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Abstract

During recent years machine learning and its applications to data
science have opened many new opportunities in science, owing to in-
creased computing power and higher availability of data, which has
transformed fields such as biology, economics and social science. Along
the many great opportunities that data driven science encompasses,
new challenges emerge in how to correctly interpret and extract rel-
evant information from complex data. One such challenge is that
data today is often high dimensional, where, for example, a cell may
be characterised by expression of hundreds of genes or a high resolu-
tion image by hundreds of pixels. This makes interpretation of the
data difficult, and the need to reduce the dimension without losing
critical information becomes an important task. In particular, the
t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm has
become a popular tool for visualising high dimensional data during
recent years due to its capability of creating compelling 2D visuali-
sations. Its inner mathematical workings are however poorly under-
stood, and it can therefore be difficult to interpret the result of the
dimension reduction using this algorithm. To this end, this thesis will
explore the statistical properties of t-SNE, highlight its possible arti-
facts and benchmark it with test cases to illustrate its strengths and
weaknesses.
Keywords: unsupervised learning, data visualisation, dimension re-
duction, t-SNE, evaluation, benchmarking
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Notations

Symbol Explanation

R,N set of real and natural numbers

i, j ∈ N matrix indices, i stands for row and j for column

X high dimensional D ×N data matrix

Y low dimensional d×N data matrix

x,y vector

X ,Y Data set

AT Transpose of the matrix A

D Dimension of X
d Dimension of Y
N Number of data points

H(·) Shannon entropy

KL(·||·) Kullback-Leibler divergence

X,Y Random variables

P,Q Probability mass functions

∼ distributed as

S similarity measure

∆, δ distance

E Expected value operator

|| · || Euclidean norm

∝ Proportional to

|A| Cardinality of set A

R(K) Measure of neighborhood preservation of size K

R Average neighborhood preservation
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1 Introduction

Machine learning has seen a rise in popularity in science during recent years
due to the rapid increase in computing power. As modern data sets are often
increasingly high dimensional, the need for reducing the dimension of the data
becomes important since high dimensional lead to problems such as the curse of
dimensionality and the difficulty in recognizing patterns in the data by visualisa-
tion. For example diagnosis of breast cancer tumours using processed pictures of
cell nuclei is based on 30-dimensional data points [24]. The MNIST data set [12]
consists of pixel values of pictures of handwritten digits with 28×28 = 784 pixel
resolution. The aim is then, given a high dimensional data set X = {x1, . . . , xN},
to reduce X to a low dimensional set Y = {y1, . . . , yN} such that the important
patterns from X are preserved in Y.

Methods to reduce dimensionality have been suggested as early as 1901 by
the famous statistician Karl Pearson [21]. This method works applying a rota-
tion followed by an orthogonal projection down to the desired dimension, or in
other words, the algorithm projects the data to a linear hyperplane minimizing
the orthogonal distance between the plane and the data points. Hence, this
method is restricted to linear data sets, which makes it limited in its applica-
bility as data sets are often have a non-linear structure. Since then, many new
methods have been developed that are able to deal with non-linear data, [26,
14] provides a review over some commonly used methods. This thesis will ex-
plore a particular variant of Stochastic Neighbor Embedding (SNE) [8], called
t-Distributed Stochastic Neighbor Embedding (t-SNE) used for dimensionality
reduction [18].

The t-SNE algorithm has been especially popular in cell biology for visualis-
ing spatial gene expressions in cells [10, 11, 7, 19], due to its capability of creating
two-dimensional visualisations with clearly separated clusters corresponding to
various cell functions. The algorithm does however possess artifacts, and its
inner mathematical workings are not well understood. The aim of this thesis is
therefore to benchmark this algorithm with some common test cases, evaluate
its performance and identify possible artifacts, strengths and weaknesses that
are important to be aware of when using the algorithm in a scientific setting.

The outline of the thesis is as follows. In Section 2 we provide some back-
ground theory. Then, in Section 3 and Section 4 we present the theory behind
Principal Component Analysis (PCA) and Stochastic Neighbor Embedding is
provided. We proceed by reviewing some evaluation methods for dimensionality
reduction in Section 5 and the t-SNE algorithm is then benchmarked with test
cases in Section 6. Finally, outlooks and conclusions are contained in Section 7.

2 Preliminaries

In this section some preliminary theory is presented, including some fundamen-
tal concepts and results from information theory as well as a brief introduction
to the field of machine learning and dimensionality reduction.
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2.1 Information Theory

In this section we will provide some of the fundamental concepts and results
from Information Theory, that will be used in the remaining part of the thesis.
Only a brief introduction of results and definitions will be given here, for a more
extensive treatment we refer to [3].

First we establish some notation. Symbols P andQ will denote discrete prob-
ability mass functions defined on the indexed space of outcomes Ω = {1, . . . , N}.
That is, if a random variable X is distributed according to P , then the proba-
bility Prob(X = i) = P (i) = pi. This is written as X ∼ P .

We begin by defining Shannon Entropy.

Definition 1 (Shannon Entropy). Let X be a discrete random variable dis-
tributed according to the probability mass function P , taking value i with
probability pi > 0 for i = 1, . . . , N . The Shannon Entropy H(X) of X is
defined as

H(X) = E
[
log

1

P (X)

]
=

N∑
i=1

pi log
1

pi
.

For brevity we will often write H(P ) to denote the Shannon Entropy of a
random variable distributed according to P . The base of the logarithm is not
specified in the definition, since changing the logarithm base will only amount
to a change in unit of the entropy:

Ha(P ) =

n∑
i=1

pi loga
1

pi
=

1

logb a

n∑
i=1

pi logb
1

pi
=

1

logb a
Hb(P ).

Usually, the base of the logarithm is 2, and it is then said that the entropy is
measured in bits. Another common unit is nats, which is the unit referred to
when the entropy is computed with the natural logarithm.

Some immediate properties of the entropy is that H(X) ≥ 0, and that
H(X,Y ) = H(X) + H(Y ) for X and Y independent random variables. The
entropy is sometimes referred to as information, as these are properties that a
measure of information would intuitively satisfy. Furthermore, it can be shown
that the logarithm function is the only function satisfying the axioms for in-
formation, which is proved in the original paper introducing Shannon Entropy
[23].

The entropy can be interpreted as a measure of the uncertainty of a random
variable. The entropy is maximized when all outcomes are equally likely, and
the maximum value is equal to logN where N denotes the number of outcomes.
Furthermore it is minimized and equal to 0 when all probability mass is put on
a single outcome, that is when there is no uncertainty. Example 1 shows this in
the binary outcome case. The general result is shown at the end of the section in
Proposition 2. The entropy can also be shown to measure the minimal expected
number of yes/no questions to determine the outcome of a random variable, see
[3] for a proof. Hence the Shannon Entropy is related to the predictability of a
random variable.
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Example 1. Consider a two-sided coin with probability of heads equal to pH =
1− pT . The Shannon Entropy of the coin as a function of pH is then given by

H(pH) = pH log
1

pH
+ (1− pH) log

1

1− pH
.

The function is illustrated in Fig. 1. The maximum entropy is in this case 1 bit,
and is attained when both outcomes are equally likely. The entropy is equal to
0 bits for pH = 1 or pH = 0, i.e. when there is no uncertainty in the outcome
of the coin flip. ♦

Figure 1: The Shannon Entropy as a function of probability of heads.

It can often be of interest to quantify the extent to which two probability
distributions differ from each other. One such measure is the Kullback - Leibler
divergence, which is defined in Definition 2 below.

Definition 2 (Kullback - Leibler divergence). Let P and Q be probability mass
functions with support on the set of outcomes Ω = {1, . . . , N}. The Kullback-
Leibler divergence KL(P ||Q) between P and Q is defined as

KL(P ||Q) =

N∑
i=1

pi log
pi
qi
.

The Kullback- Leibler divergence is a measure of the divergence between
two probability distributions. It cannot however be interpreted as a distance in
the usual sense, since KL(P ||Q) is not equal to KL(Q||P ) in general. It does
however hold that KL(P ||Q) ≥ 0 and KL(P ||Q) = 0 if and only if pi = qi for
all i, which Proposition 1 shows. The Kullback-Leibler divergence can therefore
be thought of as a pseudo-distance between probability mass functions.
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Proposition 1. Let X ∼ P and Y ∼ Q, both with support on the set of
outcomes Ω = {1, . . . N}. Then

KL(P ||Q) ≥ 0

with equality if and only if pi = qi for i = 1, . . . , N .

Proof. Since log x ≤ x− 1 for all x > 0 we have that

−KL(P ||Q) =

N∑
i=1

pi log
qi
pi

≤
N∑
i=1

pi

(
qi
pi
− 1

)
= 0

which proves that KL(P ||Q) ≥ 0. Since the logarithm function is concave,
equality is attained exactly when pi = qi for all i = 1, . . . , N .

