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Abstract

Many pension insurance policies in the Swedish life insurance mar-

ket have the possibility to transfer the policy between companies.

Since the insurance company typically have high acquisition costs for

these policies a transferred policy out of the company could lead to

a net loss on that policy. In this thesis we use logistic regression to

estimate the probability of transfer for such policies on both simulated

and real data. We find that we require a very large number of obser-

vations to get reliable estimates and that classifications measures like

the ROC curve can give misleading results. We also see find that mod-

eling continuous covariates from grouped observations, such as whole

policy years, is preferable to using continuous observations.
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1 Introduction

In the Swedish life insurance market there exists mainly two different types
of life insurance savings contracts, pension insurance policies and endowment
policies. For both types of contracts the paid premiums gets invested in various
assets or funds and the accumulated value of the policy, from here on referred
to as the policy value, is later paid out to the policyholder. The premium
can either be a one time premium paid at the beginning of the policy or a
regular premium where premiums are paid repeatedly into the policy until the
time of pay out. The premium payer can either be the same person as the
policyholder or someone else. One common type of policy where the premium
payer is different from the policyholder are occupational pension policies. Here
the premium payer is the employer and the policyholder is the employee.

The main difference between the two types of contracts are related to how
the policy value is paid out. For pension polices the start of pay out is dependent
on the age of the policyholder, typically at the age 65 but earliest at the age
of 55.1 For endowment policies the time of pay out is not dependent on the
policyholders age and the pay out starts according to the contract terms. How
the policy value is paid out also differs between the two types of contracts. The
value of a pension policy is paid out during at least five years and at most during
the lifetime of the policyholder. For endowment policies the pay out can be a
lump sum at the start of pay out or it can be continuously paid out during the
lifetime of the policyholder.

For both types of policies there exists three different products, unit-linked
insurance, equity-linked insurance and traditional life insurance. Depending on
the type of product the paid premiums are invested differently. For unit-linked
and equity-linked policies the policyholder chooses which funds or assets the paid
premiums shall be invested in and the policy value at the time of pay out is
the sum of paid premiums, investment returns and charged fees. For traditional
life insurance policies the insurance company is responsible for the investments
of the paid premiums. The policy value at the time of pay out for traditional
policies is usually guaranteed to a percentage of the paid premiums, hence the
insurance company bears all of the investment risk. Unit- and Equity-Linked
policies do not typically have a guaranteed amount, so the policyholder bears
all the investment risk which makes these policies very similar to a pure savings
account.

The different contracts and products are illustrated in figure 1.
Both types of contracts usually include two different types of contractual

options. We make the following definitions:

Free policy option. The premium payer can at any time during the premium
paying period of the contract choose to stop the premium payments, possibly with
adjusted benefits.

Applicable for both types of contracts.

Surrender option. The policyholder can choose to withdraw all or part of the
total policy value, possibly for a fee charged from the surrendered amount.

Applicable only for endowment polices.

1As of the time of writing
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Figure 1: Illustration of the two types of life insurance contracts.

Transfer option. The policyholder or premium payer can choose to transfer all
of the policy value to a new pension policy within a different insurance company.

Applicable only for pension polices.

When the policyholder exercise the free policy option we say that the policy
is paid up. Even though the free policy option is irrelevant for policies with
a one time premium we shall treat such policies as paid up. A paid up policy
is thus a policy where no future premiums will be paid. A paid up policy will
still be paid out and the policyholder usually retains one of the other options
mentioned above. A typical scenario where the free policy option is exercised
is when an employee changes employer. The previous employer will then stop
paying premiums into the old employees occupational pension policy. Since
one employer often pay premiums into multiple occupational policies within the
same insurance company, multiple occupational policies can therefore transfer
simultaneously.

The time at which the policyholder can choose to exercise the surrender
option is normally restricted to one year after the start date of the policy.

The fees associated with the two different lapse option above usually varies
during the lifetime of the policy, with higher fees for younger polices and lower
fees for older polices. Table 1 summarises the characteristics of the two different
types of life insurance contracts.

Policy Premium Pay out Pay out Free Transfer Surrender
date time policy

Pension Regular or Earliest at Minimum Yes Yes No
one time the age of 55 5 years

Endowment Regular or Any Any Yes No Yes
one time

Table 1: Contract characteristics

The characteristics described above are general and details can vary between
companies and over time. Some of them, such as the start of pay out for
pension policies, are regulated by law and have changed over time and will
probably continue to change over the coming years. The purpose is not to
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exactly describe all possible aspects and terms of the contracts, but rather give
the reader a context and examples of typical contracts and their, for this thesis,
relevant features.

1.1 Risks associated with transfers and surrenders

The costs of acquiring new business for these types of contracts is usually very
high for the insurance company and arises from both up-front provisions to
brokers and internal costs. The insurance company expects to make a profit over
the whole life time of these policies, from charges on premiums, policy value,
etc. But it can take many years, or even decades before the policy turns to
profit and has covered all of its initial costs. If the policy transfer, or surrender,
before it has turned to profit then the insurance company will make a loss on
that policy. The earlier the policy transfer the bigger the loss for the company.
There exists two common methods to help reduce such losses. The transfer fee
that is charged when a policy transfer will help cover some of the initial costs,
but not all. These fees are often higher for young policies and lower for older
policies. Another way to cover some of the initial costs is to have a clawback
period for the initial provisions paid to the broker. This means that the broker
has to pay back some of the initial provision if the policy transfer, or surrender
within a specified time period from the start of the policy, like 5 years.

1.2 Solvency 2 and BEL

Insurance companies operation in the European Union have to value their li-
abilities according to the Solvency 2 directive EIOPA (2009) when calculating
the solvency capital requirement (SCR). The liability towards the policyholders,
the technical provisions, consists of two parts. The best estimate liability (BEL)
and a risk margin. The BEL should be calculated as the discounted expected
value of future cash flows. EIOPA (2015) states that

1.73. Insurance and reinsurance undertakings should explicitly take
into account amounts charged to the policy holders relating to em-
bedded options.

