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Sammanfattning

With easy to access complex machine learning methods that are

powerful right out of the box, the risk of misuse and overuse increases.

Are simpler methods like Gradient Boosted trees and Random Forests

intuitive and flexible enough to compete? Previous studies made on

the subject indicate that slow learning models produce the best per-

formance in terms of prediction and robustness. The results of this

study were partly contradictory to that. A gradient boosting model

configured to be a fast learner was found objectively better than the

other models fitted, however most of that success could be tied to mo-

del complexity rather than learning rate. Additionally both gradient

boosted trees and random forests displayed great difficulties handling

imbalanced data. Overall the analysis concluded that a considerable

portion of performance could be attributed to tailoring the model con-

figuration to the outcome of an initial analysis as well as to the specific

application environment.
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1 Introduction

Decision tree diagrams, they are intuitive, easy to interpret and apply. Com-

pared to more advanced machine learning methods, however, what they gain in

simplicity they lose in performance. Combined with the recent surge in popu-

larity of deep learning and Artificial Intelligence as well as enormous progress

for ”out of the box”-application of more advanced models, tree based methods

are easily overlooked. The general consequence of this is a diminishing need to

understand the underlying mathematics and an increased risk of misuse among

business applications. In this thesis we will consider one application where we

deem this risk to be noteworthy, namely Insurance Fraud detection. On the sur-

face the setting is simple binary classification of fraudulent vs legitimate claims,

with many intuitive and easily measurable feature variables. Underneath it is

much more complex simply because the nature of fraud is to avoid detection,

as apart from classification of weather or disease. The cherry on top is that the

corporate interests in this particular problem are almost solely monetary, which

moves focus even more toward model performance. According to the report

”Försäkringsbedrägerier i Sverige 2017”[9] made by Svensk Försäkring, it is es-

timated that general insurance fraud costs 3− 6 billion SEK per year. The rate

of fraud is estimated to be 5 − 10% yet only 500 million SEK in payouts were

rejected as a result of fraud-investigation. These investigations are generally

done manually by case workers, and as such, out of the total 3 million claims in

2017, only 7000 were investigated. In this thesis we will consider two strategies

to implement a screening process that all claims go through in order to increase

the rate of fraudulent claims in the subset that in turn is investigated. For a

more controlled environment we will narrow our scope to automotive insurance

fraud since that category is estimated to covering 45% of all insurance fraud.
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2 Theory

In this section the theory and foundation that the methods used are built upon

is described. In some cases expansions of specific parts of interest for a given

method is also provided. The order in which we define things is based on the

hierarchy of background knowledge required to define gradient boosted trees.

Since the application focuses on binary classification the theory will mostly cover

that specific case.

2.1 Machine learning

During the 1980s and primarily 1990s a general influx of data driven statistical

models made its way into mainstream mathematical statistics. Many of the

entry level machine learning methods like random forests, boosted trees and

support vector machines where either invented or greatly improved upon dur-

ing this time. The change of focus was probably due to a general increase in

ways to acquire and process large amounts of data with computers. A major

interest for scientists was the ability to analyse, draw conclusions and generally

”learn” from these large data-sets without any significant prior knowledge of

the event or situation they described.

Basic classification trees are most commonly traced back to ”Classification

and Regression Trees”[2] from 1984 by Brieman et al. and were used due

to being adaptive, non-parametric and providing easily interpretable results.

Consequently the model structure was sensitive to changes in data and thus

suffered from high variance. Expansions like Tin Kam Ho’s ”Random Decision

Forests”[7] in 1995 and Jerome H. Friedman’s ”Stochastic Gradient Boosting”[3]

in 1999 greatly improved accuracy and generality of tree based methods while

only slightly impairing interpretability, the latter more so than the former.

While those papers are the original works, our core reference for theory regard-

ing those machine learning methods is ”The Elements of Statistical Learning”[4]

from 2017 by Hastie, Tibshirani and Friedman, as well as ”An Introduction to

Statistical Learning”[5] from 2013 by James, Witten, Hastie and Tibshirani.

2.2 Classification Trees

Figure 1 depicts a classification tree. The top displays our data consisting of

two features variables X and Y as well as a class Color. This tree partitions

the feature space, and subsequently data, into a set of four ”terminal” regions

{Rm; 1 ≤ m ≤ 4} illustrated at the bottom of the figure. Classification of a new

observation is done decending down the tree and by taking most frequent class
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of observations in the resulting region, as depicted by the color of each box in

Figure 1. If there is a draw the overall most frequent class is chosen.

Figure 1: An illustrated example of a decision tree with depth 2 and 4 ”terminal
regions”.

For a more detailed description we first need to generalise the base assump-

tions given in the previous example. For this section we will restrict ourselves

to binary classification, meaning that an observation can belong to one of two

classes 1 or 0. Consider a set of N observations of a stochastic variable X with

l features, denoted as xi = (xi,1, xi,2, ..., xi,l) i = 1, 2, ..., N . Each observation

belongs to a true class ki from the set of classes {1, 0}. We use notation R for a

continuous l-dimensional sub-region of the feature space and NR as the number

of observations in data contained in R.

For any region R we can perform three main actions. Firstly, we can per-

form a binary split of feature j at value s if j is continuous, or at subset s if

j is a factor feature. The split divides the region in two and is defined by the

resulting sub-regions

Continuous feature: R−(j, s) = {X|Xj ≤ s} and R+(j, s) = {X|Xj > s}

Factor feature: R−(j, s) = {X|Xj ∈ s} and R+(j, s) = {X|Xj /∈ s}.
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Secondly, we can calculate the ratio of observations in R with true class k by

pk =
1

NR

∑
xi∈R

I(ki = k).

Thirdly, we can use a function of pk to measure how evenly classes are distributed

in the region. This is called (class)impurity and has an inverse relation to class

homogeneity in that region. There are a few different functions that can be

used, but in this thesis we will use Entropy which for multiple classes is defined

as

Q(R) = −
∑
k

pklog(pk).

In our binary case we have the relation p0 = 1− p1 and thus

Q(R) = −(p1log(p1) + (1− p1)log(1− p1)).

This is a symmetric function with respect to p1, since 0 ≤ p1 ≤ 1, as is visible

in Figure 2.

Figure 2: (Binary)Entropy of a region with respect to p1. The impurity of a
region strictly increases when moving toward even class distribution within said
region.

The impurity measure has its minimum value when maximum separation is

attained and only one class is present in the region, i.e. p1 = 1 or 0. Con-

versely the maximum value is attained when classes are evenly distributed , i.e.

p1 = 0.5. As such this can be used to quantify impurity of any given region R.

7



Utilising these tools we want to construct a partition of M ”terminal” sub-

regions of the feature space, {R1, R2, ..., RM}, that minimises joint impurity.

Optimally this would result in a set of regions where all observations in each

belong to the same class. Why this is favourable becomes more evident later

when defining how we estimate the true class of new observations.

A ”greedy” algorithm to construct such a partition is initiated by assessing

all possible splits of the complete feature space and performing the one result-

ing in lowest overall impurity. This process is repeated recursively for the two

sub-regions, and in turn their sub-regions, so on and so forth. To prevent over-

partitioning we can insert a stopping criterion such as a maximum value for M ,

or a minimum change in Entropy between R and the sub-regions created by

splitting R.

Algorithm 1: Greedy Partitioning algorithm

1. Initialise with R = the complete feature space.

2. Find binary split (ĵ, ŝ) = argmin
(j,s)

[
Q(R−)
NR−

+ Q(R+)
NR+

]
3. (a) If stopping criterion is met, R is considered a ”terminal” region.

(b) Else repeat from 2 for each of R = R− and R = R+.

