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Abstract

Hidden Markov Models (HMM’s) are a versatile class of statistical
models which have been used in various contemporary speech recogni-
tion systems. In this study it was explored how these models could be
applied for recognizing words in a data set with recordings of 11 differ-
ent words. Feature vectors based on the Discrete Fourier Transform
(DFT) were used for word modelling and recognition. Variations of
the HMM’s were fitted and tested on the data set. The out-of-sample
error for each model was estimated by performing a 10-fold cross-
validation. Moreover, the full data set was used for both training and
testing. In the latter experiment, the smallest total error among the
constructed word recognizers was 13.3 %. Furthermore, the study ex-
plored how HMM’s could be used for detecting the presence of words
in a recording. The word detector failed to detect certain segments of
different words but performed well in other cases.
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1 Introduction
1.1 Purpose
This thesis is about isolated word recognition and word detection. It is
essential to have a method of separating silence or noise from speech in
order to fit and test a reliable word-recognizer, and in this study a simple
word-detection model will be discussed. The study will consist of two main
parts: a theoretical exploration of methods that have been used in previous
studies and the second part consists of an application of the theory to a data
set.

The data which will be studied in this project was downloaded from [1].
The data set contains recordings of the spoken digits “zero”, “one”,..., “nine”
and the word “o”. This data set has been used in a demonstration of Hidden
Markov Models (HMM’s) for isolated word recognition [14]. Observations
from this data set will be automatically labelled by their corresponding
word. Furthermore, a word-detecting HMM will be fitted and tested on
audio files from this data set. We conclude by examining the performance
of a collection of HMM models for word recognition.

1.2 Background
In the last years, speech recognition technology have spread through the
popularization of smartphones and personal computers, but this technology
has existed for several decades. There was for example a digit-recognizing
system which was developed at Bell Labs in the 1950’s [8]. In this project we
will study speech recognition with Hidden Markov Models, which originate
from the 1960’s [11]. These models describe the relation between two random
variables: a hidden state sequence and a sequence of observed emissions.

Speech recognition is an interdisciplinary field which covers many dif-
ferent subjects such as signal processing, statistics, information theory and
linguistics. In a speech recognizing system there are many different parts.
The speech data is typically processed into a form which is better suited
for further analysis, which is known as speech parameterization or feature
extraction. The first step of the processing can be done by e.g. using the
Discrete Fourier Transform (DFT), technique that is fundamental in signal
processing. This transformation takes an audio representation from the time
domain to the frequency domain.

There are many DFT-based speech parameterizations which have been
used in speech recognizing systems. These include Linear Frequency Cep-
stral Coefficient (LFCC), Perceptual Linear Prediction (PLP), Linear Pre-
diction Coefficient (LPC) and Mel Frequency Cepstral Coefficient (MFCC)
[7]. The MFCC in particular has been used in contemporary speech recog-
nition systems such as the Hidden Markov Toolkit (HTK) and Kaldi, both
of which also use HMM models.
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HMM’s will be designed to express the relation between the words and
the processed data. Finally, these models are fitted and used to identify
words in an audio file.

There are many ways to perform speech recognition, even within the
framework of Hidden Markov Models for speech recognition. There are
variations with respect to how the emissions are generated and if they are
discrete or continuous. The models and methods which will be used in
this project are heavily based on the instructions from Rabiner’s tutorial on
Hidden Markov Models for speech recognition [11] and a MATLAB imple-
mentation which has been developed by Xin and Qi [14].

In this project we will use MFCC’s as the feature vectors of our word
recognition system. By using the technique of Vector Quantization (VQ),
these features are discretized into a predetermined number of possible values.
In this study we will examine the impact that the discretization has on the
performance of the HMM word-recognition system.

The feature which the word detector will use is the empirical second
moment of the segments of the speech recording. Different variables which
are based on the empirical second moment have been used in previous studies
of speech signals and have been referred to as energy [4], [13]. In this study,
we will discretize these values in order to implement the same class of HMM’s
for both word detection and word recognition.

2 Theoretical framework
This section will focus on the theory of Hidden Markov Models. We will
explain the design and parameter estimation and how the models are used
for word recognition and word detection. These two subjects are different
but will be explored by using the same class of HMM’s. Word recognition is
about identifying what word is spoken while word detection is about finding
the location of speech in a recording. Furthermore, this section will include a
description of the feature vectors used by the HMM’s for these two different
applications.

2.1 The word recognition model
2.1.1 Problem formulation
First, we assume that a word recording is represented by a sequence of
amplitudes X1, . . . , XN . The amplitudes are grouped into L successive sub-
sequences of points, known as frames. For each frame of order ℓ, a feature
Oℓ is computed. We denote the sequence of features from a speech recording
as follows: O = (O1, . . . , OL). In the context of HMM’s, these variables are
typically referred to as emissions or outputs.
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2.1 The word recognition model

Next, we will denote the unknown word to be classified byW . This word
is a random variable which can assume any value in the vocabulary V . The
vocabulary V is known in advance, and in our case it consists of the words
from the data set: “zero”, “one”, “two”, “three”, “four”, “five”, “six”, “seven”,
“eight”, “nine” and “o”. In this study we will use the problem formulation
used by Rabiner [11] for the word recognition problem. Each word w ∈ V
is assumed to have its own word model, which is a HMM with parameter
collection λw. The word recognition problem can be summarized as follows:
find the word model which maximizes the likelihood of the observed feature
values o. The recognized word Ŵ is defined in the expression below.

Ŵ = argmax
w∈V

P (O = o | λw) (1)

This word recognizer is intended to be used on recordings of words from the
vocabulary V . It will incorrectly label recordings of other sounds as being
words from this vocabulary. For this reason, this word-recognizer is very
limited and could be improved if it was combined with a word detector.

2.1.2 An overview of the variables
The HMM chosen for this project is the one which is defined by Rabiner [11]
and has been implemented by Xin and Qi [14]. This section will be dedicated
to defining the HMM and the design it will have for speech recognition.
We will also show how to estimate its parameters and perform different
computations which are necessary to solve the word recognition problem.
We will for example explain how to compute the probability of an emission
sequence under a given HMM. In other words, we will explain the steps
needed to solve the optimization problem (1).

A HMM contains two variables of interest: the hidden state sequence
Q = (Q1, . . . , QL) and the sequence of emissions O = (O1, . . . , OL). As the
names suggest, the hidden sequence Q is assumed not to be observed and it
is therefore unknown or hidden. In contrast, the values of the emission se-
quence O are observable. Our HMM represents a stochastic process in which
a hidden state variable Qℓ emitts a value Oℓ in a way which is determined by
a probability distribution. There are various assumptions which determine
the properties of this stochastic process, and they will be explained later.
For now, we introduce the notation of the various parameters for our class
of HMM’s in the table below.
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2.1 The word recognition model

Quantity Definition
Qℓ The hidden state of frame ℓ.
Oℓ The emission of frame ℓ.
S = {1, . . . , n} The sample space of each hidden state Qℓ.
E = {1, . . . ,m} The sample space of each emission Oℓ.
ai,j = P(Qℓ+1 = j | Qℓ = i) The probability of transitioning from state i to state j.
πi = P(Q1 = i) The initial state probability of state i.
bi(oℓ) = P(Oℓ = oℓ | Qℓ = i) The probability of state i emitting the value oℓ.
A The matrix of transition probabilities ai,j .
B The matrix of emission probabilities bi,j .
Π The vector of initial state probabilities πi.
λ = (A,B,Π) The collection of parameters of a HMM.

Table 1: The parameters and quantities of a Hidden Markov Model and
their notation.