Proposition 2. Let P be a probability distribution defined on the set of out-
comes Ω = {1, . . . , N}. The maxiumum value of the Shannon Entropy is at-
tained when pi = 1

N for all i in Ω and is then equal to logN .

Proof. Let U denote a uniformly distributed random variable with the same
support as P . We have that

H(U) =

N∑
i=1

1

N
log

1
1
N

= logN.

Next,

H(P ) =

N∑
i=1

pi log
1

pi

= logN − logN +

N∑
i=1

pi log
1

pi

= logN −
N∑
i=1

pi logN +

N∑
i=1

pi log
1

pi

= logN +

N∑
i=1

pi log
N

pi

= logN −KL(P ||U).

By Proposition 1 it follows that the Kullback-Leibler divergence is maximised
if and only if P = U with probability 1.
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2.2 Machine Learning and Dimensionality Reduction

Machine Learning is a field on the border between computer science and mathe-
matical statistics which aims to construct algorithms that make use of patterns
in data to solve tasks of interest. Two major sub-fields of machine learning are
supervised learning and unsupervised learning.

Supervised learning deals mainly with the problem of prediction. Put math-
ematically, given a labeled data set X = {(x1, y1), . . . (xn, yn)} where xi is a data
point, usually an element in RD, and the corresponding value yi denotes the,
most often discrete valued and 1-dimensional, attached label. For example, data
point xi may be a high dimensional vector containing the pixel values represent-
ing an image, and the label yi indicating whether the image contains a cat or a
dog, assuming that the total set of pictures are only pictures of cats and dogs.
The aim is then, given a new data point xn+1 not present in X , to predict its
corresponding label yn+1. More generally and expressed in statistical terms, the
goal of supervised learning is given a finite sample X assumed generated from an
unknown joint distribution P (X,Y ), to infer properties such as the conditional
expectation E[Y | X = xn+1], to be used for predicting the unknown label yn+1

from a data point xn+1. A presentation of supervised learning and algorithms
used for this purpose can be found in for example [5].

Unsupervised learning, on the other hand, is used in the setting where the
data set X = {x1, . . . , xN} is unlabeled. If the data is assumed to be gener-
ated from a probability distribution P (X), the objective is to infer properties
about the underlying probability distribution. If it is a multivariate distribution
this could be inferring associations between the variables, or other structures
such as high density areas of the distribution. Suppose for example that the
data X represents pixel values of pictures containing handwritten digits. Data
points corresponding to pictures of a handwritten number seven, say, would
be expected to be more similar to each other than pictures of for example the
number eight. The pictures containing the number seven would therefore be
expected to fall in to a separate cluster than data points representing different
digits. The particular branch of unsupervised learning aimed at revealing such
clusters is called cluster analysis. An introduction to such algorithms can be
found in [5].

Another important branch of unsupervised learning is dimensionality reduc-
tion, which is the main focus of this thesis. A more extensive presentation of
the field and various dimensionality reduction algorithms can be found in [14].

Images, for example, are usually represented in resolutions of 32× 32 pixels,
which makes a data point 968 dimensional. High dimensional data causes many
problems, due to the difficulty of understanding the association between all the
features as well as the structure of the data. It is often the case, however, that
the data can be described by a fewer set of coordinates compared to the original
observed data set. These coordinates are often called latent variables and are
assumed to be obtained by transformation of the original variables. In general,
given a high dimensional data set which we will denote as X containing data
points of dimension D, the goal is to find a low dimensional representation set of
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Figure 2: A two dimensional plane embedded in three dimensions. The figure
illustrates a simple example of a linear manifold inscribed in a space of higher
dimension.

points Y containing points of dimension d expressed by the latent variables. For
example, Fig. 2 shows a two dimensional plane embedded in three dimensions,
defined as xy

z

 =

 x1

x2

x1 + x2

 .

The intrinsic dimensionality of the data set is clearly two in this case, and
can therefore be accurately represented by the two latent coordinates (x1, x2)T ,
which can be obtained by a linear projection. When the data lies on a hyper
plane like in the example above, the intrinsic structure of the data is said to be
linear.

In practical applications, the underlying structure is however rarely linear.
A common example of a two dimensional non-linear manifold embedded in three
dimensions is the Swiss Roll, seen in Fig. 3. The manifold can be defined byxy

z

 =

x1 cos 2x1

x1 sin 2x1

x2

 .

When the data is non-linear it is more challenging to find the transformation
that reduces the data to its intrinsic low dimensional structure. In this case the
desired reduction is to unfold the Swiss Roll into a two dimensional rectangle.

In practical scenarios, neither the intrinsic dimensionality nor the intrinsic
structure of the data is known before reduction. The data is also not expected
to lie completely on the intrinsic structure due to the presence of random noise.
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Figure 3: To the left is a non-linear two dimensional manifold embedded in
three dimensions. This data set is called the Swiss Roll and is a common
benchmarking data set.

For example if the low dimensional mapping is given by


xi1
xi2
...
xiD

→



yi1 + ε1
yi2 + ε2

...
yid + εd
εd+1

...
εD


.

where εi denotes noise variables, usually assumed to follow a Gaussian distri-
bution, the noise does not count to the intrinsic structure and hence should be
ignored.

If the reduction is made to a dimension below the intrinsic dimensionality of
the data, then the low dimensional map will misrepresent the data by definition.
There are cases when the intrinsic dimensionality is the same as the original
dimension, and hence cannot be reduced. For example, consider a data set
containing D + 1 pairwise equidistant points in D dimensional space. If the
dimension were to be reduced to d, pairwise distances between only d+ 1 of the
D + 1 points can be preserved. Hence, dimensionality reduction would distort
the true structure of the data if it reduces below the intrinsic dimensionality.

Next, a low dimensional data set Y of the intrinsic dimensionality d needs to
be found from the observed D-dimensional data set X . This can be done either
by finding a mapping M : RD → Rd that reduces the data to dimension d, or
by directly finding coordinates Y that minimizes some measure of the error of
reduction.

It is also important to be able to quantitatively evaluate the quality of the
dimensionality reduction, since it is difficult to, in an unbiased manner, qual-
itatively assess whether the low dimensional representation is a trustworthy
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representation of the original data structure. If the method finds a explicit
mapping M : X → Y, then the error can be measured by the mean distance
between coordinates in X and their representation in Y. This is referred to as
the mean square reconstruction error, and is given by

1

N

N∑
i=1

(xi −M−1(M(xi)))
2

which quantifies the average distortion of the mapping M. Here M−1 denotes
the inverse of the mappingM If the method does not find an explicit mapping,
then additional evaluation criteria needs to be developed.

3 Principal Component Analysis

Principal Component Analysis, PCA for short, is a well known method for di-
mensionality reduction and data visualisation. It was originally proposed in
1901 by one of the founders of modern statistics, Karl Pearson [21]. The al-
gorithm linearly projects the centered data onto a hyperplane spanned by d
orthogonal vectors such that the sample variance along each coordinate axis is
maximized. This can equivalently be formulated as finding the hyperplane of
dimension d that minimizes the orthogonal projection error onto that plane.
It is therefore restricted to data that lies on a linear manifold, and may give
misleading results if underlying data structure is non-linear. It turns out that
the principal components are given by the eigenvectors of the sample covariance
matrix and the corresponding eigenvalues of the same matrix is equal to the
sample variance along each axis. Hence, the algorithm finds the eigenvalues
and eigenvectors of the sample covariance matrix and projects the data onto a
subspace whose basis vectors are the eigenvectors with the largest correspond-
ing eigenvalues. In this section we also show that PCA can equivalently be
formulated as minimizing the reconstruction error of the projection as well as
the difference in inner product between the original and latent space.

3.1 Mathematical Derivation

We now proceed to describe the theory. To establish some notation, let X =
[x1, . . . ,xN ] denote the D×N data matrix of the observed data set X consisting
of N observation vectors xj = (x1j , . . . , xDj)

T of dimension D. That is, the
element xij at row i and column j in X is the j:th observation of coordinate
i. We also denote by x′

i = (xi1, . . . , xiN )T the i:th row vector of X containing
the N observations of coordinate i. The sample covariance, which we denote as
σ̂XiXi′ , between coordinates i and i′ in X is defined as

σ̂XiXi′ =
1

N − 1

N∑
j=1

(xij − xi)(xij′ − xi′)

12



where

xi =
1

N

N∑
j=1

xij

denotes the sample mean. From now on we assume xi = 0 for all i = 1, . . . , D.
This assumption is without loss of generality, since if xi 6= 0 for some i we can
replace the corresponding row in X by its centered version. In matrix notation,
we get that the sample covariance matrix is given by

ĈX =
1

N − 1
XXT .