Thus, the company has to make assumptions on the policyholders behaviour in
regards to the transfer and surrender options.

In this thesis we will review the key principles of logistic regression to try
and asses whether such models can be used to estimate transfer (or surrender)
probabilities. The resulting models could later be used when deciding on the
assumptions to be used in the cash flow model. In section 2 we will briefly review
the mathematical theory of the methods we will use. We then explore these
methods and fit models on both simulated and real data. Section 3 describes
the used dataset and possible issues with it. In section 4 we present and compare
the results from the different methods. In the last section we summarize our
conclusion from section 4 and comment on the appropriateness of the methods.
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2 Theory

An insurance policy of the types described in section 1 can be modeled as a
multi-state Markov process where the policy jumps between different states,
Alm, Andersson, Bahr, and Martin-Löf (2006, chapter 4). Different types of
cash flows arises during the lifetime of the policy depending on the states and
jumps of the policy. In state 1 premiums are paid into the policy, a jump from
state 1 to 4 the policy value is either paid out or transferred from the insurance
company etc. Figure 2 shows the different states of two simple models for typical
policies where the arrows corresponds to possible jumps between states. The
states 3, 4 and 5 are called absorbing states since the policy cannot jump out
of these.

(1)
Premium paying

(2)
Paid Up

(3)
Dead

(4)
Transfer (5)

Pay out

(a) Pension policy.

(1)
Premium paying

(2)
Paid Up

(3)
Dead

(4)
Surrender (5)

Pay out

(b) Endowment policy.

Figure 2: Different states of simple models for typical pension and endowment
policies.

The policy process X(t) at time t take on values in the finite set J corre-
sponding to the different states of the policy. The value of the policy process in
the premium paying state at time t = 3 is thus S(3) = 1. To each of the possible
jumps there exists, possible time dependent, jump intensities λij(t), i 6= j which
describes the how the policy process jumps between different states in time.
The intensity of a multi-state Markov process can be defined as

λij(t) = lim
dt→0+

P (X(t+ dt) = j|X(t) = i)

dt

This can be interpreted as the probability of jump from state i to state j in the
time interval [t, t+ dt) when dt is small

Pij(t) = P (X(t+ dt) = j|X(t) = i) ≈ λij(t)dt
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The probabilities Pij(s, t) = P (X(t) = j|X(s) = i) of jumping from state i to
state j in the time interval [s, t] are the solutions to the differential equation

−∂Pij(s, t)
∂s

=

5∑
k=1

λik(t) (Pkj(s, t)− Pij(s, t))

which can be solved backwards in time with the boundary condition Pij(t, t) =
δij for s = t, where δij = 1 if i = j and zero otherwise, see Alm, Andersson, Bahr,
and Martin-Löf (2006) for more details. In our case we are mostly interested in
the jump probability into state 4 for some time interval (s, t)

P14(s, t) (1)

P24(s, t) (2)

Next we introduce an event time for state 4, T4 = min{t|X(t) = 4}. The
distribution of the random variable T4 is fully described by the jump intensities
of the Markov-model.

P (T4 > t) = S4(t) = 1− F4(t) = 1− P4(0, t) = 1− (P14(0, t) + P24(0, t))

Closely connected to the event time T4 is the counting process N4(t) which take
values in {0, 1} depending on the value of X(t). When X(t) jumps to state 4
at time t = T4 the counting process N4(t) jumps from 0 to 1. The relationship
between N4(t) and X(t) is illustrated in figure 3. More details on modeling life
insurance contracts as Markov-processes can be found in Alm, Andersson, Bahr,
and Martin-Löf (2006, chapter 4).

Next we look at how the jump probabilities of the Markov-model relates to
the expected net present value of future cash flows. Following Alm, Andersson,
Bahr, and Martin-Löf (2006, p. 114-116, chapter 4.4) with some slight differences
in notation, we introduce a time dependent payment flow for state i, dBi(t) =
bi(t)dt per unit of time. As an example of our simple model in figure 2a we
have bi(t) = 0 for states i = 2, 3, 4 corresponding to paid up, dead and transfer
respectively. For the premium paying state i = 1 premiums are being paid and
b1(t) > 0. For the pay out state i = 5 we have b5(t) < 0.

We also introduce payments cij(t) when the policy process jumps from state
i to j. Thus, when jumping from the premium paying state i = 1 or the paid
out state i = 2 to the transferred state i = 4 would correspond to a pay out and
cij(t) < 0. If we neglect the situation of a beneficiary in the case of death we
only have two payments of type cij(t), namely c14(t) and c24(t).

We also have the indicator variables Ii(t) = I(X(t) = i), i.e. Ii(t) = 1 when
X(t) = i and zero otherwise. Let Nij(t) be the number of jumps from state i
to j in the time interval (0, t], i 6= j. The present value at time t of the future
cash flows up to time T for one contract is thus

C(t, T ) =

∫ T

t

d(t, u)

∑
j=1,5

Ij(u)bj(u)du+
∑
j=1,2

cj4(u)dNj4(u)

 (3)

where d(t, u) is a discounting factor. The expected values of Ij(t) and dNjk(t)
conditioned on the state of the policy process is given by

E(Ij(t)|X(s) = i) = Pij(s, t)
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0

N4(t)

tT4

1

(a) Counting process of state 4.

0

X(t)

t

1

2

4

T2 T4

(b) Policy process X(t).

