
Masteruppsats i försäkringsmatematik
Master Thesis in Actuarial Mathematics

Expanding Density Peak Clustering
Algorithm Using Gaussian Kernel
and its Application on Insurance Data

Jie Wen

Matematiska institutionen

Masteruppsats 2020:11
Försäkringsmatematik
September 2020

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Master Thesis 2020:11

http://www.math.su.se

Expanding Density Peak Clustering Algorithm

Using Gaussian Kernel and its Application on

Insurance Data

Jie Wen∗

September 2020

Abstract

The purpose of study is to construct the Gaussian kernel den-
sity peak clustering (GKDPC) algorithm, as an alternative approach
to achieve the task of clustering data. The GKDPC algorithm uses
Gaussian kernel to define the density estimator, and attach it to the
density peak clustering (DPC) algorithm to automatically obtain the
correct number of clusters while locating the positions of the cluster
centers. The demonstrations of the GKDPC algorithm have showed
the superiority on free to parameters and robustness aspects over other
algorithm counterparts. The applica- tion on the insurance data has
also showed that the GKDPC has great potentials to be used in real-
world industries.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: wjroomnew@gmail.com. Supervisor: Chun-Biu Li.

Acknowledgements

I would first like to thank my supervisor Chun-biu Li, I could never made this
far without his guidance, advises and encouragements. It was the countless
times of communication with him throughout the process that enlightened me.
Most importantly, I am really appreciate his forgiveness when I failed my duty
and was about to give up.

I would also like to thank Professor Filip Lindskog for providing me the
guidance and resources on the aspect of actuary. And lastly I would like to
thank Mr. Jan-Olov Persson for providing me the administrative supports.

2

Contents

1 Introduction 4

2 Methods and Theories 6
2.1 The k-means clustering . 6
2.2 The density peak clustering (DPC) 8
2.3 The selection of dissimilarity measure 10
2.4 The kernel function of Gaussian kernel DPC algorithm 14
2.5 Parameter estimation for the Gaussian kernel algorithm 17

3 The demonstrations of Gaussian kernel DPC 23
3.1 Testing clustering algorithms on synthetic spherical data 23
3.2 Testing clustering algorithms on synthetic non-spherical data . . 34

4 Applying the Gaussian kernel DPC on real world insurance
data 45
4.1 Data explanation . 45
4.2 Exploratory analysis . 48
4.3 Clustering result on the insurance data 52

5 Discussions 56
5.1 Density-based outlier detection 56
5.2 Limitations to the robustness and advanced data assignments . . 58
5.3 Modifications for mixed-type data 60

6 Conclusions 62

A Obtaining the numeric value of sigma multiplier using Monte-
Carlo simulations 64

B Detailed explanations on the adjusted-Rand-index 64

3

1 Introduction

Machine learning, as a subset of artificial intelligence, has been applied widely
in countless industries these days. The idea of machine learning is to program
algorithms for computers to solve tasks without using explicit instructions. Its
attempt is to provide us with objective solutions to real world problems. There
are two major aspects of machine learning, the supervised learning and the un-
supervised learning. The concept of supervised learning is to use a set of input
variables to predict a set of output variables (which are referred as labels). Sub-
stantially, the objective of supervised learning is to find the set of functions that
link up the input-output relationship. The concept of unsupervised learning on
the other hand, no labels are provided. The main focus under this aspect is
therefore to find the inner relationship within the input variables.

There are two major directions within the category of unsupervised learning,
dimension reduction and clustering. Dimension reduction focuses on reducing
the number of variables according to considerations such as their importance.
For clustering, the objective is to group observations so that the observations
within in the same group are more similar than observations from other groups.
This study will employ some dimension reduction technique, such as the princi-
pal component analysis (PCA), but the main focus is on the aspect of clustering
algorithm and its applications.

The concept of clustering also has many alternatives. Generally, clustering
alternatives can be classified into the following ideas: combinatorial algorithms,
mixture modelling and mode seeking [1, p. 507]. Combinational algorithms work
directly on the observed data and consider clustering problems as combinational
optimization problems. On the mixture modelling aspect, objects are assumed
to follow some distributions, and the aim is to infer the density distributions
and its parameters. Lastly, the mode seeker is a non-parametric version of the
mixture modelling idea. In this case the detailed information of the density
distributions is not of interest, only the density modes are emphasised. The
modes can be defined by some unique features of the observations, for example
the observations with higher densities.

In this thesis, we shall investigate in depth the branch of density based mode
seeking clustering algorithms. Density based methods, in contrary to the most
popular optimization clustering algorithms, are commonly known for its robust-
ness in complex environment, for example when the observations are irregularly
distributed. Of course, there are different ways to construct the local density
estimator and locate the density modes. One of the newest methods on this
aspect was introduced by Alex Rodriguez and Alessandro Laio from the paper
“Clustering by fast search and find of density peaks” [2] in 2014, and often re-
ferred as the density peak clustering (DPC) algorithm.

Nevertheless, the DPC algorithm has its own weaknesses. An obvious issue

4

is the structure of the kernel, the simple cut-off kernel proposed in the original
work of Rodriguez and Laio is not free of parameters and the density estimator
function is not smooth. A algorithm which is not free of parameters indicates
users have to manually select the parameter values. In practice, this means
users have to be experienced and have external information on the data in or-
der to select the correct parameter values. Thus, the dependency on manually
selected parameters is an obvious disadvantage to the algorithm and greatly
limits its performance. On the other hand, the non-smooth density estimator
function can only produce integer values. As a consequence, the chance of hav-
ing identical density estimations on multiple observations is largely increased,
and this would cause problematic clustering results. In order to overcome these
difficulties, we would like to replace the DPC density function by the famous
Gaussian kernel, and use a data-driven algorithm to automatically adjust the
kernel parameter.

A typical usage of the clustering technique would be the topic of “risk clas-
sification” in actuarial science. The fundamental purpose of risk classification,
explained by Robert J. Finger, “individuals who are expected to have the same
costs are grouped together. The actuary then calculates a price for the group
and assumes that the price is applicable to all members of the group.[4]”. For
the principle of actuary science, policy owners are hardly to be considered ho-
mogeneous, and people believe variables such as age, region and behaviour of
insured person or insured objects to have significant impacts to the risks in life
and non-life insurance respectively. The aim for risk classification is therefore
to classify policies into different risk groups according to their characteristics,
so that different prices could be set for different risk groups.

Transitional risk classification methods are based on regression analysis com-
bined with some subjective decisions making. For instance, the rating factors
are often subjectively selected, and the performance of the selected factors are
only evaluated through the generalized linear model (GLM) results. In contrary,
unsupervised techniques could provide us a data-driven alternative for the task
of risk classification. In this study, we shall also investigate the application of
our clustering algorithm to real world insurance data.

5

2 Methods and Theories

The main objective of this study is to construct and demonstrate the DPC algo-
rithm based on the Gaussian kernel density estimator, and we call this algorithm
Gaussian kernel DPC (GKDPC). To prepare this, we need to first explain and
demonstrate the original DPC algorithm. Then, we shall discuss the dissimilar-
ity and kernel function details under the conception of DPC.

In addition, the k-means algorithm will also be introduced as a comparison
to benchmark our results.

2.1 The k-means clustering

The k-means clustering algorithm is probably the most popular algorithm among
the clustering categories. The k-means algorithm is well known for its balance
between effectiveness, robustness and computational difficulties. Due to its pop-
ularity and usefulness, it will be a good benchmark to compare and evaluate
our GKDPC algorithm.

The fundamental idea behind the k-means algorithm is that, provided with
hyperparameter k as the number of clusters, a within-cluster index is defined
as the sum of squares over the Euclidean dissimilarities between observations
and cluster centers. The task is to find the positions of center points, along
with the partition of observations into k groups, which minimizes the overall
within-cluster index.

For m dimensional quantitative observations x1, x2, ..., xn ∈ X, the dissimi-
larities between observation xi and xj in Euclidean distances is defined as

di,j =
m∑
l=1

(xi,l − xj,l)2 =‖ xi,l − xj,l ‖2 . (1)

In k-means algorithm, we presume that there are k clusters. Every observa-
tion is assigned to one of the clusters. Each cluster contains one distinct center,
and it should be representing the average position of its cluster members. In
this scenario, we set center points M1, ...,Mk for cluster 1, ..., k, and assume xi
is assigned to cluster ki, represented by the function C : C(xi) = ki. Thus, the
within cluster sum of square W (C) is defined as

W (C) =

k∑
l=1

n∑
i=1

Ii,ldi,Ml
, (2)

6

where Ii,l is an indicator function: Ii,l = 1 if l = ki and Ii,l = 0 otherwise. The
objective of k-means is to find the mean points M1, ...,Mk and the partition C
that minimize W (C). The following algorithm is constructed to approach the
objective.

Algorithm 1 The k-means algorithm

1. Randomly pick k center points.

2. Assign each point to the nearest center point according to the Euclidean
dissimilarity.

C(xi) = argmin
1≤l≤k

‖ xi −Ml ‖2 (3)

3. Calculate the means for each assigned cluster, if the means are different
from the previous centers, then replace the previous centers with the
means.

4. Iterate step 2 and 3 until the centers no longer changes.

The convergence of mean vector is guaranteed as iteration proceeds because
of two reasons: first, the ways of cluster partitioning is finite; second, the re-
placement of mean vector only occurs when the present partition Ct produces
smaller W (Ct) than the previous W (Ct−1), this indicates W (Ct) must be a
monotone decreasing function of the iteration number t. However, the conver-
gence may lead to a local minimum, and different starting centers would lead
to different clustering results.

More importantly, the k-means algorithm depends heavily on the Euclidean
dissimilarities between points and centers. This could lead to many potential
disadvantages. The first problem is about the Euclidean metric, this means that
this algorithm can only handle numerical inputs. The second problem is that
the k-means algorithm is not valid for non-spherical observations.

The incapability to handle non-spherical observations for k-means algorithm
is a well known disadvantage. The assignments of k-means algorithms can be
interpreted as drawing rings around the center points from inside to outside.
In this setting, an observation is assigned to the cluster which it is positioned
in the inner ring. For example, if an observation positions at the inner ring of
cluster A and the outer ring of cluster B, we would assign this observation to
belong in cluster A. This clustering procedure is illustrated in figure 1. Since
those rings are spherically shaped, the k-means is excellent at handling with

7

spherically distributed observations, and of course it will be problematic when
facing non-spherical observations.

Figure 1: The assignment of observations in k-means clustering.

The structure of a center point combine with an Euclidean radius is very
common among clustering analysis, and we will constantly reviewing it in the
later sections. One of the major purpose of this study is to overcome the dif-
ficulties mentioned in above, and we will achieve it by introducing the density
peak clustering in the next subsection.

2.2 The density peak clustering (DPC)

The DPC algorithm is based on the assumption that cluster centers are the
high-density points and surrounded by points with lower densities, while the
distance between cluster centers should be significantly large. To capture the
observations which contain both features, we define two quantities for each point
xi: ρi which represents the local density of xi and δi which represents the min-

8

imum distance from xi to a point with higher density than xi.

In the original formulation [2, equation 1], the local density of point xi is
defined as

ρi =

n∑
j=1

χ(di,j − dc), (4)

where di,j is the Euclidean distance between point xi and point xj ; dc is a pre-
determined threshold distance, it is a hyperparameter of the DPC algorithm;
and χ(x) is an indicator function that χ(x) = 1 if x < 0 and χ(x) = 0 otherwise.

