 are the used factors for forecast and corresponding to the
di�erences in mortality between age groups for the period 2005 to 2014 (Statistiska centralbyrån
2015, page 199).

Table 4.2: Smoothing factors for higher ages by SCB, used in estimation of mortality rates.

Age Factor

100 1.00
101 1.11
102 1.19
103 1.22
104 1.28
105 1.35
106 1.41

4.2.2 Parameter estimation for the Lee-Carter model

Assuming the mortality rate can be described as the ratio between number of deaths and average
population for one year, t, by age and gender (Statistiska centralbyrån 2015, page 191) as

(4.5) mx,t =
Dx,t

Nx,t

where

9



Dx,t = Number of deaths at age x in year-end t

Px,t = Population age x in year-end t

Pnewborn,t = Number of new-born alive in year-end t

Nx,t =

{
[(Px−1,t−1 + Px,t)/2], if x > 0

[(Pnewborn,t/2], if x = 0

Each mortality rate is saved as logarithm of the mortality rate in the matrixM, with j number
of rows corresponding to ages, and n number of columns corresponding to years.

(4.6) M =


ln(mx,t) ln(mx,t+1) · · · ln(mx,t+n)

ln(mx+1,t) ln(mx+1,t+1) · · · ln(mx+1,t+n)
...

...
. . .

...
ln(mx+j,t) ln(mx+j,t+1) · · · ln(mx+j,t+n)

 = A + BKT + ε

where

A =


αx,t αx,t+1 · · · αx,t+n
αx+1,t αx+1,t+1 · · · αx+1,t+n

...
...

. . .
...

αx+j,t αx+j,t+1 · · · αx+j,t+n

 B =


βx,t βx,t+1 · · · βx,t+n
βx+1,t βx+1,t+1 · · · βx+1,t+n

...
...

. . .
...

βx+j,t βx+j,t+1 · · · βx+j,t+n



KT =


kx,t kx,t+1 · · · kx,t+n
kx+1,t kx+1,t+1 · · · kx+1,t+n

...
...

. . .
...

kx+j,t kx+j,t+1 · · · kx+j,t+n

 ε =


εx,t εx,t+1 · · · εx,t+n
εx+1,t εx+1,t+1 · · · εx+1,t+n

...
...

. . .
...

εx+j,t εx+j,t+1 · · · εx+jt+n



The constraints (3.4) implies the variable ax to be average of central mortality rates over time,
hence the average of each row in matrixM will return the general pattern of mortality at each age
x as (Lee and Carter 1992, page 661)

âx = M̄x =
1

n

n∑
i=1

ln(mx,i)

Centralizing the matrix M by removing the estimated variable âx we have

M̃ = M− M̄

and remaining the parameters bx and kt to be estimated. Lee and Carter suggested applying
singular value decomposition (SVD) to �nd the least square solution to equation (3.3). Let the
centralised matrix M̃ be

M̃ = USVT

where
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U = The right singular vectors of M̃ and a j × j matrix with orthogonal columns

so, UTU = I

V = The left singular vectors of M̃ and a n× n matrix with orthogonal columns

so, VVT = I

S = A diagonal matrix with square roots of positive eigenvalues si in decreasing

order along the diagonal

The estimated parameters can be described as (Lee and Carter 1992, page 661)

β̂ = s1u
(1)

k̂ = v(1)

where

s1 = First and largest element in the diagonal matrix S

u(1) = The �rst column vector in matrix U

v(1) = The �rst column vector in matrix V
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Chapter 5

Simulation and re-�tting of the

Annuity divisor

5.1 Simulation of the Lee-Carter model and mortality rates

Assuming the number of deaths follow a binomial distribution, Bin(N, q), with n deaths in the
N population and q probability of dying, we can simulate the numerator, Nx,t, in mortality rate
(4.5). We use historical data (h) between years 1995 and 2014 to determine the population N (h)

x,t ,

for age x and year t, and let historical mortality rate m(h)
x,t determines the probability of death q

(h)
x,t

(Statistiska centralbyrån 2015, page 181).

(5.1) mi
x,t =

Di
x,t

N
(h)
x,t

where

Di
x,t ∼ Bin(N

(h)
x,t , q

(h)
x,t )

N
(h)
x,t = [(Px−1,t−1 + Px,t)/2]

and i = 1, · · · , 10, 000 simulations. The simulation creates elements in the matrix M, like matrix
(4.6),

Mi =


ln(mi

0,1996) ln(mi
0,1997) · · · ln(mi

0,2014)
ln(mi

1,1996) ln(mi
1,1997) · · · ln(mi

1,2014)
...

...
. . .