Figure 3: Relationship between the policy process and the counting process of
state 4

E(dNjk(t)|X(s) = i) = Pij(s, t)λjk(t)dt ≈ Pij(s, t)Pjk(t, t+ dt)

The expected value of the expression (3) conditioned on the state of the policy
process at time t is thus

E(C(t, T )|X(t) = i) =∫ T

t

d(t, u)

∑
j=1,5

Pij(t, u)bjdu+
∑
j=1,2

Pij(t, u)λj4(u)cj4(u)du


In practice one could approximate this expression by turning this integral to

a sum for a suitable discretization and the intensities in the second sum would
then be approximated by the probabilities in (1). We will now turn to models
that can be used to make inference about the probabilities Pj4(s, t) based on
observations from the policy process X(t).

2.1 Generalized Linear Models (GLM)

Generalized linear models are a generalization of the ordinary linear model

E[Y |X] = µ = β0 + β1x1 + · · ·+ βpxp
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where the expected value of the response Y , conditioned on the value of the
covariates (x1, . . . , xp), is linear. Y is assumed to be normally distributed with
constant variance σ2 in the linear model. By observing n outcomes of Y one can
estimate the constants (β0, . . . , βp) by maximum likelihood estimation. This is
done by setting the score function U(β|Y,X) to 0 and solving for β.

U(β|Y,X) =
∂ logL(β|Y,X)

∂β
=
∂l(β|X,Y )

∂β

GLM extends this ordinary linear model to responses of any distribution in
the exponential dispersion family by using a link function g() and the relation-
ship

g (E[Y |X]) = g(µ) = η = β0 +

p∑
j=1

βjxj

The ordinary linear model is thus a special case of the generalized linear models
with identity link function g(µ) = µ. One commonly used link function is the
natural logarithm

g(µ) = log(µ) = η = β0 +

p∑
j=1

βjxj

The effects of the covariates (x1, . . . , xp) is thus transformed from additive on
the linear predictor η to multiplicatively on E[Y |X]

E[Y |X] = g−1

β0 +

p∑
j=1

βjxj


= exp

β0 +

p∑
j=1

βjxj


= exp (β0) exp (β1x1) · · · exp (βpxp)

= γ0γ1 · · · γp

Another nice feature of the natural logarithm is that it maps values in the
interval (0,+∞) to (−∞,∞) which is crucial when dealing with responses in
the interval (0,∞) such as counts. More details on generalized linear models
can be found in McCullagh and Nelder (1989).

Generalized linear models are extensively used to model claim frequency
and claim severity in non-life insurance. This can be done by using a Poisson
distributed response Yf for the number of claims, a gamma distributed response
Ys for the claim amount and the natural logarithm as link function. See Ohlsson
and Johansson (2010) for more details on generalized linear models in non-life
insurance.

For our purpose we would like to model the probabilities Pj4(s, t) of a con-
tract transferring by the usage of generalized linear models. Some examples of
GLM used in life insurance are Renshaw and Haberman (1986), Briere-Giroux
et al. (2010), Cerchiara, Edwards, and Gambini (2008) and Michorius (2011).

7



2.1.1 Logistic regression

Logistic regression can be used to model the probability pi = E[Y |Xi] = µi of a
Bernoulli distributed response Y with covariate values Xi = (xi1, . . . , xip)

T by
using a logit link function

g(pi) = logit(pi) = log

(
pi

1− pi

)
= β0 +

p∑
j=1

βjxij (4)

=⇒ pi =
exp

(
β0 +

∑p
j=1 βjxij

)
1 + exp

(
β0 +

∑p
j=1 βjxij

)
In the standard logistic regression we thus assume a linear relationship between
continuous covariates and the log-odds.

The score function and Fisher information is given by

U(β|Y,Xi) =
∂l

∂βk
=

n∑
i=1

xik

(
yi −

exp (β0 +
∑p
m=1 βmxim)

1 + exp (β0 +
∑p
m=1 βmxim)

)
the second order derivatives of the log-likelihood by

∂2l

∂βkβl
= −

n∑
i=1

xikxil

(
exp (β0 +

∑p
m=1 βmxim)

(1 + exp (β0 +
∑p
m=1 βmxim))

2

)

In matrix notation we write

∂2l

∂βkβl
= −XkWXT

l

where

W (β) = diag

[
eβ0+

∑p
m=1 βmx1m(

1 + eβ0+
∑p

m=1 βmx1m
)2 , . . . , eβ0+

∑p
m=1 βmxnm(

1 + eβ0+
∑p

m=1 βmxnm
)2
]

and the Fisher information is thus

I(β) = −E
[

∂2l

∂βk∂βl

]
= XkWXT

l

The diagonal matrix W is exactly the covariance matrix of the random vector
Y = (Y1, . . . , Yn)T from which we observe outcomes y = (y1, . . . , yn)T .

When n is large the estimates are approximately normally distributed β̂
d
≈

N(β̂, I−1(β̂)), a fact which can be used to construct confidence intervals for the
estimated parameters.

2.2 Generalized Additive Models (GAM)

The assumption of linearity for a continuous covariate in the generalized linear
model might not always be satisfied in reality. One way to handle a continuous
covariate is to divided it into k different subsets and thus transform it to a
categorical covariate with k different levels and k−1 parameters to be estimated.
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With this method one has to decide how to make the subdivision of intervals.
Narrow intervals would get a better approximation of the underlying curve but
the number of observations in these intervals can be small and the estimated
parameters imprecise. Wide intervals would get accurate parameter estimates
but a worse approximation of the underlying non-linear relationship.

Another way to deal with a continuous covariate is to transform the covariate
x by some function f(x) that more accurately approximates the relationship
between the log-odds and the continuous covariate. In this section we will
briefly introduce generalized additive models and cubic splines. This section is
based on Ohlsson and Johansson (2010, chapter 5) where more details can be
found.