Now, let P = [p1, . . . ,pd] be a D × d orthonormal matrix, that is the column
vectors pi of P are of unit length and orthogonal to each other. Hence, PTP =
Id where Id is the identity matrix of size d×d, and PPT is the projection matrix
projecting to the subspace spanned by the column vectors of P. We have that

y = PTx =

pT1 x
...

pTd x


are the coordinates of the vector x expressed in the basis spanned by the column
vectors of P. Hence, the low dimensional d×N transformed data matrix Y is
given by

Y = PTX

consisting of the coordinates in the low dimensional space. Furthermore, note
that since xi is equal to 0 for all i, yi is necessarily also equal to 0, as

yi =
1

N

N∑
j=1

yij =
1

N

N∑
j=1

pTi xj =
1

N

N∑
j=1

D∑
k=1

pikxkj =

D∑
k=1

pik
1

N

N∑
j=1

xkj =

D∑
k=1

pikxk = 0.

The projected sample variance along each coordinate axis in the subspace Y
is therefore given by

σ̂YiYi =
1

N − 1

N∑
j=1

y2
ij =

1

N − 1

N∑
j=1

(pTi xj)
2.

We want to find the matrix P so that σ2
ii is maximised for all i = 1, . . . , d.

This is equivalent to finding P that maximises the total variance

d∑
i=1

σ̂YiYi =
1

N − 1

d∑
i=1

N∑
j=1

(pTi xj)
2.

If we denote by ĈY the sample covariance matrix of the low dimensional
data matrix Y = PTX, we get that the sample covariance of Y is given by

ĈY =
1

N − 1
YYT =

1

N − 1
(PTX)(PTX)T = PT XXT

N − 1
P = PT ĈXP.
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Denote by trace(M) the sum of the diagonal elements of the matrix M. We
want to find

P = arg max
P

trace(ĈY) = arg max
P

trace(PT ĈXP).

First, since ĈX is positive definite and symmetric, it follows that ĈX is
diagonalizable with non-negative eigenvalues. Furthermore, the number of non-
negative eigenvalues is equal to the rank of X, and are therefore related to the
intrinsic dimensionality of X . Hence, we can decompose ĈX as

ĈX = VΛVT

where Λ is a D×D diagonal matrix containing the eigenvalues λi on the diago-
nal, and V is a D×D orthonormal matrix whose columns are the eigenvectors
vi of ĈX. Therefore we can write

trace(ĈY) = trace(PTVΛVTP).

Writing this again as a sum, we get

trace(ĈY) =

d∑
i=1

D∑
j=1

(pTi vj)
2λj

Assume that the eigenvalues are ordered in descending order, so that

λ1 ≥ λ2 ≥ · · · ≥ λD.

We get that

D∑
j=1

(pT1 vj)
2λj ≤ λ1

D∑
j=1

(pT1 vj)
2 = λ1||VVTp1||22 ≤ ||p1||22λ1 = λ1.

The last inequality follows from that the length of an orthonormal projection is
less than the length of the projected vector. Since p1, . . . ,pd are required to be
orthogonal to each other, we get that

trace(ĈY) ≤
d∑
i=1

λi.

Equality is attained by setting pi = vi for i = 1, . . . , d.
Hence, the projection matrix P that maximises the sample variance is ob-

tained by selecting the first d eigenvectors of ĈX, assuming the eigenvectors are
sorted in descending order according to eigenvalue. The sample variance σ̂2

YiYi
is given by the eigenvalue λi, since

σ̂2
YiYi =

1

N − 1
(vTi X)(vTi X)T = vTi ĈXvi = λiv

T
i vi = λi.

14



Moreover, the low dimensional covariance matrix is given by

ĈY =


λ1 0 . . . 0

0 λ2

...
...

. . . 0
0 . . . 0 λd


which shows that the latent variables are uncorrelated.

3.1.1 Additional Properties

Assuming the data lies on a linear manifold, the PCA algorithm can immediately
be used to determine the intrinsic dimensionaity d of the hyperplane. Since
the eigenvalues will be zero for the remaining corresponding eigenvectors not
spanning the latent hyperplane, the intrinsic dimensionality can be estimated by
the number of non-zero eigenvalues of the sample covariance matrix. In practise,
often no eigenvalues are found to be exactly zero. Then the coordinates with
eigenvalues close to zero can be discarded. Alternatively, eigenvalues making up
a large fraction of the total variance, 95% say, can be kept.

Since PCA finds a linear transformation P, it is possible to quantify the
error of the projection by the mean square reconstruction error

MSRE(P) =
1

N

N∑
j=1

(xj −PPTxj)
2.

That is, the error is measured as the mean squared Euclidean distance between
the observed data points and the projections onto the low dimensional hyper
plane.

Furthermore, finding a transformation matrix P, with orthogonal and unit
length column vectors, that minimizes the reconstruction error, is equivalent
to finding the transformation that maximizes variance. This follows from the
following derivation.

MSRE(P) ∝ trace
[
(X−PPTX)T (X−PPTX)

]
= trace

[
XTX−XTPPTX−XTPPTX + XTPPTPPTX)

]
= trace

[
XTX−XTPPTX−XTPPTX + XTPPTX)

]
= trace

[
XTX

]
− trace

[
XTPPTX

]
∝ −trace

[
XTPPTX

]
= −trace

[
PTXXTP

]
∝ −trace(ĈY).

The equivalence follows from that

arg min
P

−trace(ĈY) = arg max
P

trace(ĈY).
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Figure 4: The figure shows a one-dimensional spiral lying on a two-dimensional
plane embedded in three dimensions, thus illustrating a case when a one-
dimensional non-linear manifold is inscribed in a two-dimensional linear plane.

Thereby PCA can also be thought of as finding the orthogonal projection P
that minimizes the reconstruction error.

The PCA algorithm can also be combined with non-linear method. If the
data has a hierarchical structure with a non-linear manifold lying on a low
dimensional linear hyperplane, then PCA can be used before applying a non-
linear dimension reduction method. A simple example is shown in Fig. 4.

3.1.2 Multidimensional Scaling

Another method for dimensionality reduction is Multidimensional Scaling (MDS)
[4], that approaches the dimension reduction problem in a different way than
PCA. Rather than finding a transformation P that minimizes some cost func-
tion, MDS instead directly finds low dimensional coordinates Y that minimises
difference in some measure of pairwise similarity between the high dimensional
and low dimensional spaces. There are many different versions that are based on
this idea depending on what similarity measure is used. A well know MDS algo-
rithm is classical MDS that minimizes the difference in centered inner products
between the high dimensional and low dimensional spaces. The cost function
minimized is given in Eq. (1) and is called the Strain cost function.

Strain(Y) =

N∑
j=1

N∑
j′=1

((xj − x)T (xj′ − x)− (yj − y)T (yj′ − y))2 (1)

Here x = (x1, . . . , xD)T denotes the sample mean vector. The cMDS method is
often referred to as Principal Coordinate Analysis, PCoA, due to its equivalence
to PCA when pairwise distances are measured with Euclidean distance which
will be proved below. Instead of formulating the problem so as to directly
find a transformation that maps the high dimensional data matrix X to a low
dimensional data matrix Y, cMDS directly finds coordinates y1, . . . ,yN in Rd
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to minimize the cost. Due to the equivalence between PCA and cMDS, the
mapping can however be retrieved.

The optimal set of coordinates Y can be found analytically, and is given
by the eigenvectors and eigenvalues of the Gram matrix XTX, given that the
distances are taken to be Euclidean. To derive this, we start by rewriting Strain
function in matrix notation using the trace operator,

Strain(Y) = trace
[
(XTX−YTY)T (XTX−YTY)

]
= trace

[
(XTXXTX−YTYXTX−XTXYTY + YTYYTY

]
= trace

[
XTXXTX

]
− trace

[
YTYXTX

]
− trace

[
XTXYTY

]
+ trace

[
YTYYTY

]
= trace

[
XTXXTX

]
− 2trace

[
YTYXTX

]
+ trace

[
YTYYTY

]
.

Next, since XTX is positive definite and symmetric, it follows that it can be
diagonalised by eigendecomposition as

UxΛxU
T
x

Furthermore we can decompose the Gram matrix YTY of the sought low di-
mensional data matrix Y in the same fashion,

YTY = UyΛyU
T
y .

Let 1m×n denote the m× n matrix obtained by discarding the first m columns
of the n× n identity matrix. We can write

YTY = UyΛyU
T
y = UyΛ

1
2
y 1N×d1d×NΛ

1
2
y UT

y = (1d×NΛ
1
2
y UT

y )T1d×NΛ
1
2
y UT

y .

We can therefore express the coordinate matrix Y as

Y = 1d×NΛ
1
2
y UT

y (2)

and reformulate the problem as finding the components Λy and UT
y that mini-

mizes the Strain. Furthermore,

trace
[
XTXXTX

]
= trace

[
UxΛxU

T
xUxΛxU

T
x

]
= trace

[
UxΛ

2
xU

T
x

]
= trace

[
Λ2
x

]
.

and

trace
[
YTYXTX

]
We get that

Strain(Y) = trace
[
Λ2
x + UyΛ

2
yU

T
y − 2ΛyU

T
y UxΛxU

T
xUy

]
= trace

[
(Λx −ΛyU

T
xUy)2

]
=

N∑
i=1

(λxi − λ
y
iu

y
iu

x
i )2
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Assume that the eigenvalues are ordered in descending order. We have that only
λx1 , . . . , λ

x
D, and λy1, . . . , λ

y
d are non-zero. It follows that Strain is minimized by

letting λyi = λxi and uyi = uxi for i = 1, . . . , d. Equivalently, the Strain is
minimized by setting the coordinate matrix Y as

Y = 1d×NΛ
1
2
xUT

x = 1d×NVT
xVxΛ

1
2
xUT

x = 1d×NVT
xX.