4. If all remaining regions meet the stopping criterion the set of terminal

regions is the desired partition.

This is a ”greedy” optimisation in the sense that we only consider the imme-

diate change in purity when selecting a split. The main downside occurs when

data has one or more dominant feature variables. By definition these dominant

features will provide immediate separation between classes, but run the risk of

overshadowing more effective interactions between minor features. While it is

possible to test future splits in advance in hopes of countering this behaviour.

It quickly becomes computationally expensive for a single tree, let alone when

fitting thousands at a time.

The last piece needed to turn a partition into a classification tree is a method of

estimating the true class of new observations. This is more commonly referred

to as classification.

For an arbitrary partition {R1, R2, ..., RM} of the feature space, the conditional
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probability of an observation xi having true class 1 given that xi ∈ Rm is

P (ki = 1|xi ∈ Rm) =
P (ki = 1, xi ∈ Rm)∑1
k=0 P (ki = k, xi ∈ Rm)

This can be estimated by the ratio p1 of data points in Rm with true class 1

p1 =
1

NRm

∑
xj∈Rm

I(kj = 1).

Like we previously stated, since there are only two classes we get relation p0 =

1− p1. Classification of a new observation x ∈ Rm is done using some classifier

f̂(x), the most simple being majority vote which is defined as

f̂(x) = argmax
k

(pk).

A flaw in this classifier can be illustrated by comparison to an alternative. Given

a threshold value 0 ≤ P1 ≤ 1 we can define

f̂(x) =

1 if p1 > P1

0 otherwise
.

Intuitively P1 = 0.5 is equivalent to majority vote. A high threshold reduces

the risk of incorrectly classifying an observation as having true class 1 at the

cost of increased risk for the opposite. This is useful when your primary goal

is to distinguish characteristics or observations of class 1. Conversely, a low

threshold could be used initially to weed through large data-sets in preparation

for an expensive but more accurate classifier.

In summary, construction of a classification tree is done by first partitioning

the feature space and then applying a classifier to new observations dependent

on those partitions. The end result is an estimation of the true class of each

new observation.

2.3 Bagging

Bagging is an expansion of the previous procedure in which we apply the concept

of bootstrap to reduce model variance. A classification tree fit using a subset

of data(a training set) has stochastic error e when performing classification on

the remaining data(a test set). Given a set of T trees each fitted to an indepen-

dently sampled sub-set of data, the overall mean error of classifications would

have reduced variance V ar(e)
T . This is by property of the mean of T independent
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equally distributed stochastic variables.

Since each tree constructs its own partition based on the sampled data provided,

a mean of classifications cannot be calculated for set feature space region. With

notation Rt(xi) to specify the region attained when descending tree number t

using observation xi. The conditional probability of xi having true class 1 given

that xi ∈ Rt(xi) is

P (ki = 1|xi ∈ Rt(xi)) =
P (ki = 1, xi ∈ Rt(xi))∑1
k=0 P (ki = k, xi ∈ Rt(xi))

.

Similarly to the single tree case we can estimate this probability with

pt,1 =
1

NRt(xi)

∑
xj∈Rt(xi)

I(kj = 1)

where pt,0 = 1 − pt,1. We are then left with a set of T trees, each with an

estimated probability P̂ (ki = 1|xi ∈ Rt(xi)) = pt,1. The majority vote classifier

for Bagging gives the class which has the highest mean estimated probability

f̂(xi) =argmax
k

(
1

T

T∑
t=1

P̂ (ki = k|xi ∈ Rt(xi))

)

=argmax
k

(
1

T

T∑
t=1

pt,k

)
.

Given a probability threshold value 0 ≤ P1 ≤ 1 we can define the threshold

classifier for bagging as

f̂(xi) =

1 if 1
T

∑T
t=1 pt,1 > P1

0 otherwise
.

2.4 Random Forest

While Bagging alters the tree classifier to be dependent on a set of T trees, it does

not affect each individual partition in any way other than using different sampled

subsets of data. Thus a set of dominant features may severely limit variability

of each tree’s feature space partition. Random forest is an expansion of the

Bagging method in which only a random sample of features are considered when

evaluating each split. This is illustrated in Figure 3, where we have three trees

with three splits each and consider two out of three feature variables X,Y, Z for

each split. This procedure only changes how the partition is constructed, and

thus uses the same classifier as Bagging.
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Figure 3: The above illustrates an example of how only considering a sample of
features at each split can affect the tree structure.

The main drawback of these two bagging-based methods is that increasing

the number of trees only reduces variance of the error and not the expected

value of it. Despite being referenced to as machine learning methods, they do

not learn in the same sense as other methods. The models do not take advantage

of information about previously incorrect classifications for future tree fits. The

main gain however, is that we do not risk over-fitting data when increasing

number of trees.

2.5 Boosting

Consider terminology ”weak learner” to mean a classifier that is slightly better

than random guessing, and ”strong learner” to mean one that is well correlated

to the true classification. Boosting is an algorithm that combines a set of weak

learners to create a strong one. To derive this algorithm for classification we

start by considering a different way of expressing our goal.

Data is a set of N observations of a stochastic variable X with l features,

denoted as xi = (xi,1, xi,2, ..., xi,l) i = 1, 2, ..., N . Each observation belongs to a

true class ki which is one of two possible classes. We wish to model the posterior

probabilities pk(xi) = P (ki = k|X = xi) while ensuring that their sum equals

one and that they are constrained to the interval [0, 1]. After that we want to

classify observations based on those probabilities. Apart from not specifying

a condition that the model should be a linear function of x, our goals fit the

theory of Logistic regression’s binary case. In a quick summary, binary logistic

regression works by fitting an additive function F (xi) to the logit transformed

posterior probability of one class

logit(p1(xi)) = log

(
p1(xi)

1− p1(xi)

)
= F (xi)
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while using relation p2(xi) = 1−p1(xi) to calculate the same for the other class.

Consider this setup and let L(F ) be an arbitrary differentiable loss function

describing loss during classification of xi using F (xi) on training data

L(F ) =

N∑
i=1

L(ki, F (xi)).

Without a specified loss function the fact that we compare a class to a logit

transformed probability might seem odd. We will come back to this when ad-

dressing the classification case of gradient boosting specifically.

Intuitively the loss function is a measurement of how bad a given classifier is.

Our goal is then to minimise L(F ) but finding an analytical solution if possible

is very difficult. However, the problem can be altered to be one of parame-

terisation instead by regarding a vector containing the logit probability of each

observation, F = {F (x1), F (x2), ..., F (xN )}, as parameters for the loss function.

The parameter optimisation problem becomes

F̂ = argmin
F

(L(F)).

We can approach this numerically by employing an initial guess F0 = h0, and

updating it stepwise with a vector ht at each step according to

FT =

T∑
t=0

ht.

The numerical minimisation of L(F ) then boils down to selection of the incre-

mental vector ht. Tracing back to the definition of boosting we see that this

numerical approach illustrates the concept well. Using a set of weak learners

{ht : t = 0, 1, ..., T} we combine them using a sum to create a strong learner

FT . So far we have re-formulated the initial true class estimation problem into

a numerical estimation problem for the logit transformed class probabilities.

2.5.1 Gradient Boosting

We approach the selection of ht by applying the concept of gradient decent.

According to this concept the way to find a local minimum of a function is to

stepwise move an arbitrary length ρ along the negative gradient of the function.

Applying this to minimisation of L(F ) we move length ρt along the negative

gradient of the loss function at each step, i.e. ht = −ρtgt. Components of the
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gradient vector are defined as

gi,t =

[
∂(L(ki, Ft−1(xi))

∂(Ft−1(xi))

]
and the step length is given by

ρt = argmin
ρ

(L(Ft−1 − ρgt)).

