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Abstract

Change point detection has been a long-standing problem in sta-
tistical analysis. This study aims to develop a nonparametric offline
scheme for detecting changes in mean and/or variance in multivari-
ate time series. Based on the principal component analysis (PCA),
the multivariate data is projected onto a lower dimensional space
such that the multidimensional detection problem is reduced to a
one-dimensional one. As a result, we can apply the well formulated
univariate methods, namely, the cumulative sum (CUSUM) and cu-
mulative sum of squares (CSS) methods, to test the existence of a
change in mean and variance, respectively. The study shows that
both methods are reliable to test the existence of a change based on
the permutation test. Moreover, the CUSUM-based estimator and
the mean square error (MSE) estimator are proposed to determine
the most likely change point locations. We compare the performance
of the estimators in a simulation study and the results show that the
performance of these two estimators depends very much on the prop-
erties of data. The MSE estimator outperforms the CUSUM-based
estimator if determining a change point location in a time series with
a mean change. On the contrary, if determining a change point loca-
tion with a variance change, the CUSUM-based estimator is prefer-
able. Finally, the CUSUM and CSS methods are combined to detect
simultaneous changes in mean and variance. The results on both sim-
ulated and real data show that the combined method complements
each other well and it can successfully determine the most prominent
change point location by comparing the uncertainty in identifying the
change point locations.
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1 Introduction

1.1 Background

Nowadays, the world is filled with data and changes. One wishes to discover
the changes in the statistical properties of data to make better decisions and
to avoid possible unnecessary losses. This gives rise to a long-standing problem
in statistical analysis, the change-point problem, which is a process of detecting
distributional changes in a stochastic process or a time series.

In fact, change point detection has already had a wide range of applications
in our daily life. For example, in financial time series modelling, whether an
abnormal shifting of the stock price for a company is a statistically significant
change in the stock market that will affect investors’ decision making. In quality
control, one wants to find out whether there is a point where the quality of a
product starts to change so that one can address the problem as soon as possi-
ble. It has been applied to detect artificial or natural discontinuities and regime
shifts in climate [1]. Apart from these, applications can also be found in geology,
genetics, medicine, social study and so on [2].

As change point detection is important in a variety of fields, many methods
have been developed. Among the several examples mentioned above, methods
to detect changes depend on the properties of data. Problems like how the data
is obtained, how many variables the dataset consists of and how much distribu-
tional information one knows about the data need to be taken into consideration.
In this thesis, detecting changes in multidimensional time series is of interest.
We give a brief introduction to the change-point problem and clarify the aim of
the thesis in the following sections.

1.2 The Change-Point Problem

The change-point problem concerns generally determining whether a single change
or multiple changes have been taken place and identifying the locations in which
any such changes occur. Suppose a set of independent observations x1, x2, ...
are drawn from random variables X1, X2, ... and an unknown number of changes
in distribution at the unknown change point locations τ1, τ2, ... may occur, the
distribution of the random process can be written as [4]:

Xi ∼


F1 if i ≤ τ1
F2 if τ1 < i ≤ τ2
F3 if τ2 < i ≤ τ3
· · ·

(1)

where Fis are unknown probability distributions in each segment. The goal of
change point detection is to recover these segments as accurately as possible.
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Depending on the setting of the problem, methods used for detecting the change
points are different. We now specify some categorizations related to the change-
point problem [4].

Offline or Online Setting: When observations X1, X2, ..., Xn−1, Xn are re-
ceived continuously and processed sequentially over time, it is called online or
sequential setting. In this case, the length of the random process is not fixed
and a decision on whether a change has occurred has to be made as quickly as
possible when a new observation has arrived. In contrast, when an entire set of
observations is obtained all at once and the retrospective analysis is performed, it
is called offline setting. The focuses of the offline setting are testing the existence
of a change point at an unknown location and estimating the most likely change
point location given the existence of a change point. This study is essentially
concerned with offline data setting.

Single or Multiple Change Point Detection: In real life data, multiple
change points often take place. Nevertheless, the focus of this thesis is to find
one single change point. For those who are also interested in detecting multiple
change points and their locations in an offline dataset, we refer to the widely
used method, the binary segmentation procedure proposed by Vostrika [2].

Parametric or Nonparametric: Change point detection methods differ a
lot depending on whether the distributional knowledge of the data is known or
not. In real life data, information about the underlying distribution may not be
known. In this thesis, we will apply nonparametric methods for change point
detection. For an overview of parametric offline methods, we refer the interested
readers to [2] and [3].

One-dimensional or Multidimensional Setting: The data we consider in
this thesis is multidimensional and we assume that the changes occur simul-
taneously in different dimensional of the data. The well-known dimensionality
reduction method, principal component analysis, will be applied to the data. The
resulted data used for further change point analysis is actually one-dimensional.
Some basic examples are given in Figure 1, which shows two sequences of two-
dimensional normally distributed random variables that undergo one change in
mean, variance or both.
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Figure 1: Some basic examples of commonly investigated changes in behaviour
to a two-dimensional time series. The traces are plotted in different colors to
represent two different variables. Here we are in an offline setting, with one
single change point, with a parametric model. The time of the change point
is superimposed at position 100, indicated by the blue dashed line. The red
segments indicate the mean change.

1.3 Purpose

This study aims to develop a nonparametric scheme for detecting changes in
mean and/or variance in multidimensional offline time series based on principal
component analysis, which is used for projecting the data into a lower dimen-
sional space. For simplicity, we will only concentrate on finding one single change
in two-dimensional time series in this study. Nevertheless, the proposed scheme
is general and can be extended to higher dimensional data.

1.4 Outline

The rest of the thesis is organized as follows. Section 2 provides an overview of
related work in the field of change point analysis. Section 3 explains the dimen-
sionality reduction method, the principal component analysis and the theoretical
analysis of change point detection. Artificial data are generated and a simula-
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tion study is conducted in Section 4. Section 5 presents analysis and results
from application to real life data (a 2D time series observed in single molecule
experiments). Conclusions are made in Section 6. Discussion of the results as
well as suggestions for future studies can be found in Section 7.

2 Literature Review

Principal component analysis (PCA) is used as a powerful tool in many aspects.
Some researchers have applied PCA for change point detection in multidimen-
sional time series. Kuncheva and Faithfull [5] developed an approach based
on PCA feature extraction for change detection in unlabelled, multidimensional
streaming data and showed that many datasets benefit significantly from using
PCA. Qhatan et al [6] proposed a framework that applies PCA’s dimensional-
ity reduction property to project the multidimensional streaming data onto the
principal components to obtain multiple 1D data streams. Density functions of
the projected data are estimated and change-scores are computed to compare
the distributions before and after the occurrence of a change. However, these
existing approaches are designed for online data streams. The scheme provided
in this thesis is also based on PCA’s dimensionality reduction property, but it is
applicable for offline time series. We will analyze and show that using the first
principal component associated with the largest eigenvalue captures the largest
variability such that any changes in the original variables are reflected in the
first principal component.

As mentioned, the focus of this thesis is to detect one single change point in a
two-dimensional offline time series. By using PCA to reduce the data dimension,
we can apply to the well formulated univariate methods for detecting changes.
The literature on change point detection is rather huge though. In parametric
change point detection, the most frequently encountered methods are using the
likelihood ratio test given that the underlying distribution of the data is known.
An overview of change point analysis for various parametric models can be found
in Chen and Gupta [2]. Another strand of literature is based on the so-called cu-
mulative sum (CUSUM) tests for change point detection. The CUSUM method
was first introduced to detect one change in one distribution parameter for on-
line data and further developed to fit offline data [4]. Depending on how the
CUSUM statistics are constructed, different types of changes can be detected.
Taylor developed a cumulative sum-based procedure to detect changes in mean
values [7] and Inclan and Tiao discussed the detection of a change in variance [8].

Furthermore, if the change point problem is formulated as testing two hypothe-
ses, e.g., H0 : no change point exists versus H1 : there exists a change, two-sample
hypothesis tests can be applied [9]. For example, a two-sample t-test to detect
a mean change and an F test to detect a variance change can be applied if the
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data is assumed to be normally distributed. If no assumption is made on the
data, many nonparametric tests can be applied, such as the Wilcoxon rank sum
(Mann–Whitney) test for location change, the Mood test for dispersion change
and Kolmogorov-Smirnov test for general changes. However, there is an issue in
using these tests. That is, it requires the knowledge of the null distribution of
the test statistic, which generally does not have an analytic form.

3 Methodology

In this section, the methods used in the study are described in detail. We explore
first the dimensionality reduction technique, the principal component analysis.
Thereafter the statistical tests and offline change point detection methods based
on cumulative sum are presented.