ρi is basically the total number of points within the m-dim hypersphere
formed by the center point xi and the radius dc. More neighbour points within
the threshold distance indicates the density of the target point is higher. The
objective of the DPC algorithm is to locate the points with higher densities,
since high density points are likely to be cluster centers. However, high density
points are often concentrated, meaning high density points are most likely to be
neighbours. Thus, another restriction is added, called distance to higher den-
sity points, later refer as the distance estimator, for the purpose of eliminating
neighbouring high-density points.

In the original formulation [2, equation 2], the distance estimator of point
xi is defined as

δi = min
j:ρj>ρi

(di,j), (5)

if point xi has the highest density, we set δi=max(di,j).

The distance estimator establishes a vector of each points’ closest distance
towards the point which have the higher density to the target point, except the
point with the maximum density. Under this concept, if there are two neigh-
bouring points both having high density estimations, then the one with lower
density will have a very little distance estimation. The strategy is that, only the
points with both high density estimation and large distance estimations should
be selected as cluster centers. An index can be established via the product
between the density estimators and the distance estimators, let us call it the
product index, PIi = ρiδi for i ∈ (1, ..., n). Only the points with both high
density estimations and large distance estimations will have large product in-
dex values. Hence, the cluster centers can be located through sorting the index
from low to high and pick the points that have obviously large product index

9

value. If we plot the sorted index, such points should be located on the top-right
corner of the plot. The sorted index plots often referred as the “decision graph”.

After locating the DPC cluster centers, the rest of observations are assigned
to the nearest observation which has higher density than the target one,

C(xi) = argmin
j:ρj>ρi

(di,j). (6)

Eventually all of the observations will be assigned into a cluster containing one
of the cluster centers.

This method of assigning points is significantly different from the k-means
counterparts. The clear advantage of the DPC assigning method is that, it is
no longer restricted to spherically clustered observations. Thus, the DPC algo-
rithm is more robust on complicated environments.

To summarize DPC algorithm

Algorithm 2 The density peak algorithm

1. Calculate the dissimilarity matrix for di,j , i ∈ 1, ..., n, j ∈ 1, ..., n according
to the Euclidean metric.

2. For every point xi, estimate the points’ density according to
ρi =

∑n
j=1 χ(di,j − dc), the distance δi = min

j:ρj>ρi
(di,j) and multiply

them to produce the product index PIi.

3. Plot the sorted PI to obtain the decision graph. Determine the cluster
centers through observing the decision graph and picking the obviously
large points.

4. Assign rest of the points to the nearest point with higher density
C(xi) = argmin

j:ρj>ρi

(di,j).

2.3 The selection of dissimilarity measure

Dissimilarity is a key term in clustering algorithms. As what it sounds, the aim
of dissimilarity is to evaluate the dissimilarity of two targets. Dissimilarities

10

are usually defined by a metric, where metric is a function on a set that unusu-
ally satisfies four properties: non-negativity (di,j ≥ 0), identity of indiscernibles
(xi = xj if and only if di,j = 0), symmetry (di,j = dj,i) and triangle inequality
(di,k ≤ di,j + dj,k). The most common dissimilarity measure is the Euclidean
distance between two points.

di,j = (

m∑
l=1

|xi,l − xj,l|2)
1
2 , (7)

where xi,l represents point xi on the lth dimension. Euclidean distance is one
special case of the more general Minkowski distance which is defined as

di,j = (

m∑
l=1

|xi,l − xj,l|p)
1
p . (8)

When p=2, Minkowski is the Euclidean distance. Other notable Minkowski
distances includes Manhattan distance when p=1. The Manhattan distance can
be a useful alternative when we are handling ordered categorical data. Another
distance definition worth mentioning is the Hamming distance. The Hamming
distance between two strings (points as sequences of characters) is defined by
the number of positions which the two points in the corresponding position are
not equal. Let us assume two points xi and xj in the form of sequence of char-
acters, the hamming distance is defined as

di,j = xi ⊕ xj , (9)

where ⊕ is the exclusive disjunction operation between two strings. The output
of the exclusive disjunction operation is 1 when inputs differ and 0 otherwise.
The Hamming distance is the better alternative for the spaces based on nomi-
nal variables, such as gender and geographical location. Detailed explanations
on the application of Manhattan and Hamming distance is provided in section 4.

More alternative of determining the dissimilarity measure is to add some ex-
tra monotone function on top of the Minkowski distance. Commonly used func-
tions include the exponential function exp(di,j) and logarithm function ln(di,j).
For instance, if the density algorithm is based on the inverse dissimilarity (the
similarity), and the similarity is defined as some function of 1

di,j
. If di,j = 0

the similarity would become infinite, thus causes problems in further calcula-
tions. In this case, taking the exponential function over the dissimilarities could

11

avoid such problems. More importantly, taking the exponential of dissimilarities
would let the algorithm distributes more weights on the nearby points than the
faraway points. The Gaussian kernel demonstrates in the next subsection is in
fact a form of exponential dissimilarity function.

Another issue we have to keep in mind is that in multi-dimensional spaces,
the difference in the spread of observations on each dimensions would also have
impact on the dissimilarity measure. For example, when a set of points with
2 dimensions, the points on the first dimension are distributed between 0 and
1, and the points on the second dimension are distributed between 0 and 1000.
In this situation, it is likely that for many metric based dissimilarity, the effect
of the second dimension will overwhelm the effect of the first dimension. This
indicates that we should not focus on the absolute scale on the axis but rather
the relative differences among the axis.

A procedure to offset the effect of imbalanced dissimilarities is always re-
quired in practical cases. Such procedures are mostly based on means of a
weighted average (convex combination)

D(xi, xj) =

m∑
l=1

wld(xi,l, xj,l);

m∑
l=1

wl = 1.

(10)

Here D(xi, xj) is the balanced dissimilarity between observation xi and xj ;
for l ∈ (1, ...,m), d(xi,l, xj,l) is the dissimilarity between xi and xj on the lth

dimension; wl is the weight of dissimilarity assigned to the lth dimension.

If the dissimilarities are not balanced in the first place, setting all weights
to the same value, for example wk = 1 for all k ∈ (1, ...,m) does not give all di-
mension the correct influence. Alternatively, the weights should be determined
according to the observation spreadness, so that sparse dimensions receive lower
weights, and tight dimensions receive higher weights. This way all dimensions
can be aligned.

The derivation of dimension alignment is explained in the book “The Ele-
ments of Statistical learning” [1, p. 505]. Let us consider the overall average of
D(xi, xj)

D̄ =
1

n2

n∑
i=1

n∑
j=1

D(xi, xj) =

m∑
l=1

wld̄l, (11)

12

with average dissimilarity on the lth dimension

d̄l =
1

n2

n∑
i=1

n∑
j=1

d(xi,l, xj,l). (12)

Let us reverse the above equations. In order to give the dimension all
equal influence, then wld̄l should be same for all l, therefore wl ∼ 1/d̄l. This
weight estimator is valid for any definition of dissimilarity in the form of equa-
tion 10. For instance, if the dissimilarity is defined by the Euclidean metric,
d̄l = 1

n2

∑n
i=1

∑n
j=1(xi,l − xj,l)2 = 2var(xl).

To rebalance the dissimilarities is equivalent to rebalance the data set on dif-
ferent dimensions and then calculate the dissimilarities, e.g. Xl = wlxl, where
Xl is the balanced data on dimension l, xl is the original data on dimension l,
wl is the dimension weight based on the dissimilarity measure. If all dimensions
have Euclidean based dissimilarities, then the rebalance procedure would be

Xl = wlxl =
xl

2var(xl)
. (13)

Noticing that the standard score of the observation on dimension l is defined
as

zl =
x̄− xl
s

, (14)

where s is
√

var(xl). This means equation 13 works similar to the non-centered
standard score. Both rebalancing approaches are based on compressing the
data scale according to the observation variance on each particular dimension.
In other words, the standardization of data would also eliminate the issue of
imbalanced dimensions when dissimilarities are defined by Euclidean metric.
Thus, the standardization of data is a necessary step in Euclidean based clus-
tering problems.

Lastly, I have to mention that mixed-type data is more often than pure nu-
merical data in practice, hence the standardization is not the once and for all
solution. Therefore, the re-weighting of the dominions must be based on the
type of data and the corresponding ways of defining dissimilarities.

13

2.4 The kernel function of Gaussian kernel DPC algo-
rithm

Besides the dissimilarity measures, the choice of the density estimation is an-
other key issue of density based clustering algorithms. The density of an obser-
vation is a measurement on the number of observed points per some predefined
unit space. The relevant density in regards of density based clustering is the
local density of a target point xi. This local density should provide a mea-
surement that the level of concentration on the position of point xi could be
evaluated.

It should be noticed that the local density of a point is not the true prob-
ability distribution density (PDF). The curse of dimensionality leads to a fact
that the true PDF of a specific point decrease in an exponential rate when the
number of dimension increases. Detailed explanations on this phenomena can
be found in the book “The Elements of Statistical learning” [1, Chapter 2.5].
As a consequence, the approach to estimate the true distribution density in
practice is rather pointless, since the dimension size is usually not restricted.
An ideal local density estimator should be simple, while only reflexes certain
characteristics, such as the order of the points’ true density.

The local density estimation usually take dissimilarity measure as input,
and there are alternative methods to construct such functions. Two of the main
strategies for the density estimations are the followings. The first is to count
number of neighbouring points in a m-dim hypersphere restricted by the dis-
similarity input, an example would be the DBSCAN. The second strategy is to
sum up the dissimilarities for the closer neighbours, an example would be the
k-nearest-neighbour (kNN) algorithm.

The DPC algorithm belongs to the first strategy. Equation 4 transforms dis-
similarities associated with a target point into the local density of this point. In
the concept of machine learning, such function is classified as a kernel function.

The DPC kernel function χ(di,j − dc) has some obvious drawbacks. First,
the function χ(di,j −dc) is either 1 or 0, which is extremely non-smooth. Under
this kernel function the density contribution of a neighbour point near xi + dc
and a point near xi are both equal to 1, and it is of course not reasonable.
Another drawback is the “one-size-fits-all” problem. The parameter dc must be
predetermined and it is employed to all observations. When a sparse cluster
and a tight cluster appeared simultaneously in the space, the suitable dc for
the sparse cluster may not be suitable for the tight cluster, thus causing extra
difficulty to the estimation of dc.

In order to overcome the difficulties in the DPC kernel function, we would
like to employ the Gaussian kernel instead. First of all, let us formulate the
multivariate Gaussian PDF,

14

f(µ,Σ) =
1

(2π)m/2|Σ|1/2
e−

1
2 (µ−x)′Σ−1(µ−x), (15)

where µ is the mean vector, m is the dimension and Σ is the covariance matrix.
The term (µ−x)′Σ−1(µ−x) is so called squared Mahalanobis distance, and it is
also squared Euclidean distance between point µ and x if Σ is a diagonal matrix.

If we build up the kernel function based on the multivariate Gaussian PDF,
this would provide a smooth alternative for the kernel function. The intention
of Gaussian kernel is to let nearby observations to enhance the density of a tar-
get observation according to the distances between them. The density estimator
of a target observation xi according to the Gaussian kernel can be formulated as

f(xi,Σ) =
1

n(2π)m/2|Σ|1/2
n∑
j=1

e−
1
2 (xi−xj)′Σ−1(xi−xj), (16)

where m is the dimension for the data set, xi−xj is a m-sized vector represent-
ing the displacement of xi and xj on each dimension respectively. The values
of m and xi − xj are determined by the data if the data is in the form of n ∗m
matrix. The covariance matrix Σ on the other hand is a hyperparameter, so we
have to decide a reasonable estimator for it.