...
ln(mi

106,1996) ln(mi
106,1997) · · · ln(mi

106,2014)


and for each matrix the Lee-Carter parameters α̂i, β̂

i
and k̂

i
, are estimated using SVD. With the

estimated vector k̂t, the drift parameter, θ̂i, in equation (4.4) is estimated for each simulation.
Estimation is done for ages 0 to 100 and the years 2015 to 2060, for individuals aged 101 to 106 the
mortality rates are smoothened according to section 4.2.1 using table 4.2. A matrix of forecasted
logarithms of mortality rates are created as

12



(5.2) m̂i =



m̂i
0,2015 m̂i

0,2016 · · · m̂i
0,2060

m̂i
1,2015 m̂i

1,2016 · · · m̂i
1,2060

...
...

. . .
...

m̂i
100,2015 m̂i

100,2016 · · · m̂i
100,2060

...
...

. . .
...

m̂i
106,2015 m̂i

106,2016 · · · m̂i
106,2060


This is in turn used in estimation of probability of deaths by transforming the mortality rates

as

q̂ix,t

{
1− e−0.5(m̂

i
x,t+m̂

i
x−1,t), for x = 1 to x = 106

1− e−0.5(m̂
i
0,t), if x = 0

5.2 Re-�tting of the Annuity divisor with simulated mortal-

ity rates

PPM use the forecasted probability of death to estimate the one-year death risk, q̂i, and the
probable future population l̂

(·)i
x by gender. This is transformed to be gender neutral (gn) as in

equation (4.2)

q̂ix,gn =
l̂
(m),i
x q̂

(m),i
x + l̂

(f),i
x q̂

(f),i
x

l̂
(m),i
x + l̂

(f),i
x

Thereafter the mortality intensities are estimated by approximation

µ̂ix+0.5,gn = − ln(1− q̂ix+0.5,gn)

and used in minimizing the square error (4.3) to estimate the parameters in Gompertz-Makeham's
model (4.3).

The estimated force of mortality, µ̂ix+0.5,gn, is input to the survival function used in the esti-
mation of annuity divisor, equation (5.3).

lx = exp
(
−
∫ x

0

µ(s)ds
)

µx =


a1955 + b1955e

c1955x, if 61 ≤ x ≤ 65

a1945 + b1945e
c1945x, if 66 ≤ x ≤ 75

a1938 + b1938e
c1938x, if 76 ≤ x ≤ 100

µ100 + (x− 100) · 0.01, if x > 100

(5.3)
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Chapter 6

Comparison of the results of the

re-�tted Lee-Carter model

6.1 Result of re-�tted Lee-Carter model

The mortality rates are simulated 10000 times and for each simulation i the number of deaths,
Di
x,t, are assumed to have a binomial distribution. The results are compared to historical mortality

rates, m(h)
x,t , for the years 1996 to 2014. The di�erence is constructed as

ε̂x,t = m
(h)
x,t − m̄

(sim)
x,t

where the average simulated mortality rates are

m̄
(sim)
x,t =

1

10000

10000∑
i=1

m̂i
x,t

The di�erence resemble the error term εx,t in the Lee-Carter model, equation (3.3). Assuming
the di�erence to be of normal distribution with expected mean 0 and variance σ2

ε , we plot the
di�erences in QQ-plots. The QQ-plots plot the theoretical normal quantile along the horizontal
x-axis and the residual data along the vertical y-axis. Where the points appear closer to a straight
line, the more likely they come from the same distribution and historical and average simulation
are more equivalent. The results in Appendix A.1 show the line with a bend up to the right for all
males and all years, a distribution with a right skew and heavy tail, meaning the large di�erences
are bigger than expected compared to a normal distribution. For the female results in Appendix
A.2 there is no such distinct bend, there is however a minor bend on the left side, meaning the
small di�erences are smaller than expected. For both genders and all years, we have a outliers to
the right side in the QQ-plots, so there are di�erences larger than expected.

A closer look on the di�erences, ε̂x,t, by age and time for male in Appendix A.3 and female
in Appendix A.4 show in both cases larger di�erences for upper age group 90 to 100 years. For
males the di�erences for ages 0 to 89 ranges between just below 0 to about 0.03, the di�erences
increases about 10-folds for ages 90 to 100. In Appendix A.5 (male) and Appendix A.6 (female) the
di�erences are plot in age intervals of 10 years and show increase in di�erence by age, regardless
of gender.