3.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a well-known technique for reducing di-
mensionality for large datasets, increasing its interpretability while still being
able to preserve as much information as possible. It has a lot of other appli-
cations such as data visualization, image compression, feature extraction and
engineering, and much more. The main idea of PCA is to find a set of orthogo-
nal linearly transformed principal components that are derived from the original
data such that the first principal component captures the largest variability of
the data, the second principal component captures the second largest variability,
and so forth. Hence, the first principal component has always the maximum
variance among all principal components [10]. The classic approach measures
variability through variance. The principal components can be either based on
the eigenvectors of the sample covariance matrix or correlation matrix. With
the use of the correlation matrix, variables are standardized to zero mean and
unit variance. As a result, finding these principal components reduces to solving
an eigenvalue or eigenvector problem.

The goal of using PCA in this thesis is essentially dimensionality reduction.
We want to zero out all of the smallest principal components from a multidi-
mensional dataset and obtain a lower-dimensional projection of the data which
preserves the largest possible variance. For instance, consider Figure 2, which
shows a two-dimensional normally distributed time series generated by two ran-
dom variables X1 and X2, with 100 observations. The blue line represents the
first principal component. By eyes, it is clear that the data is most spread
out on the line, which indicates a large variance. In other words, if all data
points were projected onto this line, the resulting projected data points would
have the maximum variability with only one single dimension. The resulting
one-dimension time series, which exhibits the most variation and will reflect any

5



changes in the original multidimensional time series is the desired dataset that
will be performed further change point analysis.

Figure 2: Variable X1 and X2 for 100 simulated observations are shown as grey
dots in normalized term (mean = 0). The blue line indicates the first principal
component, and the green line indicates the second principal component.

3.1.1 The Computational Procedure

As mentioned above, the derivation of principal components can be based either
on a covariance matrix or a correlation matrix. There have been lots of discus-
sions on which method is preferable and the interested readers are referred to
Chapter 2 in [12]. In this thesis, we use the covariance matrix method without
further discussion. The entire dimensionality reduction can be divided into the
following three steps [10, 11, 12, 13]:

• Centralize a given multidimentional time series by subtracting the mean
value of each variable from the data and then derive the covariance matrix.

• Compute the eigenvalues and eigenvectors of the covariance matrix to ob-
tain the direction of the first principal component.

• Project each point of the original dataset onto the first principal component
line.

Mathematically, consider an n-dimensional random variable X = {X1, · · · , Xn}.
Without loss of generality, the column vectors X are assumed to be centralized
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with zero mean. Then the covariance matrix S can be obtained by

S =
1

k − 1

k∑
i=1

Xil
TXil for i = 1, · · · k. (2)

where l denotes the l-th column of X for l ∈ {1, · · ·n} and k denotes the number
of data points.

Let a vector of principal components Y = {Y1, Y2, · · · , Yp} represent p (1 ≤
p ≤ n) uncorrelated linear components of X, that is, each principal component
vector is defined as

Yj = Xaj for j = 1, · · · p. (3)

Yj =

y1j...
ykj

 =

x11 · · · x1n
...

. . .

xk1 xkn


a1j...
anj


where aj is the normalized eigenvectors of covariance matrix S, such that the
variance of Yj is maximized. Since the covariance matrix S is real and symmetric,
the eigenvectors aj are orthogonal to each other and they can be obtained by
solving a set of equations:

(S− λjIn)aj = 0 (4)

where λj are the eigenvalues of S, λ1 = V ar(Y1) > λ2 = V ar(Y2) > · · · > λp =
V ar(Yp) and In is a n× n identity matrix. A detailed derivation of eigenvalues
and eigenvactors can be found in Appendix. The eigenvectors are rearranged
with descending eigenvalues. A projection matrix is formed by the sorted p
eigenvectors associated with the p largest eigenvalues λj . The largest eigenvec-
tor corresponding to the very largest eigenvalue defines the direction of the first
principal component. The projection of each data point onto the direction line
creates the first principal component, e.g., Y1 = Xa1. The second principal
component can be produced using the second largest eigenvector, and so forth.

Thus, the entire dimensionality reduction is actually done by an orthogonal
linear transformation of the original time series. Equation (3) can be rewritten
as

Yk×p = Xk×n An×p (5)

where A is the orthogonal matrix having the sorted p eigenvectors as its columns.
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3.1.2 Example of Dimensionality Reduction

This section gives examples to illustrate how the dimensionality reduction re-
ferred to above is done in practice. We consider again the 100 simulating obser-
vations drawn from a bivariate normal distribution in the previous section. In
Figure 3a, the blue line represents the direction of the first principal component
of the data, and in Figure 3b, the 100 observations have been projected onto the
line. Mathematically, this process is done by first using equation (2) and (4) to
find the largest eigenvector

A1 =

(
a11
a21

)
=

(
0.882
0.472

)
Apply thereafter equation (3) or (5) to obtain the first principal component

Y1 = 0.882× (X1 − X̄1) + 0.472× (X2 − X̄2) (6)

where X̄1 indicates the mean of all X1 values in this variable, and X̄2 indicates
the mean of all X2 values. Since the X1 and X2 are vectors of length 100, and
so is the first principal component Y1 whose values can be seen in Figure 3b.

Since the example dataset is two-dimensional, we can construct up to two dis-
tinct principal components. The second principal component Y2 is computed
using the second largest eigenvector which is orthogonal to the first eigenvector
A1. Applying again equation (3) or (5), the second principal component is given
as follows

Y2 = 0.882× (X2 − X̄2)− 0.472× (X1 − X̄1) (7)

By construction, the first principal component captures the most variability of
the original data, which can also be shown by the much larger variability of Y1 (on
the x axis) compared to Y2 (on the y-axis) in Figure 3b. Another illustration can
be shown by Figure 4 which displays the first principal component Y1 versus the
variables both X1 and X2. A strong linear relationship between the first principal
component and the two variables is shown on the scatterplots. In other words,
the first principal component captures most of the fluctuations of the data. On
the other hand, very little relationship between the second principal component
and the two variables can be observed in Figure 5, which displays scatterplots
of Y2 versus X1 and X2. All of these suggest that one only needs to keep the
first or the first few principal components in order to accurately represent the
original data.
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Figure 3: Variable X1 and X2 for 100 simulated observations are shown as grey dots.
The mean of (X1, X2) is indicated with a red dot, denoted (X̄1, X̄2). (a) The direction of
the first principal component is shown in blue color in the original data setting (before
data centering). It is the dimension of the data that preserves the maximum data
variability. (b) A scatterplot of the 1st PC versus the 2nd PC resulting by rotating
Fig.a. We see that the first principal component direction coincides with the x-axis.

Figure 4: (a) Scatter plot of 1st PC versus X1. (b) Scatter plot of 1st PCX2
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Figure 5: (a) Scatter plot of 2nd PC versus X1. (b) Scatter plot of 2nd PCX2

3.2 Comparing Distributions using Kullback-Leibler Divergence

As we saw in the previous section, the first principal component captures the
largest variability of the original multidimensional data, which is the reason why
it is selected for further change point analysis. However, how can one be sure that
any changes in the original data are reflected in the first principal component?
In this section, we analyze how different types of changes can be observed in
the first principal component. We start to illustrate this problem graphically by
using a concrete example and then perform a theoretical analysis by using the
widely used Kullback–Leibler divergence.

3.2.1 Graphical Analysis

Consider a time series with 200 observations generated from a bivariate normal
distribution, undergo one change in mean and variance simultaneously. The

distributions before and after the change are: q(x) ∼ N

((
0
0

)
,

(
1 0.5

0.5 1

))
and p(x) ∼ N

((
3
3

)
,

(
6 3
3 6

))
, respectively. Figure 6a shows the trace of

the original 2D time series and Figure 6b shows the trace of the first principal
component. From these, we can see by eyes that there is a sudden jump close to
time point 100 in both figures and at the same time the variance of the traces
starts to change. In other words, changes in the original 2D time series are
reflected on the first principal component.
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Figure 6: An example of traces with a simultaneous change in mean and vari-
ance. The time series consists of 200 observations with a change at 100. (a) The
existence of an sudden jump in the original bivariate time series. (b) The exis-
tence of an sudden jump in the first principal component. The two red segments
on both figures indicate a change in mean value.

3.2.2 Theoretical Analysis

In change point analysis, changes are detected by measuring the difference be-
tween the distributions before and after the change. The Kullback–Leibler diver-
gence is a measure of how one distribution is different from another distribution
and defined as [14]:

DKL(P ‖ Q) =

∫ ∞
−∞

p(x)log

(
p(x)

q(x)

)
dx (8)

where DKL(P ‖ Q) ≥ 0, p(x) and q(x) denote the probability density function
(PDF) of P and Q. A Kullback–Leibler divergence equals to zero if and only
if two distributions in question are identical. In change point setting, q(x) rep-
resents the PDF before the change and p(x) represents the PDF after the change.

In fact, Qahtan et al [6] has already proved this problem by using Kullback–Leibler
divergence. We adapt their analysis and show how change in mean and change
in variance are reflected in the first principal component here.

For simplicity, Qahtan et al assume that the data without change has mean
vector µ1 = [0, 0]T and variables have the same variance such that the covari-

ance matrix Σ1 =

(
σ2 σ2ρ
σ2ρ σ2

)
for −1 < ρ < 1, ρ 6= 0. The following lemma

whose proof can be found in Appendix will be used.