It is easy to recognize equation 16 as the average of n multivariate Gaussian
probability densities centered around xi. The density contribution of a point
xj is inverse proportional to the linear transformation (xi − xj)′Σ−1(xi − xj).
The key issue is to understand the effect of Σ towards the density estimation
function. The geometric interpretation of a covariance matrix in general is that,
it creates rings of m-dimensional ellipses centered around a target point xi. An-
other point xj , would receive a probability density according to the ring it is
positioned. The exponential term in equation 16 will be closer to 1 if xj lies
in the inner rings, and closer to 0 if xj lies in the outer rings. Since the linear
transformation is taken places in an exponential function, this indicates that
the density value quickly dies out when xj move towards outer rings.

Basically, the covariance matrix controls the spread of observations, and ge-
ometrically the spreadness forms a m-dim ellipsoid. This ellipsoid has its m-dim
volume and the directions of ellipsoid axis. This means that all covariance ma-
trices contain two aspects, the “size” and the “orientation”, representing the
m-dimensional volume (formed by the magnitude of each ellipsoid axis) and the
direction of ellipsoid axis respectively.

15

The separation of the size and the orientation of matrices can be achieved
via eigendecomposition. Let us start with the definition of eigenvalue and eigen-
vectors. Assume a m ∗m square matrix Σ,

Σv = vλ, (17)

where v is an eigenvector and λ is an eigenvalue. For m ∗m matrices, there will
be m eigenvectors each corresponds to an eigenvalue. If we list the eigenvector
as column vectors of a matrix V , V = (v′1, v

′
2, ..., v

′
m) and set the diagonal matrix

Λ, Λi,i = (λ1, λ2, ..., λm) for i ∈ (1, 2, ...,m). We could formulate equation 17 as

ΣV = V Λ

Σ = V ΛV −1.
(18)

The term V ΛV −1 is the eigendecomposition of matrix Σ. Since Λ is a diago-
nal matrix, the above procedure is also called the diagonalization of Σ. The real
spectral theorem states that, providing with a real symmetric matrix Σ, there
must exist orthogonal matrix V and real diagonal matrix Λ, so that Σ = V ΛV −1.
V is orthogonal also means V −1=V ′. Moreover, if Λ is formulated from big to
small, namely Λ1,1 = λ1, Λ2,2 = λ2, ...,Λm,m = λm for λ1 ≥ λ2 ≥ ... ≥ λm, the

decomposition V ΛV
′

is unique.

The decomposed form V ΛV
′

of a matrix is essentially helpful to separate the
size and the orientation. Geometrically, the eigenvalues λl represents the mag-
nitude of the ellipsoid axis on the lth dimension. The volume of m-dimensional
ellipsoid is given by

Vm =
π
m
2

Γ(m2 + 1)

m∏
j=1

λj . (19)

where Γ(x) is the Gamma function. Therefore, the volume and shape is deter-
mined only by the matrix Λ. The linear transformation matrix V on the other
hand represents the rotation of Σ to the basis of Λ, while preserving the volume.

16

Figure 2: The geometric interpretation of eigendecomposition in 2 dimensional
space. V : the rotation matrix; λ1, λ2: the eigenvalues.

It is easy to see that covariance matrices are real and symmetric, therefore
eigendecomposition can always be employed to separate the size and the orien-
tation. And thus the task of finding the ideal kernel distribution covariance can
be separated to the task of determining ellipsoid volume, shape and orientation,
respectively.

2.5 Parameter estimation for the Gaussian kernel algo-
rithm

The simplest form for the Σ matrix would be the no-orientation and m-dim
spherical shape. No-orientation indicates V = Im, and the corresponding eigen-
values become the variance on each of the dimensions. And if we are constructing
a m-dim spherical volume, then the variance on each dimension is equal to the
same value σ2, so the covariance matrix can be written in the form Σ = σ2 ∗Im.
In this situation, the problem of estimating the whole covariance matrix has
reduced to estimating a scalar which represents the radius of a m-sphere. In
reality the knowledge on data are often limited, thus making extra assumptions
on data clustering behavior would be rather unreasonable. In this sense, picking
Σ in the form of σ2∗Im would be a conservative choice for an arbitrary data set.

If we set Σ = σ2∗Im, Σ−1 is simply 1
σ2 ∗Im, as the result, equation 16 becomes

17

f(xi,Σ) =
1

n(2π)d/2|Σ|1/2
n∑
j=1

e−
1
2 (xi−xj)′(1

σ2
∗Im)(xi−xj)

=
1

n(2π)d/2|Σ|1/2
n∑
j=1

e−
1
2

∑m
l=1(

xi,l−xj,l
σ)2 .

(20)

The term
∑m
l=1(

xi,l−xj,l
σ)2 inside the exponential function is basically the

squared Euclidean distance between xi
σ and

xj
σ . The inverse proportionality

between the displacement xi − xj and the parameter σ (The σ parameter is
often called the “bandwidth” of Gaussian kernel.) is much more convenience in
this regard. Increasing the value of σ would cause the drop on density at an
exponential rate. In geometric perspective, the σ draws an spherical boundary
between the neighbouring points which contribute densities and the far away
points which contribute no densities to the target point. This boundary is sim-
ilar to the radius threshold parameter dc for the original DPC algorithm in
equation 4. What differs from the DPC algorithm is that, the points which con-
tributes density, are contributing smoothly according to the Euclidean distance
between the neighbouring points and the target point.

At this stage, the problem has basically reduced to the estimation of scalar
standard deviation for the Gaussian kernel distribution. In one dimensional
situation, the relationship between standard deviation and Gaussian probabil-
ity density can be simplified into the “three sigma rule”. In short words, for
one-dimensional normal distribution centered around µ, around 68 percent of
cumulative densities are lying in between (µ−σ, µ+σ) quantile; around 95 per-
cent of cumulative densities are lying in between (µ− 2σ, µ+ 2σ) quantile; and
around 99.7 percent of cumulative densities are lying in between (µ−3σ, µ+3σ)
quantile.

In 1-dim situations, the three sigma rule implies over 95 percent of cumula-
tive distribution density are concentrated within the 1-dim sphere with center xi
and radius 2σ. This means that any point outside of this sphere would provide
very limited amount of probability density to contribute the target density.

Remember our goal is to find the density estimator so that the densities of
the data points can be ordered. The situation we must avoid is that all points
receive almost the same amount of densities. The three sigma rule tells us
that, 95 percent of the cumulative probabilities are concentrated in the region
(xi − 2σ, xi + 2σ), therefore σ would be too small for a target observation xi
when all neighbour points are outside of this region. On the other hand if σ is
too large, this would means all other points are concentrated around the central
peak and all provide maximum (which are identical) density contributions.

18

Figure 3: The impact of too small (left) and too large (right) sigma estimation.
The x-axis is the domain. In our scenario, the target observation xi is the center
of the x-axis marked as µ. The neighbouring observations xj are the black dots
lying on the x-axis. The bell-shaped curves represent the probability densities
of 1-dim Gaussian distribution. On the left plot, all neighbouring points will
contribute 0 densities to the target point, because they are positioned outside of
(xi−2σ, xi+ 2σ). And on the right plot, all neighbouring points will contribute
maximum densities (which is around 0.4 in this scenario) to the target point,
because they are all positioned near center µ. If the parameter σ is either too
large or too small, one of the above situations will be occurred on majority of the
target observations, thus all targets will receive identical density estimations.

Figure 3 demonstrates the 1-dim Gaussian kernel when the σ is improp-
erly sized. The curves are representing the bell-shaped Gaussian distribution
function, and the dots representing neighbouring points around the target point
positioned at µ. The left plot illustrates the situation when the σ is too small.
In this case all neighbouring points are positioned outside of (µ − 2σ, µ + 2σ)
region, as the result all these points are contributing basically zero densities to
the target point. The right plot illustrates the situation when the σ is too large.
In this case all neighbouring points will be concentrated near the point µ, as a
result all these points will provide almost maximum density contributions. The
problem is, if all target points receive either average over 0 or average over max-
imum density contributions, the density estimations for all targets will become
almost the same and therefore they are unable to be ordered.

A strategy to avoid the unsuitable σ estimations is that, we should keep
σ as small as possible. At the same time we should not allow the σ to be
so small, to an extent that no neighbouring observations are appearing in the
(xi − 2σ, xi + 2σ) region for majority of the targets observations. Based on

19

this strategy, we have constructed the 95-percent 1-nearest-neighbour (1-NN) σ
estimator:

2σ̂ = σ1−NN

σ̂ = σ1−NN/2,
(21)

where σ1−NN is defined as

σ1−NN = (dx : Pr(dX ≤ dx) = 0.95), (22)

where dX represents the 1-NN Euclidean distances of all observations. The
above estimator ensures that for 0.95 percent of observations, at least one neigh-
bour points must be located in the (xi−2σ, xi+ 2σ) region, which is 95-percent
of the density quantile. Even one such point would provide the target obser-
vation a distinct kernel density estimation, so the observation density can be
ordered. This estimation is very easy to obtain, we just need to calculate and
sort the 1-NN distances for all observations, and pick the left quantile value
which covers 95 percent of the 1-NN distance.

Let us continue towards the multivariate circumstances. The three sigma
rule does not hold in multivariate situations, even if the covariance matrix is
in the form of σ ∗ Im. In higher dimensions, the radius 2 ∗ σ will no longer
preserve the 95 percent quantile. Let us say o ∗ σ is correct radius which is able
to preserve 95 percent quantile in m-dimension, and call “o” as the “sigma mul-
tiplier”. Then, let us call the the m-dim hypersphere centered around xi with
radius o ∗σ as “o-sigma-sphere”. Consider a multivariate Gaussian distribution
with covariance σ ∗ Im, the cumulative probability percentage quantiles of the
o-sigma-spheres shrink when the dimension size increases. According to some
basic Monte-Carlo simulations, the rough quantile levels for 1-to-4 sigma-sphere
on dimensions 1-to-5 are listed in the table 1. Detailed information on how to
obtain table 1 via simulations is provided in the appendix section.

20

Radius 1-dim 2-dim 3-dim 4-dim 5-dim
1σ 0.6806000 0.3927250 0.1971000 0.0906250 0.0385625
2σ 0.9541750 0.8631875 0.7371625 0.5918625 0.4500500
3σ 0.9972500 0.9893500 0.9705375 0.9394875 0.8907500
4σ 0.9999500 0.9997125 0.9988125 0.9970625 0.9931250

Table 1: Cumulative probability percentage quantiles on different dimensions.
The rows represent the hypersphere radius in terms of o ∗ σ, and the columns
represent the dimension of data. The value in each cell represents the cumula-
tive density quantile formed by the corresponding radius in the corresponding
dimension.

Our goal for the 1-NN σ estimator is to preserve at least one neighbouring
observation in the 95 percent multivariate Gaussian central quantile, namely the
m-dim sphere centered around xi with radius o∗σ. As we can see from the table,
in 2-dim and 3-dim cases the required radius distances are in between 2σ and 3σ.
And for 4-dim and 5-dim cases, the required radius distances are in between 3σ
and 4σ. Clearly, there is a increasing relationship between dimension size and
the sigma multiplier which preserves the central density quantile. Let us define
such relationship as a function g(m, q), where m is the dimension, q is the per-
centage quantile we are aiming to preserve, and g(m, q) is the sigma multiplier
which makes the m-dim hypersphere with radius g(m, q) ∗ σ covers q percent
of cumulative densities. Hence the 1-NN σ estimator for multi-dimensions can
be defined as the 1-dimensional 1-NN estimator divided by the sigma multiplier
o = g(m, q), namely

σ̂m = (dx : Pr(dX ≤ dx) = 0.95)/g(m, 0.95). (23)

The analytical solution for determining the function g(m, q) can be summa-
rized as the following: provide with a quantile value q, we have to find the value
o = g(m, q) so that the integral

q =

∫ oσ

−oσ
...