For females the simulation of mortality rates is often higher than historical values, as shown
in Figure A.10 and Figure A.11, where a band of negative di�erences occur for most ages. Same
logic applies to the simulation of male mortality rates, where simulation have underestimated the
mortality rates. Figure A.7 and Figure A.8 show a band of positive di�erences between estimated
male mortality rates and historical values.
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6.2 Result of annuity divisor with re-�tted Lee-Carter model

Simulation of number of deaths and Lee-Carter model of mortality rates result in estimated annuity
divisors in table 6.1.

Table 6.1: Expected value and median of annuity divisor for 10000 scenarios.

Age PPM
Expected

value

Expected

median

Standard

deviation

2.75 %

percentile

97.5 %

percentile

61 17.49 17.4858 17.4904 0.0095 17.4646 17.4961
62 17.10 17.1009 17.1057 0.0098 17.0791 17.1115
63 16.69 16.7068 16.7117 0.0100 16.6845 16.7176
64 16.28 16.3036 16.3086 0.0102 16.2808 16.3147
65 15.85 15.8915 15.8966 0.0105 15.8682 15.9028
66 15.42 15.4708 15.4760 0.0107 15.4469 15.4824
67 14.42 15.0417 15.0471 0.0109 15.0174 15.0536
68 13.97 14.6048 14.6102 0.0111 14.5800 14.6168
69 13.52 14.1603 14.1658 0.0113 14.1351 14.1726
70 13.06 13.7089 13.7145 0.0115 13.6833 13.7214

Estimation is done using same methodology as PPM with estimated Makeham parameters for
each cohort and simulation. The estimated annuity divisor is within 0.4 % of the reported values
for ages 61 to 66 (Pensionsmyndigheten 2015, page 107). Between ages 66 and 67 the reported
annuity divisor drops by one unit (from 15.42 to 14.42) because of change in Gompertz-Makeham
parameters, from cohort 1950-ies to cohort 1940-ies. This also takes place for ages 75 and 76, but is
outside of the reported range and not shown here. The move will not be recognized by the insured
because he or she will not change his / her's year of birth.

The reported annuity divisors are within the estimated range 2.75% to 97.5% percentile for ages
61 to 63 and the di�erences are then not signi�cant. However, for the higher ages the di�erences
between estimated and reported annuity divisors falls out of the range and therefore signi�cant.

The change in annuity divisor from one age to the next in table 6.2 are of same degree in
both reported and estimated values. Rounding the expected values to same level of accuracy as
reported values, show the absolute di�erences in change falls under 2 % for all ages except from
66 to 67. This larger change of 0.57 is explained by the change of Gompertz-Makeham parameters
with PPM.

Table 6.2: Change in annuity divisor

Age PPM
Expected

value

Change in

PPM

Change in

expected value

Absolute

di�erence

61 17.49 17.4858 - - -
62 17.1 17.1009 -0.3900 -0.3849 0.01
63 16.69 16.7068 -0.4100 -0.3941 0.02
64 16.28 16.3036 -0.4100 -0.4032 0.01
65 15.85 15.8915 -0.4300 -0.4121 0.02
66 15.42 15.4708 -0.4300 -0.4207 0.01
67 14.42 15.0417 -1.0000 -0.4290 0.57
68 13.97 14.6048 -0.4500 -0.4370 0.01
69 13.52 14.1603 -0.4500 -0.4445 0.01
70 13.06 13.7089 -0.4600 -0.4514 0.01
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Table 6.3: Di�erence between reported and estimated annuity divisors.

Age PPM
Expected

value
Di�erence

61 17.49 17.4858 0.0042
62 17.10 17.1009 -0.0009
63 16.69 16.7068 -0.0168
64 16.28 16.3036 -0.0236
65 15.85 15.8915 -0.0415
66 15.42 15.4708 -0.0508
67 14.42 15.0417 -0.6217
68 13.97 14.6048 -0.6348
69 13.52 14.1603 -0.6403
70 13.06 13.7089 -0.6489

A closer look of the di�erence show modelled values are higher than reported in all but one
case see table 6.3. Figure 6.1 illustrate the simulated median is higher for all ages, and the average
is higher for all ages except age 61. Bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The lower reported annuity numbers suggest a risk averse reserve amount.

Figure 6.1: Boxplot of di�erence between reported and estimated annuity divisor, ADPPMx −ADsimx .

The performance of the estimate is measured with mean square error (MSE) de�ned as the
average sum of squared error between simulated annuity divisors, ADsimx , and the annuity divisors
used by PPM, ADPPMx . That is,

(6.1) MSE(ADsim
x , ADPPM

x ) =
1

10000

10000∑
i=1

(ADsim,i
x −ADPPM

x )2

We discover the MSE is very small, see Table 6.4, with proportion of square root of MSE in
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Table 6.4: Square root of MSE.