In generalized additive models we no longer assume a linear relationship
between the log-odds and the covariates, just an additive relationship

g(µi) = β0 + f1(xi1) + · · ·+ fp(xip) = β0 +

p∑
j=1

fj(xij)

between the mean and some functions fj of the covariates xij , which makes
GAM sort of an extension of the GLM. For a categorical covariate xj with k
levels we have (with level 1 as the reference level)

fj(xij) = β
(2)
j φ

(2)
j (xij) + · · ·+ β

(k)
j φ

(k)
j (xij)

where φ
(k)
j (xij) = 1 if xij = k, i.e. covariate xij is in category k and the function

fj(xij) is the same as in the GLM. The idea of GAM is to find a functions fj
that describes the relationship between continuous covariates and the log-odds.
For this purpose we need a measurement of how well the model fits the data
for given fj , the measurement used is the deviance D(y, µ) (see section 2.3.1 for
details). We also make the assumptions that the function fj should be twice
continuously differentiable and with low variation, in the sense that

∫
(f ′′j (x))2dx

should be small. These requirements can be summarized as

∆(fj) = D(y, µ) + λ

∫ b

a

(f ′′j (x))2dx, a ≤ x ≤ b (5)

where the fit of the model is penalized by a high variation of fj and the sought
function minimizes this expression. The set of possible functions fj that we will
consider is called cubic splines.

A linear spline is constructed as follows. Given a set of knots z1, . . . , zk we
define linear functions pm(x) = am+bmx, m = 1, . . . , k−1 with the condition
that pm−1(zm) = pm(zm), i.e. the linear functions are tied together at the
endpoints. The linear spline s(x) is then the resulting continuous function over
the interval [z1, zk].

s(x) = pm(x), zm ≤ x ≤ zm+1; m = 1, . . . k − 1

For a quadratic spline we extend the functions pm(x) to be second de-
gree polynomials and require that the derivatives of two connected polynomi-
als should be the same at the internal knots, i.e. p′m(zm) = p′m−1(zm),m =
2, . . . , k − 1.
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For cubic splines we have pm(x) as a third degree polynomial with the re-
quirement that the derivative and the second derivative should be the same for
connected polynomials at the internal knots, similar to the quadratic spline. We
now have a twice continuous differentiable cubic spline s(x) defined on the inter-
val z1, . . . , zk. Natural splines are splines that are extended to the interval [a, b]
and is linear in the interval [a, z1] and [zk, b]. The reason for using natural cubic
splines for the function fj is that it minimizes the penalized deviance 5. Cubic
splines are commonly parametrized as a linear combination of B-splines due to
numerical properties, see Ohlsson and Johansson (2010, chapter 5). This makes
interpretation of the parameters hard and instead we plot the fitted function
for fixed values of the other covariates.

2.3 Model Selection

2.3.1 Deviance

One way of assessing how well a regression model fits the data is by using
summary measures that are based on the residuals, (yi − ŷi). In logistic re-
gression, the fitted values are calculated for each covariate pattern (x1, . . . , xp)
and are compared to the observations for the same covariate pattern. In our
case we would haveyj as the total number of observed transfers and ŷj as the
estimated number of transfers. The estimated number of transfers is calculated
by ŷj = mj p̂j where mj is the total number of observed policies for covariate
pattern j and p̂j is the estimated transfer probabilities for covariate pattern j.

With J distinct covariate patterns we have
∑J
j=1mj = n, where n is the total

number of observed policies.
One type of statistic that is used to asses the goodness-of-fit is the deviance

D(y, p̂) =

J∑
j=1

d(yj , p̂j)
2

where

d(yj , p̂j) = sign(yj− ŷj)
{

2

[
yj log

(
yj
ŷj

)
+ (mj − yj) log

(
mj − yj
mj − ŷj

)]}1/2

(6)

which is approximately χ2-distributed with J − p degrees of freedom when the
suggested model have p non-redundant parameters. This statistic can thus be
compared to the χ2(J − p)-distribution to test whether the model is signifi-
cantly different from the saturated model. To test the significance of different
covariates we can use the likelihood ratio test (LRT). Let Hf be a model with
some covariates included and Hr a reduced model without one of the covari-
ates in Hf . The likelihood ratio statistic is then D(y, p̂(r)) −D(y, p̂(f)) and is
approximately χ2-distributed with ff − fr degrees of freedom where ff is the
number of non-redundant parameters of the full model and fr is the number of
non-redundant parameters of the reduced model.

The asymptotic distribution of the LRT statistic is valid by letting n go
to infinity but keeping the number of parameters p in the larger model fixed.
However, if the number of parameters increases with n then the χ2-distribution
is not accurate and tests based on this distribution is not valid, see Sur, Chen,
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and Candès (2017). In the presence of a continuous covariate we would have
J ≈ n and since the number of parameters in the saturated model is equal
to J the LRT statistic for testing one model against the saturated model is
not χ2-distributed. The LRT statistic for testing Hr against Hf is, however,
χ2-distributed since the likelihood of the saturated model cancels.

2.3.2 Hosmer-Lemeshow

Another type of statistical test that can be used for goodness-of-fit in the pres-
ence of continuous covariates or J ≈ nis the Hosmer-Lemeshow tests. The
Hosmer-Lemeshow test group the observations by their estimated probabilities,
either by percentiles or fixed cut-points. Since the observations are no longer
grouped by the covariate patterns we get ck different covariate patterns in group
k. The expected number of ones, e1k, and zeros, e0k, in group k are thus calcu-
lated as

e1k =

ck∑
j=1

ŷj

e0k =

ck∑
j=1

mj(1− p̂j)

and the observed ones o1k and zeros o0k in group k as

o1k =

ck∑
j=1

yj

o0k =

ck∑
j=1

mj − yj

The statistic Ĉ can then be calculated as

Ĉ =

g∑
k=1

[
(o1k − e1k)2

e1k
+

(o0k − e0k)2

e0k

]
where g is the number of groups. Hosmer and Lemeshow (1980) showed by
simulations that the statistic Ĉ is approximately χ2-distributed with g − 2 de-
grees of freedom when the model is correct and J = n. Hosmer, Lemeshow, and
Sturdivant (2013) mention that it is likely that the approximation is valid also
when J ≈ n.