∫ oσ

−oσ
N(x, σ∗)(.x1)...d(xm) (24)

holds, where N(x, σ∗) is the multivariate Gaussian PDF with mean parameter
x = (x1, ..., xm) and variance parameter σ∗ = σ ∗ Im. Unfortunately I do not
have a good solution for this integral at the moment. Instead, we could obtain
the numerical solution of g(m, q) using the Monte-Carlo simulation table 1.

21

In addition, the estimator σ1−NN is only dependent on the observations, as a
result the determinate |Σ| in equation 16 is a constant. Since we are only inter-
ested in the ordering of density estimations, the constant multiplier 1

(2π)d/2|Σ|1/2
can be eliminated. Thus, he final version of our 1-NN Gaussian kernel density
estimator can be displayed as:

f(xi, σ̂m) =

∑n
j=1 e

− 1
2

∑m
l=1(

xi,l−xj,l
σ̂m

)2

n
=

∑n
j=1Kσ̂m(xi − xj)

n
, (25)

where the Gaussian kernel function K(dx) is basically the modified Gaussian
PDF for dissimilarity dx, and Kσ(dx) = K(dxσ).

Let us call the DPC method with kernel function replaced by equation 25
as the Gaussian kernel DPC (GKDPC) algorithm, the algorithm summary is
provided in the table below. The main body of the GKDPC algorithm is almost
the same as original DPC, the only difference is that the kernel function in step
3 has been changed from equation 4 to equation 25.

Algorithm 3 The Gaussian kernel DPC

1. Calculate the dissimilarity matrix for di,j , i ∈ 1, ..., n, j ∈ 1, ..., n according
to the Euclidean metric.

2. Estimate the σ parameter according to the 95-percent 1-NN dissimilarity
quantile, σ̂m = (dx : Pr(dX ≤ dx) = 0.95)/g(m, 0.95).

3. For every point xi, estimate the points’ density according to

ρi = 1
n

∑n
j=1 e

− 1
2

∑m
l=1(

xi,l−xj,l
ˆσm

)2 , the distance δi = min
j:ρj>ρi

(di,j), and

multiply them to produce the product index PIi. Note: the term∑m
l=1(

xi,l−xj,l
σ̂m

)2 can be formulated as
d2i,j
σ̂2
m

, where di,j is obtained in step
1.

4. Plot the sorted product index to obtain the decision graph. Determine
the number of clusters and locate the cluster centers through observing
the decision graph and picking the obviously large points.

5. Assign rest of the points to the nearest point with higher density,
C(xi) = argmin

j:ρj>ρi

(di,j).

22

3 The demonstrations of Gaussian kernel DPC

In the following sections we shall demonstrate the performance of the Gaus-
sian kernel DPC under three different settings: 1. Generate an ideally formed
spherical data, operate k-means, DPC, and Gaussian kernel DPC on this data
and compare the results. 2. Generate an non-spherical data, operate k-means,
DPC, and Gaussian kernel DPC to evaluate its advantage on arbitrary shaped
observations. 3. Apply Gaussian kernel DPC on a real world insurance data to
demonstrate its usefulness in practice.

3.1 Testing clustering algorithms on synthetic spherical
data

For the first and second tasks, some reasonably synthetic data are required. The
first test is to perform the DPC and Gaussian kernel DPC together with the k-
means algorithm on spherically clustered data. The aim of adopting this setting
is to use k-means as a benchmark to illustrate that the DPC based algorithms
are able to perform just as good.

To achieve our goal, we decide to synthesize m-dimensional n-size data set,
with space length (0, length) on all dimensions. Among n observations, the data
will be split to c clusters, each containing nl observations,

∑c
l=1 nl = n. For each

cluster, the data is generated according to Gaussian distribution N(µj,l, σj,l),
j = (1, ...,m) on each dimensions. The µj,l parameter locates the position of
the true lth cluster center on j-axis. The sigma parameter σj,l determines the
spread length of lth cluster on the j-axis.

In this particular task, we set m = 4, n = 300, length = 100, c = 3,
nc = (80, 100, 120). The parameters µ and σ are obtained through random
number generators, so that our data clusters could be arbitrarily positioned
and in arbitrary size. In addition, we have added two extra restrictions: the
distance between µ should be significantly large, at least on more than 2 di-
mensions, so that clusters are not overlapping each others; the value of σj,l for
j = 1, ..., 4 should be more or less the same, so that overly stretched ellipses will
not be synthesized. Outlier are not considered in this study, which means we
will not generate any outlier in the synthetic data, and our clustering algorithms
will not consider robustness against outliers.

23

Figure 4: Synthetic spherical clusters on every pairwise dimensions. Each color
represents a distinct cluster. The X-marks represent the true cluster centers.

Figure 4 illustrates the synthetic spherical clusters produced from the above
procedure. The blue, red and green dots each representing a distinct cluster,
and the X-marks represent the true cluster centers (the mean parameters of the

24

Gaussian generator.) It should be noticed that the blue and red clusters are
overlapping in dimension 1 and dimension 3. This is actually good because an
effective cluster algorithms should be able to detect cluster even on a subset of
dimensions.

Figure 5: K-means clustering results on dimension 1 and 2: locations of the
cluster centers. Each color represents a distinct cluster. The X-marks represent
the true cluster centers. And ‘+’ marks the estimated cluster centers.

25

Figure 6: K-means clustering results on dimension 1 and 2: observation as-
signments. Each color represents a distinct cluster. The alphabets represents
points’ assignment according to the algorithm. The points with the same al-
phabets meaning they have assigned to the same cluster.

Since the number of clusters is known, we could directly operate the k-means
algorithm with the true hyperparameter k = 3. Figure 5 and 6 shows the clus-
tering result on dimension 1 and 2 obtained by the k-means algorithm. In figure
5, the estimated cluster centers are marked in ‘+’, as we can see the calculated
cluster centers are not far from the true cluster centers marked in ‘X’. Figure
6 displays all of the points assigned to the 3 clusters centers, represented by
alphabets A, B and C. Once again, we can see that each colored point are as-
signed to a distinct alphabet. Even the points in between the intersection of
red and blue clusters are distinctively assigned to the correct alphabets, this is
because the clusters are not overlaping in other dimensions. This indicates the
k-means algorithm is working well in ideally distributed spherical data.

26

The DPC algorithm on the other hand, does not require the knowledge of
number of clusters in the first place. The DPC algorithm has its own radius
threshold parameter dc. Too small dc will causes the algorithm to over clus-
tering (high density points will be appearing everywhere within the same true
cluster, thus many cluster centers will be detected), and too large dc will lead to
low accuracy. Thus users have to manually search for the a suitable dc value to
be inserted. In this particular data, dc=5 is obtained via manual trial and error.
We will insert dc=5, and the algorithm is able to automatically calculate the
true center number. From the obvious large product index points in the decision
graph, and tracking down the positions of those points, the cluster centers will
be located.

Figure 7: DPC Decision graph on spherical data

According to the decision graph, illustrated in figure 7, we can clearly ob-
serve there are 3 points locate in the top-right corner with obviously product
index values. Thus, 3 would be the reasonable number of clusters to be consid-
ered.

27

Figure 8: DPC clustering results on dimension 1 and 2: locations of the cluster
centers. Each color represents a distinct cluster. The X-marks represent the
true cluster centers. And ‘+’ marks the estimated cluster centers.

Figure 8 and 9 illustrates DPC clustering result on spherical data on the first
2 dimensions. In figure 8, the estimated cluster centers are marked as ‘+’ and
the true cluster centers are marked as ‘X’. This plot shows that, the DPC cen-
ters is to some extent close to the true center points, but more biased compare
to the k-means center estimations. This is because DPC algorithms consider
high-density points as centers, but the high density points are not necessarily
the mean points of the cluster members. Thus, it is reasonable that average
based algorithms such as k-means perform better in term of cluster center esti-
mation.

28

Figure 9: DPC clustering results on dimension 1 and 2: observation assignments.
Each color represents a distinct cluster. The alphabets represents points’ as-
signment according to the algorithm.

Figure 9 displays all of the points assignments according to DPC algorithm.
Same as the result for k-means, all points are perfectly assigned to the correct
cluster.

The last but most important algorithm to be tested is our GKDPC algo-
rithm. In practice the Gaussian kernel DPC is a parameter-free while computa-
tion heavy variate of the DPC. Neither number of clusters nor radius threshold
is required for the Gaussian kernel DPC. As we discussed in section 2, Gaussian
DPC requires the bandwidth parameter σ, but it can be automatically obtained
using methods like Scott’s rule of thumb [5], 1-NN density quantile (equation
22), or other methods. In this particular demonstration, we will adopt the 1-NN
density quantile method to obtain the bandwidth. Our data is 4-dimensional,
thus the sigma multiplier function g(m, 0.95) is equal to around 3.1 according

29

to table 1. The rest of the Gaussian kernel DPC procedures are the same as
DPC.

Figure 10: GKDPC Decision graph on spherical data

Figure 10 illustrates the decision graph from Gaussian kernel DPC algorithm
operating on spherical data. Same as the decision graph from DPC, there are
3 obvious high product index values lying on the top-right corner of the plot.
Thus it is safe to say the Gaussian DPC algorithm also states the correct num-
ber of cluster to be 3.

30

Figure 11: GKDPC clustering results on dimension 1 and 2: locations of the
cluster centers. Each color represents a distinct cluster. The X-marks represent
the true cluster centers. And ‘+’ marks the estimated cluster centers.

Figure 11 and 12 illustrates Gaussian kernel DPC clustering result on spher-
ical data on the first 2 dimensions. Again, figure 11 marks the Gaussian kernel
DPC estimated cluster centers, and from the figure we can see that this cluster
center has more bias compare to k-means, but has more or less the same bias
as the original DPC centers.

31

Figure 12: GKDPC clustering results on dimension 1 and 2: observation as-
signments. Each color represents a distinct cluster. The alphabets represents
points’ assignment according to the algorithm.

Figure 12 marks the assignments estimated by the Gaussian kernel DPC al-
gorithm for the first two dimensions. Once again the result is exactly the same
as the k-means, the DPC and the true clusters. From this demonstration, we
could to some extent conclude that the DPC and Gaussian kernel DPC are able
to produce good results just as the popular k-means algorithm on spherical data.

Drawing conclusion from observing figures is rather insubstantial. However,
detailed comparison between unsupervised learning algorithms is a difficult task,
a task deserves many stand alone studies. Generally, there are 3 validating cat-
egories for clustering algorithms, they are the internal criteria, the external cri-
teria and the relative criteria[6, Section 4]. The basic idea of the relative criteria
involves comparing clustering schemes and results between different clustering
methods, or comparing the results from the same method but with different

32

parameters. In fact, the algorithm comparisons (using k-means as a benchmark
to evaluate the performance DPC based algorithms) performed in this section
is a form of validation based on relative criteria.

The internal criteria are the validation criteria that uses only the informa-
tion within the data set, while the external criteria can be based on information
outside of the data set. In practice, the internal criteria are much more useful
than the external criteria, since internal criteria does not rely on any external
knowledge over the data set. As a trade off the internal validations methods are
often complicated and inaccurate.