Following the previously stated numerical minimisation, the vector F̂ is updated

at each step according to

Ft = Ft−1 − ρtgt.

Taking a closer look at Ft at any given step t we note that it is a vector of

estimates of F (xi) for each point in training data. As such it, and consequently

also the gradient, is only defined for points in training data. Estimating the

class probabilities for a new observation with unknown true class is therefore not

possible with the current procedure. This is a major issue due to classification

of new observations being the main reason we construct a model. However,

like other functions it is possible to approximate the gradient with values close

enough to it. A proposed solution to the issue is then to fit an inner model that

as accurately as possible estimates the gradient at any given point. The bulk

error of our gradient boosting procedure is therefore based on the accuracy of

that model fit.

2.5.2 Gradient Boosting using Regression Trees

For this method we consider regression trees as model for the previously dis-

cussed gradient definition issue. The proposed solution then becomes fitting a

regression tree to training data using the gradient as response. Previously we

have not defined the regression tree method, but it is very similar to the clas-

sification tree method described in section 2.2. The main differences are that a

different impurity measure is used, and that the model estimate for any given

terminal region is the mean of the response variable for training data points in

that region. We refer the reader to The Elements of Statistical Learning [4] or

An Introduction to Statistical Learning [5] for the exact differences.

With a solution to the gradient definition issue, the last missing piece before

we can define a compact algorithm is a choice of loss function L(ki, F (xi)).

For binary classification we use the binomial negative log-likelihood(or binomial
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deviance) which using our set of notations is defined as

L(ki, F (xi)) = −I(ki = 1)log(p1(xi))− (1− I(ki = 1))log(1− p1(xi))

where p1(xi) has the inverse logit relation to F (xi)

p1(x) = logit−1(F (xi)) =
eF (xi)

1 + eF (xi)
.

To derive the gradient we simplify the first equation using the second to get

L(ki, F (xi)) = −I(ki = 1)F (xi) + log(1 + eF (xi))

which conveniently illustrates that rather than penalising incorrect classifica-

tions, we calculate a baseline loss and subtract the logit probability for obser-

vations with true class 1. Taking the derivative of this function with respect to

F (xi) gives us the gradient components

gi,t = −I(ki = 1) +
eF (xi)

1 + eF (xi)
= −(I(ki = 1)− p1(xi)).

With this we are ready to construct the algorithm for gradient boosting using

regression trees. We will first state the algorithm and then elaborate on each

component.
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Algorithm 2: Binary Gradient Boosting using Regression Trees

1. Initialise with F0(xi) = logit( 1
N

∑
xj
I(kj = 1)), i = 1, 2, ..., N .

2. For steps t = 1 to T :

(a) Let the posterior probability function for class 1 be

p1(x) =
eFt−1(x)

1 + eFt−1(x)

(b) Compute the negative gradient component for each i = 1, 2, ..., N

−gi,t =

[
∂(L(ki, Ft−1(xi))

∂(Ft−1(xi))

]
= I(ki = 1)− p1(xi)

(c) Fit a regression tree using −gi,t as response values, resulting in the

set of terminal regions {Rj,t : j = 1, 2, ..., Jt}

(d) For each of the Jt regions Rj,t, calculate the change hj,t, which is

mutual for all observations in the region, approximated by a single

Newton step

hj,t =
1

2

∑
xl∈Rj,t

−gl,t∑
xl∈Rj,t

| − gl,t|(1− | − gl,t|)

(e) Update current estimate with the change in step t by

Ft(x) = Ft−1(x) +

Jt∑
j=1

hj,tI(x ∈ Rj,t)

3. The final estimate is a sum of T updates

F̂ (x) = FT (x) = F0(x) +

T∑
t=1

Jt∑
j=1

hj,tI(x ∈ Rj,t).

The resulting estimates are as we recall logit transformed probabilities, and

needs to be transformed back before performing classification. In our analysis

we will classify observations using the same Threshold classifier as previously

defined for bagging based methods. Now we will extend the motivation behind

each line in the algorithm.

On line 1 we initialise the process with guessing that the posterior probabil-

ity of belonging to class 1 is the natural ratio of class 1 observations in data.
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Line 2(a) is relatively self-explanatory and on (b) we prepare the first step of

gradient decent by calculating the negative gradient vector of the loss function.

To be able to use the final model for classification of new observations, at (c)

we apply the proposed solution of the gradient function issue. After step T we

will have an ensemble of T fitted trees, each partitioning the feature space into

terminal regions {R1,t, R2,t, ..., RJt,t}.

Line (d) is where it gets complicated. Like previous tree based methods that we

have presented, all observations contained in an arbitrary terminal region are

treated the same. The next stage of the numerical optimisation strategy is to

move length ρ along the negative gradient, where the length is given by solving

ρt = argmin
ρ

(L(Ft−1 − ρgt)).

Estimating the negative gradient of an arbitrary observation, known or un-

known, can be done in many ways with the most intuitive one being the average

negative gradient of training data in the same region. However, the optimal

length is still unknown. Some sources like the regression case in Hastie et al.

(2017, page 361) [4] simply state ”compute...’ and present the above equation

with added constraints for the feature space region. Later on page 387 in the

same source Hasite et al. simply state the resulting estimated change at step

t for k-class classification case without any comment on how it is derived or

approximated. In Friedmann (1999, page 9) [1] it is stated that the estimated

change hj,t(there with notation γj,m) is approximated by taking a single Newton

step, but not how or why.

Moving on to the final line of the algorithm we present the final model es-

timate F̂(x). A more intuitive way of picturing this estimate is to consider

the products of the algorithm. After step T we have a set of
∑T
t=1 Jt regions

{Rj,t : j = 1, 2, ..., Jt , t = 1, 2, ..., T} each with a computed change hj,t. An

arbitrary unknown observation x will be contained in exactly T of those regions

and thus have relation to exactly T change values. The logit transformed prob-

ability estimate of x being of class 1 is then the sum of those change values as

well as addition of the initial guess F0(x).

2.5.3 Learning rate and Stochastic Gradient Boosting

After Friedmann’s initial discovery of the method, he presented two additions

to the model for improved generalisation. The first one was ”Learning rate /

Shrinkage” which aims to decrease overfitting. At step (e) in the algorithm we
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introduce learning rate parameter λ to get

Ft(x) = Ft−1(x) + λ

Jt∑
j=1

hj,tI(x ∈ Rj,t)

The parameter shrinks the change of each additional tree and thus controls how

fast convergence to the final estimate is. Balancing this allows for adding more

trees to get a slow but sure convergence.

The second addition was adding a stochastic element to the method by fit-

ting each tree to a sub-sample of training data. In our application we use a

sample size 70% each fit. The sample size can be adjusted to allow for more or

less variation but the most common values seem to be around 50− 75%.

2.5.4 Different approaches

To summarise, Boosted trees work by sequentially adding trees to correct pre-

vious classification errors. Using terminology ”tree depth” for the maximal

number of subsequent splits in a given tree, consider two independent trees fit

to the same data. One with a high value of tree depth and one with a small

value. The large tree will generally perform better and result in a lower error

due to being able to separate data more extensively. Consequently it runs the

risk of overfitting data. Now consider two gradient boosted models

Few large trees: High tree depth, Low number of trees

Many small trees: Low tree depth, High number of trees.

Few large trees will generally have low initial error, and potentially correct a

large portion of that error next iteration and so on and so forth. However, to

not risk correcting errors that are the product of overfitting we keep the number

of trees(iterations) low, i.e. aiming at a quick convergence. Many small trees

on the other hand would initially produce a large error and only correct a small

portion of it at each iteration. Since we do not run the same risk of overfitting,

a large number of trees can be added with a small decrease in error at each

step, i.e. aiming at a slow convergence. How viable these two approaches are is

situational and directly depends on actual data.