2.1.3 The hidden states
The hidden states Q1, . . . , QL represent some source which generates the
sounds that are being observed. The state space of each of these variables
is S . The number of elements in this state space is n. There are many
alternatives to decide what the hidden states are supposed to represent.
One alternative is to let the hidden states represent phonemes. A phoneme
is a phonetic unit which is specific to a language and can be described as the
sound which distinguishes one word from another. Another alternative is to
let n be approximately equal to the mean number of observed emissions Oℓ

in a word [11].
The International Phonetic Alphabet (IPA) is a phonetical system which

offers a way to symbolically represent phonetic components such as phonemes.
In the table below we show the words to be recognized in this thesis, together
with their phonemic transcription. The phonetic representation is based on
the American pronounciation of the words.
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2.1 The word recognition model

zero z ɪ r o ʊ
one w ʌ n
two t u
three θ r i
four f ɔ r
five f a ɪ v
six s ɪ k s
seven s ɛ v ə n
eight e ɪ t
nine n a ɪ n
o o ʊ

Table 2: Set of phonetic symbols, without stress symbols, based on the IPA
transcription.

The hidden state sequence Q = (Q1, . . . , QL) forms a Markov chain. A
Markov chain is a stochastic process such that the probabilities of the next
state only depends on the current state. This property can be expressed
more formally as follows. For all ℓ ≥ 1 it holds that every element iℓ in
the hidden state space S and every hidden state variable Qℓ satisfies the
following.

P(Qℓ+1 = iℓ+1 | Q1 = i1, . . . , Qℓ = iℓ) = P(Qℓ+1 = iℓ+1 | Qℓ = iℓ) (2)
The matrix A contains the transition probabilities of this Markov chain. An
element ai,j of this matrix is defined to be the probability of a transition
from the state i to state j.

P(Qℓ+1 = j | Qℓ = i) = ai,j (3)
It follows that the transition matrix A is a square n × n matrix, where
n = |S | as before. For our application we will let A have a design which
captures the passage of time among the hidden state sequence. We will use
a so-called left-to-right model to achieve this [11].

For a left-to-right model, the order ℓ of the expression Qℓ = i indicates
that the state i was visited at frame ℓ. Such a model starts in the left-most
state and this is expressed in the following way. Assume that i is the left-
most state, meaning that Q1 = i. The notation πi = P(Q1 = i) will be
used.

πi =

{
0 if i ̸= 1

1 if i = 1
(4)

The assumption that the process goes from left to right places a restriction
on the transition probabilities. The direction of the state transitions from
left to right is expressed as follows.

ai,j = 0 for j < i (5)
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2.1 The word recognition model

To make sure that the process does not reach the end too quickly, an extra
assumption is made. We will impose a limit to how far the process can go
to the right. This limit is denoted by ∆, and the restriction is expressed in
the following manner.

ai,j = 0 for j > i+∆ (6)
Hence the process cannot make a transition further than ∆ steps to the
right. Finally, to express how the process reaches the final state n we have
the next restriction.

an,n = 1 (7a)
an,i = 0 for i < n (7b)

As an example, we will now show a transition matrix with the step limit
∆ = 2.

A =


a1,1 a1,2 a1,3 0 0
0 a2,2 a2,3 a2,4 0
0 0 a3,3 a3,4 a3,5
0 0 0 a4,4 a4,5
0 0 0 0 1


We will illustrate the possible transitions corresponding to this matrix in the
figure below. The hidden states are in circles and a transition with non-zero
probability is represented by an arrow. Transitions with zero probability are
not visible.

1 2 3 4 5

Figure 1: Possible state transitions specified by the transition matrix A.

2.1.4 Conditionally independent emissions
The following conditional independence assumption is made for the emission
sequence O = (O1, . . . , OL). The probability of an event under a HMM with
parameter collection λ will be denoted by Pλ.

Pλ(O = o | Q = q) =

L∏
ℓ=1

Pλ(Oℓ = oℓ | Qℓ = qℓ) =

L∏
ℓ=1

bqℓ(oℓ) (8)

This assumption describes the relation between the hidden states and the
emissions. An emission from the frame of order ℓ only depends on the hidden
state which was visited at that frame. Because of this property, this kind
of HMM will be referred to as a state-emitting HMM. This property will
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2.1 The word recognition model

affect different computations which are necessary for both estimating the
parameters and computing the probabilities, as shown in the next section.

2.1.5 Calculating the emission probabilities
In order to perform the maximization procedure specified by equation (1),
we need to calculate the probability of the sequence of emissions under a
given parameter. One may use the Markov assumption (2) together with
the conditional independence (8) to directly compute the emission probabil-
ities. We begin by applying the law of total probability and sum over every
possible hidden state sequence. When conditioning on λ, we mean that the
probability is given under the HMM with the parameter collection λ.

Pλ(O = o) =
∑
q

Pλ(O = o,Q = q) (9a)

=
∑
q

Pλ(O = o | Q = q)Pλ(Q = q) (9b)

=
∑
q

πq1bq1(o1)
L∏

ℓ=2

bqℓ(oℓ)aqℓ−1,qℓ (9c)

As noted by Rabiner [11], the direct computation has a high computational
cost, consisting of 2L · nL calculations. This computational cost can be
obtained by inspecting (9c). There are nL possible state sequences q since
there are n possible states at every time frame ℓ = 1, . . . , L. Every term
in the sum requires approximately 2L computations, and hence the total
number of calculations is approximately 2L · nL. Rabiner describes the
forward algorithm as a feasible alternative to the direct computation. The
forward algorithm has the computational cost of n2L calculations. We will
hereafter explain how this procedure is performed.

We begin by defining the forward variable αℓ(i). Sequences such as
o1, . . . , oℓ will be denoted by o1:ℓ.

αℓ(i) = Pλ(O1:ℓ = o1:ℓ, Qℓ = i) (10)

The algorithm is organized into the following steps: initialization, recursion
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2.1 The word recognition model

and termination. A proof of these formulas is given in the appendix.

Step 1: Initialization
α1(i) = πibi(o1) (11a)

Step 2: Recursion
αℓ(j) =

∑
i

αℓ−1(i)ai,jbj(oℓ), for ℓ = 2, . . . , L. (11b)

Step 3: Termination
Pλ(O = o) =

∑
i

αL(i) (11c)

The forward algorithm can be affected by numerical underflow. The
likelihood consists of sums of products of numbers between 0 and 1. As the
number of factors of such a product grows, it approaches 0. For a computer
with finite precision this can result in the expression being evaluated to 0.
This can cause problems in the estimation procedure.

A solution to the numerical underflow is to compute the logarithm of
the probabilities. In [11] it is explained how one can use this technique to-
gether with rescaling the parameter estimates in order to avoid numerical
underflow. An alternative is to use the Viterbi approximation of the likeli-
hood Pλ(O = o). The Viterbi approximation has been combined with the
log-probability in Xin and Qi’s word recognition demonstration [14].

2.1.6 Viterbi approximation
The Viterbi approximation is a method of approximating the probability of
a given emission sequence o. It is performed by first finding the most prob-
able sequence of hidden states q∗ with the Viterbi algorithm. Then a joint
probability of the sequence q∗ and the observed emissions o is computed as
described below.

P̂λ(O = o) = max
q

{Pλ(O = o,Q = q)} (12)

The Viterbi algorithm is similar to the Forward Algorithm, since it is com-
posed by similar steps: initialization, recursion and termination. The algo-
rithm is concluded by a backtracking step. We begin by observing that the
hidden sequence q∗ can be expressed in the following ways.

q∗ = argmax
q

Pλ(Q = q,O = o) (13a)

= argmax
q

logPλ(Q = q,O = o) (13b)

The advantage of using latter form for computation is that the problem of
numerical underflow is avoided, as noted by Xin and Qi [14] and Rabiner
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2.1 The word recognition model

[11]. The following problem formulation has been used by Forney [6].

q∗ = argmin
q

− logPλ(Q = q,O = o) (14)

Under our assumptions, the last problem formulation is equivalent to the
previous two. Forney’s description of the Viterbi algorithm assumes a transition-
emitting HMM. This means that an emission Oℓ depends on the transition
from Qℓ to Qℓ+1 rather than just Qℓ. In this section, we will briefly describe
the algorithm as it has been presented by Rabiner [11] for state-emitting
HMM’s. We begin by defining the following quantity.