Fortunately, we have full information about this synthetic data. Thus, the
requirement of adopting an external criteria is fulfilled. A simple external val-
idation tool called adjusted-Rand-index (ARI)[7] can be employed for the val-
idation task. The main idea of ARI is to compare the similarity between two
partitions. Given two partitions P = (P1, ..., Pp) and Q = (P1, ..., Pq) of a set S
with n elements, and define ri,j as the number of elements in S that are assigned
to both partitions Pi and Qj , we will get a following contingency table:

Q1 Q2 ... Qq Sums
P1 r1,1 r1,2 ... r1,q a1

P2 r2,1 r2,2 ... r2,q a2

...
Pp rp,1 rp,2 ... rp,q ap

Sums b1 b2 ... bq n

Table 2: Table: Contingency table for adjusted-Rand-index

And the adjusted-Rand-index is defined as

ARI =

∑
i,j

(
ri,j
2

)
− (
∑
i

(
ai
2

)∑
j

(
bj
2

)
)/
(
n
2

)
(
∑
i

(
ai
2

)
+
∑
j

(
bj
2

)
)/2− (

∑
i

(
ai
2

)∑
j

(
bj
2

)
)/
(
n
2

) , (26)

for i ∈ (1, ..., p) and j ∈ (1, ..., q).

Detailed explanations of the adjusted-Rand-index is provided in the ap-
pendix section. If the two partitions are similar, the ARI value between the
two partitions is closer to 1. Basically, we could use the adjusted Rand index to
compare the clustering results and the true cluster groups, the clustering algo-
rithm produces larger ARI value would be considered better algorithm model.
In experimental circumstances, true cluster groups are often known. Thus ARI
would be the perfect methods to evaluate the performances of different methods

33

or models in such circumstances.

Unsurprisingly, all k-means, DPC and Gaussian kernel DPC algorithms re-
ceive ARI=1, which means all of them produces perfect clustering assignments
on the ideally generated spherical data experiment. Although the k-means algo-
rithm is known for its efficiency in clutering spherically formed target clusters,
this experiment has shown the DPC-based algorithms are also able to produce
good results.

3.2 Testing clustering algorithms on synthetic non-spherical
data

The aim of second test is to illustrate the advantage of DPC algorithms over
k-means when dealing with non-spherical clusters. We decide to produce two
high-dense concave shaped clusters enfolding each other in 2-dimensional space.
In addition, an extra less-dense spherical cluster is added as a distraction.

Two concave shaped clusters are generated based on a quadratic equa-
tion. For y-axis, 301 points are generated on top of the quadratic equations
y1 = (x1−25)2/7+10 and other 301 points are generated on y2 = −y1 +70. For
x-axis, the domain on x1 is (10, 10.1, 10.2, ..., 40) and x2 is (25, 25.1, 25.2, ..., 55).
After that, every point is shifted according to a Gaussian distribution on both
y and x axis, with randomly chosen variance parameters.

Deploying random points around quadratic equation is not just because it
creates non-spherical clusters. Another reason is that, the peak of the quadratic
equation will provide the highest density among other areas. And the DPC
based algorithms require such high density regions to locate the potential clus-
ter centers.

34

Figure 13: Synthetic concave shaped clusters. Each color represents a distinct
cluster.

The synthetic concave clusters are showed in figure 13. Red dots represent
points (x1, y1), blue dots represent points (x2, y2) and orange dots represent the
additional spherical cluster formed by 40 bivariate Gaussian samples.

Our procedure is the same as before. We will employ k-means, DPC and
Gaussian kernel DPC on this non-spherical data. Starting with the k-means,
we know the correct number of clusters is 3, so we can directly insert the true
hyperparameter and run the algorithm.

The k-means clustering result on the concave shaped data is illustrated in
figure 14 and 15.

35

Figure 14: K-means clustering results for the concave data: locations of the
cluster centers. Each color represents a distinct cluster. ‘+’ marks the cluster
centers estimated by the algorithm.

In figure 14, the estimated cluster centers are marked as ‘+’. There are no
geometric based cluster centers for the non-spherical data. Nevertheless, the
k-means algorithm produces 3 cluster center points, which makes no sense in
this situation.

36

Figure 15: K-means clustering results for the concave data: observation assign-
ments. Each color represents a distinct cluster assigned by the algorithm. The
points with same color meaning they have assigned to the same cluster.

Figure 15 shows the point assignment according to k-means algorithm. Red,
blue and orange each representing a distinct cluster. As we can see, each as-
signed cluster appears to be split into two or three pieces. Of course, this is
due to the k-means property of only able to recognize spherically shaped data.
Therefore, it is unsurprising to see that k-means algorithms forced two non-
spherically shaped data into spherical clusters, which led to an unsatisfying
result.

Next on the list is the original DPC algorithm. DPC is able to automatically
calculate the best number of clusters, but it requires another hyperparameter
the radius threshold to operate. In complicated situations, the selection of the
threshold parameter is a difficult task. As we have mentioned, the threshold is
a fixed parameter, but the data sparseness on different locations are not always

37

fixed. Therefore in a situation where there are multiple clusters separated in
different sparseness, the DPC with an unsuitable threshold parameter will rec-
ognize the sparse clusters as part of dense neighbouring clusters.

In addition, the estimated density is defined as the number of points within
the radius threshold, so it must be an integer value. The problem with an in-
teger density value is that, there are possibilities that multiple points produce
the same obviously large product index value, thus all of them will be selected
as potential cluster centers. This phenomena will affect the clustering result in
a negative way, that a clearly compact cluster will be recognized as multiple
clusters.

Figure 16: DPC Decision graph on concave data.

Via manual trial and error, we decided to pick the radius threshold dc = 5.
Figure 16 illustrates the DPC decision graph on the concave data, obtained using
radius threshold dc = 5. If we observe clearly, we would see there are actually
4 points significantly larger than rest of the points, since two of the points are
overlapping each other in the third highest position. This is a bad sign, it tells
us there is a high chance that two very similar points are both selected as po-
tential cluster centers. Thus, a problematic clustering result should be expected.

The clustering result is illustrated in figure 17 and 18.

38

Figure 17: DPC clustering results for the concave data: locations of the cluster
centers. ‘X’ marks the true density based cluster centers. ‘+’ marks the cluster
centers estimated by the algorithm.

There are no cluster centers for non-spherical data in the geometric sense,
but cluster centers can be defined in the term of high density points. It is easy
to realize the points with highest density is the peak of the quadratic equa-
tions, and let us consider such points as cluster centers. Figure 17 marks the
estimated cluster centers as ‘+’ and the density-based true cluster centers as
‘X’. The DPC algorithm has located the correct centers for the concave shaped
clusters. However, two estimated cluster centers has appeared in the spherical
cluster lying in the top-right corner. The reason is simple, when dc = 5, the
highest density value of the spherical observations is shared by two points. The
distance estimation for these two points are the distance between themselves
and some points in the blue clusters, and these two distance estimations should
be similar values. As a result both of these two points will receive similarly
large values in the product index.

39

Figure 18: DPC clustering results for the concave data: observation assign-
ments. Each color represents a distinct cluster assigned by the algorithm. The
points with same color meaning they have assigned to the same cluster.

Figure 18 illustrate the DPC point assignments. The red and blue concave
shaped clusters are assigned perfectly well. This indicates the DPC algorithm is
much superior on non-spherical data compare to k-means. However, as we have
expected, the spherical cluster on the top-right has been separated into orange
and green clusters.

This particular test has demonstrated the advantage of DPC algorithm on
the aspect of clustering non-spherical data. On the other hand it also pointed
out the lack of robustness in complicated situations due to its “one-size-fits-all”
characteristic. Let us proceed with Gaussian kernel DPC, and see if a smoother
kernel function would overcome this difficulty. Gaussian kernel DPC does not

40

require any hyperparameter, we just need to obtain the sigma multiplier from
table 1, which is around 2.5 for 2-dimensional data. Therefore we can directly
run the program and obtain the result.

Figure 19: GKDPC Decision graph on concave data

Again, the first step is to obtain the decision graph, illustrated in figure 19.
There are 2 points obviously larger than rest of the points. The third highest
point is larger than rest of the points, but not in a significant level compared
to the first and the second. It is debatable to consider the third point as a
potential cluster center. In practice, more efforts should be put to evaluate if
considering 3 cluster centers is a reasonable decision. Since we know that 3 is
the true number of cluster centers, we will recognize the third highest point as
one of the cluster center.

The Gaussian kernel DPC clustering results are illustrated in figure 20 and
21.

41

Figure 20: GKDPC clustering results for the concave data: locations of the
cluster centers. ‘X’ marks the true density based cluster centers. ‘+’ marks the
cluster centers estimated by the algorithm.

Again, figure 20 marks the estimated cluster centers and the density-based
true cluster centers. This time the algorithm has estimated a low bias cluster
center on both concave clusters and spherical clusters.

42

Figure 21: GKDPC clustering results for the concave data: observation assign-
ments. Each color represents a distinct cluster assigned by the algorithm.

Figure 21 illustrates the point assignments according to Gaussian DPC.
And here all points are perfectly assigned to the correct cluster. In conclu-
sion, through this test, the Gaussian kernel DPC has proven its advantage on
non-spherical data over the k-means algorithm and robustness against compli-
cated environments over the original DPC.

Before ending this section, we could use the adjusted-Rand-index again to
evaluate the clustering performances.

43

ARI
k-means 0.478349

DPC 0.9960682
GKDPC 1

Table 3: The ARI value of each algorithms

According to table 3, the k-means algorithm provided the worst ARI value,
this is expected since its poor performance on non-spherical data. The original
DPC receives an ARI close to 1, not as good as GKDPC but good enough to be
considered as a good result, although we can clearly observe the result is prob-
lematic from figure 18. This is because ARI tends to punish more on misplaced
elements in large clusters, while the penalty of partition split in small clusters
is not decisive.

Let us review the detail of the ARI comparison between the DPC cluster-
ing result and the true cluster groups. The partition of true cluster center is
(301, 301, 40), meaning the first 301 observations are assigned into cluster 1,
the second 301 observations are assigned into cluster 2, and the last 40 obser-
vations are assigned into cluster 3. The partition of DPC clustering result is
(301, 301, 19, 21). Let us then set (

∑
i

(
ai
2

)∑
j

(
bj
2

)
)/
(
n
2

)
= E, equation 26 for

this particular scenario becomes

(2∗(301
2)+(19

2)+(21
2))−E

(2∗(301
2))+((40

2)+(19
2)+(21

2))/2−E
.

As we can see, the only different part between the numerator and denomi-
nator is (

(
19
2

)
+
(

21
2

)
) = 381 and (

(
40
2

)
+
(

19
2

)
+
(

21
2

)
)/2 = 580.5, which are tiny

values compare to rest of the identical parts 2 ∗
(

301
2

)
= 90300 and E = 40139.9.

This shows a limitation of ARI being not able to detect over-clustering in small
clusters.

The Gaussian kernel DPC clustering result receives 1 in ARI, this simply
means all points has assigned to the true cluster. In the end, the Gaussian
kernel has provided the best results on all aspects.

44

4 Applying the Gaussian kernel DPC on real
world insurance data

In the previous sections, we have showed the ability of the Gaussian kernel DPC
when dealing with ideally synthetic data. The next challenge would be employ-
ing the algorithm on real world data. A situation to demonstrate clustering
algorithms could be the risk classification problem in insurance industry.