The second equality follows from singular value decomposition of X. Here the
equivalence with PCA becomes apparent, since the matrix 1d×NVT

x contains the
d eigenvectors of the matrix XXT ∝ ĈX, with largest corresponding eigenvalue.

Depending on what similarity measure, as well as what distance metric is
used, different versions of Multidimensional Scaling is obtained. In cMDS, the
similarity is measured by inner products, and if the distances are Euclidean it
was shown to be equivalent to PCA. If the distances are no longer Euclidean,
MDS is no longer equivalent to PCA since the similarity matrix is no longer
given by the matrix product XTX.

A similar method, called metric MDS, finds a low dimensional representation
Y of the observed data set X by minimizing the difference in pairwise distances.
The resulting cost function is found in Eq. (3) and is commonly called Stress.

Stress(Y) =
∑
i<j

(∆ij − δij)2. (3)

Here ∆ij and δij denotes the pairwise distances in the high dimensional and
low dimensional spaces respectively. The Stress function lacks a general analyt-
ical solution, and hence it has to be minimized with a numerical optimization
method, such as gradient descent. Unlike PCA, this method therefore does not
provide an explicit mapping or a natural measure of the intrinsic dimension of
the data, which is a clear drawback of this method. A schematic illustration of
the Stress cost function can be seen in Fig. 5. The shape reveals that the cost
will be higher for error in modelling large pairwise distances, rather than small
pairwise distances. Hence, preservation of global structure is prioritised over lo-
cal structure when minimizing with respect to the Stress cost function. Metric
MDS is however not a linear method like PCA, and therefore is not restricted to
data sets where the intrinsic structure is linear, which is an advantage compared
to PCA and cMDS.

Different distance measures can be used when the Euclidean is not suitable
for the intrinsic geometry of the data set. For example the ISOMAP algorithm
[25] by using the Geodesic distance measure [2]. In this case MDS is not equiv-
alent to PCA.

One can also modify the similarity measure, or dissimilarity measure in the
case of metric MDS, to create new MDS algorithms. For example, Sammon
Mapping [22] modifies the Stress cost function in Eq. (3) by normalising it as
in Eq. (4), putting more emphasis on correctly modelling local structure.

Sammon(Y) =
∑
i<j

1

∆ij

∑
i<j

(∆ij − δij)2

∆ij
. (4)
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Figure 5: Schematic illustration of the MDS Stress cost function that illustrates
the larger error resulted by incorrectly modelling large pairwise distances. Here
the x-axis corresponds to high dimensional pariwise distance and the y-axis
corresponds to low dimensional pairwise distance. The z-axis corresponds to
the value of the Stress cost function, with higher values meaning higher cost.

A schematic illustration of the Sammon cost function can be seen in Fig. 6,
which shows the larger cost for errors in modelling local structure.

4 Stochastic Neighbor Embedding

In this section we present the theory of Stochastic Neighbor Embedding (SNE),
which is a method for dimensionality reduction and visualisation. The technique
was originally introduced in [8] but gained popularity by a modified variant
called t-distributed SNE, or t-SNE for short, which was proposed in [18].

The SNE method is an iterative algorithm that works by converting pairwise
similarities into a probability distribution P over pairs of points in the high
dimensional space X = {x1, . . . , xN} ⊂ RD, such that points that are similar
have high probability. Then the algorithm finds points Y = {y1, . . . , yN} ⊂ Rd,
where d < D is the assumed intrinsic dimensionality of the data, such that its
corresponding probability distribution Q over pairwise similarities in Y matches
P as closely as possible.

Different variants of SNE can be constructed depending on (i) what similarity
measure SX : X × X → R+ is used, how distances are measured and how the
corresponding probability mass function P over the similarities is constructed in
the high dimensional space (ii) what similarity measure SY : Y×Y → R+ is used
and how the corresponding probability mass functionQ over pairwise similarities
is defined in the low dimensional space and (iii) how the cost C(P,Q), which
is to be minimized, is defined based on the divergence between the probability
distributions P and Q. In the following section we will focus on the particular
SNE algorithm named t-distributed SNE.
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Figure 6: Schematic illustration of the Sammon mapping cost function that
illustrates the larger error resulted by incorrectly modelling small pairwise dis-
tances. Here the x-axis corresponds to high dimensional pariwise distance and
the y-axis corresponds to low dimensional pairwise distance. The z-axis corre-
sponds to the value of the Sammon cost function, with higher values meaning
higher cost.

4.1 Original SNE algorithm

In this section the theory behind the original SNE algorithm is presented.
Let X = {x1, . . . , xN} ⊂ RD denote the high dimensional data set of dimen-

sionD containingN data points. Denote by ∆ij the distance between data point
xi and xj , which is assumed to be Euclidean in this context. Other distance
measures can however be used. Next, define the high dimensional similarity
measure SX as

SX (xi, xj ;σi) = e−
∆2
ij

2σ2 .

This can be recognized as the kernel of a Gaussian distribution with variance
parameter σ2

i which remains to be determined. This kernel smoothly weighs
points that are further away from each other lower. The similarity decreases
from 1, when ∆ij = 0, down towards 0 as ∆ij tends toward infinity, the rate
of which is determined by the parameter σi. Fig. 7 illustrates the kernel for
different values of the variance parameter. Note that varying the parameter σi
amounts to an isotropic re-scaling of the input data, since

e−
||xi−xj ||

2

2σ2 = e
−|| xi√

2σ
−

xj√
2σ
||2
.

Next, for each point xj , a probability mass function (p.m.f.) is defined over
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Figure 7: Figure illustrating Gaussian kernel for increasing values of the σ
parameter.

all points xi as

P (xi | xj , σj) =


e
−
||xi−xj ||

2

2σj

∑
k 6=j e

−
||xk−xj ||2

2σ2
j

=
SX(xi,xj ;σj)∑
k 6=j SX(xk,xj ;σ2

j )
i 6= j

0 i = j

.

We will often denote P (xi | xj , σj) as pi|j for short.
This can be interpreted as a normalised similarity measure, since most prob-

ability mass will be placed on the most similar neighbor, decreasing as the sim-
ilarity decreases. This probability function will represent the high dimensional
data set.

The probability mass function requires an appropriate choice of σj , which
in turn determines how the high dimensional data set is represented. Note that
as σj → 0, all mass will be placed on the nearest neighbor. On the other hand,
as σj increases from zero, mass is continuously shifted to increase for all neigh-
bors, reaching a uniform distribution as σj → ∞. Choosing the parameter σj
therefore has a large effect on what is counted as similar in the high dimensional
space. As noted above, changing σj amounts to an isotropic re-scaling of the
data, hence the p.m.f. does depend on the scale of the data points.

An artifact resulting from this definition is that if the data has a large
isotropic scaling, then the probability mass will simply be put on the very local
neighbor to a given point, and hence result in a poor representation of the global
structure of the data set. In other words, the probability representation would
be sensitive to the scaling of the input data. In addition, points located in a
sparse region would be similar to fewer number of points compared to points
located in dense regions.

To circumvent this problem, the perplexity parameter is introduced. The
perplexity, denoted by Perp(P ), of a probability mass function P , is defined as

Perp(P ) = 2H(P ).

21



Here H(P ) is the Shannon Entropy of a random variable X distributed
according to P , defined in Section 2.1 as

H(X) = E
[
log

1

P (X)

]
=

N∑
i=1

pi log
1

pi
.

It was also shown in Section 2.1 that

0 ≤ H(P ) ≤ logN

with H(P ) = 0 when P places all probability mass on a single outcome and
H(P ) = logN when P is uniform. Therefore, it follows that

1 ≤ Perp(P ) ≤ N.

So Perp(P ) is equal to 1 when σj = 0 and equal to N when σ =∞. Perplexity
could therefore loosely be interpreted as the expected number of neighbors xi of
xj that has a non-zero probability, or in other words what is counted as local.
An illustration is found in Fig. 8 showing how the p.m.f. changes for varying
perplexity values.

The σj parameter is now chosen so that the perplexity is equal to a fixed
value u between 1 and N for each point. The scaling of the input data now
has no effect on the representation, since the data is locally rescaled according
to the perplexity chosen. Since Perp(P ) is monotonically increasing in σ, the
correct value σ resulting in perplexity equal to u can be found approximately
and efficiently by a binary bisection search. However, the problem now arises
that the perplexity value needs to be chosen that correctly models locality in
the high dimensional space.