ϕℓ(i) = max
q1:(ℓ−1)

log Pλ(Q1:(ℓ−1) = q1:(ℓ−1), Qℓ = i, O1:ℓ = o1:ℓ) (15)

This expression is the maximal log-probability corresponding to the hidden
sequence which ends in the state i and the observed emissions o1:ℓ. The
algorithm begins by initializing the values for ϕℓ(i) and then uses a recursive
relation between ϕℓ(i) and ϕℓ−1(i) to progressively compute the maximal
probabilities for hidden state sequences of various steps ℓ. For more details
of the procedure, see the appendix.

2.1.7 Training the model
We will use the maximum likelihood principle to estimate the parameter of
the model. Every word model has its parameters estimated independently of
the other word models. We introduce the estimation procedure when given
a single emission sequence O. The objective of a conventional maximum-
likelihood estimation would be to find the parameter which maximizes the
likelihood given the complete data: P (O = o,Q = q | λ). Since the state
sequence Q is not observed, the maximum is untractable. An alternative is
to use the Baum-Welch algorithm, which can be regarded as a special case
of the Expectation-Maximization (EM) algorithm [11]. The EM-algorithm
deals with the missing observations of the hidden statesQ by maximizing the
expected value of the log-likelihood, given the observed emission sequence.

The computation of the expected value of the log-likelihood forms what
is known as the E-step of the algorithm, and is defined in (16a). We formally
state the steps of the EM-algorithm in the equations (16). In this section,
the EM-algorithm is presented in the style of Dempster et al. [5], who have
presented the algorithm in an article which Rabiner et al. have used as
reference for the estimation of the HMM parameter [11].

Let λ(t) denote the estimate at iteration t and λ a HMM-parameter.
The next estimate λ(t+1) is obtained by the maximization step (16b). Here-
after, the notation p(o, q | λ) = P(O = o,Q = q | λ) is used to express
the likelihood. Similar notation is used for expressing the likelihood after

13



2.1 The word recognition model

conditioning on the observed emission sequence o.

Expectation (E-step)

Q
(
λ | λ(t)

)
= E

(
log p(O,Q | λ) | O = o, λ(t)

)
(16a)

Maximization (M-step)
λ(t+1) = argmax

λ
Q(λ | λ(t)) (16b)

As the number of iterations grow, the estimates converge to an estimate
with the highest likelihood. Rabiner notes that the algorithm converges to
a local maximum, and that there may be multiple local maxima [11].

The function Q which is defined in the E-step (16a) is known as Baum’s
auxiliary function, with a more explicit form given in (17a). The computa-
tion at the E-step is given by the following expression.

Q
(
λ | λ(t)

)
=
∑
q

p
(
q | o, λ(t)

)
log p (o, q | λ) (17a)

The EM-algorithm produces an estimate λ(t+1) with a higher likelihood than
the previous one λ(t). The higher likelihood of the next estimate is obtained
from the following property:

Q
(
λ(t+1) | λ(t)

)
≥ Q

(
λ(t) | λ(t)

)
⇒ log p

(
o | λ(t+1)

)
≥ log p

(
o | λ(t)

)
(18)

The property (18) is a consequence of Jensen’s inequality [5]. For a more
detailed explanation of the inequality (18), see the appendix. The left-hand
side of (18) is a consequence of the M-step (16b).

The next estimate λ(t+1) is obtained at the M-step by applying the
method of Lagrange multipliers in order to maximize the function Q(λ | λ(t))
[11]. The constraints of this maximization procedure are the linear depen-
dencies between the different parameters. For example, the sum of the initial
state probabilities πi equals 1. The solution to the maximization problem is
given in the appendix.

We have described the estimation procedure when the data is a single
emission sequence o. In practice, we will use many emission sequences to
estimate the parameter collection λ for the model of a single word. For this
reason, we will need to use the above formulas for every observation sequence
and combine them [11]. Assuming that the observed emission sequences are
independent, λ is estimated by maximizing the following probability. The
emission sequences will be denoted by O(1), . . . ,O(K).

Pλ(O
(1) = o(1), . . . ,O(k) = o(k)) =

K∏
k=1

Pλ(O
(k) = o(k)) (19)
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2.1 The word recognition model

Under the assumption (19), many emission sequences can be used to estimate
the parameter λ by maximizing the corresponding auxiliary function Q. The
expression for this estimate is given in the appendix.

2.1.8 The feature vectors
The (MFCC) feature extraction consists of many techniques that are founded
on signal processing theory and models of human perception of sound [7].
Since this thesis will focus on the statistics of the HMM’s, we will only
briefly describe the main ideas behind the MFCC - what it represents, why
it is useful for speech recognition and how it relates to the HMM’s that were
used in this study.

A digital audio signal can be represented as a bounded sequence of val-
ues X1, . . . , XN , where N is a positive integer. These values will be referred
to as amplitudes. In this thesis, the models will be trained and tested on
uncompressed wav-files. These files are read and converted to a normal-
ized sequence of numbers with MATLAB’s audioread function. The values
X1, . . . , XN are rational values in the range [−1, 1]. Without the normaliza-
tion, the amplitudes would assume integer-values in the range from −2(16−1)

to 2(16−1)−1. The size of this range is determined by the quantity known as
the bit depth or bits per sample, which is 16 for all the files in this study. For
comparison, a recording with 4 bits per sample would take integer values in
the smaller range from −2(4−1) to 2(4−1) − 1 before the normalization.

The MFCC’s are computed by first partitioning the audio recording into
collections of points (frames). Every frame corresponds to a time region in
the recording. Each of these frames is pre-processed and then transformed by
the DFT. The justification for applying the DFT on the frames of the speech
signal rather than the entire signal is that it is assumed to be short-time
stationary. This procedure is known as the short-time Fourier transform,
which can be visualized by a spectrogram. In previous studies, the frame
durations have been 20-40 ms [14] and 45 ms [11]. The frames are also
typically chosen to be overlapping, meaning that consecutive frames share
some points. The DFT is useful because it provides information about the
frequencies of the periodic waves found in the frame.

We will show a spectrogram for a simple example. We begin by gener-
ating a vector of the 2000 time points, by letting t1 = 0 and tn+1 = tn+∆t,
where ∆t = 0.001. This means that the sample rate is 1000 Hz, where 1 Hz
is 1 s−1. Next, we generate the non-normalized amplitudes Yn of the audio
file in the following way.

Yn = 10 cos(2π220tn) + cos(2π440tn) (20)

We proceed by normalizing this sequence to Xn and can now generate a
16-bit audio file with these values. We illustrate a segment of this sequence
in figure 2.
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2.1 The word recognition model

Figure 2: A segment of the waveform of the amplitude sequence Xn. The
horizontal axis shows time in seconds.

Next, the audio is partitioned into non-overlapping frames of 100 points
each, and the DFT is computed for each frame. The magnitude of the DFT-
components of a frame reveal the frequencies that are present in the audio.
In the spectrogram of figure 3, the magnitude at a particular frequency is
measured in dB per Hz. A brighter color indicates a higher magnitude.

Figure 3: The short-time discrete fourier transform of the sum of cosines.
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2.1 The word recognition model

In figure 3, there are two horizontal bands whose colors represent the
magnitudes of the two cosine terms from (20). The band with the brightest
color extends between 200 and 250 Hz, which corresponds to the first term of
(20), which has a higher magnitude than the second term. Spectrograms of
speech data exhibit a more complex pattern with a mixture of different fre-
quencies which changes as time increases. The MFCC uses the information
about the frequency content that can be observed in the spectrogram.