2.6 Imbalanced data

Some applications require classification of data where class distribution is sig-

nificantly skewed. An example of that is diagnosing rare diseases. Consider the

case of having data with two classes and the class ratio being 1 : 9. A single
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tree classifying all observations as the majority class will have an error rate

of 10%, but consequently will not correctly classify a single minority observa-

tion. Suppose a second tree has a higher error rate, but identifies all minority

observations. Taking the pure mathematical perspective and disregarding our

subjective priority of classes(eg. in disease diagnosis), the first tree is always

more favourable.

2.6.1 Weights

By weighting each observation according to which class it belongs to, we can

effectively increase the impact of a correct minority classification. Defining

weights dependent on minority class weight wM by

wi =

 wM

NMinority
, if ki = Minority

(1−wM )
NMajority

, if ki = Majority

leads to wM interpreted as ”total weight of minority”. For example, using

wM = 0.9 would roughly be the same as having class distribution ratio 9 : 1

instead of 1 : 9. With wM = 0.5, classifying all observations as minority would

be considered as favourable as the opposite. In simple terms, with wM we can

control which class the model will prioritise in regard to correct classification.

2.6.2 Priorities

The ”problem” of few correct minority classifications(denoted Cm) arises only

after introducing this prior subjective class priority. Suppose we optimise model

construction with respect to minority classifications, the resulting model will be

the one with lowest error among models with highest possible Cm. For perspec-

tive, consider the situation where class ratio is 1 : 9 and one model classifies all

observations as minority. It will have 100% Hit-rate(Cm

Nm
= 1) but 90% error

rate. According to class priority this will very good model, but in the case

with fraud detection, incorrectly classifying 9 times more cases than correctly

seems bad. Due to this we define a second set of priorities: low False-positive to

True-Positive rate, denoted rFP . Why are we interested in rFP ? Because in the

same way correctly detecting fraud saves an insurance company money, investi-

gating a legitimate claim costs money. We can with some certainty assume that

these priority-sets are negatively correlated for imbalanced data. Each insur-

ance company has their own definition of the optimal balance point, we however

lack insight into such a organisation and have to approach the problem in our

own way.
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Defining two model-types where the aim is maximising Cm unbound/bound

by rFP respectively

Aggressive : Prioritising maximisation of Cm over rFP .

Conservative : Prioritising minimisation of rFP over Cm.

we cover each side of the spectrum and can analyse behaviour of those models

separately.

2.7 Model performance measures

As previously explained the specific application in this thesis uses alternative

optimisation criteria and thus requires custom performance metrics to cover

different sets of priorities.

2.7.1 Custom Metrics

We have two main quantities to measure: Hit-rate and False-positive to True-

Positive ratio. More formal mathematical definitions are

h =

∑N
i=1 I(f̂(xi) = Fraudulent)I(ki = Fraudulent)∑N

i=1 I(ki = Fraudulent)

rFP =

∑N
i=1 I(f̂(xi) = Fraudulent)I(ki = Legitimate)∑N
i=1 I(f̂(xi) = Fraudulent)I(ki = Fraudulent)

where f̂(xi) is the model classification of observation xi. Important to note

is that in our analysis, we can not alter the inner optimisation of any applied

machine learning method. This is a consequence of using a R package with

predefined implementations. What we can and will do is vary model parame-

ters to optimise model selection with respect these custom metrics. As such,

any single tree is optimised according to general classification error within the

restrictions of applied algorithm and set of parameter values. The main flaw

of this approach with two optimisation metrics h and rFP is that we can not

directly quantify their relation and thus not easily find a balance between them.

2.7.2 Profit equation

In an attempt to connect defined metrics in search of harmony between them,

we backtrack and consider the specific application. Previously we stated that

money saved by an insurance company is directly dependent on Hit-rate h,

but simultaneously negatively dependent on rFP . Applying basic economics, a
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profit(or savings) equation can be formulated. Assuming the following quantities

are known: N =total number of reported claims, rF =overall rate of fraudulent

claims, cc =average claim size and ci =average cost of investigating a claim, the

mentioned equation becomes

average savings = N · rF · h · (cc − ci)

average costs = N · rF · h · rFP · ci
average profit = N · rF · h((cc − ci)− rFP · ci).

Note : The derived equation works under the assumptions that ci and cc are

not dependent on class or feature values.

3 Data

Data used in this paper originates from an Oracle database [10] containing sets

for data mining education. Each observation is an Auto insurance claim filed

to a non-disclosed US insurance company during years 1994 to 1996. By in-

surance claim we refer to the event which triggers consequences constituted by

an insurance policy. Each claim in data has been subject to investigation of

whether it is a legitimate claim or a fraudulent one. By fraudulent claim we

refer to any event caused or action made with malicious content, such as an

orchestrated event, a fictional event or an event where reported information has

been tampered with or exaggerated. In the report ”Försäkringsbedrägerier i

Sverige 2017”[9] made by Svensk Försäkring, it is estimated that general insur-

ance fraud costs 3−6 billion Swedish crowns per year. Almost 7000 claims were

investigated in 2017, resulting in saving nearly 500 million crowns in potential

payouts.

3.1 Data overview

The data consists of 15 420 Auto insurance claims spanning years 1994 to 1996.

The overall rate of fraudulent claims in data is 6%. Each claim contains infor-

mation on 33 variables concerning the event or the insurance policy.

A brief overview of variable groups is presented below.

Group : Variables(specific factor-levels).

Time : Day, week, month, year of incident and submission of claim.

Vehicle : Vehicle type, make, price interval, age, number of supplements.

Incident : Incident area, number of vehicles, Fault(policy holder/3rd party),

police report filed(Y/N), witnesses(Y/N).
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Policy holder : Sex, age, driver rating, past number of claims, marital status,

time since address change.

Policy : Policy vehicle type, base policy(collision/liability/all perils), rep

number, deductible, days policy - accident/claim, agent type(internal/external).

Fraud : Was the claim found to be fraudulent? (Y/N).

3.2 Data summary

A vast majority of mapped variables are naturally ordered or grouped factors.

While the option to specify their order exists, we would actually lose information

and limit our options if we choose to do so. A binary split of the ordered feature

space would translate to dividing levels ”above” and ”below” a certain order.

The number of possible splits is then equal to levels minus one. However, a split

of the unordered feature space is the set of two disjoint sets, together containing

all factor levels. To demonstrate this we consider the relation between Vehicle

Price and the ratio of fraudulent claims found in Figure 4. Using ordered factors,

levels ”less than 20 000” and ”more than 69 000” would always need at-least two

splits to isolate, and would never belong to the same partition. Using unordered

factors, isolating all levels with a fradulent ratio above 6% to the same partition

would only require one binary split.

Figure 4: The relation between Vehicle Price(levels) and the ratio of fraudulent
claims. Were the width of bars relate to proportion of observations for each
level, and where the Y-axis has been restricted at 0.8. It is evident that there
are different ratios of fraudulent claims for different levels.
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The vast majority of features have no clear relation to fraud if we look at

ratios within levels. However a handful have one or two diverging factor levels

where fraudulent claims are over-represented with regards to the general ratio

of about 6%. Figure 5 illustrates such a feature.

Figure 5: The relation between which the Faulty party was and the ratio of
fraudulent claims. The ratio of fraud is greatly reduced for cases where fault
lies in a third party. The width of bars relate to proportion of observations for
each level, and the Y-axis has been restricted at 0.8.