Lemma 1: For two univariate normal distributions, p(x) and q(x), where
q(x) ∼ N(µ1, σ

2
1) and p(x) ∼ N(µ2, σ

2
2), the KL-divergence from q(x) to p(x)
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is given as follows:

DKL(p ‖ q) =
1

2
log

(
σ21
σ22

)
− 1

2
+
σ22 + (µ1 − µ2)2

2σ21
(9)

If PCA is not applied, data are the same as projection on the original coordi-
nates u1 = [1, 0]T and u2 = [0, 1]T . If PCA is applied, data are projected on
an orthogonal matrix having the sorted eigenvectors as its columns (described

in Section 3.1.1). In this case, we obtain the first eigenvector v1 =
[

1√
2
, 1√

2

]T
associated with the largest eigenvalue λ1 = σ2 +σ2ρ, and the second eigenvector

v2 =
[
− 1√

2
, 1√

2

]T
associated with the second eigenvalue λ2 = σ2 − σ2ρ.

Case 1: Change of Variance
With changes in the variance of the two variables, the covariance matrix after

the change can be Σ2 =

(
σ2 + τ1

√
σ2 + τ1

√
σ2 + τ2ρ√

σ2 + τ1
√
σ2 + τ2ρ σ2 + τ2

)
where τi

denote changes in variance with τi ≥ 0, i = 1, 2.

In the original coordinate system, before the change in variance of the variables,
the projection on u1 has the distribution qu1 ∼ N(0, u1

TΣ1u1) = N(0, σ2). Af-
ter the change, pu1 ∼ N(0, u1

TΣ2u1) = N(0, σ2 + τ1). Then, applying Lemma
1, we have

DKL(pu1 ‖ qu1 ) =
1

2
log

(
σ2

σ2 + τ1

)
+

τ1
2σ2

If PCA is applied, the first principal component is obtained after projecting
the data on the first eigenvector. Before the change, the first principal compo-
nent has the distribution qv1 ∼ N(0, v1

TΣ1v1) = N(0, λ1). After the change,
pv1 ∼ N(0, v1

TΣ2v1) = N
(
0, σ2 +

√
σ2 + τ1

√
σ2 + τ2ρ+ 1

2(τ1 + τ2)
)
. The KL-

divergence is calculated as

DKL(pv1 ‖ qv1) =
1

2

(
log

2λ21
2(σ2 + r) + τ1 + τ2

)
+

2(σ2 + r)− 2λ21 + τ1 + τ2
2λ21

where r =
√
σ2 + τ1

√
σ2 + τ2ρ. We see that DKL(pv1 ‖ qv1) > 0 as long as

τ1, τ2 ≥ 0, that is, we can observe changes in the variances of the original vari-
ables in the first principal component.

Case 2: Change of Mean
Suppose that the mean vector of the data changes from µ1 = [0, 0]T to µ2 =
[τ1, τ2]

T where τi denote mean shifts with τi ≥ 0, i = 1, 2.

In the original coordinate system, the projections on u1 before and after the
mean shift have distributions qu1 ∼ N(0, σ2) and pu1 ∼ N(τ1, σ

2), respectively.
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The KL-divergence is given as

DKL(pu1 ‖ qu1 ) =
τ21

2σ2

If PCA is applied, the first principal component before and after the change has
distributions qv1 ∼ N(0, λ1) and pv1 ∼ N(µ2

Tv1, λ1) = N((τ1 + τ2)/
√

2, λ1),
respectively. The KL-divergence is obtained as

DKL(pv1 ‖ qv1) =
(τ1 + τ2)

2

4λ1
.

Clearly, we see that any positive τ1 or τ2 will give us a non-negative value of
DKL(pv1 ‖ qv1), which means that mean changes in the original data can be ob-
served in the first principal component.

By using the Kullback–Leibler divergence, we have theoretically shown that
changes in the original multidimensional time series are reflected in the first
principal component. Accordingly, the problem of detecting changes in multi-
dimensional time series is reduced to detecting changes in one-dimensional time
series.

3.3 Change Point Analysis

The previous section has shown that the problem of detecting changes in multi-
dimensional time series is reduced to detecting changes in one-dimensional time
series after applying PCA to a multidimensional time series. In this section,
we present statistical tests and change point detection methods for one single
change point in a one-dimensional time series.

In offline setting, we concern mainly two problems: one is whether there is a
change point, and the other is where it is most likely located if there exists such
a point. As mentioned in Section 2, there are several methods to deal with offline
change point detection. In this thesis, we adapt a cumulative sum-based change
point algorithm developed first by Taylor [7] and later by Li [15] to detect a
change in mean. To detect a change in variance, we make a slight modification
to Taylor’s algorithm by squaring the value of the data.

3.3.1 Cumulative Sum-Based Detection

Detection of Changes in Mean
To give an intuition of the cumulative sum tests, we use the first principal compo-
nent dataset presented in Figure 6 (Section 3.2) to illustrate. The first principal
component, denoted by h(t)(1 < t < T ), contains 200 observations, see the trace
in Figure 7a. From this, the cumulative sums of the principal component values
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are calculated as follows

CUSUM(t) =
t∑

k=1

h(k) for k, t = 1, · · · , T (10)

where T is the length of a time series.

After the projection, we know that the origin coincides with the sample mean.
The coordinates of the first principal component measure actually how far, on
average, the data points are from the sample mean along the direction of the
first principal component. This explains that the values of h(t) sum to zero and
why the cumulative sum over all values always ends at zero. The CUSUM curve
for h(x) is shown in Figure 7b. Since the principal component values range from
negative value to positive value over time, it is expected that values added to
the cumulative sum will be negative and the sum will steadily decrease. If a
change occurs, the CUSUM curve will be broken into two segments with clearly
different slopes. This means that there is a value that maximizes the contrast
between these two segments and this value indicates a significant change in the
mean value. We define the test statistic as the difference between the extreme
values of CUSUM(t), denoted by

TD = CUSUM(t)max − CUSUM(t)min (11)

To determine the significance of TD, a threshold under the null hypothesis of no
change needs to be derived. Here, we apply a permutation test which requires
no knowledge of the underlying distribution. A detailed description of the test
procedure is presented in Section 3.3.2.

Figure 7: (a) The trace of the first principal component h(t). (b) The CUSUM
curve of h(t).

Detection of Changes in Variance
To detect changes in variance, we modify slightly Taylor’s CUSUM algorithm.

14



Instead of using the first principal component h(t) directly, we use the squared
value of h(t), denoted by h(t)2 (see the trace Figure 8a). From this, the Cumu-
lative Sums of Squares of h(t) are calculated:

CSS(t) =

t∑
k=1

((h(k))2 − (h(k))2) for k, t = 1, · · · , T (12)

where (h(k))2 =

∑T
k=1(h(k))2

T

The squared values of h(t) are first centered to zero mean such that the CSS
are the CUSUM of the differences between the squared values of h(t) and their
average. Figure 8b displays the CSS(t) curve. We see that the fluctuation of the
CSS(t) curve is as immense as the CUSUM(t) curve (Figure 7b) and the slope
shows a dramatic change indicating that the variance changes from a smaller
value to a larger value. The difference between the extreme values of CSS(t) is
again defined as the test statistic. A statistical test can thereafter be applied to
determine the significance of the difference.

Figure 8: (a) The trace of the squared h(t). (b) The CSS curve of h(t).

3.3.2 Significance Testing the Existence of Change Points

The change point problem can be interpreted as a statistical hypothesis test,
where the null hypothesis is that no change point exists versus the alternative
hypothesis that there exists at least a change point. A permutation test is
conducted to test whether a change in mean is statistically significant under the
null hypothesis. We illustrate the procedure as follows.

1. Randomly permute the original data values i.e., h = {h(t), t = 1, · · · , T}
to generate a new permutation of {1, · · · , T}, denoted by h(t)p. From this,
we can estimate how much the TD value would vary if no change points
existed. An example of the trace of h(t)p is shown Figure 9a.
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2. Compute the CUSUM(t) based on h(t)p and calculate thereafter the per-
muted test statistic, Tp. By comparing this value with the original differ-
ence TD, we can check if this value is consistent with the situation when
no change point exists. The CUSUM curve of the original time series h(t)
and CUSUM curves of 3 randomly permuted traces, h(t)p are displayed in
Figure 9b. The CUSUM curves oscillate around 0 when no change occurs.
The difference between the extreme CUSUM values of the permuted trace
is much smaller compared to the CUSUM curve of the original time series.

3. Repeat (1)-(2) N (usually ∼ 1000) times in order to obtain the distribution
of Tp, i.e., P (Tp) = {(Tp)(1), (Tp)(2), · · · , (Tp)(N)}. We can then reject the
null hypothesis and declare the existence of a change if TD is greater than
a predetermined threshold, e.g., at a significance level of 0.05.