2.3.3 Classification

A third measurement that can serve as a compliment to the ones above is the
ROC (Receiver Operating Characteristic) curve or more specifically the area
under the ROC curve. We will briefly go trough the idea behind the ROC curve
and refer the reader to Hosmer, Lemeshow, and Sturdivant (2013) for more
details. We start by introducing the classification table.

A classification table is constructed as follows. Given a threshold t, we assign
to observation i a one if the estimated probability pi is greater than t or one
zero if pi ≤ t. The new set of ones and zeros is then be compared to the actual
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observations and summarized in a table. Table 2 show a general classification
table where c11 corresponds the total number of correctly classified ones, c01 the
total number of misclassified ones, c10 the total number of misclassified zeros and
c00 the total number of correctly classified zeros. ei and oi are the total number
of estimated and observed ones and zeros, n is the total number of observations.
Different ratios can be used to measure how good the model is at classifying the

Observed
Classified Transfer = 1 Transfer = 0 Total
Transfer = 1 c11 c10 e1
Transfer = 0 c01 c00 e0
Total o1 o0 n

Table 2: Classification table

observations, one such ratio is the rate of correct classifications (c11 + c00)/n.
Two other ratios that are commonly used are the sensitivity (true positive rate)
c11/o1 and the specificity (true negative rate) c00/o0. The values of these ratios
are of course dependent on the choice of t. In the extreme cases when t = 0 we
would have sensitivity ≈ 1 and specificity ≈ 0 and in the other extreme case
when t = 1 we would have sensitivity ≈ 0 and specificity ≈ 0. The ROC curve is
constructed by plotting the sensitivity versus 1-specificity for cutpoints t in the
interval (0, 1). When sensitivity is high compared to 1-specificity the model is
good at correctly classifying the observations. A model which is a great classifier
would have a concave ROC curve and a model which is a bad classifier would
have a ROC curve that is close to a straight line with a slope of 45 degrees. The
area under the ROC curve can then be a measurement of how well the model
is at classifying the outcome. See figure 4 for an illustration of a ROC curve.

How good the model is at classifying the observations depends on the distri-
bution of the estimated probabilities for the two outcome groups, i.e. transfer
and no transfer in our case. This is well illustrated in Hosmer, Lemeshow, and
Sturdivant (2013, chapter 5.2.4) and we are content to mention that the model
is bad at classifying the observations when these distributions are close and
overlap.

The area under the ROC curve is a popular and intuitive measure to use
when assessing the accuracy of a logistic model. However, depending on the
purpose of the model the classification performance can be totally irrelevant, as
it is in our case. To goal of our model is to correctly estimating the expected
value of the binary variable and not the outcome of it.

12
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3 Data

We will now use the above methods on both simulated and real data. We start
by looking at simulated datasets and explore how different properties of the
data affect the results of the logistic model.

From 2.1.1 we see that the effect of the covariates act multiplicatively on the
odds of pi

odds(pi) =
pi

1− pi
= exp(β0 +

p∑
j=1

βjxij)

The effect of categorical covariates will be presented on the odds scale while
continuous modeled covariates will be plotted on the probability scale.

3.1 Simulations

In this section we will describe how the simulated datasets have been generated.
The simulations have been made in two sections, one in which we generate
Bernoulli distributed numbers as observations and one in which we generate
exponentially distributed event times, a situation that more closely resembles
the Markov model. These two sections will be referred to as the Bernoulli section
and the Markov section respectively. The simulated data is inspired by the real
data set from section 3.2 in terms of the transfer probabilities range and the
effect of the policy year. The observed transfer frequencies from the real data lies
somewhere in the range of 0% to 10%. We believe that the transfer frequencies of
other Swedish companies lies roughly in the same interval. Transfer probabilities
much higher then 10% seems unsustainable for a portfolio.

The Bernoulli section will be used to examine the following things

1. The fit of GLM vs. GAM.

2. The distribution of the LRT statistic.

3. The distribution of the Hosmer Lemeshow statistic.

4. Modeling the policy year as group observations vs. continuous observa-
tions.

And in the Markov section we will be looking at

1. The effect of competing risks

By competing risks we mean events that would prevent a transfer from happen-
ing. In other words, a jump to a state in the Markov-model from which there
is no path to the transferred state. One such event could be death. This is also
the situation we will be looking at.

The datasets will be generated from four different covariates, where one of
them is continuous and represents the policy year. True values from which the
data have been generated is presented below. The yearly probability of transfer
for policy years 0-20 is determined from the graph in figure 5. The spike between
year 5 and 5.5 represent corresponds to a decreased transfer fee and the end of
the clawback period for initial provisions. The categorical covariates A, B and
C are presented in table 3.
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Figure 5: Yearly transfer probabilities by policy year

In the case of grouped policy years over the integers 0-20 we get J =
21∗3∗3∗2 = 378 different covariate patterns. For each covariate pattern we gen-
erate m number of independent observations, equating to n = 378m total num-
ber of observations. The total number of observations is thus evenly distributed
over the different covariate patterns. This situation is a simplification and in re-
ality the observations will probably be unevenly distributed over the different co-
variate patterns. We will be generating datasets for m = 50, 100, 500, 1000, 2000
which gives us datasets where J < n.