Since tree based methods lack distribution-specific assumptions and gener-

ally are very robust when it comes to non-pruned data, we move on to model

assessment without further data analysis.
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4 Pre-analysis and Model assessment

Continuing from propositions made in section 2, we have two priority sets de-

rived from expectations of a hypothetical insurer, and two approaches to appli-

cation of the Boosting method. Considering all combinations we get four model

compositions corresponding to different demands.

Table 1: Combinations of model types presented in section 2.5.

Name Abbreviation Hit-rate rFP Depth #Trees

Aggressive Large AL High High High Low

Aggressive Small AS High High Low High

Conservative Large CL Low Low High Low

Conservative Small CS Low Low Low High

Model selection is then a performance comparison problem of four indepen-

dent models. In turn those are each a multivariate optimisation problem depen-

dent on the total fraudulent class weight wF , singular tree depth d, the number

of trees T , learning rate λ and fraud-classification threshold PF . However 5-way

numerical optimisation of a method that can take 1-3 minutes to apply is not a

reasonable approach. Before parameter optimisation can be attempted, removal

or grouping of some parameters must be performed, alternatively dependencies

between them must be found. We start by identifying the purpose and effects

of each parameter, then tether similar ones to each other.

For a single tree, d has a positive correlation with information gain, which

when generalised to additive iterations of boosting intuitively should have the

same effect. T and λ are also connected to information gain, and are by defi-

nition closely related, with slow learning models requiring high number of trees

to reach convergence. Since d directly positively affects tree size it is trivial to

see that combinations high d, low T and low d, high T fit opposite parts of the

spectrum for ”few fully grown trees vs many small trees”. If in turn λ can be

dependently calibrated by T , approximate optimisation of all three parameters

is plausible and isolated to the method approach issue.

We are then left with finding a solution to ”high Hit-rate vs low false posi-

tive ratio” using parameters wF and PF . Initial testing exemplified by Figure

6 indicate that early iterations approximately follow

f̂(x) ≈ wF
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and while the weights are consistent throughout the algorithm, their main effect

seems to be increasing the fraud classification probability of all observations. On

the contrary PF has the negative latter effect on classifications, meaning their

interaction could counteract the unnecessary inflation of classification probabil-

ity. Figure 7 illustrates the interactive effects wF and PF have on both Hit-rate

and rate of false positives to true positives. Not using weights is approximately

equivalent to using wF equal to the natural rate of fraudulent cases in data, 7%.

Figure 6: Probability of classifying a claim as fraudulent using a model with
wF = 0.9. Blue lines are truly fraudulent claims, red are legitimate. Legitimate
claims have seemingly uniform distribution on [0.3, 1]
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Figure 7: Hit-rate(top) and False-positive ratio(bottom) of model with d=6,
T=100, λ = 0.1. wF is the fraudulent class weight and PF the probability
threshold. Both metrics have very similar behaviour above the diagonal, but
clearly differ below.

Note that the rates have a similar, but not identical relation to parameters.

Figure 7 also seems to indicate that the ”high Hit-rate vs low false positive ratio”

problem can be approached by using high or no wF and supporting it with high

and low PF respectively to counteract probability inflation. The result of initial

parameter estimation is the following four models

Table 2: Initial parameter composition based on theory and priority sets.

Name wF d T λ PF

Aggressive Large 0.9 6 500 0.01 0.75

Aggressive Small 0.9 2 1500 0.005 0.75

Conservative Large - 6 500 0.01 0.40

Conservative Small - 2 1500 0.005 0.40
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In the next section we compare these independently calibrated models to

evaluate importance and effects of ”few fully grown trees vs many small trees”

and ”high Hit-rate vs low false positive ratio”.

5 Results

In this section the results of our analysis will be presented with some commen-

tary to highlight important details. The theory applied is defined and explained

in section 2 and thus will not be expanded on further, with the exception of

entirely new information. All applications of machine learning methods are

performed with the ”gbm” and ”random forest” packages in ”R”. It should be

noted that the implementation of decision trees in ”gbm” is a ”right bound

recursive growth algorithm”. In pseudo code that is

Algorithm 3: Right bound Recursive growth

1. Find binary split for current partition Rm.

2. If not (stopping criterion): Put RL as first element of ”que”, repeat alg

from 1 with Rm = RR.

3. If (stopping criterion): Set Rm to terminal region, repeat alg from 1 with

Rm =first element in ”que”.

4. If (que empty): Stop.

Since our trees are restricted by depth rather than number of terminal re-

gions, this type of algorithm allows for considering a large number of varied

feature interactions.

5.1 Model performance

Figure 8 and 9 depicts the variation in defined metrics stemming from stochastic

properties attained by the boosting method when a sub-sample of the overall

training set is used in each boosting iteration. The figure presents shape, with

average values for mean and standard deviation located in Table 3.
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Figure 8: Hit-rate for 100 samples of the four initial models. Randomly sampled
test-set between each of the 100 sets. For aggressive models the Hit-rate is very
volatile but model hierarchy seems unaffected.

Figure 9: False-positive rate for 100 samples of the four initial models. Ran-
domly sampled test-set between each of the 100 sets. Conservative small model
stands out by having a large amount of spikes.
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Table 3: Mean and standard deviation of Hit-rate and False-positive rate for
the four initial models, each with a sample size of 100.

Model h sd(h) rFP sd(rFP )

Aggressive Large 68, 95% 13, 33% 6,47 0,44

Aggressive Small 81, 37% 11, 62% 7,06 0,33

Conservative Large 5, 68% 1, 30% 0,26 0,21

Conservative Small 1, 44% 0, 79% 0,70 0,67

As hypothesised aggressive models have higher h at the cost of higher rFP .

While CL is objectively better than CS, the same can not with certainty be

stated for AL and AS. Standard deviation of the False-positive rate is stable

apart from CS, although conservative models have substantially higher relative

values. Hit-rate performance for conservatives is surprisingly low. The table

percentages represent 15 and 5 correctly identified claims out of 300 in our test-

set. This could be an indication that we shrink individual tree contribution

too much relative to the number of trees, and consequently stop the converging

process early. Testing shrinkage(λ) values 0.1 for small and 0.05 for large models

results in Table 4. These values are closer to Friedman’s upper limit discussed

in Section 2.5.3.

Table 4: Mean and standard deviation of Hit-rate and False-positive rate , each
from a sample size of 100.

Model h sd(h) rFP sd(rFP )

Aggressive Large V2 29, 12% 14, 09% 1,86 0,36

Aggressive Small V2 42, 46% 14, 53% 4,92 0,53

Conservative Large V2 17, 27% 6, 25% 0,71 0,23

Conservative Small V2 9, 38% 3, 39% 1,25 0,48

The change has improved conservative models considerably, on the other

hand the two aggressive have halved in Hit-rate and even had their standard

deviation increase one and three percent units. Regarding Large vs Small, nei-

ther looks significantly better than the other apart from CL and CS. The only

apparent overall difference so far is that small models tend to the extreme points

of the spectrum more than large ones.

By inspecting the probability of an observation being fraudulent and calculating

the overall median as well as interesting quantiles within each class, we get a

notion of which probability threshold values PF are appropriate. The inspected

models here are the initial aggressive and the adjusted conservative(V2). We

use initial aggressive since the performance represents their original priority set
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more than adjusted(V2). From Table 5 we observe that higher Hit-rates for

conservative models require significantly lower threshold than the one used. We

also observe that an aggressive model aiming at 25% Hit-rate would classify 5%

of legitimate claims wrong, which combined with class imbalance 16:1 results in

rFP ≈ 3.

Table 5: Median and 75%-/95%-quantiles for probability of an observation be-
longing to class Fraudulent, given that the true class is Fraudulent or Legitimate.
Letting PF = q75(Fraud) would for example result in 25% Hit-rate.