Next, the problem remains to find a low dimension representation Y ⊂ Rd
of X .

Similar to the high dimensional representation, a low dimensional similarity
measure SY between points yi and yj is defined as

SY(yi, yj ;σ) = e−
δ2ij

2σ2 .

Here δij denotes the low dimensional distance measure between the points yi
and yj and taken to be Euclidean. The variance parameter can be taken to
be equal for all points in this case, since it simply results in a re-scaling of the
resulting map. This can be seen as

SY(yi, yj ;σ) = e−
δ2ij

2σ2 = e−
||yi−yj ||

2

2σ2 = e
−|| yi√

2σ
−

yj√
2σ
||2
.

Then, the probability distribution Q is defined as in the high dimensional
representation

Q(yi | yj , σ) =


e−

δ2ij
2σ∑

k 6=j e
−
δ2
jk
2σ

=
SY(yi,yj ;σ)∑
k 6=j SY(yk,yj ;σ) i 6= j

0 i = j

.
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Figure 8: The plots illustrates the probability distribution P (xi | xj) over pair-
wise similarities of 50 points, for increasing values of the perplexity parameter.
From top left to bottom right the perplexity values are set to 1, 10, 30 and 50
respectively.
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We will write Q(yi | yj , σ) as qi|j for brevity.
The low dimensional set is found by minimizing the Kullback-Leibler diver-

gence, defined in Definition 2, found in Section 2.1 on page 7, with respect to
the low dimensional data points yi. Hence, the cost function can be expressed
as

C(P,Q) =

N∑
i=1

N∑
j=1

pi|j log
pi|j

qi|j
.

For brevity we have written pi|j = P (xi | xj , σj) and likewise for qi|j . The cost
function is not convex with respect to yi, hence no analytical solution can be
obtained. The cost is therefore minimized with gradient descent. The gradient
can be calculated analytically, and is of a surprisingly simple form:

∂C

∂yj
= 2

N∑
i=1,i6=j

(pi|j − qi|j + pj|i − qj|i)(yi − yj).

Thus, given the initial set of points Y(0), which is usually obtained by sam-
pling points from a d-dimensional Gaussian distribution with mean zero and
standard deviation 10−4. A reason for chosing the standard deviation small is
that when the pairwise distances δij are all small,

qi|j =
e−

δ2ij
2σ∑

k 6=j e
−
δ2
jk
2σ

≈ 1

N
.

The initial distribution Q is therefore approximately uniform. The algorithm
then proceeds in an iterative manner. By gradient descent, each iteration t
updates the low dimensional points as

Y(t) = Y(t−1) − η ∂C

∂Y(t−1)

until the algorithm has converged at a local minimum. Note again that the cost
function is not convex, and hence it is not guaranteed to converge to a global
minimum.

4.2 t-Distributed SNE

In this section the theory of the t-distributed Stochastic Neighbor Embedding
(t-SNE) algorithm is presented, where its name is due to the low dimensional
similarity SY being defined as the kernel of a t-distribution. The main reasons
for using this similarity measure are (i) computational as it does not involve any
exponential, (ii) a mismatch in tails compared to the Gaussian kernel results
in more clearly separated clusters and compensation for increased distances in
high dimension and (iii) approximate scale invariance for large distances. The
algorithm, originally proposed in [18] has gained a lot of popularity as a data
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visualization tool, for example in visualisation of cellular data in molecular bi-
ology [19], and is often considered as the state of the art of data visualisation.
The idea behind the algorithm is to prioritise local structure, that is the algo-
rithm puts emphasis on preserving small pairwise distances, but tolerates errors
in modelling large distances as long as they are placed far apart in the low
dimensional map.

Let X = {x1, . . . , xN} denote the data set containing N points xi of dimen-
sion D. The similarity SX between data points xi and xj is defined in the same
way as in the original SNE algorithm,

SX (xi, xj ;σ) = e−
∆2
ij

2σ2 .

As in the original algorithm, for each point xj , a probability mass function
P ′j is defined over the points as

P ′j(xi | xj , σj) =


e
−

∆2
ij

2σj

∑
k 6=j e

−
∆2
kj

2σj

=
SX(xi,xj ;σj)∑
k 6=j SX(xk,xj ;σj)

i 6= j

0 i = j

. (5)

The variance parameter is chosen so as to maintain a constant perplexity for
each point.

One key difference between SNE and t-SNE is that the probability distri-
bution P is made symmetric, and instead defined as a joint probability mass

function over pairs of points. The probability distribution P over the N(N−1)
2

pairwise similarities is defined as

P (xi, xj) =
P ′j(xi|xj) + P ′i (xj |xi)

2N
. (6)

We will denote P (xi, xj) as pij . Hence, a consequence of this definition is
that that it is symmetric, that is pij = pji and pii = 0. The advantage of
symmetrisation is mainly compoutational as fewer values of the low dimensional
p.m.f needs to updated in each iteration of the gradient descent algorithm.
Furthermore, it has the propery that

N∑
i=1

pij >
1

2N

which means a significant portion of probability mass will always be placed
on points. Without symmetrising the placement of an outlier xi, for example,
would otherwise have no impact on the cost:

pi|j ≈ 0

for every other point xj . For an outlier xj , the symmetrised probability of the
outlier will be

N∑
i=1

pij =

N∑
i=1

pi|j + pj|i

2N
≈

N∑
i=1

pi|j

2N
=

1

2N
.
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Dividing by the denominator 2N makes the joint probability distribution
sum to 1. If xi and xj are located in regions of similar density, then

P (xi, xj) ≈
P ′i (xj |xi)

N

and hence the construction could motivated by Bayes formula: P (xi, xj) =
P (xj | xi)P (xi) and P (xi) = 1

N .
The low dimensional similarity measure SY , defined over pairwise distances

δij , usually defined as the Euclidean distance between yi and yj , is measured
using the kernel of the t-distribution with one degrees of freedom, instead of
the Gaussian kernel used in the high dimensional space. This is the second key
difference between t-SNE and SNE.

SY(yi, yj) =
1

1 + δ2
ij

.

The mismatch in kernels thus leads to similarity being measured in different
ways in the high dimensional and low dimensional spaces. An illustration of the
differences between the Gaussian kernel and the t-distribution kernel can be seen
in Fig. 9. As can be seen in the figure, the kernels are approximately equal for
small distances. This also follows by a second order two Taylor approximation:

e−δ
2

≈ 1

1 + δ2
.

There is a mismatch for larger distances, where the Gaussian kernel decreases
faster to zero as distances gets larger compared to the t-distribution kernel.

Thus, even if the dimension is chosen equal for the high dimensional and
low dimensional spaces, the result of the algorithm will be different than the
input data, mainly due to a large pairwise distance in high dimensional space
having to be mapped by an even larger distance in low dimensional space to
compensate the for the mismatch.

An example can be seen in Fig. 10. Here the two points that belong to
different clusters, and thus are relatively far apart, are put even further apart
in the t-SNE embedding due to the mismatch in tails of the similarities. This
mismatch therefore aids in more clearly separating clusters. The authors also
motivate the choice of kernel by that if there is a large mismatch in dimen-
sionality between the high and low dimensional spaces, distances in the high
dimensional space will tend to be much larger. This is related to the classical
problem of the curse of dimensionality in machine learning. The mismatch in
tails can therefore compensate for the mismatch in dimensionality.

Other technical advantages with the t-distribution kernel is that it is com-
putationally faster to evaluate since it does not involve any exponential, which
would otherwise need to be approximated in each iteration, as in the original
SNE algorithm.

Subsequently, the low dimensional probability mass function Q is defined as

Q(yi, yj) =
SY (yi, yj)∑
k 6=l SY (yk, yl)

(7)
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Figure 9: The figures illustrates the difference between the t-distribution and
Gaussian kernels. The left figure shows similarity as a function of distance with
t-distribution kernel in red and Gaussian kernel in blue. The figure on the right
visualises the difference by plotting t-distribution (x-value) against Gaussian
similarity (y-value).

Figure 10: The figure on the right shows a data set containing two 2-dimensional
clusters. The right figure shows the t-SNE embedding into 2 dimensions with
perplexity set to 15.
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for i 6= j and Q(yi, yi) = 0. We will denote Q(yi, yj) as qij . As mentioned
above, a consequence of the mismatch in tails is that points far away in X will
be mapped further away in Y. This can be seen from Fig. 9 which shows the
heavier tails of the t-distribution compared to the Gaussian kernel. Hence, to
attain the same similarity value of the kernels the low dimensional distance has
to be larger than the high dimensional distance. The p.m.f. Q also has the
property of being approximately scale invariant for large distances, as

qij =

1
1+cδ2

ij∑
k 6=l

1
1+cδ2

kl

≈
1
cδ2
ij∑

k 6=l
1
cδ2
kl

=

1
δ2
ij∑

k 6=l
1
δ2
kl

where c is some scaling factor. Hence, when distances are large, the pairwise
probability will be almost unaffected by changes in scale. For large distances,
the relative distances will determine the probability and not exact distances.