For the situation with policy year as continuous observations the observed
policy years have been constructed such that the number of covariate patterns
is the same as the total number of observations in the case with grouped policy
years. For example, in the case ofm = 100 above we get 21m number of observed
policy years. The observed continuous policy years will be evenly distributed
over the interval 0-20. We thus get J = 21 ∗ m ∗ 3 ∗ 3 ∗ 2 = 378m different
covariate patterns and generate 1 observations for each simulating the situation
where J = n.

The distributions of the statistics have been obtained by simulating multiple
datasets with same m and then fitting a GAM on each dataset.

In the Markov section we will only be looking at grouped policy years and
m = 1000. For each observation we generate unique transfer times from the
exponential distribution

fi(x) = pie
−pix

with parameter pi corresponding to the yearly transfer probability for covariate
pattern i. We observe a transfer if the transfer time is less than or equal to 1.

In the case of competing risks we generate n unique times to death similar
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Covariate Level Effect on odds
A 1 1.00

2 1.10
3 1.30

B 1 1.00
2 1.30
3 1.00

C 1 1.00
2 1.00

Table 3: True value of categorical covariates for simulated data

to above but now with the parameter corresponding to the predicted one year
mortality rate from DUS14 (Alm, Andersson, Bahr, Bergström, et al. (2014))
for men aged 30,40 and 50 in year 2020, see table 6. These survival times are
then randomly assigned to the observations and a transfer is observed if the
transfer time is less than the time to death and less than or equal to 1. This
situation is illustrated in table 5 row 6.

Extracts of simulated data for each situation is presented in table 4 and 5.

Policy year A B C transfer
3 2 2 1 0
8 2 3 1 0
9 1 2 2 1
7 1 2 1 0
5 2 3 1 0

16 3 1 1 0
...

...
...

...
...

(a) Grouped policy years

Policy year A B C transfer
6.98 2 2 2 0
5.16 2 2 2 1
9.57 3 2 1 0

10.10 1 3 1 0
4.01 3 2 2 1

17.76 3 2 1 0
...

...
...

...
...

(b) Continuous policy years

Table 4: Extract from simulated data used in the Bernoulli section.

Policy year A B C Time to transfer Time to death Transfer w/o death Transfer w/ death
16 1 2 2 19.01 382.32 0.00 0.00
10 2 2 1 13.36 1059.89 0.00 0.00
19 1 3 1 0.18 1105.54 1.00 1.00
0 1 3 2 17.49 1389.46 0.00 0.00
5 2 1 1 15.52 571.91 0.00 0.00

14 1 2 1 0.84 0.13 1.00 0.00
...

...
...

...
...

...
...

...

Table 5: Extract from simulated data used in the Markov section

3.2 Real data

Next we fit a logistic regression model to a real dataset. The data consists of
roughly 3 million monthly observations over 3 years with the 5 following possible
covariates. Three of the covariates have been due to confidentiality.
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Age Probability (%)
30 0.035
40 0.075
50 0.205

Table 6: Expected one year mortality probability for men year 2020

1. Policy year: grouped observations of whole policy years in the range 0-13

2. Transfer fee: 2 levels

3. A: 2 levels

4. B: 3 levels

5. C: 2 levels

The reason for choosing monthly observations instead of yearly observations is
to minimize the effect time varying covariates could have on the result.

The policy year will be modeled as a continuous covariate while the other
covariates will be modeled as categorical. During 2018 the transfer fees was
lowered and the categorical covariate Transfer fee is an indicator equal to 1 if
the observations had the new lower transfer fee and zero otherwise.
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4 Results

4.1 Simulations

4.1.1 Bernoulli

We start by simulating data with grouped policy years. To account for the spike
at policy year 5 we have added an extra covariate in our model called ”Pol. year
5” which is 1 if the policy year is in the interval [5, 5.5]. The estimated effects of
the categorical covariates for m = {50, 500, 2000} are presented in table 7, both
for the GLM and the GAM. For the policy year we plot the fitted probabilities
when covariates A=1, B=1 and C=1. The results are presented in figures ??.

From the fitted models we make the following observations. Firstly that the
estimated effects of the covariates A, B and C are extremely close between the
GLM and GAM. The numbers in 7 are rounded and in reality there are small
differences between the GLM and the GAM. However, for the covariate Pol.
year 5 there are significant differences for m > 50 between GLM and GAM, with
GAM being superior. Looking at the fitted probabilities for the policy year we
see that the GLM fit roughly a straight line to a non-linear relationship while the
GAM more accurately captures the effect of the policy year for large m It is clear
that the GAM is superior when we are dealing with a non-linear relationship of
one continuous covariate. We require between m = 1000 and m = 2000 for an
acceptable fit of the continuous covariate. So, to get accurate estimates of the
true probabilities we require many observations for each covariate. If we have
the desired amount of observations the GAM clearly outperforms the GLM.

Next we look at testing the main effects of the model. This is done by the
likelihood ratio test (LRT) of two hierarchical models, one model with all main
effect and one model without one of the main effects. Our null is

H0 : No difference between the models

and the test statistic is χ2-distributed under H0. If the value of the test statistic
is greater than the 0.95 quantile of the χ2-distribution we reject the null and
keep the main effect in our model. The resulting p-values are presented in tables
8. We see that that we require m = 1000 to keep all the significant effects for
the GAM and m = 500 for the GLM at level α = 0.05.

However, since the test statistic is a random variable it possible that we
get another result if running the simulation again. But worth noting is that
for m = 50 both models fail to reject the false null hypothesis. Looking at
the distributions of the LRT statistic in figure 7 we see that for covariate A it
does not follow the χ2 while for covariate C it does, as expected. However, for
small m the LRT statistic take values less then the 0.95 quantile of the χ2 when
testing covariate A, thus leading to the type II error.

Next we look at the situation where we observed the policy year as a con-
tinuous covariate and J = n. The fitted probabilities for covariates A=1, B=1
and C=1 are presented in figure 10. Again, we require many observations for a
decent fit and the GAM is still superior to the GLM.