It is reasonable that policy owners with different attributes would lead to
different level of risks, which the risks will in long term becomes an amount
of compensations. Therefore, to be able to accurately classify different cus-
tomer groups is essentially important for insurance modelling. Provided with
real world insurance data, containing information about policy owners and the
compensation payments, the aim is to classify owners’ risk, so that in further
generalized linear model (GLM) modeling, people with high risk level would pay
more premium, and vice versa.

In non-life insurance, a traditional risk classification modeling is demon-
strated in “Non-Life Insurance Pricing with Generalized Linear Models” [3].
This book takes an example of motor insurance case. Basically, the actuaries
have selected the relative attributes, including categorical attributes, numerical
attributes and the reference attributes. The categorical attributes are formu-
lated as tariff cells, then a GLM is operated on the numerical attributes to
match the reference attributes on the corresponding tariff cells. The tariff cells
produce similar GLM models will be merged. Eventually, when a new customer
is willing to sign a policy, he/she will be classified into the cell according his/her
attributes, and the premium will be calculated according to the GLM model of
this cell.

A problem with the traditional risk classification is that, the selection and
ranking of attributes are subjectively made. Also all decisions are reference
based (GLM), which means that it requires external information. Hence, suit-
ably designed, pure data-driven unsupervised machine learning algorithms would
be able to provide some new perspectives to the risk classification problem.

4.1 Data explanation

The data used in this section is named “dataOhlsson”, provided in “Non-Life
Insurance Pricing with Generalized Linear Models”[3], and it can be obtained
from the R-package “insuranceData”. This data comes from the former Swedish
insurance company Wasa, and concerns partial casco insurance, for motorcycles.
It contains aggregated data on all insurance policies and claims during 1994-
1998. The data contains 64548 observations, each represents the state of one
policy. The states are separated into 9 attributes: owner’s age, owner’s gender,

45

geographic location (zone), vehicle class, vehicle age, bonus class, policy dura-
tion, number of claims and claim cost.

Owner’s age are integer values, ranged in (0,99). Because the amount of
intervals for the age variable are relatively large, this variable should be con-
sidered as continuous numerical variable. Owner’s gender has only two options
male (M) and female (K), it is a categorical variable. Zone has 7 levels, each
representing a distinct region in Sweden, for instance “Zone1” represents the
three largest cities in central Sweden. Zone is a categorical variable. Vehicle
class represents the type of vehicle classified in EV ratio, EV=(Engine power in
kW * 100)/(Vehicle weight in kg + 75), and then the EV ratio is classified into
7 levels, it should be classified as a categorical variable. Vehicle age are integer
values, ranged in (0,99), this variable should also be considered a continuous
numerical variable. Bonus class is a credibility evaluation of policy owner, it
has 7 levels. An owner start with level 1, for each claim-free year the bonus
class is increased by 1. And after the first claim the bonus class is decreased by
2. Bonus class is a categorical variable. Duration represents the length of policy
years, measured in non-negative real numbers, and it is a continuous numerical
variable. Number of claims occurred to the owner, measured in integer values,
is a numerical variable. The claim cost is the amount of compensation paid to
the owner, measured in non-negative real numbers, it is a continuous numerical
variable.

Among the 9 variables, 5 of them are numerical variables, 4 of them are cat-
egorical variables. For the categorical variables, we could subdivide them into
more detailed data-types. Needless to say, gender is a binary variable. Vehicle
class and bonus class however, are unlike ordinary categorical variables. The
levels for these two variables are ordered, for example, level 4 is closer to level
3 than level 1. This type of variables are called ordinal variables. And ordinal
variable has another subset, the interval variable, which means numerical vari-
able measured in interval scale. In our case, bonus class should be classified as
an interval variable, because it is actually continuous time variable measured in
yearly scale. It is unsure if we should classify vehicle class as an interval variable
at this stage, because we do not know the EV ratio was distinguished by the in-
tervals. For simplicity we will consider it as interval variable. The zone variable
on the other hand is unlike ordinal variables, the levels in zone variable does
not have an ordered relationship. This type of variables are the nominal variable.

Different variable type have different properties, and thus should be treated
differently. As we have mentioned in section 2.3, the dissimilarity measurement
should be defined differently for different variable types.

46

Variable type Dissimilarity
Numerical Euclidean

Interval Euclidean
Ordinal Manhattan
Nominal Hamming
Binary Hamming

Table 4: The reasonable dissimilarity measurement for each variable type

Table 4 provides the reasonable dissimilarity measurements for different vari-
able types. It should be clear that Euclidean dissimilarity is suitable for numer-
ical variable. For nominal and binary variables, there is no intrinsic ordering to
the categories. If two points are not in the same category in on one nominal
or binary variable, we only know they are different in this variable, but we do
not know how much they are unlike each other. Comparing the dissimilarity
between two points in nominal and binary space is equivalent to counting the
number of mismatches between the two points. Thus we should use Hamming
distance defined by equation 9 to be the reasonable dissimilarity on nominal
and binary variables.

For ordinal variable, the differences between the levels are ordered, but the
spaces between the levels are unknown. Applying Euclidean dissimilarity is
equivalent to assuming the spaces in between the intervals are known to be
equal and continuous, which is not reasonable at all. The meaning of apply-
ing Manhattan dissimilarity is that, we are willing to measure the dissimilarity
based on the differences in levels, while not involving any presumptions on the
interval space between each levels.

For interval variable, the differences between the levels are ordered, and the
spaces between the levels are equal and continuous. An clear example would be
a daily scaled time variable measured in years. In this case the presumptions
for applying Euclidean dissimilarities are fulfilled, and this is the reason for rec-
ommending Euclidean dissimilarities for interval variable.

As we have discussed in section 2.4, the Gaussian kernel DPC is heavily
dependent on the Euclidean dissimilarity. Therefore, forcing the algorithm to
handle variables other than numerical and interval would cause problems, unless
specific modifications are made. At the current stage the Gaussian kernel DPC
algorithm is still unable to handle such a task. As a backup plan, we decide to
only pick the female gender class and the first zone class (three large cities in
central Sweden), and focus on the data within this particular cell which contains
1243 samples with only numerical and interval variables.

On top of the numerical variables, the claim cost and number of claims are
usually the response variables (referred as labels in machine learning) in non-life

47

insurance pricing. The purpose of unsupervised learning is to extract informa-
tion without involving any response variable, thus these two variables should
also be excluded from the consideration. Eventually, there are 5 variables left to
proceed with: Owner’s age, vehicle class, vehicle age, bonus class and duration.

4.2 Exploratory analysis

If we are aiming to proceed with the clustering algorithm, the first step is to
detect if there are clustering signatures in the data set. Therefore, exploratory
analysis on the data set is required. This subsection will be mainly focused on
the application of histograms and principal component analysis to gain addi-
tional knowledge on the clustering signatures of the data set.

An clock-shaped-upper-peak in the variable histogram indicates there are
large number of points concentrated around this point for this variable. If there
are signatures of clustering structures in overall data sets, then there should
be clustering structures on some particular variables. The intention of plotting
histograms is that, the clustering structures can be observed from histogram on
each of the variables through frequency upper-peaks.

Figure 22: Histogram of owner’s age and vehicle class

48

Figure 23: Histogram of vehicle age and bonus class

Figure 24: Histogram of duration

Figure 22, 23 and 24 illustrate the histograms for all 5 variables. According
to the figure, vehicle age clearly has 2 upper-peaks, this indicates the potential
to have 2 clusters. Owner’s age has multiple unclear peaks, it could indicate
more than 2 clusters. The bonus class variable have 2 peaks at level 1 and level
7, but the clustering behavior on interval variable is not as clear as numerical
data. The duration variable has three peaks around 0, 0.5 and 1. This is due
to the fact that owners tend to sign one year or half year policy.

To sum it up, the histogram does indicate some clustering structures on the
data set. On top of the histograms, we will employ PCA to further investigate
the clustering signatures. A short introduction about PCA is presented below.

49

Assume a n ∗ m centralized matrix X, the singular value decomposition
(SVD) of X is be formulated as X = UΣV ′, where U is the a n ∗ n orthogonal
matrix, Σ is a n∗m non-negative rectangular diagonal matrix, and V is a m∗m
orthogonal matrix. The SVD solution is unique if we choose the Σ so that its
diagonal elements are in a descending order, σ1,1 ≥ σ2,2 ≥ ... ≥ σm,m ≥ 0.
Based on this, we define principal components of X as the vector Y,

Y = UΣ′V ′V = UΣ = XV. (27)

The main concept of SVD is closely related to the eigendecomposition pre-
sented in section 2.4. The only practical difference is the target matrix (to be
decomposed) of eigendecomposition must be a square matrix, while SVD does
not have restrictions on target matrix.

Basically, PCA is defined as an orthogonal linear transformation which
projects data set into a new basis, in the way that the projection causes the
direction of the greatest variance is lying on the first coordinate (first principal
component), direction of the second greatest variance on the second coordinate
(second principal component), and so on. The purpose for employing the PCA
is that, majority of the data information can be observed with first few compo-
nents capturing most of the variances in the data.

In our case, observing clustering structures from multiple scatter plots is
rather confusing. However, we could reduce the dimensions of our data set us-
ing PCA, then plot the first two components. Usually the first few components
carries enough information and it can be used to represent the behavior of all
original dimensions. If there appears multiple clusters on the first two principal
components, then there will be a high possibility that the original data would
also containing multiple clusters.

Before operating the PCA procedure, we should notice that there exist im-
balance of variable scale. The ranges of the two age variables are (0,99), while
the ranges of the interval class variables are (1,2,..,7). It is conspicuous that the
variables are not in the same scale, in this case the age variables will dominate
over class variables due to their large scales. Therefore, it is necessary to rebal-
ance the weight of each dimension according to the definition of dissimilarity. As
we have stated in section 2.3, if all of the variable dissimilarities are Euclidean
metric based, the standardization (taking the standard score on each variable
data) of data would be a good option.

50

Variables PC1 PC2
Owner’s age -0.6218036 0.06696524
Vehicle class 0.1689204 -0.82548711
Vehicle age 0.4150577 -0.21994128
Bonus class -0.5628520 -0.51278933
Duration -0.3094364 0.05253215

Table 5: First two principal components of standardized insurance data

Table 5 displays the first 2 principal components of the standardized insur-
ance data. Most coefficients in the first two principal components have relatively
large absolute values, this means that no variable is dominating over others in
term of their variances. However, the cumulative proportion of variance for the
first 2 principal components is only 0.4963. In PCA, the term proportion of
variance for component i is the amount of variance the ith component accounts
for in the data. And the term cumulative proportion between components i to j
is the accumulated amount of explained variance between components i and j.
The first 2 cumulative proportion equals to 0.4963 implies that these 2 principal
components can only provide very limited (less than a half) information for all
original variables.

Figure 25: PCA scatter plot for arranged insurance data

Figure 25 is the scatter plot of the first 2 principal components. Unfortu-
nately, no obvious multiple clustering structures can be directly observed from
the figure. This means we should expecting only one cluster center to be found
through any clustering method. This result is contradicting to the histogram
analysis, since clear multiple cluster structures have appeared in histograms. I
do not have any clue for this contradiction at the moment. On the other hand,

51

the first 2 component only contains 49.63 percent of the overall variance, which
means that any conclusion drawn from this PCA result is rather weak. There-
fore, the actual clustering result is still uncertain.