Model median Fraud q75(Fraud) median Legit q95(Legit)

AL 86% 94% 19% 95%

AS 91% 95% 40% 95%

CL V2 15% 30% 1% 14%

CS V2 13% 23% 1% 19%

Since PF does not affect model fit we can easily calculate h and rFP for any

PF ∈ [0, 1] without refitting the model. Illustrating the h vs rFP trade-off can

thus be done trivially with a line graph in Figure 10.

Figure 10: Hit-rate vs False-positive ratio for threshold values in [0,1]. The
optimal case is where a line’s lowest rightmost point is at [1,0] meaning perfect
classification with no False-positives.

From this illustration we get valuable information about the trade-off shapes.

As an example we observe that Hit-rate for CL V2 can be increased from 20% to

30/40% without affecting rFP much. Apart from information about individual
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performance the graph provides model rankings for particular intervals. Any

line positioned below another within a given interval on the x-axis has objec-

tively better metric performance than the other. Previously we could not rank

aggressive vs conservative due to incomparable metrics. In Figure 10 the latter

ranks above the former, with CL V2 being superior in all situations.

The performance and versatility of threshold value choice for CL V2 allows

us to focus the further analysis on this model type only. However at this point

it is still unknown what rFP and h values are considered ”good”. Furthermore

without a reliable benchmark model or goal values for metrics, our performance

analysis and the task of assigning a PF value becomes a guessing game.

5.2 Cost effective fraud detection

As previous results indicate, metrics used have a positive correlation but op-

posite optimums, which raises a critical issue. Any two models can only be

compared objectively if they share value in one metric, or if both metrics are

closer to their respective optimum for one of the models. By introducing the

profit-equation defined in Section 2.7.2 we produce a quantifiable relation be-

tween metrics. We use notation N =number of claims, rF = overall rate of

fraud, rFP =rate of False-positive to True-positive for model, h =Hit-rate,

cc =average cost of claim and ci =average cost of fraud investigation. By sim-

plifying that equation we get

average profit = N · rF · h((cc − ci)− rFP · ci)

= N · rF · h(cc − ci(rFP + 1)).

Bound by this equation objective comparison of models is made possible for all

sets of metric values. Immediately we observe that the breaking point for profit

is

rFP =
cc
ci
− 1

which is entirely independent of h. Considering claim cost as the cornerstone

we define cr = ci
cc

as the Investigative cost ratio. In words a value cr = 1
3 would

be that on average the cost of investigation is a third of the claim cost. Utilising

this ratio, the following simplification can be made

profit = N · rF · h(cc − ci(rFP + 1))

profit

N
= rF · h (cc − cc · cr(rFP + 1))

profit

N · cc
= rF · h (1− cr (rFP + 1)) .
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Here profit
N ·cc = 0.01 is interpreted as ”on average profiting 1% of claim cost for

each of N claims”, which is the same as ”on average profiting 1% of total claim

cost”. Using cr = 1
2 Figure 11 illustrates the above, with other examples located

in appendix.

Figure 11: Profit of total claim cost of N claims. Since loss is not of particular
interest, the y-axis has been restricted. For metric values of a model this figure
gives us an indication of which metric to focus on improving.

Considering model CL V2, for a given threshold we have a pair (h, rFP )

which in turn can be used to calculate the profit at a specific cr. Figure 12

below illustrates this connection with a contour plot. The red line indicates

optimal (h, rFP )-pair for a specific cr(based on data from Figure 10).
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Figure 12: The relation between positive profit, Hit-rate and Investigation cost
ratio. Since positive profits are of interest, negative profits are not shown. The
matter of choosing what Hit-rate to aim for becomes trivial when the cost ratio
is known.

5.3 Class probability convergence

In this section we want to analyse how the boosting method arrives at the

results in Section 5.1 by observing the convergence of classification probabilities

pk(xi). Previously we used pk(xi) to calculate and plot the effects that varying

PF has on h and rFP . This time we predict our test-set using a boosting model

consisting of the first t trees. We perform predictions with t = 1, 2, ..., T to form

a sequence of T predictions for each observation. In a graph with axes t and

pk(xi), each sequence is represented by a line. The colour of the line indicates

the true class that observation belongs to, blue for fraud and red for legitimate.

The graph presents us with a number of different characteristics inherent to the

model. Amongst minor things it illustrates shape of convergence, separation

of classes and separation within classes. Figure 13 consists of such a graph for

CL V2. From this point on, any reference to ”the model” or ”our model” will

be referencing to CL V2 unless otherwise specified. These graphs are filtered

to only display the 50 highest probabilities from each class. This is to reduce

cluttering as the original plot(see appendix or Figure 6) displays 5300 unique

lines.
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Figure 13: Both figures show the probability of classifying a claim as fraudulent
using model CL V2, where each line represents a claim. The top figure are actual
fraudulent claims while the bottom are legitimate. Illustrating them like this
provides an overview of difference in convergence behaviour between classes.

A cluster of fraudulent claims are identified immediately and populate the

top of the top graph trough out the complete algorithm. The rest follow a very

similar pattern to legitimate observations in the bottom graph. As the number

of trees increase parts of the identified cluster deteriorates while conversely the

large lower body improves. Legitimate claims seem to be interchangeable with

the large portion of displayed fraudulent.
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Slow convergence models performed worse than fast, with the best of them

being CS V2. Figure 14 provides two convergence graphs using CS V2. The

previous relation in shape between classes is present here as well, but the cluster

of fraudulent claims that is identified early has a considerably smaller distance

from the main group. The overall similarity between graphs is clearer, and dis-

played legitimate claims have a lower spread than that of the other class. For

the non filtered figure see appendix.
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Figure 14: The same type of figures as Figure 13 but for model CS V2.

Generally this second figure appears to be a more compressed and longer

version of the first. The question is then what happens if we break the model
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boundaries and try a large slow converging model. In figure 15 we have fit a

model without weights, using depth of 6, 1500 trees and shrinkage equal to 0.05.

That is the same parameter composition as CL V2 but with increased number

of trees and lower shrinkage. Legitimate claims do not only have a tighter

spread, but also have generally lower probabilities than fraudulent claims. Non-

displayed claims are still indistinguishable between classes, but this model looks

to have separated classes better than those previously tested.
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Figure 15: Both figures illustrate the probability of classifying a claim as fraud-
ulent using a model like CL V2 but with slower and longer convergence. The
figure is of the same type as Figure 13 and 14.
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Inspecting Table 6 and Figure 16 we see that while metrics in the table may

indicate better performance, the graph shows that for other threshold values

than 0.4, ranking is uncertain.

Table 6: Metrics for Conservative Large models.

Model h sd(h) rFP sd(rFP ) Cr = 2

CL V2 17, 27% 6, 25% 0,71 0,23 0, 18%

CL V3 18, 69% 6, 92% 0,53 0,17 0, 24%

Figure 16: Comparison of Hit-rate vs False-positive ratio for threshold values
in (0,1) for CL V2 and a variant with slower and longer convergence.

Inspecting all three convergence figures in closer detail we detect that all

lines have constant small jittering. For a given tree that increases a claims

probability, the next tree appears to decrease it, the next increase so on and

so forth. Even though the net-movement of this process might be increasing,

it could cancel out or disrupt a slow convergence over a large set of trees. To

analyse this we inspect the structure of singular trees.

5.4 Initial split behaviour

Due to the sheer number of trees individual structure is hard to compare. In-

stead we look at what feature variable is split initially for each tree. By having

all feature variables populate the y-axis and letting tree number in order of ini-

tiation be x-variable we can plot points that describe initial splits. In Figure 17
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we plot splits of CL V2.
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Figure 17: An illustration of which feature is used in the initial split for each
tree in model CL V2. A red marker at tree t indicate that the feature was also
used initially for tree t− 2, but no for tree t− 1. Green markers indicate used
for t− 3 but not t− 1 or t− 2. Markers should indicate when jittering occurs.