If we now look at the distribution of the LRT statistic when testing covari-
ate C in figure 9 we see that it is still approximately χ2-distributed, which is
consistent with the statement in the end of section 2.3.1.

Instead of the LRT, we can use the Hosmer Lemeshow statistic to test if
the full model is significantly different from the saturated model. This statistic
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(a) GLM, m=50 (b) GAM, m=50

(c) GLM, m=500 (d) GAM, m=500

(e) GLM, m=2000 (f) GAM, m=2000

Figure 6: Estimated transfer probabilities for A=1, B=1 and C=1 using grouped
policy years. GLM (left) vs. GAM (right). Solid: true transfer probability,
dashed: estimated transfer probability, dotted: confidence intervals of the esti-
mates
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(a) Covariate A, m=50. (b) Covariate C, m=50.

(c) Covariate A, m=500. (d) Covariate C, m=500.

(e) Covariate A, m=1000. (f) Covariate C, m=1000.

Figure 7: QQ-plots of the LRT statistic vs. χ2 when testing the covariates A
and C in GAM with grouped policy years.
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(a) GLM, m=50 (b) GLM, m=50

(c) GLM, m=500 (d) GAM, m=500

(e) GAM, m=2000 (f) GAM, m=2000

Figure 8: Estimated transfer probabilities for A=1, B=1 and C=1 using con-
tinuous policy years. GLM (left) vs. GAM (right) m = 50. Solid: true transfer
probability, dashed: fitted transfer probability, dotted: confidence intervals
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Figure 9: Left: QQ-plot of LRT statistic vs. χ2 when testing covariate C
for continuous policy year. Right: QQ-plot of Hosmer Lemeshow statistic for
continuous policy year.

is supposed to be χ2-distributed and is confirmed by figure 9. Some criticism
has been raised towards this test since the choice of bins is arbitrarily and
different choices can lead to different results. Testing two different GAM, one
with covariate B and one without covariate B, against the saturated model using
the Hosmer Lemeshow statistic for m = 1000 resulted in not rejecting

H0 : No difference between the saturated model and the proposed model

in both cases. Thus, both models was determined to explain the data as well
as the saturated model even though dropping B should have had a significant
effect.

The ROC curves for the case with grouped policy years are displayed in
figure 10. The are under the curve is roughly 0.56 for all m indicating that
the model is bad at classification. However, from the fitted probabilities and
effects we know that our model very accurately estimates the true probabilities
of transfer when m is large. This measure is thus totally irrelevant in this setting
.

4.1.2 Markov

We start by consider the situation where only transfer is possible. The estimated
effects are presented in table 9 and fitted probabilities for policy year with other
covariates equal to 1 in figure 11. The results are similar to the Bernoulli section
with grouped policy years and m = 1000. Next we add the possibility of death
using DUS14 as mortality assumptions. The bias in the estimated effect of the
categorical covariates are presented in table 10 and the bias in the estimated
probabilities per policy year for A=1, B=1 and C=1 in figure 12a. The bias
is calculated as the differences between the estimates with and without the
time to death. As we can see the bias is extremely small and is due to the low
probability of death for these ages. Increasing the probability of death, or rather
the probability of a competing risk, introduces significant bias in the estimates.
This is seen in figure 12b.
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Figure 10: ROC curve using grouped policy years. GLM (left), GAM (right).
The area under each curve is approximately 0.56. Top: m=50, middle: m=500,
bottom: m=2000
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Figure 11: Estimated probabilities using GAM in Markov model. Solid: true
transfer probability, dashed: estimated transfer probability, dotted: confidence
intervals

(a) DUS14 (b) High mortality

Figure 12: Left: Bias in the estimated transfer probabilities per policy year
when A=1, B=1 and C=1 using DUS14 as mortality assumption. Right: Es-
timated transfer probabilities per policy when A=1, B=1 and C=1 using high
mortality probability (solid: true transfer probabilities, dashed: estimated trans-
fer probabilities, dotted: confidence intervals).
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Figure 13: Left: Observed monthly transfer frequency for all observations per
policy year. Right: Estimated monthly transfer probabilities for the reference
group.

We conclude that the effect of mortality is negligible because of the relatively
low probability of death for people in ages 20-60. In the presence of other
competing risks with high probability the bias in the estimates will be significant.
However, we can not think on any other competing risk that could prevent us
from observing a transfer.

4.2 Real data

Given the results from the previous section we decide to use grouped policy
years when fitting our model. The policy years represents whole policy years
and the observed transfer frequencies over all observations are presented in figure
13. We fit a GAM with all covariates in the model and test the main effects
using LRT. All main effects are significant and we keep all covariates in the
model. The estimated effects of the categorical covariate are presented in table
11. Estimated probabilities by policy year for the reference group are presented
in figure 13. From figure 13 it is clear that the estimated probabilities do not fit
the observations well. This is an indication that the model would benefit from
adding an interaction term. The relationship between the transfer probability
and the policy year appears to be affected by the value of at least one other
covariate. We also note that there is no spike at policy year 5 in the right plot of
figure 13 and that the effect of the second level of covariate B is not significantly
different from 1 since the confidence intervals contains 1. However, it could be
reasonable to assume that the spike at year 5 should be included in the model
even if it would turn out non-significant in a model with interactions.