4.3 Clustering result on the insurance data

In this subsection the Gaussian kernel DPC will finally put to use. The stan-
dardization of data is employed. No outliers are assumed. The data set is
5-dimensional, according to table 1, the sigma multiplier defined in section 2.5
which fulfills 95 percent central cumulative probability quantile is in between 3
and 4. More detailed Monte-Carlo simulations would reveal that this value is
around 3.4, and we will use this value to proceed with our GKDPC clustering
algorithm. After inserting the data into the algorithm, the first step is to eval-
uate the decision graph.

Figure 26: DPC Decision graph on insurance data

Figure 26 illustrates the decision graph of the arranged insurance data. Ac-
cording to the figure, There are 2 obviously large product index values and 3
relatively high product index values. These 5 points can be considered as po-
tential center points, and thus we can confirm that 5 should be a reasonable
number of clusters. Since many of the variables are interval, each of these 5
points are containing multiple observations (policies). Table 6 shows detailed

52

information of the clustering result.

Cluster
centers

Owner’s
age

Vehicle
class

Vehicle
age

Bonus
class

Duration Assigned
policies

Center1 29 3 16 1 0.975342 213
Center2 49 3 4 7 1.000000 243
Center3 43 3 6 2 0.498630 507
Center4 28 3 6 7 0.498630 92
Center5 26 5 15 1 0.504110 188

Table 6: Clustering result for insurance data. Column 1 displays the ranks
of the cluster centers. Column 2-6 locate the position of the cluster centers.
Column 7 shows the number of policies assigned to the corresponding cluster
center.

The clustering result provided in table 6 is unsurprising. The frequency
peaks showed in the histograms in figure 22, 23 and 24 have all appeared in this
result, such as around 45 and 27 for Owner’s age, around 15 and 5 for vehicle
age, 3 for vehicle class, 1 and 7 for bonus class, 0.5 and 1 for duration.

The cluster with most policies assigned is actually center3, the third highest
in the decision graph. More than 500 policies have assigned to the third cluster,
which is around half of the total sample size. The cluster centers is to some
extent representing the unique features of the policies which assigned to them.
And this clustering results in some way says that the third cluster center con-
tains the most common features for the overall population.

Furthermore, we can use heatmaps to illustrate interval type data in figures.
Figure 27 illustrates owner’s age and vehicle age data in a heatmap, the dark-
ness of color represents the number of policies on the position according to the
color-index. The cluster centers from table 6 are marked as ‘+’ on top of the
heatmap. We can see that the 5 cluster centers are representing 2 clusters in the
top-left, 1 cluster in the bottom left and 2 clusters in the bottom right. Those 5
points are positioned in relatively dark regions, so the GKDPC clustering result
matches our expectation.

53

Figure 27: Heat map of age variables and cluster centers. Each position repre-
sents the number of policies with the corresponding age attributes. The number
of policies is illustrated by the darkness according to the index in the left. ‘+’
marks the cluster centers obtained using GKDPC algorithm.

Let us summarize the application of clustering algorithms on aspect of
risk classification. The traditional method is to subjectively select relative at-
tributes, and then merge the attributes which have similar GLM results. The
concept of clustering algorithm on the other hand is the opposite. The clus-
tering algorithm considers all observations in the first place, and then find a
data-driven method to split them into reasonable risk groups. The usefulness
of clustering algorithms are pretty straightforward: they are data-driven and
relatively objective, therefore it could provide some unique perspectives which
are difficult from those captured by human observations.

With the cluster centers obtained, the supervised techniques, such as GLM
modelling with the reference variables as labels can be employed to gain the re-
lationship between risk groups and the actual claim cost. Just as the traditional
GLM method, the GLM modeling based on the clustered risk groups can also
be used to predict the claim cost of new policies.

The validation of the clustered risk groups is a difficult task, since the re-
quirements for the external criteria are most likely to be unavailable in practical
scenarios. Nevertheless, the relative validation criteria can still be employed for
this task. We could validate the performance of the clustered insurance risk
groups by comparing it with the result of the traditional GLM model. The pur-

54

pose of risk classification is that, we would like to classify policies into groups so
that the groups with higher risks (and therefore claim costs) are separated from
the groups with lower risks. Thus, one comparison criteria can be set based on
the sparseness of risk groups in terms of their claim costs or claim frequencies.
Under this criteria, the methods which produce sparse risk groups should be
considered better methods, vice versa. Another comparison criteria could be
based on the prediction performances. Under this concept, the methods which
predict closer to the actual claim costs (which the actual claim costs can be set
by the cross-validation scheme), and less deviations to the average claim cost
should be consider better methods.

The most important benefit of adopting the clustering algorithms in risk clas-
sification is that, it releases a potential to greatly expand the size of variables to
be considered. With modern days technologies, more features can be extracted
from each individual person. The traditional risk classification method is dif-
ficult do handle increasing number of variables. For instance, adding just an
extra categorical variable indicates a large increase in the number of tariff cells
for the traditional GLM modelling, thus the computational complexity will be
greatly boosted. The clustering algorithms on the contrary, are more efficient
when handling data sets with large amount of variables. Of course, the current
GKDPC is still unable to consider many categorical variable types. As long as
the limitation of mixed-type data is overcame for the GKDPC, there is no doubt
the clustering algorithm would provide great values to the insurance industries.
It would be really exciting to see such data-driven techniques to be applied even
more in industries in the future.

55

5 Discussions

In this section, we shall discuss the topics that are unresolved in the main con-
tent of this article, or have the potential to be further investigated in future
studies.

5.1 Density-based outlier detection

We have not included any outliers throughout this study. Of course this does
not mean density based algorithms cannot deal with it. In fact, many density
based algorithms are well-known for the ability to effectively and robustly de-
tecting outliers, such as the DBSCAN algorithm. The advantage for density
based algorithms on outlier detection is simple: no-matter which density esti-
mation method we use, the points with significantly lower densities are mostly
likely to be the outliers.

The only problem for the density-based algorithm in this aspect is that,
most of the algorithms are not parameter-free, meaning that we still need to
have some knowledge on the data in order to determine the suitable parameter.
For instance DBSCAN requires the threshold parameter dc. Of course a unsuit-
able hyperprameters would cause problematic outlier detection results.

As we have demonstrated, the Gaussian kernel DPC with σ1−NN hyperpa-
rameter is free of parameter to some extent. This means the Gaussian kernel
density could provide us with a parameter-free outlier detection alternative.

56

Figure 28: GKDPC based outlier detection. Left: Data with outliers added.
Right: outliers detected using the Gaussian kernel density estimation. Colored
points represents clustered observations and black points represents randomly
generated outliers. ‘N’ marks the detected outliers.

Let us demonstrate a scenario by adding some random noises on the same
synthetic spherical data in section 3.1. Figure 28 illustrates the data set with
30 extra randomly generated outliers (left) and the outliers detected (marked
in ‘N’) by locating the obviously low Gaussian kernel density points (right).
According to the figure, all outliers have been detected. Provided with extra
modifications, the Gaussian kernel density-based algorithm has the potential to
become a reliable outlier detection algorithm.

Gaussian kernel density estimator with 95 quantile 1-NN bandwidth σ̂m
performs badly in noisy data. This because in noisy circumstances, the 1-NN
distances for outliers are also cosidered, and those distances are much larger
than the 1-NN distances for clustered points. Therefore, if we include the out-
liers in our scenario, then equation 21 and 22 would likely to produce an overly
large σ̂m estimation. Hence the ideal clustering algorithm procedures should be
first filtering out the outliers, and then operate the clustering algorithms. The
density-based outlier detection scheme can be directly attached to the Gaussian
kernel DPC algorithm or any clustering algorithms in this regard.

If the main purpose of applying outlier detection is to remove the outlier
effects in the GKDPC parameter estimation, then we should not use the Gaus-
sian kernel to define the density estimator in the first place. In this scenario,
other density-based outlier detection methods such as k-NN should be applied
instead of Gaussian kernel.

57

5.2 Limitations to the robustness and advanced data as-
signments

Density based algorithms are very robustness in general, but they still have their
limitations. For instance, based on the concave synthesizer in section 3.2, let
us move the two concave clusters toward each other, by redefining dependent
variables y1 = ((x1 − 25)2)/5 + 10 and y2 = −y1 + 80 while keeping the same
independent variables. The DPC and GKDPC clustering results are displayed
in figure 29.

Figure 29: DPC (left) and GKDPC (right) clustering results on compressed
concave clusters. Each color represent a distinct cluster. The circles mark the
problematically assigned points.

From figure 29, we can see that large proportions of observations are mis-
assigned (the points marked in circles). In order to understand the reason behind
it, we should illustrate the clustering result in another alternative. According
to equation 6, each point is assigned to the closest neighbour point with higher
density estimations. If we link-up all these connections, this will form one span-
ning tree for every cluster. This way, we will be able to directly observe the
problematic connections.

58

Figure 30: DPC (left) and GKDPC (right) clustering results on compressed
concave clusters, with spanning trees marked as black lines. Each color represent
a distinct cluster. The circles mark the problematic connections.

The spanning tree on DPC (left) and GKDPC (right) results are illustrated
in figure 30. We could clearly see there are multiple mis-linked connections
(marked in circles) for both results. This shows that equation 6 may cause
problematic assignments in extreme situations, for instance when target clus-
ters are closely twisted. Even if just two points are mis-connected, this would
cause a problem so that many points will be mis-assigned eventually.

The solution to this limitation of robustness would be applying advanced
assignment algorithms, and one of the directions would be the fuzzy-clustering.
In the concept of fuzzy-clustering, the assignment of a point is presented as the
probabilities of the target point belonging to each of the clusters. A related
study on DPC fuzzy clustering can be found in the article “Adaptive density
peak clustering based on K-nearest neighbors with aggregating strategy” [8]. This
study used the k-NN approach to construct the fuzzy clustering for DPC. The
result of this study shows that fuzzy clustering could be an alternative to en-
hance the robustness of DPC algorithm.

Another topic I would like to discuss is the robustness comparison between
DPC and GKDPC algorithm. Although GKDPC outperforms original DPC in
the concave shaped data according to figure 18 and 21. The decision graph
figure 19 on the other hand shows for GKDPC algorithm, the third highest
point is just barely higher than the rest of the points. It is to some extent ques-
tionable to state 3 cluster centers has been detected provided with this evidence.

One of the reason for original DPC having problematic clustering result (the
sparse cluster has been splitted) in this scenario is because the “one-size-fits-

59

all” characteristic of the hyperparameter dc. The GKDPC also suffers from the
same problem, the Gaussian kernel bandwidth σ̂m is also a universal parame-
ter. A suggestion to overcome the “one-size-fits-all” problem is to customize the
parameter according to local environments, so that each observation receives a
unique parameter estimation.

5.3 Modifications for mixed-type data

In section 4, we have only picked the variables which can be measured in Eu-
clidean dissimilarities. In real world circumstances, most of data are mixed-
types. If a clustering algorithm is only suitable for numerical data, then the
usage of the algorithm will be extremely limited. However, applying clustering
algorithm on mixed-type data sets has been a difficult task, and many studies
has been done about it. For instance, the k-means algorithm has its mixed-
type variation called the k-prototype algorithm developed by Zhexue Huang.
Detailed description can be found in his article “Extensions to the k-Means
Algorithm for Clustering Large Data Sets with Categorical Values” [9]. The
methodology for the k-prototype is that, we should split the data set into nu-
merical part and categorical part. Let us say, dimension 1 to dn are the numer-
ical variables and dimension dn+1 to m are the categorical variables. For the
numerical part, dissimilarities are presented in Euclidean distances. And for the
categorical part, dissimilarities are presented as the number of mismatches (e.g.
the Hamming distance). Then the two dissimilarities are combined according to

dtot(x, y) =

dn∑
d=1

dnum(xd, yd) + γ

m∑
d=dn+1

dcat(xd, yd), (28)

where dtot(x, y) represents the total dissimilarity between point x and point
y; dnum(xd, yd) represents dissimilarity in numerical space, namely Euclidean
distance; dcat(xd, yd) represents dissimilarity in categorical space, namely Ham-
ming distance. γ is a special hyperparameter, it determines the weight which
balances between the numerical variables and the categorical variables. When
the total dissimilarity model is defined, then k-means algorithm and k-modes al-
gorithm (A variation of k-mean, it focuses on minimizing dissimilarities around
the mode-points instead of mean-points) are employed on numerical space and
categorical space respectively.