We note that the distribution of Tp is based on N times randomly selected
permutations rather than all possible permutations of the original time series.
The total number of permutations (T !) grows out of control and this is not
computation feasible. In general, setting N = 1000 times is sufficient for most
situations [7].

Figure 9: (a) A permutation of h(t) obtained by randomly reordering its time
order. (b) CUSUM curve of h(t) and 3 randomly permuted traces h(t)p, shown
in blue color.

To test whether a change in variance is statistically significant, the same permu-
tation test described above is implemented. Instead of generating the time order
of the data values of h(t), we randomly permute the time order of the squared
h(t), denoted as (h(t)2)p, see Figure 10a. This process is repeated N times. For
each permutation, the CSS(t) and the corresponding test statistic are calcu-
lated. In Figure 10b, we see that the CSS curve of the permuted traces (in blue
color) fluctuate around 0 while the CSS curve of the original time series has a
drastic change in direction. This sudden change indicates a change in variance.

16



Figure 10: (a) A permutation of h(t)2 obtained by randomly reordering its time
order. (b) The CSS curve of h(t) and 3 randomly permuted h(t)2 traces, (h(t)2)p,
shown in blue color.

3.3.3 Threshold Setting and p-value

In hypothesis testing, there are two ways to determine whether there is enough
evidence from the sample to reject the null hypothesis. One approach is to spec-
ify a threshold Th corresponding to a given significance level such that the null
hypothesis is rejected if the given test statistic is greater than the threshold. The
other approach is based on p-value and one can reject the null hypothesis if the
p-value is smaller than the given significance level.

If the first approach is used, then the threshold is selected to bound the prob-
ability of type I error α ∈ (0, 1), also known as the rate of false positives, that
is, the error of rejecting the null hypothesis when it is actually true. In change
point detection, it is the probability of detecting a change when no change has
occurred. In general, one tries to minimize the chance of type I error’s occurrence
as no one wants to accept an invalid hypothesis. Traditionally, one usually sets
α equal to 0.05 or 0.01, which is also called significance level of the test [16]. In
change point detection, one should choose the significance level carefully. If the
chosen type I error value is too small, a large number of change points will not
be detected. An extremely small value of type I error is suggested to avoid. It is
worth noting that the type II error, the probability of missing to detect a change
point even it actually does exist is not controlled by our cumulative sum-based
algorithms. For example, for detecting a change in mean, the upper one-sided
test is used because the test statistic TD is always positive. The threshold value
can be found such that the probability of finding Tp ≥ Th (shaded area in Figure
11a) equals to the significance level or type I error, e.g., α = 5%. In the original
time series, the null hypothesis assuming no change point is rejected if TD ≥ Th.
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In many statistical software packages, the second approach is more commonly
used. Instead of comparing the test statistic TD with the pre-specified threshold,
the associated p-value is usually computed to be compared with a pre-determined
significance level, α. The p-value is defined as the probability of obtaining an
event that equals to or more extreme than the one in the data, assuming that
the null hypothesis is true [16].

In this thesis, we use the p-value approach to determine the result. Conse-
quently, a p-value will be computed from the permutation test we described
above. As we do not consider all possible permutations, we will not obtain an
exact p-value, but rather an approximate p-value which is calculated as follows:

p-value =
The number of {N : T

(N)
p ≥ TD}

N
(13)

A histogram of the permuted test statistic Tp is displayed in Figure 11b. The
blue dashed line indicates where the original sample falls (TD = 232.86). Using
definition (13) we obtain a p-value equal to 0. An approximate p-value of 0
indicates that the change in the mean value is significant.

Figure 11: (a) The distribution of Tp obtained by generating random permuta-
tions from original dataset h(t). (b) Histogram of the permuted test statistic Tp
for 1000 permuted samples.

3.3.4 Estimating the Location of a Change Point and Its uncertainty

Once a change has been detected, the location of the most likely change point
t∗ (1 < t∗ < T ) can be estimated. Here we present two methods for locating the
most probable change point. One is the cumulative sum-based estimator and
the other is the mean square error (MSE) estimator. We will conduct a small
experiment to compare these two methods in a later section.
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Cumulative Sum-based Estimator
For mean change detection, the most likely change point location is at which the
maximum absolute value of cumulative sum CUSUM(t∗) is attained [7]:

CUSUM(t∗) = maxt=1,··· ,T |CUSUM(t)| (14)

For variance change detection, the most likely change point location is at which
the maximum absolute value of the cumulative sum of squares (CSS(t∗)) is
attained:

CSS(t∗) = maxt=1,··· ,T |CSS(t)| (15)

CUSUM(t∗) and CSS(t∗) are the most extreme points on the CUSUM and CSS
curves, respectively. The point t∗ estimates the last point before the change. The
point t∗ + 1 estimates the first point after the change. For the example time se-
ries h(t), the most extreme point on the CUSUM curve and CSS curve attains
CUSUM(100) and CSS(99), respectively, see Figure 12.

MSE Estimator
For a given time t∗ (1 < t∗ < T ), the mean square error (MSE) estimator is
defined as [7]:

MSE(t∗) =

t∗∑
k=1

(
h(k)− h(k)1

)2
+

T∑
k=t∗+1

(
h(k)− h(k)2

)2
(16)

where h(k)1 =

∑t∗

k=1 h(k)

t∗
and h(k)2 =

∑T
k=t∗+1 h(k)

T − t∗

The idea behind the MSE estimator is as follows: By separating the time series
h(t) at t = t∗ (t∗ = 3, · · · , T−2) into two segments and then estimating the mean
of each segment, one can estimate how well the two estimated mean values fit
the data. The best estimator of the change point location tch is given as the time
where MSE(t∗) reaches its minimum. Figure 13a shows the resulting MSE(t∗)
for the example time series h(t). The time point that minimizes MSE(t∗) is 100
for detecting a change in mean. For estimating a change point location for a
detected change in variance, one can simply substitute h(t) by h(t)2. A plot of
the resulting MSE(t∗) for the squared h(t) is shown in Figure 13b.
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Figure 12: Determining the most likely change point location using the cumulative
sum-based estimator. (a) Plot of the absolute value of the CUSUM for h(t). (b) Plot
of the absolute value of the CSS for h(t). The vertical dashed blue line in both plots
indicates the estimated change point location where CUSUM(t∗) or CSS(t∗) obtains
its maximum absolute value. The two red lines represent a 68% percentiles bootstrap
confidence interval for CUSUM(tch) or CSS(tch) (error bars). The uncertainty in cor-
responding change point location is indicated by the green lines which are determined as
the time interval whose absolute CUSUM and CSS values are enclosed by the confidence
interval of CUSUM(tch) and CSS(tch), respectively.

Figure 13: Determining the most likely change point location using the mean square
error estimator. (a) Plot of the resulting MSE(t∗) for h(t). (b) Plot of the resulting
MSE(t∗) for h(t)2. The vertical dashed blue line in both plots indicates the estimated
change point location where MSE(t∗) obtains its minimum value. The two red lines rep-
resent a 68% percentiles bootstrap confidence interval for MSE(tch) (error bars). The
uncertainty in corresponding change point location is indicated by the green lines which
are determined as the time interval whose MSE values are enclosed by the confidence
interval of MSE(tch).
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Uncertainty Estimation
When evaluating CUSUM(t∗), CSS(t∗) or MSE(t∗) for determining a change
point location, one can hardly avoid a sampling error. Here we present a method
based on bootstrapping, a process of resampling with replacement, to estimate
the uncertainty in the estimated change point location (tch) due to this error,
which is equivalent to construct a confidence interval for the corresponding es-
timate using the bootstrap [15]. By determining the uncertainty in the change
point location, we can see how prominent a change point it is. Suppose that
the change point location is determined to be at t∗ = tch and the data is di-
vided into two segments: {h(1), · · · , h(tch)} and {h(tch + 1), · · · , h(T )}. For
illustration, we let the value of the CPL(tch) represent any of the values of
{CUSUM(tch), CSS(tch),MSE(tch)}. The bootstrap procedure for estimating
the uncertainty in CPL(tch) is implemented as follows:

1. Resample the first segment {h(1), · · · , h(tch)} with replacement.

2. Resample the second segment {h(tch + 1), · · · , h(T )} with replacement.

3. Apply formula (14), (15) or (16) to evaluate the bootstrap based CPL(tch).
Observe that one needs to first combine the first segment from step 1 with
the second segment from step 2 before applying formula (14) or (15) when
evaluating the bootstrap based CUSUM(tch) or CSS(tch).

4. Repeat (1)− (3) independently N (i.e., 1000) times to obtain a bootstrap

distribution of CPL(tch), i.e. {CPL(tch)
(1)
boot, · · · , CPL(tch)

(N)
boot}.

5. A two-sided (1−α)×100% bootstrap confidence interval can then be con-
structed for CPL(tch), e.g., using the standard error (SE) or the percentiles
of the bootstrap distribution if the bootstrap distribution is approximately
smooth and symmetric. Estimation of the standard error to some point
estimate is simply the standard deviation of the bootstrap distribution
[17]. For instance, a 68% confidence interval for the mean square error
estimator is generated by CPL(tch) ± 1.0 × SE. A percentile bootstrap
confidence interval is created by selecting the endpoints from the middle
of the bootstrap distribution corresponding to e.g., 68% confidence level.