The specific variant of MFCC’s used as feature vectors for the thesis is the
MATLAB demonstration found in the “Speech Recognition” chapter of Xin
and Qi’s literature [14]. More specifically, it is the method which has been
coded in the mfcc-function, which is adapted from the Auditory Toolbox by
Malcolm Slaney (1998). This MFCC-computation has also been described
in Ganchev’s literature about feature extraction, where the method has been
referred to as the MFCC-FB40 method [7]. The main steps of the MFCC
computation are illustrated in figure 4.

DFT on frame ℓ. Keep the
magnitudes
in a vector.

Filter bank
• Sum of weighted
magnitudes.

Projection onto
cosine basis

• The result:
MFCC vector cℓ.

Figure 4: A summary of the MFCC computation.

The first two steps have already been described. The next step is to send
the magnitude vector to a filter bank which represents the auditory system.
Since Xin and Qi’s literature lacks a definition for the filter bank, Ganchev’s
definition of the filter bank is visualized in figure 5. The filter bank produces
a set of weights corresponding to different frequencies, with values shown on
the vertical axis of figure 5. A weighted sum of the magnitude vector is
produced by using the filter bank, and the logarithm of the result is taken
afterwards.
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2.1 The word recognition model

Figure 5: Filter bank weights

Each filter is represented by a triangular shape. These filters are uni-
formly placed on the frequency-axis for lower frequencies and are placed
further apart for higher frequencies. According to Xin and Qi, the higher-
frequency filters have been placed by using a log-frequency scale called the
Mel-frequency scale or Mel-scale. An explicit formula for this scale has not
been found in Xin and Qi’s literature. According to Ganchev, this filter
bank has a design that is analogous to the filter bank of the HTK MFCC-
FB24 method, which uses the Mel-scale for placement of filters. The HTK
MFCC-FB24 method uses the definition given in equation (21) of the Mel-
scale. The frequency in hertz is denoted by flin and the Mel-scale by fmel.
The function defined in equation (21) is visualized in figure 6.

fmel = 2595 · log10
(
1 +

flin
700

)
(21)
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2.1 The word recognition model

Figure 6: Mel-scale

According to Xin and Qi, the resulting values after applying the filter
bank are the values Ak, k = 1, . . . ,K where K is the total number of filters.
The following (incomplete) expression is given in Xin and Qi’s literature [14].
The n:th component of a MFCC-vector c is denoted by cn in this section,
and L = 13 represents the dimension of the MFCC-vector.

cn =
K∑
k=1

(logAk) cos (n(k − 0.5)π/K) k = 1, 2, . . . , L (22)

As described by Xin and Qi , the zero:th component c0 is a measure of
the average speech power. The next component, c1, measures the balance
of power for two classes of sounds: sonorant- and friction-sounds. The
components ci of higher orders i ≥ 2, describe other properties about the
frequency content of the frame. We note however, that c0 is undefined
according to the expression (22), and that the index k is defined in multiple
places. Upon closer inspection of the computations coded in mfcc-function,
we conclude that Ganchev’s description the MFCC-computation in the mfcc-
function is more accurate. As before, we will denote the outputs of the filter
i by Ai for i = 1, . . . ,K and present Ganchev’s expression in equation (23).

cn =

√
2

K

K−1∑
i=0

(log10Ai+1) · cos
(
n(i+ 0.5)π

K

)
n = 0, 1, . . . , R− 1 (23)

In the expression (23), R is the number of unique coefficients that are com-
putable, which in our case equals 13. Although the expressions (22), (23)
differ, the authors agree that they should be interpreted as the applica-
tion of the Discrete Cosine Transform on the log-output of the filter banks.
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2.1 The word recognition model

More details about the computations of the filter bank weights and MFCC-
coefficients will be given in the appendix.

The rationale for using the MFCC’s as feature vectors is that they use
the frequency content of audio recordings, take into consideration the short-
time stationarity of the data, have been used in previous studies and have
been used in speech-recognition software.

Since the feature vectors have continuous values, they are not suitable for
HMM’s with discrete emissions. Because of this, the method of Vector Quan-
tization (VQ) is used to transform these vectors into discrete (1-dimensional)
values. If a recording is composed of L frames, the sequence of features is
discretized to form the sequence of discrete emissions O = (O1, . . . , OL) to
be used by the HMM.

2.1.9 Discretization
We begin by assuming that we have a set of amplitude sequences

{
X(1), . . . ,X(R)

}
.

For all r = 1, . . . , R, a sequence of amplitudes X(r) is grouped into Lr

frames, which are then transformed into a sequence of feature vectors c(r) =(
c
(r)
1 , . . . , c

(r)
Lr

)
. The VQ algorithm works by first generating a set of vectors

{y1, . . . ,ym}, known as a codebook, from the training data, which is the set
of vectors c(r)ℓ such that ℓ = 1, . . . , Lr and r = 1, . . . , R.

The size m, of the codebook, is chosen in advance. We assume that
we want to discretize the sequence of MFCC-vectors c = (c1, . . . , cL) cor-
responding to the amplitude sequence X, which has been grouped into L
frames. The codebook is used to discretize every element cℓ of the sequence
c, where ℓ denotes the order of the frame from X. The discretization is per-
formed by labelling feature vectors by the closest vector from the codebook.
The main steps of the VQ procedure are illustrated in figure 7.
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2.1 The word recognition model

Training data

• The set of feature vectors
for every frame of each
recording.{

c
(r)
ℓ

}

Generate a codebook

{y1, . . . ,ym}

Test observation

c

Discretization

For each feature-vector cℓ
in the test observation c:
• find the closest codebook
vector yj,

• label with j.

Figure 7: A summary of the VQ procedure.

As noted in the previous section, the components of the MFCC-vector
cℓ represents different properties of a frame for an audio recording. The
discretized value of the feature vector cℓ is denoted by oℓ and represents
the outcome of an emission Oℓ for a word model HMM. We observe that
number of states in the hidden state space E equals the chosen codebook
size m, and hence the codebook size affects the number of parameters in the
word model HMM.

The procedure which generates the codebook is a variation of the K-
means clustering algorithm, which has been implemented in the vqsplit-
function from Xin and Qi’s literature. The rationale for using this procedure
is that it has been applied to sets of audio recordings in previous works in
speech recognition [11], [14]. This method uses binary splitting and produces
codebooks of sizes which are powers of two.

This method starts by generating a small codebook with the K-means
clustering algorithm and then progressively splits the codebook vectors so
that a larger codebook can be generated. For this reason, the codebook size
m must be defined as a power of two before performing the VQ-procedure.
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2.1 The word recognition model

The binary splitting method has been outlined in Rabiner’s speech recogni-
tion literature [12]. Rabiner has noted that it is advantageous to perform
the codebook generation in stages with the binary splitting method.

We will proceed by describing how a codebook {y1, . . . ,ym} is created
with the binary-splitting procedure. As noted before, the size m is chosen
in advance and is a power of 2. The distance measure which will be used in
the clustering algorithm is the Euclidean distance d, which will be used to
calculate the distance between MFCC-vectors.

The K-means clustering algorithm can briefly be described as follows:
partition a data set into clusters by generating a set of cluster centers. The
clusters are such that the distance between every datapoint and its cluster
center is minimized. The set of cluster centers is the codebook which is used
in the VQ-algorithm.

1. Generate a codebook of size m = 1. The codebook vector y1 is gener-
ated from the training data with the K-means clustering algorithm.

2. First, let 0.01 ≤ ϵ ≤ 0.05. Split each element yk in the codebook in
the following manner.

y+
k = yk(1 + ϵ) (24a)

y−
k = yk(1− ϵ) (24b)

We observe that the codebook size is twice as large now than it was
at the previous iteration.

3. Obtain a new codebook by applying the K-means clustering algorithm
on the set of vectors which were generated in step 2. This step does
not change the codebook size.