Age PPM
√
MSE

61 17.49 0.0104
62 17.1 0.0098
63 16.69 0.0195
64 16.28 0.0257
65 15.85 0.0428
66 15.42 0.0519
67 14.42 0.6218
68 13.97 0.6349
69 13.52 0.6404
70 13.06 0.6490

parts per million of the reported annuity divisors.

6.3 Conclusion

The estimated mortality rates from simulation of the number of deaths, resulted in di�erences
between estimated mortality rates and historical values to be higher than expected for male and
smaller than expected for females. The QQ-plots show the assumption of number of deaths being
binomial distributed is more appropriate for females. The outliers in the QQ-plots, regardless of
gender, could come from the estimated mortality rates for higher ages, where the di�erences are
higher.

As for the simulated annuity divisor results, the di�erences between reported values and average
simulated values appear in parts per hundreds for ages 61 to 66 and are considered small given the
size of the annuity divisor. For higher ages the di�erence is more signi�cant and concerns about
the methodology is warrant.

Any accuracy in the simulated female mortality rates (derived from number of deaths) could
have been cancelled out by the heavy tail in di�erences for male when deriving the annuity divisors.
Results suggest using di�erent distribution for male and female to likely narrow the gap between
historical mortality rates and estimated mortality rates and in turn narrow the gap between re-
ported annuity divisor and average simulated annuity divisor.
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Appendix
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A.1 Male QQ-plot of residuals in the Lee-Carter model
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Figure A.1: Male QQ-plot with quantiles of residual in the Lee-Carter model (y-axis) and theoret-
ical quantiles from normal distribution N(0, σ2

ε ) (x-axis) for the years 1996 to 2003.
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Figure A.2: Male QQ-plot with quantiles of residual in the Lee-Carter model (y-axis) and theoret-
ical quantiles from normal distribution N(0, σ2

ε ) (x-axis) for the years 2004 to 2011.
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Figure A.3: Male QQ-plot with quantiles of residual in the Lee-Carter model (y-axis) and theoret-
ical quantiles from normal distribution N(0, σ2

ε ) (x-axis) for the years 2012 to 2014.
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A.2 Female QQ-plot of residuals in the Lee-Carter model
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Figure A.4: Female QQ-plot with quantiles of residual in the Lee-Carter model (y-axis) and theo-
retical quantiles from normal distribution N(0, σ2

ε ) (x-axis) for the years 1996 to 2003.
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Figure A.5: Female QQ-plot with quantiles of residual in the Lee-Carter model (y-axis) and theo-
retical quantiles from normal distribution N(0, σ2

ε ) (x-axis) for the years 2004 to 2011.
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Figure A.6: Female QQ-plot with quantiles of residual in the Lee-Carter model (y-axis) and theo-
retical quantiles from normal distribution N(0, σ2

ε ) (x-axis) for the years 2012 to 2014.
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A.3 Male linear plot of residuals in the Lee-Carter model

Figure A.7: Male linear plot of residuals between estimated mortality rates and historical mortality
rates. All ages from year 1995 to 2013.

Figure A.8: Male linear plot of residuals between estimated mortality rates and historical mortality
rates. Ages 0 to 89 years from year 1995 to 2013.
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Figure A.9: Male linear plot of residuals between estimated mortality rates and historical mortality
rates. Ages 90 to 100 years from year 1995 to 2013.
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A.4 Female linear plot of residuals in the Lee-Carter model

Figure A.10: Female linear plot of residuals between estimated mortality rates and historical
mortality rates. All ages from year 1995 to 2013.
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Figure A.11: Female linear plot of residuals between estimated mortality rates and historical
mortality rates. Ages 0 to 89 years from year 1995 to 2013.

Figure A.12: Female linear plot of residuals between estimated mortality rates and historical
mortality rates. Ages 90 to 100 years from year 1995 to 2013.
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A.5 Male linear plot of residuals in the Lee-Carter model for

ages 20 to 50

Figure A.13: Male linear plot of residuals between estimated mortality rates and historical mor-
tality rates. Ages 20 to 50 from year 1995 to 2013.
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Figure A.14: Male linear plot of residuals between estimated mortality rates and historical mor-
tality rates. Ages 60 to 90 years from year 1995 to 2013.
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A.6 Female linear plot of residuals in the Lee-Carter model for

ages 20 to 50

Figure A.15: Female linear plot of residuals between estimated mortality rates and historical
mortality rates. Ages 20 to 50 from year 1995 to 2013.
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Figure A.16: Female linear plot of residuals between estimated mortality rates and historical
mortality rates. Ages 60 to 90 years from year 1995 to 2013.
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