The constructed bootstrap confidence intervals can be displayed graphically as
error bars (shown as red lines in Figure 12 and Figure 13). If the value of
CPL(t∗) falls inside the confidence interval of CPL(tch), any time instant t∗

closed to tch can be a potential change point. Therefore, the uncertainty in
the change point location can be determined as the time interval whose CPL
values are enclosed by the confidence interval of CPL(tch), shown as the double
green lines in Figure 12 and Figure 13. It can be easily seen in both figures that
a narrower confidence interval for the value of change point location estimator
gives rise to a smaller uncertainty in the change point location. In Figure 13b
we notice that the error bar for the value of MSE(tch) is surprisingly big which
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means that there is large uncertainty in the change point location. This looks
unreasonable. At this moment, we do not know the answer. An investigation
into the problem will be made in later sections.

4 Simulation Study

We consider three scenarios in which three different types of changes take place
in a two-dimensional time series:

1. Change in mean only

2. Change in variance only

3. Simultaneous change in mean and variance

Let N(µ,Σ) denote the bivariate normal distribution with mean vector µ =

[µ, µ]T and covariance matrix Σ =

(
σ21 σ1σ2ρ

σ1σ2ρ σ22

)
where σ1, σ2 are standard

deviations and ρ, −1 < ρ < 1 is the correlation coefficient between variables.
Each simulation applies the CUSUM or CSS method to a normally distributed
time series with one single change point after performing the principal compo-
nent analysis. Throughout the study, observations before and after the occur-

rence of a change are generated from N1

(
µ1 =

(
0
0

)
, Σ1 =

(
1 0.5

0.5 1

))
, and

N2 (µ, Σ1) or N2 (µ1, Σσ), respectively. µ and Σσ varies in each simulation
depending on the type of changes we want to study. Since we do not detect
changes in correlation, the value of ρ is set to 0.5 for all simulations.

The analysis of data, both simulated and real life, are performed using the statis-
tical software R (R Development Core Team) [18]. We used N = 1000 iterations
when performing the permutation test, which was conducted at a α = 0.05
significance level.

4.1 Scenarios Study

A variety of data according to the three scenarios described above are simulated
to study how well the change point detection methods work. The PCA is ap-
plied to all of the data before performing the change point analysis. We should
emphasize here again that the focus of our methods is to test the existence of a
change point and then find the most prominent change point location if the ex-
istence of a change point is shown to be statistically significant. For this reason,
we will study how different sizes of parameter change affects the detection of a
change point and what factors affect the accuracy of a change point.
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4.1.1 Change in Mean

We simulate two sets of time series without replications to study how well the
CUSUM method works.

Set 1: Four 2D time series are generated with distributionsN1 (µ1, Σ1),N2 (µ, Σ1)
where µ = [1, 1]T , [2, 2]T , [3, 3]T or [4, 4]T , respectively. The sample size T = 300
is fixed for each simulation.

Set 2: Three 2D time series are generated as N1 (µ1, Σ1), and N2 (µ, Σ1)
where µ = [2, 2]T . The sample sizes vary at T = {200, 400, 600}.

The approximated p-value obtained by the permutation test, the change point
location using two different methods (CUSUM(t∗) and MSE(t∗) estimator) and
the 95% percentiles bootstrap confidence interval for the time of change which
indicates how well the time of change has been pinpointed, are recorded in Table
1 and Table 2. To easily compare the effect of the sample size, we normalize the
time intervals in the range [0, 1] in Table 2 by dividing confidence limits by the
sample size T .

Table 1 shows clearly that the CUSUM method can successfully detect the exis-
tence of a change point even with a small change in mean, though with a wider
confidence interval. As the size of mean change increases, the confidence interval
for the change point location is getting narrower using both methods (see the
last two 95% Time Interval columns). Also, shown by Figure 14 and Figure 15,
the CUSUM(t∗) and MSE(t∗) curves are getting steeper with the increase of
mean change. This means that the change point location can be more accurately
pinpointed with a larger mean change. We note that the size of the confidence in-
terval for the time of change depends on the sample size of the data, as shown by
the normalized time interval in Table 2. In Figure 16 and Figure 17, we see that
the size of confidence intervals becomes smaller as the increase of the sample size.

Moreover, we observe that the change point locations determined by theMSE(t∗)
estimator results in less uncertainty compared to the CUSUM(t∗) estimator
(see Figure 14, 15, 16, 17). This may simply be because of the sampling error
as the bootstrapping method will not produce identical results each time it is
performed. It could also be because it does not have an easy true correspon-
dent between extreme values of the fluctuation with the change points if the
CUSUM(t∗) estimator is used, as several extreme values may occur due to the
sampling error. In such a case, using CUSUM(t∗) estimator will result in a rela-
tively larger uncertainty in the change point location compared to the MSE(t∗)
estimator which estimates how well two estimated mean values fit the data each
time the data is split into two segments.

23



µ
Significance

(p-value)
Location

CUSUM(t∗)
Location
MSE(t∗)

95% Time Interval
CUSUM(tch)

95% Time Interval
MSE(tch)

1 0.00 150 150 (120, 183) (120, 171)
2 0.00 150 150 (133, 169) (144 , 158)
3 0.00 150 150 (137, 161) (147, 153)
4 0.00 150 150 (140, 159) (148, 152)

Table 1: Results of change point analysis on four 2D time series which undergo a
mean change at 150. Each time series consists of 300 observations, with distributions
N1 (µ1, Σ1), N2 (µ, Σ1) where µ = [1, 1]T , [2, 2]T , [3, 3]T or [4, 4]T , respectively. The
95% time interval is enclosed by the 95% percentiles bootstrap confidence interval for
the value of CUSUM(tch) or MSE(tch).

T
Significance

(p-value)
Location

CUSUM(t∗)
Location
MSE(t∗)

95% Time Interval
CUSUM(tch)
(normalized)

95% Time Interval
MSE(tch)

(normalized)

200 0.00 102 102
(87, 114)

(0.44, 0.57)
(92, 108)

(0.46, 0.54)

400 0.00 200 200
(174, 223)
(0.44, 0.56)

(187 , 209)
(0.47, 0.52)

600 0.00 300 300
(275, 325)
(0.46, 0.54)

(285, 313)
(0.48, 0.52)

Table 2: Results of change point analysis on three 2D time series which undergo a
mean change at 100, 200 and 300, respectively. All these three time series have dis-
tributions before and after a change N1 (µ1, Σ1), and N2 (µ, Σ1) where µ = [2, 2]T ,
respectively. The 95% time interval is enclosed by the 95% confidence interval for the
value of CUSUM(tch) or MSE(tch). The second range in the time interval cells are
normalized confidence intervals with respect to the sample sizes.

(a) µ = 1 (b) µ = 2 (c) µ = 3 (d) µ = 4

Figure 14: Determining the change point location using the CUSUM(t∗) estimator
and its uncertainty using 95% bootstrap confidence interval for four time series with
various mean change. (a)-(d) are resulting CUSUM(t∗). The red lines represent the
error bars and the green lines represent the time interval enclosed by the error bars.

24



(a) µ = 1 (b) µ = 2 (c) µ = 3 (d) µ = 4

Figure 15: Determine the change point location using the MSE(t∗) estimator and its
uncertainty using 95% bootstrap confidence interval for four time series with various
mean change. (a)-(d) are resulting MSE(t∗).

(a) T = 200 (b) T = 400 (c) T = 600

Figure 16: Determining the change point location using the CUSUM(t∗) estimator
for three time series with sample size T = {200, 400, 600} and its uncertainty using 95%
bootstrap confidence interval. (a)-(d) are resulting CUSUM(t∗).

(a) T = 200 (b) T = 400 (c) T = 600

Figure 17: Determining the change point location using the MSE(t∗) estimator for
three time series with sample size T = {200, 400, 600} and its uncertainty using 95%
bootstrap confidence interval. (a)-(c) are resulting MSE(t∗) curves. All time series
have the same distributions.
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4.1.2 Change in Variance

The same type of simulation study is also performed to evaluate how well the
CSS method performs.

Set 1: Four time series are generated with distributions N1 (µ1, Σ1) and
N2 (µ1, Σσ) where σ21 = σ22 = {3, 6, 9, 12}, respectively. The sample size
T = 300 is fixed for each simulation.

Set 2: Three time series are generated as N1 (µ1, Σ1) and N2 (µ1, Σσ) where
σ21 = σ22 = 6. The sample sizes vary at T = {300, 600, 900}.

Table 3 shows that the CSS method can also successfully detect the existence of
a change in variance even with a small change in variance. As the size of variance
change increases, the confidence interval for the change point location is getting
narrower using the CSS(t∗) estimator (see the column of the 95% Time Interval
for CSS(tch) and Figure 18). We observe also that the size of the confidence
interval for the value of CSS(tch) becomes smaller as the sample size increases
(see Figure 20). Both error bar and its corresponding time interval are getting
narrower with an increase in the sample size.