The divergence between P and Q is measured with the Kullback-Leibler
divergence, as in the SNE algorithm, defined as

C(P,Q) = KL(P ||Q) =
∑
i 6=j

pij log
pij
qij
.

Here pij and qij are the pairwise probabilities defined in Eq. (6) and Eq. (7)
respectively. A property of the cost function, just as in the original SNE algo-
rithm, is that it is asymmetric in P and Q. This asymmetry leads to higher
cost when modelling a small high dimensional distance by a large distance in the
low dimensional space, compared to the error of modelling a large high dimen-
sional distance by a small low dimensional distance. A schematic visualisation
is found in Fig. 11, illustrating this asymmetry.1 This property of the cost func-
tion therefore prioritizes keeping points that are close in the high dimensional
space being close in the low dimensional space as well. It is however less accu-
rate in keeping distant points in the high dimensional space distant in the low
dimensional space. As can be seen in Fig. 11, the cost for modelling large dis-
tances incorrectly is almost negligible. Hence, error induced by modelling local
structure incorrectly has a larger effect on the cost function than error in mod-
elling global structure. Comparing the t-SNE cost function to the cost of the
SNE algorithm, the cost is even higher for errors in modelling small distances
in t-SNE compared to SNE. The cost is also lower for error in modelling large
distances in t-SNE. Hence t-SNE puts even more emphasis on correctly mod-
elling local structure and tolerates higher error in modelling global structure.
Since the algorithm preserves normalised distances, see Eq. (5) and Eq. (7), it

1The visualisation was created by simplifying the term in the sums as follows.

pij ≈ e−∆2
ij and qij ≈

1

1 + δ2
ij

and

pij log
pij

qij
∝ −pij log qij ≈ e−∆2

ij log (1 + δ2
ij).
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Figure 11: A schematic illustration of the Kullback-Leibler cost function, illus-
trating its asymmetry. Here the x-axis corresponds to high dimensional pairwise
distance and the y-axis corresponds to low dimensional pairwise distance. The
z-axis corresponds to the value of a pij log

pij
qij

term in the Kullback-Leibler cost

function, with higher values meaning higher cost. The top figures corresponds
to the cost of the t-SNE (left) and SNE (right) algorithms. The bottom figure
plots the cost of t-SNE divided by the cost of SNE, illustrating their relationship.
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still places points that are far apart in the high dimensional map far apart in
the low dimensional map, however, but exact relations may not be preserved.
To elaborate, correctly modelling small pairwise distance means placing high
probability on those small distances, since the probability must sum to one, this
means that less probability mass is placed on distant points.

The cost function is finally minimized with gradient descent. The gradient
is given by

∂C

∂yi
=
∑
j

(pij − qij)
1

1 + δ2
ij

(yi − yj).

In order to find Y, starting with an initial set of points Y(0), the algorithm
iteratively moves the points around until the algorithm converges or a maximum
number of iterations has been reached. Important to note is that the cost
function is non-convex in Y. Hence, the algorithm runs the risk of getting stuck
in a local minimum.

5 Evaluation

As noted in Section 2, the result of dimensionality reduction needs to be eval-
uated. If the data is reduced to two dimensions, then the evaluation can be
carried out qualitatively by simply looking at the result. This is however highly
subjective, and not possible if the reduced dimension is higher than 3. There
is therefore a need for a more precise quantitative notion of how trustworthy
the reduction is. The PCA algorithm presented in Section 3 has a built in
evaluation tool in the reconstruction error. However methods such as t-SNE
and SNE does not find an explicit mapping from the high dimensional space to
the low dimensional space, so there is no means to calculate the reconstruction
error. Therefore other evaluation criteria needs to be developed. With a precise
mathematical definition, it is transparent what is meant by a successful dimen-
sionality reduction depending on what quantitative notion of quality is used.
One class of methods for evaluation is rank based criteria, that quantifies the
preservation of the rank order of pairwise distances. A multitude of different
measures have been suggested in the literature, we refer to [6, 20] for a summary
and more suggestions.

5.1 Rank Based Criteria

A method for evaluating dimensionality reduction is to consider the preservation
of the rank order of pairwise distances between the high and low dimensional
spaces [16, 13]. Often, one restricts for each point xi in the high dimensional
space X to only consider how many of the K nearest points to xi remains among
the K nearest to the corresponding low dimensional point yi in Y. Here K is a
whole number in the interval [1, N − 1]. So for different values of neighborhood
size K, the evaluation is more or less restricted to preservation of local structure.
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To establish some notation, define

NK
X (i) = {j : ∆ij < ∆iK}

the index set of the K nearest neighbors to the point indexed i in X . Similarly
define NK

Y in the low dimensional space. A measure of the preservation of K
nearest neighbor neighborhoods can then be defined as

N(K) =
1

NK

N∑
i=1

|NK
X (i) ∩NK

Y (i)|.

Here |A| denotes the cardinality of a set A and A ∩B the intersection between
sets A and B. The measure N(K) lies in the interval [0, 1], and is equal to 0
with complete distortion, and equal to 1 with perfect preservation with respect
to the K-ary neighborhoods of each of the points. Since complete distortion is
unlikely to occur, a similar measure instead compares the result with a com-
pletely random embedding. Assuming that the positioning of points in the low
dimensional space is completely random, so that for each point i, it is equally
likely that a point j in NK

X (i) will have a corresponding point in NK
Y (i). Then

the number of points in the intersection will follow a hypergeometric distribu-
tion Hyp(N,K,K). Thus the expected number in each intersection will thereby

be K2

N−1 . So the preservation will be 1
NKN

K2

N−1 = K
N−1 on average. We get that

the improvement from a random representation can be quantified as

R(K) =
(N − 1)N(K)−K

N − 1−K
(8)

so that it equals 0 on average when the embedding is completely random, and
equals 1 if the embedding perfectly preserves the rank ordering. Note that this
measure will can be negative if the algorithm performs worse than random. In
case of complete distortion, when N(K) = 0, the value of R(K) will be equal
to − K

N−1−K .

Finally, the quality measure, which we will denote as R, is defined by aver-
aging the preservation over all neighborhood sizes.

R =

N−2∑
K=1

R(K)

K
/

N−2∑
K=1

1

K
(9)

Hence, the R criterion can be interpreted as the average neighborhood preserva-
tion over all neighborhood sizes, and is given by the are under the curve of the R
values, normalised by dividing by the maximum area. The area under the curve

defined by the R(K) values is thus given by
∑N−2
K=1

R(K)
K and the maximum area

is given by
∑N−2
K=1

1
K . The reason for normalising is that otherwise the R value

may depend on the number of data points. A higher value of R corresponds
to a better preservation of the data. The neighborhood size of K = N − 1 is
excluded here since it always gives the same value of R = 1.
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6 Benchmarking

In this section the t-SNE algorithm will be benchmarked and compared with
the SNE and PCA algorithms presented in previous sections. The purpose is to
illustrate the properties and potential artifacts of t-SNE with various test cases.
The test cases were mainly inspired by [14] and [27]. In Section 6.1 the t-SNE
algorithm is applied to various test data sets and compared to SNE and PCA.
Then, in Section 6.2, potential artifacts of the t-SNE algorithm is explored to
highlight possible pitfalls when using the algorithm.

6.1 Test Cases

For all test cases, the low dimensional points Y(0) used in the SNE and t-SNE
algorithms were initialised by sampling N points from a Gaussian distribution
with zero mean and variance 10−4, which are the default initialisation in the
original implementations. The number of iterations is set to 5000 throughout,
since both SNE and t-SNE were found to have converged at this number. It
is also the default setting of similar experiments conducted by the authors of
the algorithm. In order to avoid getting stuck in a local optimum in the gradi-
ent descent optimization, since the cost functions of both t-SNE and SNE are
not convex, multiple maps were produced with different random initialization
for each test case. The reductions are evaluated by the R(K) and R quality

t-SNE SNE PCA
MNIST 0.41163 -0.00092 0.14852

Swiss Roll 0.73052 0.73440 0.62236
S-Curve 0.83929 0.70484 0.67466

Curved Clusters 0.43626 0.33777 0.36265

Table 1: The table contains R scores for the algorithms analysed for each data
set. A higher score means higher quality of the embedding in terms of rank
order neighborhood preservation averaged over all neighborhood sizes. A score
of 0 means the quality is equal to that of a random embedding, and a negative
score that the quality is worse than a random embedding.

measures defined in Eq. (8) and Eq. (9) in Section 5 respectively. The quality
measure R, see Eq. (9) in Section 5, results are summarised for each data set in
Table 1. A higher value corresponds to better preservation, and a negative score
means the reduction preserved that structure worse than a random embedding.
The t-SNE algorithm outperforms both SNE and PCA according to this mea-
sure on all data sets except on the Swiss Roll data set, where SNE performs
slightly better although with a small margin. The PCA algorithm was found
to perform consistently worse than the other algorithms on test cases analysed
here.
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Figure 12: Top left shows 500 points drawn from the Swiss Roll data set.