The next step would probably be to add all two way interactions and test
their significance.
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GLM GAM
Covariate Level True Estimate Lower Upper Estimate Lower Upper
A 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.10 0.97 0.78 1.19 0.97 0.78 1.19
3 1.30 1.30 1.07 1.58 1.30 1.07 1.58

B 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.30 1.42 1.17 1.74 1.42 1.17 1.74
3 1.00 1.16 0.94 1.43 1.16 0.94 1.43

C 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 0.96 0.82 1.13 0.96 0.82 1.13

Pol. year 5 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 1.16 1.45 1.02 2.06 1.45 1.02 2.06

Covariate Level True Estimate Lower Upper Estimate Lower Upper
A 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.10 1.10 1.03 1.18 1.10 1.03 1.18
3 1.30 1.25 1.18 1.34 1.25 1.18 1.34

B 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.30 1.32 1.24 1.40 1.32 1.24 1.40
3 1.00 1.06 0.99 1.13 1.06 0.99 1.13

C 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.01 0.96 1.06 1.01 0.96 1.06

Pol. year 5 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 1.16 1.41 1.26 1.57 1.13 0.99 1.29

Covariate Level True Estimate Lower Upper Estimate Lower Upper
A 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.10 1.11 1.07 1.15 1.11 1.07 1.15
3 1.30 1.30 1.26 1.34 1.30 1.26 1.34

B 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.30 1.30 1.26 1.34 1.30 1.26 1.34
3 1.00 1.01 0.98 1.04 1.01 0.98 1.04

C 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 0.97 1.02 1.00 0.97 1.02

Pol. year 5 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 1.16 1.33 1.26 1.41 1.09 1.01 1.17

Table 7: Estimated effects of the categorical covariates with grouped policy
years. Top: m=50, middle: m=500, bottom: m=2000.
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Main effect m = 50 m = 100 m = 500 m = 1000 m = 2000
A 0.279 0.000 0.000 0.000 0.000
B 0.029 0.000 0.000 0.000 0.000
C 0.533 0.091 0.532 0.318 0.618
Pol. year 5 0.486 0.553 0.000 0.000 0.000
Policy year 0.003 0.074 0.000 0.000 0.000

Main effect m = 50 m = 100 m = 500 m = 1000 m = 2000
A 0.278 0.000 0.000 0.000 0.000
B 0.028 0.000 0.000 0.000 0.000
C 0.532 0.091 0.532 0.318 0.618
Pol. year 5 0.964 0.809 0.542 0.004 0.000
Policy year 0.011 0.000 0.000 0.000 0.000

Table 8: p-values LRT of main effects in GLM (upper) and GAM (lower) with
grouped policy years.

Covariate Level True Estimate Lower Upper
A 1 1.00 1.00 1.00 1.00

2 1.10 1.08 1.03 1.13
3 1.30 1.29 1.23 1.35

B 1 1.00 1.00 1.00 1.00
2 1.30 1.33 1.27 1.39
3 1.00 1.02 0.97 1.07

C 1 1.00 1.00 1.00 1.00
2 1.00 0.99 0.95 1.02

Policy Year 5 0 1.00 1.00 1.00 1.00
1 1.16 1.08 0.98 1.19

Table 9: Estimated effects using GAM in Markov model with m = 1000.

Covariate Level True Estimate w/o death Estimate w/ death Bias
A 1 1.00000 1.00000 1.00000 0.00000

2 1.10000 1.12557 1.12527 0.00030
3 1.30000 1.32305 1.32183 0.00122

B 1 1.00000 1.00000 1.00000 0.00000
2 1.30000 1.22412 1.22487 -0.00075
3 1.00000 1.00028 1.00084 -0.00056

C 1 1.00000 1.00000 1.00000 0.00000
2 1.00000 1.00754 1.00737 0.00017

Policy Year 5 0 1.00000 1.00000 1.00000 0.00000
1 1.16183 1.17738 1.17537 0.00201

Table 10: Bias in estimates when using DUS14
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Covariate Estimate Lower Upper
Pol. year 5 1.00 1.00 1.00

1.14 1.02 1.29
Transfer fee 1.00 1.00 1.00

1.21 1.15 1.27
A 1.00 1.00 1.00

0.71 0.67 0.75
B 1.00 1.00 1.00

1.01 0.94 1.09
1.23 1.13 1.35

C 1.00 1.00 1.00
0.57 0.53 0.61

Table 11: Estimated effects of categorical covariates
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5 Conclusions

From the simulated data we have seen that when using logistic regression to
estimate transfer, or other rare events, probabilities we require a very large
number of observations for reliable estimates. And in the presence of a continu-
ous covariate with non-linear effect the GAM is preferable to the GLM because
of its superior fit.

We prefer to use grouped continuous covariates when building the model
because we prefer the LRT instead of the Hosmer Lemeshow when testing one
model against the saturated model. The estimated probabilities when using
continuous policy years are not superior to the estimates using grouped policy
years. Thus, we see no advantage of using continuous policy years in the model.

The mortality in the Markov model does not have an effect on the estimates
in the logistic model because of the small probability of dying in ages 20-60.
However, in the presence of other competing risks with higher probabilities the
estimates will have a negative bias because we observe less outcomes of the event
under study, i.e. transfers.

Since the purpose of our model is to find accurate estimates of the transfer
probabilities and not to predict the outcome of the Bernoulli variable Y , we
conclude that classification measures of the model is irrelevant for our purpose.

On the real data we fitted a simple GAM that displayed a bad fit for the
continuous covariate compared to observed outcomes. This is likely due to the
fact that the relationship between the transfer probability and the policy year
is affected by the value of other covariates. An interaction term would probably
benefit the model.

Overall we feel that logistic regression can be used to model transfer prob-
abilities. However, we think that the biggest limitation of the model is that
we require such large number of observations for reliable estimates. Having
large n (million) and many covariate could in practice probably lead to heavy
computations, especially using GAM and fitting multiple splines.

One situation we mentioned briefly in section 1 is that the employer can
choose to transfer multiple occupational pension policies simultaneously. This
would of course mean that some of the observed are dependent, a clear vio-
lation of the underlying assumption of the GLM. However, if the number of
observations that are dependent is relatively low compared to the total number
of observations we believe that the effect is negligible.
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