4. Repeat the steps 2 to 3 until the codebook of the desired size has been
generated.

The discretization procedure works in the following manner. Suppose
that we have a feature vector cℓ, corresponding to some frame ℓ of a record-
ing. We want to discretize it with our codebook {y1, . . . ,ym}. The dis-
cretized version of this vector is then given by the following expression.

j = argmin
1≤k≤m

d(cℓ,yk) (25)

In figure 8 we visualize the results of the discretization procedure applied
to a simulated sequence of 2-dimensional vectors. The red balls represent
codebook vectors y1,y2 and the digits represent the discretized values. The
discretized values correspond to the index of the closest codebook vector.
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2.2 The word detection model

Figure 8: Discretized values of a simulated example.

2.2 The word detection model
2.2.1 Problem formulation
The word detection model is also a HMM, and thus the theory from the
previous section about HMM’s is also valid for the word detection model. A
difference between these models is that the features and the hidden states
represent other quantities. As before, we assume that we have a sequence
of emissions O = (O1, . . . , OL) which have been generated by a sequence of
hidden states Q = (Q1, . . . , QL). For the sake of simplicity, the approach to
detecting words is based on identifying silent segments from word recordings.

A hidden state variable is a binary random variable which is 1 if the
frame is too silent and 0 otherwise. The emissions represent a quantity
known as the energy of a frame.

The problem of locating the presence of a word in a recording can be
expressed as follows. Given a sequence of emissions, what is the hidden
sequence q∗ with the highest probability? The formal expression of this
sequence is given below.

q∗ = argmax
q

P(Q = q | O = o) (26)

A word is then identified in the recording by locating the corresponding 0’s
in the optimal sequence q∗. This problem is solved by the Viterbi Algorithm
which was described in a previous section.

2.2.2 The feature values
For the word detection model, the audio files are grouped into non-overlapping
frames with a time duration of 10 ms. The feature value for a frame is the
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2.2 The word detection model

second moment of a frame, and it is referred to as the energy in this thesis.
Other quantities that are related to the second moment have been used in
other speech studies to detect words [13] or classify speech as voiced or un-
voiced [4]. The energy is large for loud audio segments and small for silent
ones. Because of this property, this feature may be suitable for detecting
silent segments in speech recordings. For a frame with index ℓ and size L,
the energy is formally defined as follows. As before, the sequence X1, X2, . . .
is the waveform or sequence of amplitudes that represents a recording.

Eℓ =

Lℓ∑
j=L(ℓ−1)+1

X2
j

L
(27)

This quantity can assume many rational values in the unit interval [0,1], and
is therefore unfeasible for a HMM with discrete emissions. This problem
can be solved by discretizing the energy, which will be explained in the next
section.

There is a diversity of energy levels among the phonemes in spoken words
and it can be challenging to separate them from silence and noise which can
be present in the recording. The concept of silence can be somewhat ambigu-
ous as it can include low-energy noise. An evaluation of the performance
of our word-detector is to examine if the segments labelled with “silence”
exclude any identifiable speech.

2.2.3 Discretization
The discretizer maps the energy to integers corresponding to segments of
the unit interval. These segments are obtained by progressively halving the
unit interval. The largest discrete value is a pre-defined positive integer u
corresponding to the interval [1/2, 1]. Smaller values correspond to segments
of the interval [0, 1/2]. If the value u is set to be high, the lower interval is
partitioned into more segments. The idea behind progressively halving the
interval in this fashion is to associate very high discrete values to regions of
the recording with high energy values.

Some information is lost by the discretization procedure, and it is to
an extent regulated by the parameter u. For this reason, this parameter
should be not be too low since the partitioning of the lower half becomes
very coarse. At the low setting, u = 1, a discretized value only indicates if
the energy is higher than 1/2.

The discretizer is composed by the following steps.

1. Transformation with respect to the pre-defined upper limit u. By
using the base-2 logarithm, the idea of progressive halving is properly
described in a practical, algorithmic form.

24



2.2 The word detection model

Yℓ = u+ log2(Eℓ)

2. Extract the positive part. The positive part of a negative number is
defined to equal 0. This definition is extended to include the special
case of log2(0) = −∞, whose positive part is defined to be 0.

Zℓ = Y +
ℓ

3. Apply the ceiling function.

Oℓ = ⌈Zℓ⌉

This discretizer is illustrated for the case when the upper limit is u = 4 in
the figure below.

Figure 9: In black: the logarithmic discretizer.

2.2.4 Model design
We now proceed to describe the design of the HMM which will model the
presence of a word. A spoken word has a certain duration and energy values
in its frames. We will make the very simple assumption that a word is
present in the non-silent segments. The hidden states in our HMM will only
assume two possible values:

Qℓ =

{
1 if frame ℓ is too silent.
0 otherwise.
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2.2 The word detection model

Furthermore, the model will allow transitions between the two states and
back to the same state, as shown in the figure below.

1 0

Figure 10: Possible state transitions for the word-detection model.

The duration of a word can be represented by how long the process stays
in the non-silent state 0. The number of times d that a frame remains in
a state i is given by the geometric distribution [11]. Let ai,i denote the
probability of a transition from state i to itself.

p(d) = ad−1
i,i (1− ai,i) (28)

For the sake of simplicity, we will assume that the process always starts
in a silent segment. This means that we will only need to estimate the
emission matrix and the state transition matrix.

We can choose to estimate the parameter collection λ = (Π, A,B) of
the word-detection model in two different ways. The first method is the
EM-algorithm. For this method, it is assumed that the discretized energies
represent the sequence of emissions O and that the hidden states Q are not
observed.

The second method is a conventional maximum likelihood estimation.
Before computing the estimate, the frames of the recordings are labelled
as “silent” or “non-silent”. These labels represent the sequence of states Q
which are not hidden anymore. In other words, this method assumes that
we have the observed the complete data: the states Q and emissions O. The
maximum likelihood estimate is a solution to a maximization problem with
constraints. This is a standard optimization problem which can be solved
with the method of Lagrange multipliers. The problem formulation is the
following.

maximize
λ

f(λ) = log p(o, q | λ) (29a)

s.t. g(λ) = 1−
n∑

j=1

πj = 0 (29b)

hi(λ) = 1−
n∑

j=1

ai,j = 0 for 1 ≤ i ≤ n (29c)

ki(λ) = 1−
m∑
j=1

bi(j) = 0 for 1 ≤ i ≤ n (29d)
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The complete solution for this problem has been given in lecture slides for a
course in Machine Learning at Carnegie-Mellon University [2]. The resulting
parameter estimates are then based on counts of transitions and emissions.
For more details on the solution to the problem (29), we refer to the ap-
pendix. We observe that the maximum likelihood estimator is designed for
a recording. For information about the pre-labelling and how to estimate
the parameters by using several recordings, see the Methods section.

In this study, we will estimate the parameters of the word-detection
model by pre-labelling the data and performing a conventional maximum
likelihood estimation.

3 Data
The data set that was used in this project is a subset of the TIDIGITS data
set and was downloaded from Jack Xin’s website [1]. This data is used in a
speech recognition demonstration which has been described in Xin and Qi’s
speech recognition literature [14]. In this demonstration, a HMM is trained
and tested for isolated word recognition. The data set consists of recordings
of the 11 words which were listed in table (2): “zero”, “one”, “two”, “three”,
“four”, “five”, “six”, “seven”, “eight”, “nine”, “o”.

The audio files were of the wav format and contained recordings of 39
men and 57 women. The recordings were organized by the test subjects they
belonged to and by the sex of the speaker. Each test subject was identifiable
by its own initials. Many subjects had several recordings of the same word.
Some information about the audio files is summarized in the table below.

Group Sample rate Channels Observations per word
Male: Test_Ryan 44100 Hz 2 0-1
Male: Other 8000 Hz 1 74-77
Female: All 8000 Hz 1 114

Table 3: TIDIGITS - general information.