On the other hand, the MSE(t∗) estimator appears to be an unreliable method
to locate a change point in variance. As shown by Figure 19, the confidence
intervals for the value of MSE(tch) are so extremely wide that the error bars
cannot even touch the MSE(t∗) curves. This means that using the MSE(t∗)
estimator to determine the change point location in variance will result in large
uncertainty in the determined location. This is quite unexpected. In Figure
19, the values of the error bar increase dramatically as the size of the variance
increases. We suspect that it may be because of the simulation setting itself.
Other data simulations may give more reasonable results. However, due to time
limitations, we will not carry out further investigation into this problem at this
moment.

σ2
Significance

(p-value)
Location
CSS(t∗)

Location
MSE(t∗)

95% Time Interval
CSS(tch)

3 0.00 149 149 (105, 206)
6 0.00 150 150 (108, 188)
9 0.00 154 154 (113, 186)
12 0.00 151 151 (118, 177)

Table 3: Results of change point analysis on four 2D time series which undergo a
variance change at 150. Each time series consists of 300 observations, with distributions
N1 (µ1, Σ1), N2 (µ1, Σσ) where σ2

1 = σ2
2 = {3, 6, 9, 12}, respectively. The 95% time

interval is enclosed by the 95% confidence interval for the value of CSS(tch).
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(a) σ2 = 3 (b) σ2 = 6 (c) σ2 = 9 (d) σ2 = 12

Figure 18: Determining the change point location using the CSS(t∗) estimator and its
uncertainty using 95% bootstrap confidence interval. (a)-(d) are resulting CSS(t∗).

(a) σ2 = 3 (b) σ2 = 6 (c) σ2 = 9 (d) σ2 = 12

Figure 19: Determining the change point location using the MSE(t∗) estimator and
its uncertainty using 95% bootstrap confidence interval. (a)-(d) are resulting MSE(t∗).

(a) T = 300 (b) T = 600 (c) T = 900

Figure 20: Determining the change point location using the CSS(t∗) estimator and
its uncertainty using 95% bootstrap confidence interval. (a)-(c) are resulting CSS(t∗).
Sample sizes vary at T = {300, 600, 900}
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4.1.3 Simultaneous Change in Mean and Variance

The cumulative sum (CUSUM) and cumulative sum of squares (CSS) methods
are designed to test changes only in mean and variance respectively. Neverthe-
less one can combine these two methods to find a simultaneous change in mean
and variance. This means that we apply both of the methods to a time series
individually. If only one of the methods gives a positive result (e.g. there exists
a statistically significant change point in the time series.), the time of the de-
tected change point is the most likely change point location. On the other hand,
if both methods give a positive result, only one of the change point location is
identified as the most prominent change point location. The confidence interval
of the change point location which tells the uncertainty the change point loca-
tion is to be used as a criterion here. The change point with less uncertainty
in the estimated change point location is selected as the most prominent change
point in the time series. Now we provide an example to show how this combined
method works.

Let a 2D time series consisting of 300 observations has distributions before and

after a change: N1

((
0
0

)
,

(
1 0.5

0.5 1

))
and N2

((
3
3

)
,

(
6 3
3 6

))
, respectively.

The traces of the bivariate time series and the 1st PC are shown in Figure 21.
As expected, both CUSUM and CSS methods show that there is a significant
change in mean and variance, respectively. We use the cumulative sum-based
estimator to determine the change point location and find that the change point
location determined by CUSUM(t∗) estimator is 150 while the change point
location determined by CSS(t∗) estimator is 151. It seems that either of the
change points can be the simultaneous change point location as they are so close
to each other. However, if we look at Figure 22, the confidence interval for the
value of CSS(151) is wider. This indicates that the time of the change in vari-
ance cannot be accurately pinpointed. The change point location determined by
the CUSUM(t∗) estimator is more prominent and therefore 150 is chosen as the
most prominent change point in mean and variance for this simulation.
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Figure 21: (a) The trace of the 2D time series. (b) The trace of the 1st PC. The vertical
dashed red line indicates the change point location at 150 determined by CUSUM(t∗)
estimator. The vertical dashed blue line indicates the change point location at 151
determined by CSS(t∗) estimator.

(a) CUSUM(t∗) curve (b) CSS(t∗) curve

Figure 22: (a)The resulting CUSUM(t∗) curve for the value of CUSUM(150) and
its uncertainty. (b)The resulting CSS(t∗) curve for the value of CSS(151) and its
uncertainty. The red lines represent the 95% error bars determined by bootstrapping
and the green lines represent the corresponding time intervals.
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4.2 Performance Evaluation of the Two Change Point Location
Estimators

In the previous section, we have seen that the MSE(t∗) estimator slightly out-
performs the CUSUM(t∗) estimator for locating a change point in a time series
with a mean change in terms of the uncertainty in the determined location. On
the other hand, the CSS(t∗) estimator is much better than MSE(t∗) estimator
for determining a change point in a time series with a variance change. Here we
use other criteria to evaluate the performance of these two estimators.

This time, we generate a set of independent time series with 1000 replications for
each simulation setting. Each time series consists of 300 observations with a true
change point location at 150 as before. The number of all detected change points,
denoted by n1 is noted. We use the number of correctly identified change point
locations, denoted by n2, and the number of incorrectly identified change point
locations, denoted by n3 as the criteria [19]. Moreover, the number of almost
correctly identified change point locations which differ three observations from
the true change point location, denoted by n4 are also calculated. That is, for
a true change point locating at 150, the almost correctly identified change point
locations are defined to be in this range: {147, 148, 149, 151, 152, 153}. Note that
six points are designed to be an acceptable range in this experiment. In general,
this range may not be suitable for other experiments. By including the number
of almost correctly detected change point locations, we can get an overview of
how close an incorrectly identified change point location lies to the true change
point location.

The simulation setting is the same as previous sections: various sizes of the
parameter changes are assigned to see how the size of change affects the ability
of locating the change point. For change in mean, the distribution after the
change is given as N2 (µ, Σ1) with µ = [1, 1]T , [2, 2]T , [3, 3]T or [4, 4]T . For
change in variance, the distribution after the change is set to N2 (µ1, Σσ) with
σ21 = σ22 = {3, 6, 9, 12}, respectively. The simulation results are concluded in
Table 4 and Table 5.
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Change in Mean

µ # CUSUM(t∗) MSE(t∗) µ # CUSUM(t∗) MSE(t∗)

1

n1 1000 1000

3

n1 1000 1000
n2 365 355 n2 915 912
n3 635 645 n3 85 88
n4 433 430 n4 84 87

2

n1 1000 1000

4

n1 1000 1000
n2 733 730 n2 978 978
n3 267 270 n3 22 22
n4 251 253 n4 22 22

Table 4: Detected change point locations from 1000 simulations using CUSUM(t∗) and
MSE(t∗) estimator after having tested the existence of one single change point using
cumulative sum (CUSUM) method on 1st PCs. Each sample has T = 300 observations.
The distributions before and after the change are N1 (µ1, Σ1) and N2 (µ, Σ1) with
µ = [1, 1]T , [2, 2]T , [3, 3]T or [4, 4]T , respectively.

As it is shown in Table 4, the CUSUM test is truly reliable for testing the
existence of changes in mean value because the number of all detected change
points (n1) is 1000 dispite of different sizes of mean shifts. Given the existence of
a change point in mean, the CUSUM(t∗) and MSE(t∗) estimators for locating
the most likely change point have similar performance across different size of
mean change using both criteria. Both methods give approximately the same
number of correctly identified change point locations (n2) and the number of
incorrectly detected change point locations (n3). For small changes (e.g., µ = 1),
both estimators are not able to locate a large amount of true change point. Only
around 36% of the detected change points have the true location at 150. As the
size of mean shift increases, the number of correctly identified true change point
locations is increasing. For a mean change larger than 2, more than 90% of the
detected change points have the true location and almost all of the incorrectly
identified change point locations lie pretty close to the true change point location
(n3 ≈ n2 within a difference of three observations).

31



Change in Variance

σ2 # CSS(t∗) MSE(t∗) σ2 # CSS(t∗) MSE(t∗)

3

n1 1000 1000

9

n1 1000 1000
n2 166 149 n2 285 268
n3 834 851 n3 715 732
n4 338 301 n4 372 347

6

n1 1000 1000

12

n1 1000 1000
n2 255 233 n2 316 297
n3 745 767 n3 684 703
n4 370 345 n4 362 351

Table 5: Detected change points from 1000 simulations using CSS(t∗) or MSE(t∗)
estimator after having tested the existence of one single change point using cumulative
sum squares (CSS) method on 1st PC. Each sample has T = 300 observations. The
distributions before and after the change are N1 (µ1, Σ1) and N2 (µ1, Σσ) with σ2 =
{3, 6, 9, 12}, respectively.