6.1.1 Swiss Roll

Here we apply the t-SNE, SNE and PCA algorithms to the Swiss Roll data set,
commonly used in benchmarking of dimension reduction techniques. The data
set is plotted in Fig. 12. The data was generated by sampling 500 points u1

from the uniform distribution U1 ∼ U(0, 2π) and 500 points u2 from the uniform
distribution U2 ∼ U(−1, 1). The three-dimensional coordinates are then given
by xy

z

 =

u1 cos 2u1

u1 sin 2u1

u2

 .

Two t-SNE mappings were created, with perplexity values of 20 and 50 respec-
tively. The t-SNE embedding is shown in Fig. 13. The top figure shows the
result with perplexity equal to 50. This value is too large, since two points
lying in different layers in the Swiss Roll are counted as close, which breaks the
connectedness between the red and orange points. A lower perplexity value of
20, which is shown in the bottom figure, creates a good low dimensional repre-
sentation. The t-SNE algorithm preserves the local connectedness of the Swiss
Roll, but the global structure is not perfectly preserved.

The result of dimensionality reduction of the Swiss Roll data set using the
PCA algorithm can be seen in Fig. 14. PCA is clearly not able to preserve all
the structure of the data, since the result appears to be a one dimensional spiral.
Hence in this case the t-SNE algorithm performs better.

The result of the SNE algorithm can be seen if Fig. 15. The plot on the
right is the result with perplexity parameter set to 50, and the right plot with
perplexity set to 20. The results are similar for both perplexity values and highly
resembles the PCA projection. The algorithm is does not manage to unfold the
Swiss Roll as well as t-SNE.
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Figure 13: The top figure shows the t-SNE projection with perplexity 50. The
bottom picture shows the t-SNE projection with the perplexity parameter set
to 20.
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Figure 14: Reduction of the Swiss Roll data set using the PCA-algorithm. This
illustrates PCA’s shortcoming in reducing non-linear data sets.

In Table 2 the R scores are summarised for each of the tests. According to
this measure, the SNE algorithm works slightly better for unfolding the Swiss
Roll than t-SNE. This is surprising as from a qualitative evaluation t-SNE per-
forms better. This shows that the rank based critera based on the rank order
of Euclidean distances may not directly imply whether a non-linear manifold
is unfolded or not. Unsurprisingly, PCA reports the lowest score. The R(K)
scores, see Eq. (8) in Section 5, for each test and neighborhood size K is shown
in Fig. 16. The t-SNE algorithm outperforms the others for small neighborhood
sizes, but for larger values of K, PCA and SNE preserves the rank ordering
better. This confirms that t-SNE tends to prioritise local structure, but may
distort larger distances.

6.1.2 S-Curve

In this section we look at the S-Curve data set. The data set was generated
by sampling 800 points u1 from the uniformly distributed random variable
U1 ∼ U(− 2π

3 ,
2π
3 ) and an additional 800 points u2 from the uniformly dis-

tributed random variable U2 ∼ U(0, 5). Then, for the first 400 points the three
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Figure 15: The figure displays the reduction of the Swiss Roll data set to di-
mension 2 using the SNE algorithm. The top left plot and top right plot are
the results using perplexity 50 and 20 respectively.

36



R
t-SNE (Perp. 20) 0.72089
t-SNE (Perp. 50) 0.73052

SNE (Perp. 20) 0.73440
SNE (Perp. 50) 0.73143

PCA 0.62236

Table 2: The table contains R scores for each test case on the Swiss Roll data
set. A higher score means better preservation of rank ordering.

dimensional points are given byxy
z

 =

cosu1 + ε1
u2 + ε2

sinu1 + ε3

 .

The remaining 400 points were transformed using the mappingxy
z

 =

 − cosu1 + ε1
u2 + ε2

2− sinu1 + ε3

 .

Here εi, i = 1, 2, 3, denotes Normally distributed independent random variables
from the N (0, 1) distribution modelling random noise. The data is plotted
in Fig. 17. The desired reduction is thus to a two-dimensional rectangular
manifold.

The result of the t-SNE algorithm can be found in Fig. 18. The top plot
shows the result when perplexity was set to 50. In this case the perplexity is
too low and the algorithm clusters points within the two-dimensional rectangle.
The right plot is the result when perplexity was set to 200. With this parameter
setting the algorithm successfully unfolds the S-Curve.

Fig. 19 shows the reduction using the PCA algorithm. Since PCA finds the
best fit plane, it is naturally not able to preserve the non-linear structure of the
data set.

In Fig. 20 the result of the SNE algorithm is plotted. The result surprisingly
resembles the reduction by the PCA algorithm. As with the t-SNE algorithm
the result is better with higher perplexity. The SNE algorithm is however not
as successful at untangeling the blue and red points.

The R scores are summarised in Table 3. The t-SNE algorithm outperforms
SNE and PCA by a large margin. In Fig. 21 the R(K) values are plotted, for
every neighborhood size K, for each of the test cases. The scores of PCA and
SNE are surprisingly similar. The t-SNE algorithm achieves the highest score
for smaller neighborhood sizes, as expected since it prioritises preservation of
small distances.
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Figure 16: The figure shows R-curves for all of the tests conducted on the Swiss
Roll data set. The higher the curve, the higher the preservation.

Figure 17: The plot illustrates 800 points from the S-Curve data set. The figure
is best viewed in color.
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Figure 18: The figure shows the two dimensional reduction of the S-Curve data
set using the t-SNE algorithm. The top figure is the result with the perplexity
parameter set to 50, and the bottom with perplexity parameter set to 200.
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Figure 19: This figure shows the first two principal components of the S-Curve
data set.

6.1.3 Curved Clusters

Here we investigate a simulated data set containing five three dimensional clus-
ters sampled from Gaussian distributions which are situated on a one dimen-
sional c-shaped structure, seen in Fig. 23. The aim is to project to data down
to dimension one while preserving the cluster structure.

Results are shown in Fig. 24. The top left figure shows the t-SNE result with
perplexity set equal to 50. The t-SNE algorithm provides the best reduction out
of the algorithms compared, preserving and clearly distinguishing all clusters.
The SNE result with perplexity 50, in the top right figure, shows that the
algorithm fails to preserve the clusters by introducing overlap between them.
This shows one of the advantages of the t-distribution kernel, which helps to
more clearly separate clusters. The PCA result in the bottom figure is also not
able to preserve the clusters, due to being limited to linear reductions.

The R(K) values are shown in Fig. 22. The PCA and SNE algorithms
perform similarly for all neighborhood sizes. The t-SNE algorithm outperforms
PCA and SNE for all values of K except for large neighborhood sizes.

The R values are found in Table 4. The t-SNE algorithm resulted in the
highest value, whereas SNE performed reported the lowest score.
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Figure 20: The figure shows the reduced S-Curve data set into two dimensions
using the SNE algorithm. The left plot shows the result with perplexity 30 and
the right plot shows the result with perplexity 50.
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Figure 21: The figure shows R-curves for all of the tests conducted on the
S-Curve data set. The higher the curve, the higher the preservation.

Figure 22: The figure shows R-curves for all of the tests conducted on the
Curved Clusters data set. The higher the curve, the higher the preservation.
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R
t-SNE (Perp. 50) 0.80494

t-SNE (Perp. 200) 0.83929
SNE (Perp. 20) 0.70484
SNE (Perp. 50) 0.70484

PCA 0.67466

Table 3: The table contains R values for each test case on the S-Curve data set.
A higher score means better preservation of rank ordering.

t-SNE SNE PCA

R 0.43626 0.33777 0.36265

Table 4: The table contains R scores for each test case on the Curved Clusters
data set. A higher score means better preservation of rank ordering.

6.1.4 MNIST Data Set

In this section the MNIST data set is tested. The data set was originally intro-
duced by [12] and consists of 28×28 pixels depicting handwritten digits between
0 and 9. An example of an image from this data set is shown in Fig. 25.

Since the dimension of the vector representing each image is 784 it is advan-
tageous to reduce the dimension as much as possible in order to see the cluster
structure of the data, where images of the same digit is expected to fall in the
same cluster. Before applying the t-SNE and SNE algorithms PCA algorithm
was used and the first 422 principal components were kept, as these preserved
more than 99% of the variation in the data, in order reduce complexity. Fig. 26
shows the result of the t-SNE algorithm with perplexity set to 40. The algorithm
manages to preserve most of the clusters with pictures containing the same digit
belonging to the same cluster. The SNE algorithm with perplexity 40, results
shown in Fig. 27, and the PCA algorithm, with results shown in Fig. 28, were
unable to preserve the cluster structure.

t-SNE SNE PCA

R 0.41163 -0.00092 0.14852

Table 5: The table contains R scores for each test case on the MNIST data set.
A higher score means better preservation of rank ordering.