A recording has k channels if it is represented by k sequences of ampli-
tudes. In our case, we only take the first channel and ignore the others if a
recording has multiple channels. In the male data, there were recordings for
a man labelled as “Test_Ryan” who had different characteristics compared
to the others. This man had 1 recording for the every word except for “o”,
a much higher sample rate than the other subjects and 2 channels. The
male recordings had a duration of between 0.18925 and 1.2 seconds, while
the female recordings were between 0.24 and 1.49 seconds. In this study, we
will only study the set of male recordings, which includes both male groups
that have been described in table 3.
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3.1 Energy values

3.1 Energy values
In this section we will present plots of the amplitudes together with the
frame energy for some word recordings. The plots contain the amplitudes
Xn marked in black, rescaled by the maximum frame energy of the recording.
The blue line represents the frame energy. Since a frame is a collection of
points, the corresponding frame energy of these points is the same. This
explains why the frame energy is piecewise constant in the plots.

In figure 11, we see the energy plot for a recording of the word “two”.
The energy is very low for the phoneme “t”, which ends by index n = 1000.
The energy is much higher for the phoneme “u”, which reaches a maximum
value in the region n ∈ [1000, 1500], a local maximum around n = 2000 and
then gradually decreases in magnitude.

The boundaries between the phonemes are sometimes not noticeable by
visual inspection. In the next figure, 12, the phonemes “f” and “v” are difficult
to locate visually. These phonemes are also not as audible as the phonemes
“a”, “ɪ”. For many of the recordings, the segments with highest energy are
those containing vocals. Those with low mean energy tend to be either
consonants or silence, but variations do exist. In figure 13, the word “six”
has low energy for the phonemes “s” and “x”. Furthermore, the phoneme “x”
is separated from the others by a silent segment, and is located around the
region of n ∈ [3000, 4500], while the others are in n ∈ [250, 1250]. Finally,
for the plot in figure 14, the final phoneme “t” is separated from “e” and “ɪ” by
a silent segment. These are just a few examples which show the variation of
the energy that may be present among the phonemes from the same word.
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Figure 11: Word: “two”. Male subject: AJ. File: 2A_endpt.wav.

Figure 12: Word: “five”. Male subject: AE. File 5A_endpt.wav.
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Figure 13: Word: “six”. Male subject: AE. File: 6A_endpt.wav.

Figure 14: Word: “eight”. Male subject: AE. File: 8A_endpt.wav.
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4 Methods
4.1 The word recognizer
In this thesis, the MATLAB adaptation of the HMM algorithms from Xin
and Qi’s demonstration [14] has been modified to function for different code-
book sizes. The code was also updated to work with MATLAB version
R2018b.

4.1.1 Processing and parameter estimation
The observations of the male subject “Test_Ryan” were processed by first
using MATLAB’s resampling-function from the Signal Processing Toolbox
to resample it at the same sample rate as the other test subject recordings,
which is 8000 Hz. The mfcc-function from Xin and Qi’s implementation was
used to pre-process and extract the feature values from the audio files.

The models were trained by using hmmtrain from MATLAB’s Statis-
tics and Machine Learning Toolbox. This function implements Baum-Welch
estimation of the parameters and it is given an initial estimate of the pa-
rameters. These initial estimates were chosen to be such that the transition
matrix A has equally large non-zero elements within each row. For example,
a row with three non-zero elements is given 1/3 as an initial estimate of
these non-zero elements. The initial estimate of the emission matrix B is
designed by using a similar principle: every emission gets an equal proba-
bility of being emitted from any state. Finally, the likelihoods under the
word models were approximated by using the drecm-function which uses a
modification of the Viterbi approximation for improved numerical stability.

4.1.2 Model comparison and parameter restrictions
For this study, we compared two classes of state-emitting HMM’s with dis-
crete emissions. Both of these classes of HMM’s were left-right models, as
described in section 2.3.1, with step limit ∆ = 2. This was expressed by
setting zeros in the initial estimates of the transition matrix accordingly.

The first class of HMM’s which were studied were modifications of the
model used by Xin and Qi [14]. These models are such that every word
model HMM has a hidden state space of size 5. We refer to the speech
recognition system of these word models as the 5-state word recognizer. For
the second class, each word model has the size of the hidden state space S
determined by the number of phonemes in the corresponding word. This is
called the phoneme-sized word recognizer. The phonemes that form these
words are those given in table 2. For example, “nine” has 4 phonemes and
would thus have 4 states in its hidden state space. The word “o” has 2
phonemes and therefore has 2 states in its hidden state space. The size of
E , the space of emitted values, equals the codebook size. For both of these
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4.1 The word recognizer

classes of models, the codebook sizes are the following values: 2, 4, 8, 16,
32, 64, 128, 256.

In Xin and Qi’s demonstration, the HMMmodels were fitted to the words
“zero”, ... , “nine” spoken by 33 subjects. In this study, we have included the
recordings of “o” as well. This study is composed of three parts. In the first
part we examine which model performs the best when fitted on the male
subjects from Xin and Qi’s training data. This data was used to train the
two classes of models and these were applied to the other male subjects.
Then, 10-fold cross validation was performed to further investigate if the
model can make appropriate classifications when other recordings are used
for training and testing the model. Finally, the entire male data was used for
both training and testing the phoneme-sized and 5-state word recognizers.

4.1.3 Performance metrics
The performance of a word recognizer can be illustrated by a classification
table, which shows the number of counts of each possible classification for
every observation. We begin by presenting a binary classifier inspired by
Fisher’s famous tea drinker experiment [3]. In this classical experiment, a
tea drinker is supposed to classify 8 cups of milk and tea by the order in
which these liquids were poured into the cups. If a cup was first filled with
milk, it would be classified as “milk” and otherwise by “tea”. The outcomes of
this experiment are typically illustrated by a classification table. We modify
this thought experiment by letting the problem be about word recognition.
The words to be identified are “milk” and “tea”, and the tea-drinker is a
word-recognizer. The results of the the classifications from this hypothetical
tea-drinker is visualized by the colored classification table in figure 15. The
cells are colored by the counts, with a darker color for larger counts. An
ideal classifier would only have non-zero counts on the main diagonal, and
zeros everywhere else. Such a classifier would have a dark diagonal and
light-colored cells everywhere else, such as in the figure below.
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4.1 The word recognizer

Figure 15: Classification table

A more realistic outcome of such an experiment might have given a
classification table which is more difficult to interpret, such as one with
counts scattered both on the main diagonal and elsewhere. For such cases,
different statistical tests are available to test the independence between the
classifications and the observations. In this simplified example, there are
only two kinds of errors and the results are very clear.

By inspecting the classification tables of word recognizers we can eval-
uate its performance. In this study, there are recordings of 11 words to
be classified and so many kinds of errors can occur. In this study we will
calculate two types of errors, the total error and the error specific to a word.
These errors can be formally expressed by using the zero-one loss function.
If the classification Ŵ is incorrect, the loss function returns 1, otherwise it
is 0.

L(W, Ŵ ) =

{
1 if W ̸= Ŵ

0 else
(30)

Hence the total classification error of a sample of N recordings would be
equal to the following. We will denote the true word of the j:th recording
byWj . The number of incorrect classifications is the sum of the off-diagonal
cell counts, and the total number of recordings the sum of all cell counts.

Error = Number of incorrect classifications
Total number of recordings (31a)

=

N∑
j=1

L(Wj , Ŵj)

N
(31b)
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Next, we will present the classification error of a word v. We will let
Wj(v) denote the j:th recording of the word v, and Ŵj(v) its classification.
For the word v there are Nv recordings in total, which equals the row sum
of the cell counts for word v in the classification table.