Policy Type is used heavily in first 20-30 trees while later focus shift to

Representative number and Policy Number. We note some clusters of rings

although fewer than expected from previous results and hypothesis drawn from

convergence plots. Illustrating the same graph for CS V2 in Figure 18 we note a

lot more clusters, both red and green. A similarity with Figure 17 is that clusters

tend to appear at higher tree numbers and could indicate that convergence has

grown to a halt, leaving only random jittering.
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Figure 18: Feature used in initial split for each tree in model CS V2. This is
the same type of figure as Figure 17.

While these figures might spawn a hypothesis concerning jittering and its

causes, they do not constitute proof of it.

Evidently later stages of convergence do not display the sought after ”self-

correcting” characteristic of boosting models. The remaining question is then if

the boosting method is any different, performance-wise, from the much simpler

Random Forest method.

5.5 Random Forest comparison

As explained in Section 2 the Random Forest method works by forcing variation

in tree composition and counteracting it with set averaging. Using 1 000 trees

and considering 10 features for each split, initial testing suggested that random

forest models still benefit from increased depth even after 6. Figure 19 displays

a trade-off comparison between two of these random forest models and the

Conservative Large model Version 2.
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Figure 19: A comparison regarding Hit-rate vs False-positive ratio between
two random forest models and the best boosting model, effectively illustrating
performance hierarchy.

Evidently boosting still prevails despite convergence issues. Comparing to

Figure 10 random forest models perform better than the rest of boosting models,

at least for low to medium Hit-rates. Just as with gradient boosting we conclude

the analysis with a contour plot of cost-effectiveness for different investigative

cost ratios, as well as a line indicating the optimal Hit-rates.

Figure 20: For the random forest model with depth 8 the figure shows profit as
a function of Hit-rate and Investigation cost ratio. Only Positive profit contours
are displayed.
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6 Discussion

In this section we will discuss main results from Sections 5, 3 and the theoretical

framework from 2. Discussion will be divided in three parts. First: explaining

how theory produces results, how these results would be applied and affect

a practical application. Second: what possible extensions could be made to

the analysis for future study. And third: corrections and limitations of the

performed study.

6.1 Theory and Results

The goal of using machine learning methods in this study was to be able to

identify patterns and in some sense outliers from a relatively large set of data.

Decision tree methods are easy to apply and while there are more powerful

methods available, it is a good place to introduce machine learning as a concept.

With that said, this type of learning becomes very data driven and situational

when applied to real world problems, which is what we have explored in this

thesis.

A concurrent problem throughout the analysis is how to balance and config-

ure parameters. For learning rate/shrinkage λ and number of trees T there is

a general logic that when increasing the latter you should decrease the former,

and vice versa. For specific values there are different preferences with regards

to computation time, model size, scope, situational preferences etc, however the

suggestions made by the inventor of this method is used as overall baseline in

most sources I have come across. In Friedman’s first boosting paper[1] from

1999 he prominently uses fewer than 500 trees and λ = 0.1. When he analyses

the trade-off between these parameters on page 14 he suggests that ”...the best

value for λ depends on the number of iterations T . The latter should be made

as large as is computationally convenient or feasible.”. For values λ < 0.125

he observes diminishing returns and number of trees up toward 1000. In 2007

Greg Ridgeway the original developer of the gbm package for R, writes in a

paper [6] on page 4 that he performs the reversed selection, ”In practice I set

λ to be as small as possible and then select T by cross-validation.”. Later on

page 7 he states that ”I usually aim for 3 000 to 10 000 iterations with shrinkage

rates between 0.01 and 0.001.”. The larger amount of iterations compared to

Friedman is most likely a combination between more modern computers with

higher computational power, and a desire to confidently overshoot the optimal

number of trees according to cross-validation.

As for our value selection we picked 1 500 and 500 trees, with shrinkage rates of
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0.1, 0.05, 0.01 and 0.005. Shrinkage rates were picked partly with regard to the

trade-off and partly to fit sides of the spectrum. Number of trees/iterations were

picked to fit model priorities and computational power of my machine. While

higher T could be set for fitting individual models, getting averages and fitting

a model type many times in a row would require vastly more computational

power and time.

Our results with regard to the trade-off between shrinkage and number of trees

are somewhat inconclusive in relation to previous findings. Experimenting with

slower convergence, i.e. lower λ and higher T , for the Conservative Large model

Version 2 resulted in possibly improved performance. The reason why we did not

get results like those in source papers could be that we define ”improved perfor-

mance” differently. Source material used overall error rate and cross-validation

error as measurements of performance, while we used Hit-rate, False-positive

ratio and average profit. The result that slow convergence(Small) models were

inferior to fast convergence(Large) ones is in my opinion not as much an argu-

ment for reduced T and higher λ as it is an issue of high vs low tree depth.

Regarding singular tree depth Ridgeway as well as Friedman and his co-authors

of The Elements of Statistical Learning [4] Trevor Hastie and Robert Tibshirani,

all favour low number of terminal nodes like stumps(depth=1, 2 terminal nodes).

This is due to generally improved performance for slow long-term convergence

compared to models with more terminal nodes. In Section 10.11 of ESLII[4] it

is stated, with notation J = Number of terminal nodes, that ”The generative

function is additive(sum of quadratic multinomials), so boosting models with

J > 2 incurs unnecessary variance and hence higher test error.”. Later in the

same section authors conclude that ”Althoug in many applications J = 2 will

be insufficient, it is unlikely that J > 10 will be required”. Due to the imple-

mentation of gbm for R, we are only able to specify and restrict tree depth d

as opposed to J . In our analysis we have used depth 2 and 6 which result in

min/max J = 3/4 and 7/64.

From results in Section 5 we get the indication that models with low depth

under-perform and are tempted to conclude that our results contradict those

previous sources. This is in fact not entirely true. Consider a tree with J = 8,

it can reach depth 7 to fit a very specific isolated interaction between feature

variables. Meanwhile a fully grown tree restricted by d = 3 can only reach depth

3 while having the same number of terminal nodes J = 8. Our conclusion is

then that for this particular application, gradient boosting using trees restricted

by low depth value performs worse than using higher values. Considering data
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imbalance with 15 000 total observations and splits dividing data with ratio

1:3, we would need depth 3 to get a region with 233 observations. To pass a

majority vote for fraudulent, that region would have to include at least 12.7%

of all fraudulent claims. In this sense a possible explanation to the poor perfor-

mance of small models is that we need to be able to partition data more thinly

to identify class separating characteristics.

The core characteristic of Gradient Boosted trees is convergence. While we

encountered problems during late stages of the process, comparison to Random

Forest models indicated that this characteristic indeed was the key to better

performance. However, it proved to be secondary to tree depth in terms of

importance since the Random forest model with higher depth out-performed

remaining boosted models.

As for the actual metric results we found that conservative models tend to

have higher relative standard deviation for the rate of False-positives. This is

somewhat expected since a model with Hit-rate of 5.7% combined with a False-

positive ratio of 0.26 results in 15 true-positives and 4 False-positives using the

test-set with 300 fraudulent and 5 000 legitimate claims.

Inconsistency regarding Hit-rates for aggressive models were more surprising.

High False-positive rates were expected, however fitting an aggressive model

twice and getting a Hit-rate difference of up to 30%-units (Figure 8) was alarm-

ing. This lack of consistency would make practical application difficult.

6.2 Practical applications

The aim of using a automatic method for fraud classification is to have an initial

filter before manual investigations are made. This filter can be generally be one

of two types.