For testing the existence of a change in variance, Table 5 shows that the CSS
method is also reliable. At the significance level of 0.05, the null hypothesis was
rejected for each of the simulations. In terms of locating the exact change point,
the CSS(t∗) estimator appears to slightly outperform the MSE(t∗) estimator
since more true change point locations can be identified by the CSS(t∗) estimator
across different sizes of variance change. However, neither CSS(t∗) nor MSE(t∗)
estimator seems to be a very favourable method to determine the true change
point location in general. Even the size of variance change is 12, both methods
fail to detect a large amount of the true change point locations, and around 50%
of the number of incorrectly identified change point locations do not lie into the
6 points acceptable range.

4.3 Computational Cost Analysis

The computational cost of the whole change point analysis depends mainly on
the following three subroutines:

1. The PCA routine for reducing multidimensional data to a one-dimensional
data, which is called every time before performing the change point analy-
sis, has a quadratic complexity concerning the data dimensionality. Since
we only want to extract the first PC associated with the largest eigenvalue,
the data dimensionality reduction has relatively not too much effect on the
running time of the whole change point analysis scheme.

2. Both CUSUM and CSS methods for testing the existence of a change point
have en inefficient running time due to performing the computer-intensive
permutation test. Although we have avoided the factorial increase in the
number of permutations by using approximate permutation, a large num-
ber of repeated tests are still needed to achieve satisfactory accuracy. 1000
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random permutations were used in our analyses and gave us quite reliable
results. Fewer permutations can be specified but this could lead to less
accuracy of the methods. Therefore, the computational cost of our scheme
is effected more by this step.

3. Two methods to locate the most probable change point were introduced.
Depending on which method to be used, the running time of the scheme
can differ a lot. The MSE(t∗) estimator is not consistent with the change
point existence testing methods and performed independently only when
a change is reported. A mean square error is calculated each time the
data is split into two segments. The time complexity of the method is
linearly depending on the length of the time series. On the other hand,
the CUSUM(t∗) and CSS(t∗) estimators are consistent with the corre-
sponding change-point existence testing methods. The maximum absolute
value of the CUSUM or CSS, where the change point is located, is attained
almost by free. Therefore their running time on locating the change point
is remarkably more effective than the MSE(t∗) estimator.

5 Application to Single Molecule Data

The data we used in the simulation study were generated from the normal distri-
bution. But in real life, the distribution of the data may not be known. Since the
change point analysis scheme we proposed here is designed to distributional-free
data. It is worthy to apply the scheme on a non-normally distributed real life
time series and see how it performs.

5.1 Single Molecule Data

The real life data describe rotary traces obtained by observing freely rotary mo-
tions of a rotary motor protein, single F1-ATPase (F1) [15]. The rotations of F1

robustly construct the dwells statistics which is displayed graphically in Figure
23b. One can see that there are several abrupt jumps over time, and therefore
change point analysis can be applied to detect the dwell-time. The given time
series consists of three types of dwells statistics which are resulted by the rota-
tions: x-coordinates, y-coordinates, and angle. Detailed information about the
experiment of observing the rotary motions of F1-ATPase and how the data were
collected can be found in Li et al [15]. Here we extract the first 1000 observa-
tions from the x, y-coordinates variables and study only its general statistical
properties from the perspective of change point analysis. The interpretation of
the results related to the experiment itself will not be made.
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Figure 23: A subset of the two-dimensional time series observed in single
molecule experiments: the first 1000 observations. (a) A scatterplot for the
original data with a blue line indicating the direction of the first principal com-
ponent. (b) The trace of the original 2D time series. (c) A scatterplot of 1st PC
versus 2nd PC. (d) The trace of the 1st PC.
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5.2 Data Analysis

Figure 23a above shows the scatterplot of the extracted two-dimensional time
series and the traces are plotted in Figure 23b. We can see by eyes that there
exist multiple changes in both mean and variance. The principal component
analysis is applied to the data to obtain the principal components. Figure 23c
shows that the 1st PC captures the majority of the variation in the data. We
observe that possible changes in the original 2D time series are reflected in the
trace of 1st PC, see Figure 23d.

Next, we apply the permutation-based CUSUM and CSS methods individually to
detect if there exists a change in mean and/or variance of the variables. It turns
out that both tests give statistically significant results. Then, the change point
location estimators are calculated to determine the change points. We apply
both methods and find that the change point in mean determined by MSE(t∗)
and CUSUM(t∗) are at 177 and 178, respectively. The change point in variance
determined by MSE(t∗) and CSS(t∗) are at 173 and 174, respectively. In this
case, both methods locate approximately the same change point. If we look at
their uncertainty in Figure 24, we find that the cumulative sum-based estimator
gives a smaller uncertainty in the estimated change point location (compare plot
(a), (c) with plot (b), (d), respectively). For this reason, we use the estimated
locations determined by the cumulative sum based estimator (mean change at
178 and variance change at 173). Lastly, we compare the uncertainty in the value
of CUSUM(178) (Figure 24b) with the uncertainty in the value of CSS(173)
(Figure 24b). We see that the confidence interval for the value of CUSUM(178)
is slightly narrower. Therefore, the time point 178 is chosen as the most promi-
nent change point location for a simultaneous change in mean and variance, see
Figure 25 with the determined change point location on the original 2D traces
and the 1st PC trace.
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Figure 24: Determining change point location and its uncertainty by computing
the 95% confidence interval. (a) The resulting MSE(t∗). (b) The resulting
CUSUM(t∗). (c) The resulting MSE(t∗). (d) The resulting CSS(t∗)
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Figure 25: (a) The trace of the original 2D time series. (b) The trace of the 1st
PC. The blue dashed line indicates the most prominent change point location.
The solid green lines represent the 95% confidence interval for the change point
location.

6 Conclusion

In this thesis, we have developed a nonparametric offline scheme for detecting
changes in mean and/or variance in multivariate time series (with focus on two-
dimensional time series). The scheme is based on principal component analysis,
which is used for projecting the multivariate data onto a lower dimensional space.
By using PCA to reduce the data dimension, we can successfully apply to the
well formulated univariate methods, namely, the CUSUM and CSS methods, to
test the existence of a change in mean and variance, respectively. The simulation
study shows that the CUSUM and CSS methods are reliable to test the existence
of a change point by using a permutation test.

To estimating the most likely change point location, two methods were pro-
posed. One is the cumulative-sum based estimator which is consistent with the
change point existence testing methods. The other is the mean square error
(MSE) estimator which is on the contrary inconsistent with the existence test-
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ing methods and therefore it will cause additional computational complexity in
implementation. The study shows that the performance of the estimators de-
pends very much on the properties of data. In terms of determining the true
location of the change point, both methods perform similarly well if it is a mean
change. However, if it is a variance change, both methods are shown to fail to
identify a large number of change points. In terms of the resulted uncertainty
in the determined change point location, the MSE(t∗) estimator outperforms
the CUSUM(t∗) estimator if it is a mean change, and the CSS(t∗) estimator
outperforms the MSE(t∗) estimator if it is a variance change. That is, in short,
the MSE estimator is preferable if determining a change point location in a time
series with a mean change while the CUSUM-based estimator is preferable if
determining a change point location in a time series with a variance change.

We combine the CUSUM and CSS methods to detect simultaneous changes in
mean and variance. The results on both simulated and real life data show that
the combined method complements each other well and it can successfully deter-
mine the most prominent change point location by comparing the uncertainty in
identifying the change point locations, though it costs additional computational
complexity for running through a time series twice.

7 Discussion

First, it is worth to note that this thesis focuses on detecting one single change
in mean or variance on two-dimensional offline data. As introduced at the begin-
ning of the thesis, the proposed change point analysis scheme is able to generalize
to higher dimensional data by keeping only the first principal component. The
problem of how many principal components should be retained has been dis-
cussed a lot when it comes to reducing the data dimensionality. In this thesis, if
we always choose the first PC associated with the largest eigenvalues, the first
PC will always capture the most variation of the original data. Researchers are
encouraged to perform a simulation study and evaluate its performance.

Furthermore, for simplification, we detected only one single change point in this
thesis. This is a restriction that does not usually present in real life data and
multiple change points do often exist over a longer time in many situations. We
have provided a simple scheme such that one can easily apply the well-known
binary segmentation procedure to detect multiple changes recursively. Interest-
ing readers can find the procedure which has been described explicitly in both
Chen and Gupta [2] and Eckley I.A.et al [3].

The proposed change point analysis scheme is further restricted by PCA’s lim-
itation of handling only linear data. Some modern nonlinear versions of linear
principal component methods, such as kernel principal component has been well
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studied [11]. Detecting changes in nonlinear data based on a nonlinear PCA
method could be an interesting topic in future study. Here, we should notice that
the change point detection methods described in this thesis are not restricted to
PCA. PCA is served as a dimensionality reduction tool and the change point de-
tection methods can be applied to one-dimensional nonlinear data independently.