Error(v) = Number of times a recording of v is incorrectly classified
Total number of recordings of the word v

(32a)

=

Nv∑
j=1

L(Wj(v), Ŵj(v))

Nv
(32b)

In previous studies [11], the total classification error has been reported as a
metric of HMM classification performance. Since it is possible for the total
error to be low while some words have a high error Error(v), we will use the
maximal word error as our main metric of the classifiers performance. A
classifier with low total error but high errors for some words may produce
severely undesirable results. We will seek to find the model which minimizes
the maximal word error, which is defined below.

max
v∈V

Error(v) (33)

4.1.4 Cross validation
The cross validation procedure used in this thesis is described and illustrated
in [9]. It is the K-fold cross validation procedure, which is used to estimate
the out-of-sample error. This procedure works in the following way. We
randomly partition the whole data set into K sets (called folds). We then
select a fold as our validation set, and the other folds as the training set.
For the next step, a new validation set is chosen and all the other folds
(including the previously chosen validation set) form the training set. This
step is iterated until the last fold, K, is chosen as the validation set. We
illustrate this procedure in the figure below.

fold 1 fold 2 fold 3 fold 4 fold 5

Training Training Validation Training Training

Figure 16: 5-fold cross validation

In our case, every word model requires observations of its correspond-
ing word. Because of this, the procedure described above is performed by
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4.2 The word detector

partitioning the set of observations of a given word into K folds. This way,
there is always a validation and training set for every given word at every
iteration of the cross validation.

The out-of-sample error is estimated with the cross validation. Suppose
that all points of the data set are labelled by the integers 1, 2, . . . , N . Let
T (k) = {Vk, Tk} be a partition of the observation labels into a validation
set Vk and training set Tk. The set Vk is the set of labels corresponding to
fold k and Tk is the rest of the labels. Also, let m be the codebook size.

First, the test error ErrorT (k)(m) a the set T (k) is calculated. Finally,
the average of these errors for every fold k = 1, . . . ,K, denoted by Error,
is calculated. These two quantities are described in equations (34). Let
Wj denote the observation labelled by j and Ŵ (k)

j (m) the result of the word
recognizer applied to observation j when it is trained with the training set Tk
and has codebook size m. Futhermore, let Nk be the number of observations
in the validation set Vk.

ErrorT (k)(m) =
1

Nk

∑
j∈Vk

L
(
Wj , Ŵ

(k)
j (m)

)
(34a)

Error(m) =
1

K

K∑
k=1

ErrorT (k)(m) (34b)

We can measure the impact that the codebook size m has on the error rate
by computing the error Error(m) for different codebook sizes m.

4.2 The word detector
We begin by explaining how the parameters of the word detector were es-
timated by using multiple recordings. First, recording was pre-labelled and
then each sequence of hidden states was concatenated to form a long se-
quence of hidden states corresponding to all recordings. The same principle
was applied to the emission sequences. In this manner, the maximum likeli-
hood estimator which was designed for a single recording could be used on
the entire training data.

We will use a heuristic principle for pre-labelling silence in the start and
end of speech recordings for training the word detection model. First, we
explore the properties of the following cumulative sum.

Sn =
n∑

j=1

|Xj | (35)

The sequence S1, S2, S3, . . . is monotonically increasing, and it increases in
regions where the sound is loud and grows slower or is constant where there
is silence. Therefore, if the final part of the recording is silent, the sequence
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4.2 The word detector

should grow much slower or remain constant at that segment of the record-
ing. To locate the point of where the sequence grows too slowly, we will
divide the cumulative sum by an expression such that we obtain the follow-
ing sequence.

S̃n =

∑n
j=1 |Xj |

1 + log(n) (36)

The sequence S̃n has been designed such that it decreases when Sn increases
too slowly but tends to increase when Sn increases. If there is silence close
to the end of the recording, this sequence will have a maximum where the
cumulative sum Sn increases slowly. The amplitudes Xn to the right of this
maximal S̃n are then labelled as “silence”. If this maximum is not unique,
we pick the maximum of highest index n. This same principle can be used
to locate silence in the beginning of the recording. By reversing the original
amplitude sequence X1, X2, X3, . . ., we can use the same expressions and
methods as previously described.

Another candidate for penalizing a slow growth of Sn is for example
division by n, resulting in a sample mean Sn/n. A general problem for
these methods is how one penalizes slow growth while not classifying low-
energy speech sounds as “silent”. Finally, another altenative is to introduce
a threshold for the energy to separate silence from non-silence. The choice of
a suitable threshold needs to be such that low-energy speech is not classified
as “silence”.

In figures 17 and 18 we show the result of applying the silence removal
based on sequences S̃n and Sn/n respectively. The methods have been ap-
plied to a recording of the word “two” from a male subject with initials GR.
The file is called 2A_endpt.wav.

In both figures, the blue lines represent the penalized cumulative sums,
which have been normalized to be visible on the plot. The vertical black
lines represent the detected boundary of the silence at the start and end of
the recording. For example, in figure 17 we see that the sequence S̃n, in
the right direction, has a maximum when the time is close to 0.4 seconds.
The sequence S̃n in the left direction has a maximum slightly before 0.05
seconds. The location of the maximal values of the sequences are marked
with the black vertical lines.

In this specific case of the recorded word “two”, the performance of the
silence removal at the extremities is better when using the sequence S̃n. In
figure 18, we see that the left boundary is placed inside the region corre-
sponding to the spoken word. This is bad because it means that the “t”
sound is classified as silence. Furthermore, a part of the vowel-sound of
“two” is also classified as silence. Having n as a denominator penalizes slow
growth of Sn more than 1 + log(n). The consequence is that the sequence
Sn/n reaches its maximum quicker than S̃n does. In this case, the maximum
is reached too quickly for the sequence Sn/n in both directions.
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In this study we used the sequence S̃n for pre-labelling the data for the
word-detection model. To further inspect if this method is appropriate, it
has been tested some other recordings in our data set, with decent results.
We note that this is only a heuristic method and not necessarily the best
one.

Figure 17: Silence remover, using the sequence S̃n = Sn/(1 + log(n)).

Figure 18: Silence remover, using the sequence Sn/n.

5 Results
The results and analysis of the word recognition experiments has been di-
vided into separate subsections. The first subsections describe the results

37



5.1 Xin and Qi’s training set

for each of the three experiments and an error analysis is given in another
subsection. Figures which illustrate different kinds of errors will be shown
to describe the results.

The different word recognizers were tested and trained using only the
male TIDIGITS data set. We have divided the model training and testing
into three sections. In the first section, we show the models which were fitted
to Xin and Qi’s male training subjects. In the next section, we describe the
estimate the out-of-sample error by cross-validation. Lastly, training and
testing of the models on the full TIDIGITS male data is described. The
codebook sizes which were tested in this study were of the following sizes:
{2, 4, 8 . . . , 256}. For all of the following three cases, we begin by showing
the total errors and the maximum word error for each codebook size. Next,
we show the word errors for the models with lowest total error and lowest
maximum word-error. In the plots, the word “zero” is denoted by “Z”.

5.1 Xin and Qi’s training set
In this section, we describe the performance of the models fitted on the
training data consisting of the 33 male subjects that Xin and Qi have used
for training a HMM speech recognizer [14]. In Xin and Qi’s implementation,
the word “o” was excluded from the analysis, but we have decided to include
it to the study. The remaining male observations were used for testing these
models in this study.

Figure 19: Total classification errors. In red: phoneme-sized word recog-
nizer. In blue: the 5-state word recognizer.

We observe that the phoneme-sized word recognizer has a slightly lower
classification error for codebook-sizes up to 16. There is a minimum for
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5.1 Xin and Qi’s training set

both word recognizers at the codebook size of 64, with the 5-state word
recognizer having the error of 17.7 % and the other having 18.5 % error. In
the next figure, the maximal word error for each codebook size is shown. We
observe that there is a minimum at codebook size 128 for the 5-state word
recognizer. We also observe that although the total error is lower than 50
% for recognizers with codebooks larger than 8, the maximal word error is
larger than 50 % for every codebook size except for 128.

Figure 20: Maximal word classification errors. In red: phoneme-sized word
recognizer. In blue: the 5-state word recognizer.