The first aims to reduce the large total amount of claims to a smaller set where

all fraudulent cases are included. It could be used in conjunction with manu-

ally analysing sets of claims, since it effectively cuts the workload while having

low risk of missing fraudulent cases during filtering. Our aggressive models

were designed to be of this type. Post filtering we are left with a high rate

of both classes, and therefore this filter works best when the cost of investiga-

tion/analysis is low and the process is time-effective. Overall aggressive models

fit the objectives of this kind of filter rather poorly. They can attain high Hit-

rates easily but judging from Figure 10, for rates below 95% both conservative
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models have substantially lower False-positive rates. As such, contrary to initial

hypothesis conservative models fit this type of priority better than aggressive.

The second type of filter is aimed at having high certainty that those claims

who make it through actually are fraudulent. This would mean that while we

risk missing committed insurance fraud, we can be very certain that classifi-

cations are correct. Our conservative models were designed to fit this type.

After filtering we are left with a small set of cases, of which we can allow high

investigation-costs. The conservative models fit these goals relatively poorly.

Even at low Hit-rates like 5% and 1% approximately a third of the ”confidently

fraudulent” claims are incorrectly classified..

None of the explored models performed as initially hoped, but that could be

due to a lack of prior benchmark rather than low metric scores. The Conserva-

tive Large model Version 2 fit both filter types objectively better than the rest,

even Random forest models. At a Hit-rate of 96% we could reduce the ratio

of fraudulent cases i data from 1:16 to 1:5, significantly lowering the potential

workload. Additional information about realistic cost ratios would be required

to make a confident assessment if this model would acceptably fit the second

filter type.

The true cause of problematic class separation and seemingly random jitter-

ing, evident in probability convergence plots, is unknown. However we can form

a few hypothesis based on our results.

The first is that insurance fraud detection is a multinomial classification prob-

lem as opposed to the binomial problem explored in this thesis. This is plausible

due to fraud in general being a behaviour with the goal to adapt and avoid de-

tection. Considering each scheme to commit fraud as a separate class, logically

the fewer individuals in a specific class, the harder it will be to classify correctly.

This leads to an incentive that individuals who commit fraud would want to di-

versify them selves from the rest of fraudsters. Naturally insurance fraud would

then best be considered as being split in to many classes with unique charac-

teristics. Jittering present in probability convergence plots could possibly be

a consequence of attempting to fit multiple diverse patterns to a single class.

During later iterations of the boosting algorithm, correcting the fit for a specific

fraud-subclass might worsen the current fit of one or more separate sub-classes.

If this hypothesis is true, a solution would be to switch to methods that can

handle multinomial classification.
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A second hypothesis related to the first is that some of the defining charac-

teristics of insurance fraud affect other variables than those present in provided

data. Examples could be geographical location and whether or not the parties

involved in the crash have some social relation. Consider an extreme case where

all fraudulent car incidents are committed in a particular area, but all other

parameters are as diverse as in the remaining claims. If we do not include ge-

ography as a feature variable we can not split the feature space in any way that

this simple characteristic is isolated. It does not depend on tree depth, number

of iterations or how class balance. In situations like this or when access to data

is limited, machine learning is generally not appropriate due to being heavily

data-focused.

Lastly at least a portion of poor performance could be linked to ”estimated

number of unknown cases in data”, in Swedish: ”mörkertal i data”. It is a prob-

lem that arises when the response in data is based on an external or previous

classifier. Consider a true data-set with 90 legitimate claims and 10 fraudulent.

One model, manual investigation, correctly classifies 90 legitimate and 8 fraud,

resulting in 98% accuracy and 80% Hit-rate. Since true values are unknown

this model might be assumed as fact. A data set is then constructed from the

results, containing 92 legitimate claims and 8 fraud. Fitting a second model to

this data might classify the original data correctly, score a Hit-rate of 100% but

only 98% accuracy. The two ”incorrectly” classified claims are the ”unknown

cases in data”. Any model or method used to classify data always runs the

risk of identifying previously unknown cases and consequently suffer a reduced

performance score. This is a present problem in modern machine learning as

well as applied statistics in general.

6.3 Expansions and Corrections

A major issue throughout our analysis is the lack of knowledge on realistic met-

ric values. Mainly the costs associated with investigation of a claim and the

amount insurance companies budget for combating insurance fraud. Sources

like the annual report ”Försäkringsbedrägerier i Sverige” by Svensk Försäkring

present numbers like total amount paid for claims, total paid for detected fraud,

rate of fraud, etc. but not the amount spent on investigation. Reproducing this

study with knowledge of realistic values would allow for more specific model

calibration, mainly the probability threshold.

Expanding further on costs a more practical study on effectiveness of real-

time filtering would be interesting. Since investigators are most likely full-time
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employees and claims with high fraudulent probability most likely occur non-

uniformly, workload will be non-uniform as long as the classification threshold is

constant. Assigning a dynamic threshold would allow for a more even workload,

but consequently affect Hit-rate and False-positive ratio in an unknown way.

7 Conclusion

This study has served as an introduction to tree based machine learning meth-

ods, mainly gradient boosting, with a case study of Auto insurance fraud detec-

tion. We have presented and explained the background theory of these methods

and the thought process behind parameter calibration. The analysis also serves

as an example of how one can measure performance when application specific

goals do not coincide with the default mathematical optimisation. We pro-

vide insight on how to define and interpret custom metrics, as well as how to

use them in junction with pre-defined/-implemented statistical methods. The

results of this study are mostly in line with previous research of the applied

machine learning methods. Results indicate that the boosting method is an im-

provement from using single trees, and that the correction/convergence aspect

of the algorithm works as intended. Regarding slow vs fast convergence this

study did not find conclusive evidence that one is better than the other. For

this specific application results indicate that deep multi-variable interactions are

necessary to suppress the False-positive ratio. Some models presented in this

study are shown to be profitable when the cost of investigation a claim is 2/3

of the claim amount to be paid, with more models following for higher values.

The main issue and thus possible expansion of this study is realistic information

about target values for defined metrics as well as investigation costs.
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Appendix

Figure 21: For model CL V2, probability of classifying a claim as fraudulent.
Blue lines are actual fraudulent claims, red are legitimate. Each line represents
an observation.

Figure 22: For model CS V2, probability of classifying a claim as fraudulent.
Blue lines are actual fraudulent claims, red are legitimate. Each line represents
an observation.

46



References

[1] Jerome Friedman: Greedy Function Approximation: A Gradient Boost-

ing Machine. 1999. Stanford Press.

https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

[2] Leo Breiman, Jerome Friedman, Charles J. Stone, R.A. Olshen:

Classification and Regression Trees. 1984. Taylor & Francis.

[3] Jerome Friedman: Stochastic Gradient Boosting. 1999. Stanford Press.

https://statweb.stanford.edu/~jhf/ftp/stobst.pdf

[4] Trevor Hastie, Robert Tibshirani, Jerome Friedman: The Ele-

ments of Statistical Learning (Second Edition, corrected 12th printing).

2017. Springer.

[5] Gareth James, Daniela Witten, Trevor Hastie, Robert Tib-

shirani: An Introduction to Statistical Learning (7th printing). 2013.

Springer.

[6] Greg Ridgeway: Generalized Boosted Models: A guide to the gbm pack-

age. 2007. R Vignette.

https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf

[7] Tin Kam Ho: Random Decision Forests. 1995. Proceedings of the Third

International Conference on Document Analysis and Recognition - Volume

1. IEEE Computer Society

https://web.archive.org/web/20160417030218/http://ect.

bell-labs.com/who/tkh/publications/papers/odt.pdf

[8] J.R. Quinlan: Induction of Decision Trees. 1986. Springer.

https://link.springer.com/content/pdf/10.1007/BF00116251.pdf
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