Despite restrictions in this thesis, we consider that the change point analysis
scheme we developed is simple to use and interpret. It successfully reduces the
computational cost in detecting changes in multidimensional time series by only
regarding a one-dimensional principal component. Both CUSUM and CSS meth-
ods are powerful at detecting smaller changes. The provided bootstrap based
error bar and associated time interval better characterize the changes. If one
is concerned with both change in mean and change in variance, both methods
can be combined to complement each other. However, to gain more insight into
the combined method, one may want to evaluate its performance in comparison
with other existing change point detection methods.

A further investigation on the MSE(t∗) estimator for locating a change point in
a time series with a possible variance change could be made. When we applied
the MSE(t∗) estimator to locate a variance change point in the single molecule
data, the resulted error bar in the determined change point location was reason-
able (see Figure 24c). However, when the MSE(t∗) estimator was applied to
the simulated data, the results were quite unreasonable (see Figure 19). So, it
could be possibly because of the setting of simulation. It would be very inter-
esting to see if the results could be improved if another simulation setting is used.

We consider that the main disadvantage of the provided scheme comes to the ex-
pense of computational complexity due to the permutation test. As the number
of data points increases, the computational cost becomes more expensive. Less
computer intensive nonparametric statistical tests such as the Wilcoxon Rank
Sum test, Mood test could be worth to try. But one should keep in mind that
two sample hypothesis testing procedure has its drawback as only being suitable
to apply to independent data. Also, the null distribution of the test statistic
needs to be derived.
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Appendix

A.1 Derivation of eigenvalues and eigenvectors

In this section, we explain the procedure of finding eigenvalues and eigenvectors
using a trivial two-dimensional covariance matrix example. Let the covariance
matrix S be in the following form

S =

(
σ21 σ1σ2ρ

σ1σ2ρ σ22

)
(17)

where σ1, σ2 are the standard deviations and ρ is the correlation coefficient be-
tween two variables.

To obtain the eigenvalues (λ) and the associated eigenvectors (v), the following
equations need to be soloved:

Sv − λv = 0⇔ (S − λI)v = 0 (18)

where v and λ are both unknown. Therefore S −λI must be a singular matrix
for nontrivial eigenvectors. So, it is possible to find all λs’ first because it is
known from linear algebra that determinant of a singular matrix is 0, which is
det(S − λI) = 0, where

S − λI =

(
σ21 − λ σ1σ2ρ
σ1σ2ρ σ22 − λ

)
(19)

Depending on the value of the correlation coefficient between two variables, the
calculations of eigenvalues and eigenvectors are different. Therefore we divide
the calculation into two cases.

Case 1: ρ 6= 0
When ρ 6= 0, we have the following,

det(S − λI) = (σ21 − λ)(σ22 − λ)− σ21σ22ρ2 (20)

= σ21σ
2
2 − λσ21 − λσ22 + λ2 − σ21σ22ρ2

= λ2 − λ(σ21 + σ22) + σ21σ
2
2 − σ21σ22ρ2

= λ2 − λ(σ21 + σ22) + σ21σ
2
2(1− ρ2)

The eigenvalues can then be found by solving the following equation

λ2 − λ(σ21 + σ22) + σ21σ
2
2(1− ρ2) = 0 (21)

By some calculations, we obtain

λ1,2 =
1

2

(
(σ21 + σ22)±

√
(σ21 + σ22)2 − 4 · σ21σ22(1− ρ2)

)
(22)

=
1

2

(
(σ21 + σ22)±

√
(σ21 − σ22)2 + (2σ1σ2ρ)2

)
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Since the component
√

(σ21 − σ22)2 + (2σ1σ2ρ)2 > 0, we let

λ1 =
1

2

(
(σ21 + σ22) +

√
(σ21 − σ22)2 + (2σ1σ2ρ)2

)
(23)

which is always larger than

λ2 =
1

2

(
(σ21 + σ22)−

√
(σ21 − σ22)2 + (2σ1σ2ρ)2

)
. (24)

Thus, we say that λ1 is the largest eigenvalue of S.

Now, we look for the eigenvector, v1, corresponding to the largest eigenvalue
of S, λ1. The eigenvector v1 is obtained by soloving the following equation

(S − λ1) · v1 = 0 (25)[
σ21 − λ1 σ1σ2ρ
σ1σ2ρ σ22 − λ1

]
·
[
v11
v21

]
=

[
0
0

]
From the top row of the equations we get

(σ21 − λ1)v11 + σ1σ2ρv21 = 0

⇔ v11 = − σ1σ2ρ

σ21 − λ1
v21 (26)

If we let v21 = t, then v11 = −σ1σ2ρ
σ2
1−λ1

t. So all eigenvectors corresponding to λ1 are

multipliers of

v1 =

[
− σ1σ2ρ
σ2
1−λ1
1

]
which normalises to v1 =


− σ1σ2ρ

σ2
1−λ1√(

− σ1σ2ρ

σ2
1−λ1

)2

+1

1√(
− σ1σ2ρ

σ2
1−λ1

)2

+1

 (27)

The other eigenvector v2 corresponding to the second eigenvalue λ2 is calculated
analogously.

v2 =

[
− σ1σ2ρ
σ2
1−λ2
1

]
which normalises to v2 =


− σ1σ2ρ

σ2
1−λ2√(

− σ1σ2ρ

σ2
1−λ2

)2

+1

1√(
− σ1σ2ρ

σ2
1−λ2

)2

+1

 (28)
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Case 2: ρ → 0
When ρ approaches 0, the covariance term σ1σ2ρ in S approaches also 0. In
this case, the covariance matrix S becomes a diagonal matrix, which is S =(

σ21 σ1σ2ρ
σ1σ2ρ σ22

)
=

(
σ21 0
0 σ22

)
as ρ → 0. This means that the variances must

be equal to the eigenvalues λ. This is illustrated by Figure 26 which shows
an example of a two-dimensional dataset whose covariance matrix is given by

S =

(
5 0
0 1

)
, where the eigenvectors are shown in blue and green.

Figure 26: Eigenvectors of a diagonal covariance matrix.

Mathematically, suppose that σ1 ≥ σ2, then λ1 is the largest eigenvalue. The
corresponding eigenvector is obtained by[

σ21 − σ21 0
0 σ22 − σ21

]
·
[
v11
v21

]
=

[
0
0

]
From the second row of equations, we get

v21(σ
2
2 − σ21) = 0.

This means that v21 is necessary to be 0 while v11 is a trivial value before
normalization. Thus,

v1 =

[
v11
0

]
which normalises to v1 =

[
1
0

]
.

44



The other eigenvector v2 corresponding to λ2 is obtained analogously,

v2 =

[
0
v21

]
which normalises to v2 =

[
0
1

]
.

Observe that the variables are uncorrelated in this case, which can be interpreted
as that no linear relationship exists between variables.

A.2 Proof of Lemma 1

Lemma 1: For two univariate normal distributions, p(x) and q(x), where q(x) ∼
N(µ1, σ

2
1) and p(x) ∼ N(µ2, σ

2
2), the KL-distance from q(x) to p(x) is given as

follows:

DKL(p ‖ q) =
1

2
log

(
σ21
σ22

)
+
σ22 + (µ1 − µ2)2

2σ21
− 1

2
(29)

Proof:

DKL(p ‖ q) =

∫ ∞
−∞

p(x)log

(
p(x)

q(x)

)
dx

=

∫ ∞
−∞

p(x)log

 1√
2πσ2

2

exp
(
− (x−µ2)2

2σ2
2

)
1√
2πσ2

1

exp
(
− (x−µ1)2

2σ2
1

)
 dx

=

∫ ∞
−∞

p(x)log

 1√
2πσ2

2

1√
2πσ2

1

+

∫ ∞
−∞

p(x)log

exp
(
− (x−µ2)2

2σ2
2

)
exp

(
− (x−µ1)2

2σ2
1

)


=

∫ ∞
−∞

p(x)log

(
σ21
σ22

)1/2

dx+

∫ ∞
−∞

p(x)

[
−(x− µ2)2

2σ22
+

(x− µ1)2

2σ21

]
dx

=
1

2
log

(
σ21
σ22

)
+

1

2σ22

[
−
∫ −∞
∞

p(x)(x− µ2)2dx
]

+
1

2σ21

[∫ −∞
∞

p(x)(x− µ1)2dx
]

=
1

2
log

(
σ21
σ22

)
− σ22

2σ22
+

1

2σ21

[∫ −∞
∞

(x− µ2 + µ2 − µ1)2p(x)dx

]
(1)

=
1

2
log

(
σ21
σ22

)
− 1

2
+
σ22 + (µ2 − µ1)2

2σ21

where

(1) =

∫ ∞
−∞

(x− µ2)2p(x)dx+ 2(x− µ1)
∫ ∞
−∞

(x− µ2)
=0

p(x)dx+ (µ2 − µ1)2
∫ ∞
−∞

p(x)dx

= σ22 + (µ2 − µ1)2
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Note that, by definition, ∫ ∞
−∞

p(x)dx = 1, and

E2[(x− µ2)2] =

∫ ∞
−∞

(x− µ2)2p(x)dx = σ22

.
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