The article “Clustering Technique for Risk Classification and Prediction of
Claim Costs in the Automobile Insurance Industry” [10] has demonstrated an
application of the k-prototype algorithm. They used an Australian automobile
insurance data set, which is similar to the data used in this paper in section 4.

60

In their study, both numerical and categorical variables were considered, and
the k-prototype algorithm has produced some fairly reasonable results.

Basically, the task for fitting the mixed-type data can be described as 3
problems. The first is to find the suitable dissimilarity measurements on differ-
ent data space; the second is to determine some sensible ways to balance the
spaces; the third is to construct a reasonable function, which takes the result
from the first two problems as input, and processes reasonable clustering re-
sults. I have made some suggestions for future studies to modify our Gaussian
kernel DPC. On the dissimilarity aspect, I would like to introducing Manhat-
tan distance to measure the dissimilarity of ordinal variables, and introducing
Hamming distance to measure the dissimilarity of nominal and binary variables.

On the weight rebalance aspect, a solution would be applying equation 12,
where d̄k is defined by the dissimilarity measure on the kth dimension.

Lastly, we have already pointed out that the Gaussian kernel function is
heavily dependent on Euclidean dissimilarities. Actually we could use other
kernel functions for non-numerical or non-interval variables, as long as the ker-
nel function catches the feature that closer points provide more contribution to
the density of the target point. The term “closer” in this situation means smaller
value in dissimilarity measure, which can be Euclidean, Manhattan, Hamming
or any other reasonable metrics.

61

6 Conclusions

Training arbitrarily shaped data sets has been a difficult task for clustering
algorithms. The density based algorithms are designed to overcome such dif-
ficulties, thus good clustering solutions can be obtained even in complicated
environments. This study has developed the Gaussian kernel density peak clus-
tering algorithm, a variation of the density peak clustering algorithm. The
GKDPC algorithm adopts the multivariate Gaussian distribution function as
the density kernel, and uses the data-based one-nearest-neighbour bandwidth
as its parameter. The GKDPC algorithm has two obvious advantages compared
to the other clustering algorithm counterparts: it is more robust in complicated
environments and it is free of parameters.

This study has also provided two comparisons between GKDPC with the
original DPC and k-means algorithms based on synthetic data sets. The spher-
ical data experiment shows that the performance of the three algorithms are
similarly good. The concave data experiment on the other hand shows that
the GKDPC algorithm outperforms the other two algorithms. Moreover, a real
world motor insurance data has been deployed to test the performance of the
GKDPC algorithm, and the result is fairly reasonable, despite some of the lim-
itations, such as being unable to cluster categorical variables.

Some future directions of the GKDPC include expanding its use in outlier
detection, further increasing the algorithm robustness via fuzzy clustering and
customizing parameters, and introducing Manhattan and Hamming distances
to make the algorithm being able to cluster ordinal and nominal data.

Clustering algorithms could become helpful tools to many business industries
due to their ability to easily handle large amount of variables. With reasonably
designed algorithms, new machine learning techniques has the potential greatly
improve the existing industrial models in the future.

62

References

[1] Trevo Hastie, Robert Tibshirani, Jerome Friedman.: The Elements of Sta-
tistical learning, Second edition. Springer, (2017)

[2] Alex Rodriguez, Alessandro Laio.: Clustering by fast search and find of
density peaks, Science, Vol. 344, Issue 6191, page 1492-1496, (2014)

[3] Esbjörn Ohlsson, Björn Johansson.: Non-Life Insurance Pricing with Gen-
eralized Linear Models, Springer, (2010)

[4] Robert J. Finger.: Foundations of Casualty Actuarial Science, Chapter 6

[5] David W.Scott, Stephan R. Sain.: Multi-dimensional density estimation,
Computer Science, (2004)

[6] Maria Halkidi, Yannis Batistakis, Michalis Vazirgiannis.: On Clustering
Validation Techniques, Journal of Intelligent Information Systems, page
107–145, (2001)

[7] Lawrence Hubert, Phipps Arabic.: Comparing Partitions, Journal of Clas-
sification 2, page 193-218, (1985)

[8] Liu Yaohui, Ma Zhengming, Yu Fang.: Adaptive density peak clustering based
on K-nearest neighbors with aggregating strategy Knowledge-Based Systems,
Volume 133, Page 208-220, (2017)

[9] Zhexue Huang.: Extensions to the k-Means Algorithm for Clustering Large
Data Sets with Categorical Values, Data Mining and Knowledge Discovery
2, page 283–304, (1998)

[10] Ai Cheo Yeo, Kate A. Smith, Robert J. Willis, and Malcolm Brooks.: Clus-
tering Technique for Risk Classification and Prediction of Claim Costs in the
Automobile Insurance Industry, International Journal of Intelligent Systems
in Accounting, Finance & Management, page 39–50, (2001)

63

A Obtaining the numeric value of sigma multi-
plier using Monte-Carlo simulations

Table 1 was employed to obtain the required σ estimators in section 2.5. For
columns i = 1, ...,m, rows j = 1, ..., o, the cell Ci,j in table 1 represents the
value of percentage quantile within the j ∗ σ radius in i-dim hypersphere.

The numerical solution for table 1 cells can be easily achieved via Monte-
Carlo simulations. Let us generate n samples, each sample is generated accord-
ing to the multivariate Gaussian distribution N(0, V ar), where 0 is a vector of
zeros with length i, and V ar = v ∗ Ii, v is an arbitrary value greater than 0, Ii
is a size i identity matrix. After that, we should define an indicator function
χ: χ(xk, j) = 1 if dxk,0 − v ∗ j < 0 and χ(xk, j) = 0 otherwise, where da,b
is the Euclidean dissimilarity between a and b (equation 1). The total num-
ber of observations located within the j-sigma-sphere for k in 1, ..., n is simply∑n
k=1 χ(xk, j). And the percentage of observations located within the j-sigma-

sphere is therefore
∑n
k=1 χ(xk,j)

n .

Repeat Ci,j =
∑n
k=1 χ(xk,j)

n for data generated over dimension i = 1, ...,m
and sigma multiplier j = 1, ..., o, we will eventually obtain table 1. Moreover,
we could repeat the above process multiple times, and take the average value
on each cell to make the numerical solution to be more stable.

This numerical approach is able to produce a relatively good solution in
lower dimensions. However, once the dimension size increases, the number of
samples n needed to keep the solution stable will be dramatically increased.
Of course, this is due to the curse of dimensionality, and it implies that this
numerical approach will no longer be accurate in high-dimensional situations.

The method to obtain the sigma multiplier in order to fulfill the desired
quantile is also not hard. For example, if we want to find the sigma multi-
plier that fulfils the 95 percent quantile in 5-dim. We can see from table 1
that this value is in between 3 and 4. Then we just need to generate n multi-
variate Gaussian samples in 5-dimensional space, insert j = (3, 3.1,, 3.9, 4) in
the Ci,j function, and pick the j that produces the result which is closest to 0.95.

B Detailed explanations on the adjusted-Rand-
index

The ARI is an extension of the Rand-index. Let us preserve the setting of
adjusted-Rand-index in section 3.1, the Rand-index is simply defined as

64

R =
a+ b

a+ b+ c+ d
, (29)

where a represents the number of pairwise elements in S that are in the same
subset in P and same subset in Q; b represents the number of pairwise elements
in S that are in different subset in P and different subset in Q; c represents the
number of pairwise elements in S that are in the same subset in P but different
subset in Q; d represents the number of pairwise elements in S that are in the
different subset in P but same subset in Q. The sum a+ b+ c+ d is equal to all
pairwise combinations of S, which is

(
n
2

)
.

The Rand-index provides an (0, 1) index for two partitions of the same set.
The Rand-index is close to 1 indicates the partitions are similar. And the Rand-
index is close to 0 indicates the partitions are unlike. When the two partitions
are exactly the same, the Rand-index is equal to 1.

Let us demonstrate a short example for the Rand-index. Assume a set
S = (1, 2, 3, 4, 5, 6), and two partitions P = (P1, P2) where P1 = (1, 2, 3, 4),
P2 = (5, 6) and Q = (Q1, Q2, Q3) where Q1 = (1, 2), Q2 = (3, 4, 5), Q3 = (6).
According to the definition of Rand-index, the pairwise elements (1, 2) and (3, 4)
are belonging to a; the pairwise elements (1, 5), (1, 6), (2, 5), (2, 6), (3, 6), (4, 6)
are belonging to b; the pairwise elements (1, 3), (1, 4), (2, 3), (2, 4), (5, 6) are be-
longing to c; lastly (3, 5) and (4, 5) are belonging to d. The total number of
pairwise combinations is

(
6
2

)
= 15, thus the Rand-index of partition P and Q is

a+b
15 = 2+6

15 = 0.53.

The adjusted-Rand-index is an extension of Rand-index, it adjusted the orig-
inal Rank-index as the form (index - expected index)/(max index - expected in-
dex). Hubert and Arabie have showed the following in “Comparing partitions”
[7]: 1. The Rand-index definition equation 29 can be simplified to a constant
linear transformation of

∑
i,j

(
ri,j
2

)
for i ∈ (1, ..., p) and j ∈ (1, ..., q). 2. The

expected index, E[
∑
i,j

(
ri,j
2

)
], is equal to (

∑
i

(
ai
2

)∑
j

(
bj
2

)
)/
(
n
2

)
. 3. The ratio

(index - expected index)/(max index - expected index) can be eventually for-
mulated as equation 26.

The purpose behind such adjustment is that, the randomness within the
partitions’ structure is affecting validation accuracy, and therefore it is needed
to subtract the expected randomness in order to remove this effect. The ARI is
1 when the partitions are identical, which is same as the original Rand-index.
ARI can be negative, but negative ARI have no substantive use. If ARI=0, un-
der the concept of external clustering validation, it means the clustering result
is equivalent to a randomly assigned partition with the same structure.

Let us once again demonstrate the procedure of ARI via the same example

65

for Rand-index. The contingency table for the example is displayed in table 7.

Q1 Q2 Q3 Sums
P1 2 2 0 4
P2 0 1 1 2

Sums 2 3 1 6

Table 7: Table: Contingency table of the example for Rand-index

The index is 2 ∗
(

0
2

)
+ 2 ∗

(
1
2

)
+ 2 ∗

(
2
2

)
= 2; the expected index is (

(
4
2

)
+
(

2
2

)
) ∗

(
(

2
2

)
+
(

3
2

)
+
(

1
2

)
)/
(

6
2

)
= 1.87; the max index is (

(
4
2

)
+
(

2
2

)
+
(

2
2

)
+
(

3
2

)
+
(

1
2

)
)/2 = 5.5.

Eventually, the ARI for partitions P and Q is 2−1.87
5.5−1.87 = 0.037.

66