The R scores are summarised in Table 5. According to this measure t-
SNE clearly outperforms SNE and PCA. SNE interestingly performs the worst
on this data set with a negative value of R which means that the quality of
the embedding is worse than a random embedding according to this measure.
Fig. 29 contains the R(K) values for each neighborhood size K for each test.
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Figure 23: Figure on the left shows five clusters in three dimensions sampled
from Gaussian distributions, arranged on a one dimensional c-shape.

The t-SNE algorithm resulted higher R values for most values of neighborhood
sizes K. PCA scores slightly higher for large values of K.

6.2 Artifacts

In this section some of the potential artifacts of t-SNE are illustrated by simu-
lated examples.

6.2.1 t-SNE will overfit the data if perplexity is set too low

A possible artifact of the t-SNE algorithm is that it may find structure in random
noise when the perplexity parameter is set too low. To illustrate such an example
500 points where sampled from a 50 dimensional standard Gaussian distribution
with uncorrelated components. The data was then reduced to 2 dimensions
with the t-SNE algorithm with perplexity set equal to 5. The result is shown
in Fig. 30. It is not possible to see the Gaussian structure with denser points
towards the center. Also, sub-clusters are formed, which may mislead the user
to interpret random noise as structure. Therefore the perplexity should not be
set too low, as one might be misled to see structure where there is none.

In contrast, when perplexity is too high the distribution of points will appear
uniform and no structure will be preserved. This can be seen in the same figure,
where perplexity was set equal to 499 in the bottom right plot.

6.2.2 Size of clusters may be misinterpreted

The size of a cluster cannot be interpreted as representing the original size
of the cluster. Rather, it corresponds to the original density of the cluster.
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Figure 24: The figure shows the reduced data set of five Gaussian clusters on
a one dimensional curved c-shape structure in three dimensions. The data is
reduced to dimension 1. The top plot shows the t-SNE result with perplexity
set to 50. The middle figure shows the SNE result with perplexity equal to 50.
The bottom plot shows the data projected to the first principal component of
the data set.
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Figure 25: The figure shows an example of a handwritten digit image of the
number 5 from the MNIST data set.

Figure 26: The figure shows the reduction to dimension 2 of the MNIST data
set consisting of pixel values corresponding to pictures of handwritten digits.
The figure shows the reduction using the t-SNE algorithm with perplexity set
to 40. The algorithm was applied to the first 422 principal components of the
data to reduce complexity.
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Figure 27: The figure shows the reduction to dimension 2 of the MNIST data
set consisting of pixel values corresponding to pictures of handwritten digits.
The figure shows the reduction using the SNE algorithm with perplexity set to
40. The algorithm was applied to the first 422 principal components of the data
to reduce complexity.
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Figure 28: The figure shows the reduction to dimension 2 of the MNIST data
set consisting of pixel values corresponding to pictures of handwritten digits.
The picture shows the first 2 principal components of 6000 images.
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Figure 29: The figure shows R-curves for all of the tests conducted on the
MNIST data set. The higher the curve, the higher the preservation.

A dense cluster will be modelled by a larger cluster and sparse cluster by a
smaller cluster, in order to make them equally dense. Fig. 31 shows an example
with data simulated from two Gaussian distributions with same variance but
different means. Thus the data consists of two clusters with equal size and
unequal number of points. A similar example is found in Fig. 32 which shows
the reduction of a data set consisting of two clusters with equal number of points
but different sizes. The size of the larger sparse cluster gets reduced, and the
dense smaller cluster gets increased, so that they appear equally sized in the
t-SNE map. This is an implication of introducing the perplexity parameter in
order to select the variances in the Gaussian similarities.

6.2.3 Outliers will not remain outliers

An artifact of the t-SNE algorithm is that it will not preserve outliers. Since
the variances are chosen so as to make the perplexity equal for the probability
distributions of all points, the variance parameter will be chosen very large
for an outlier. Therefore, the points otherwise distant to the outlier would be
counted as close. This fact, combined with the low cost of error in modelling
large distances, results in that the outlier is placed closer other clusters of points,
making it difficult to recognize it as an outlier in the embedding. If xi is an
outlier and xj its nearest neighbor, then if the same σ were to be used for all
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Figure 30: To the right the first two coordinates of 500 data points sampled
from a 50 dimensional Gaussian distribution with independent zero mean and
unit variance components. The bottom left is the result of the t-SNE algorithm
when the dimension is reduced to 2 and perplexity is set equal to 5. The bottom
right picture shows the result when perplexity was set to 499.

Figure 31: The figure on the left shows the first two coordinates of the original
50 dimensional data set. The figure on the right shows the t-SNE projection.
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Figure 32: The left figure depicts the first coordinates of a data set with two
clusters of points, with different densities. The right figure shows the tSNE
projection into two dimensions.

Figure 33: To the right is the original 50 dimensional data, displayed with the
first two coordinates. To the left is the result of the t-SNE reduction to two
dimensions. Perplexity was set equal to 10.

points

pij =
pi|j + pj|i

2N
≈ 0 + 1

2N
=

1

2N
.

When σ is increased, this probability will increase. If a data point has high
distance to every other data point, the variance parameter corresponding to
that point will increase to match the number of points located in more dense
regions. Hence the outlier will be modelled as being much closer to the remaining
points than it actually is. An example of this phenomenon is shown in Fig. 33.

6.2.4 Global distances may not be preserved

Since the t-SNE algorithm is designed to prioritize modelling local structure, it
may result in artifacts in modelling of the global structure. This is partly due to
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Figure 34: The plot on the right shows the first two coordinates of a 50 dimen-
sional data set containing three clusters. The plot on the left shows the t-SNE
projection.

the choice of using a Gaussian kernel with squared Euclidean distances, since the
similarity will decrease quickly to zero for large distances, and mainly because
the Kullback-Leibler cost function is almost unaffected by errors in modelling
large pairwise distances. Fig. 34 shows an example with three clusters of points,
where two of them are close, whereas the third is far away. The resulting map
models the clusters as being almost equidistant. Hence care needs to be taken
when drawing conclusion about global structure from the map.

7 Discussion

In this section the main findings and conclusion of this thesis are summarised
and discussed. We also provide some outlooks on possible future research.

7.1 Conclusions

In this thesis the topic of dimension reduction, and in particular the t-SNE, PCA
and SNE algorithms have been explored. In Section 4 the theory behind the
SNE and t-SNE algorithms were covered. Then, in Section 5 some evaluation
criteria were introduced. These algorithms were then applied to test data sets in
Section 6.1. The t-SNE algorithm outperformes both SNE and PCA on most of
the test cases. A weakness with t-SNE however is its failure of preserving global
structure, due to the asymmetric cost function used as well as the mismatch
between the similarity kernels used.

Other artifacts that were found was that distance between clusters may be
distorted, the size of clusters can mislead, outliers may not remain outliers and
the algorithm may find structures in random noise. The results often highly
depend on choosing the right perplexity value, and therefore there is a need to
develop a method for optimally choosing this parameter.
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Figure 35: The figure illustrates the Kullback-Leibler divergence cost as a func-
tion of perplexity after 5000 iterations on the IRIS data set.

7.2 Outlooks and Open Questions

Many variations of SNE have been suggested in the literature to combat with
the limitations of t-SNE. Different cost functions, which does not have the asym-
metric property of the Kullback-Leibler divergence have been suggested, that
improves the preservation of global structure [9, 15, 7, 1].

The problem of choosing an optimal value for perplexity parameter remains.
In this thesis the perplexity was mainly chosen subjectively in the experiments
of Section 6, and no standardised method was used. The Gaussian kernel is
approximately equal to the t-distribution kernel for large perplexity values, as
for σ large

e−
∆2

2σ2 ≈ 1

1 + ∆2

2σ2

≈ 1.

Hence the similarities in the high dimensional space will resemble the similarities
in the low dimensional space more closely, and the distribution will be modelled
by a uniform distribution. The optimal Kullback-Leibler cost function value
will therefore decrease monotonically as perplexity decreases as can be seen in
Fig. 35, which shows the Kullback-Leibler divergence after 5000 iterations of the
IRIS data set. Evaluating in this way would therefore result in representing the
data by a uniform distribution and hence no structure would be preserved, as
the optimal perplexity would be equal to the number of points. This corresponds
to representing the high dimensional data by a uniform distribution, and thus
no structure is preserved by the probability distribution representing it. A low
dimensional map can easily be found by setting all map points equal to each
other, which would lead to a Kullback-Leibler cost of 0. Therefore, a method for
choosing an optimal perplexity value is needed. We do not find much literature
dealing with this problem, and is often chosen subjectively, as the default value
in applications or by heuristical arguments [10]. A possible approach for deciding

53



on the right perplexity value is to look at the R score described in Section 5,
and look for a minimum value.

The mathematical foundation of Stochastic Neighbor Embedding and its
variants is still not fully understood. Therefore a possible future research direc-
tion is to further explore this. For example [17] attempts this.
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