In the next figure, we show the error rates of two 5-state classifiers: the
one with smallest maximal word error (in brown) and the one with smallest
total error (in black). We see that the classifier with lowest total error has
the very high error rate of 72.7 % for the word “nine”.
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5.2 Cross-validation results

Figure 21: In brown: classifier with lowest maximal word error. In black:
classifier with lowest total error.

5.2 Cross-validation results
For the cross-validation, we divided the full male data set into 10 approxi-
mately equally sized folds. The error rates within these folds were calculated
and then the average µ of these values was calculated to estimate the to-
tal error. In the figures below we have visualized the estimated error with
error bars. The midpoint represents the estimated mean µ of the errors
while the upper and lower horizonal segments were obtained by adding and
subtracting the estimated standard deviation σ.

We observe that, like in the previous case, the lowest total errors are
obtained for codebook size 64. In the next figure, we observe that the
smallest maximal word error which equals 46.7% is obtained for a 5-state
recognizer with a size 32 codebook. Apart from this recognizer and the 5-
state recognizer with the 64-sized codebook, every other classifier has the
maximal word error over 50 %.
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5.2 Cross-validation results

Figure 22: Cross validation results of the error rates. In red: phoneme-sized
word recognizer. In blue: the 5-state word recognizer.

Figure 23: Cross validation results of the error rates. In red: phoneme-sized
word recognizer. In blue: the 5-state word recognizer.
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5.3 The entire male data set

Figure 24: In brown: classifier with lowest maximal word error. In black:
classifier with lowest total error.

5.3 The entire male data set
In this section, we have used the entire male data set for fitting and testing.
The model with the lowest total error and lowest max-word-error were of
the same dimensions as those obtained from the cross-validation: both were
5-state word recognizers with codebook sizes 64 and 32 respectively. There
were convergence issues in the training procedure (EM-algorithm estimation)
for both kinds of word recognizers, when the codebook size was 4. For an
overview of the all the results of the experiments, see table 4 below.
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5.3 The entire male data set

Figure 25: Total classification errors. In red: phoneme-sized word recog-
nizer. In blue: the 5-state word recognizer.

Figure 26: Classification errors by word. In red: phoneme-sized word rec-
ognizer. In blue: the 5-state word recognizer.
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5.3 The entire male data set

Lowest total error Lowest max-word-error Case
Codebook size 64 Codebook size: 128 Xin and Qi’s training data
Type: 5 state Type: 5 state
Total error: 17.7 % Total error: 18.5 %
Max. word error: 72.7 % Max. word error: 36.4 %
Codebook size: 64 Codebook size: 32 Cross-Validation
Type: 5 state Type: 5 state
Total error: 16.3 % Total error: 19.3 %
Max. word error: 49.3 % Max. word error: 46.7 %
Codebook size: 64 Codebook size: 32 Entire male data set
Type: 5 state Type: 5 state
Total error: 13.3 % Total error: 18.1 %
Max. word error: 44 % Max. word error: 37.3 %

Table 4: Summary of the results

Figure 27: In brown: classifier with lowest maximal word error. In black:
classifier with lowest total error.

We will now illustrate the classifications of the word recognizer with the
lowest maximal word error for the entire male data set in the classification
table below. In the rows we have the group of observations corresponding to
a given word and in the columns we have the classifications made. In each
cell is the count of the number of classifications made for a given word, with
a darker shade of blue for high counts.
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5.4 Error analysis of word recognition

Figure 28: Classification table plot for a 5-state word recognizer with code-
book size 32 fitted on the whole data set.

5.4 Error analysis of word recognition
In this section we will explore the mechanisms that produce the classification
errors. An error occurs when an observation o corresponding to a word v
does not get the highest likelihood under the corresponding HMM with
parameter collection λv. We observe that each parameter collection λv is
separately estimated for every word v and therefore the classification error
is not necessarily minimized when by the HMM parameter estimation.

The codebook generated for the discretization of the feature vectors can
be overfitted in a way analogous to an overfitted simple linear regression
model. This is because the codebook is generated by minimizing distances
between feature vectors and the codebook vectors. If a codebook is over-
fitted to the training data, the discretization might perform worse for the
validation data.

There are 38 phonetic symbols in table 2, out of which 20 are unique.
These symbols represent the different speech sounds that are present in our
data set. If a hidden state of a word model HMM is assumed to produce
the sounds that are represented by these phonetic symbols, then having a
codebook which is too large is undesirable. Having a codebook with the
same size as number of phonetic symbols might also be inadequate due to
the possible variations in pronounciation that arise due to for example age
or differences in sex.

The discretized values oℓ are not necessarily unique to a specific word
model, and hence different word models might be capable of emitting the
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5.5 Word detection results

same values. For this reason, it is possible that certain emission sequences
o can receive the highest likelihood even if it corresponds to the incorrect
word. This can for example occur for words that sound similar and have
similar feature vectors.

To investigate why e.g. the word “nine” gets such a high maximal word
error under the various word recognizers as shown in figures 21, 24 and
27 it is appropriate to investigate the errors for this word under a specific
word model. In figure 28, we can see that recordings of the word “nine”
are incorrectly classified 17 times out of 75 times for the final model. The
most frequent incorrect classifications of recordings of “nine” are those with
“o” and “five”. If we take a look at the incorrect classifications of recordings
of “five” in figure 28, we see that the most frequent is “nine”. A possible
explanation of some errors is that there is a similarity in the feature vectors,
since both words share the phonemes a and ɪ as shown in the list of phonetic
symbols in table 2. For comparison, the word “six” is misclassified as “seven”
quite often, and both share the same first sound “s”. It is also noteworthy
that “seven” is not misclassified as “six” at all.

5.5 Word detection results
For this analysis, the upper limit of the discretizer was set to 20. Some
emission values had 0 counts and this caused errors when using the Viterbi
Algorithm. To solve this problem, the word detection model was trained
by using the Pseudoemissions argument from the hmmestimate-function of
MATLAB’s Statistics and Machine Learning Toolbox. The pseudocounts-
setting solves the problem by assigning the emission probabilities, corre-
sponding to low-count-emissions, with pre-defined numbers.

The results of the word detector were evaluated by listening to the seg-
ments classified as silence, and by visual inspection of waveform. In the
figures below, we present some plots of the word-detection results for a cou-
ple of examples of the word “six” and “eight”. The black line represents
the waveform and the blue line represents the most probable hidden state
sequence.

As noted before, the phonemes for the letters “s”, “x” and “t” have low
energy. In the following plots it can be observed that these low-energy
phonemes were sometimes incorrectly labelled as silence. The figures 29 and
30 show waveforms of the word “six”, where the “x” is separated from the rest
of the word by a short silence. In figure 29, the “x” is incorrectly classified as
silence. After these two plots, two waveforms of the word “eight” are shown
in figures 31 and 32. The phoneme of “t” is separated from the rest of the
word by silence in both cases. In figure 31, the “t” is incorrectly labelled as
silence. However, the “t” is detected in figure 32. These results are not ideal
if the word detector is to be used together with a word-classifier, because
valuable information might be lost.
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5.5 Word detection results

There are many possible origins of the errors which the word detector
produces. Since the model always assumes that we start at a silent state, this
will affect the hidden sequence which is detected by the Viterbi Algorithm.
Another error-producing mechanism is that the word detection model was
trained on pre-labelled data with a method which is only designed to label
silence at the start and the end of a recording. If a silent segment exists
within a spoken word, the heuristic pre-labelling procedure labels it as non-
silent, with a 0. Even though the training data was pre-labelled in this
manner, the word detector was still able to locate silence within a word, as
shown in figures 30 and 32. In conclusion, the pre-labelling procedure has
labelled both silent segments within a word as non-silent and silent segments
at the extremes as silent and it is reasonable to assume that this is a factor
behind the inconsistent word-detection.

Another factor behind the word-detection is the discretization param-
eter u which determines the number of discrete energy levels. As with
any discretization procedure, this removes some information which might
be valuable. Figures 29 to 32 suggest that consonants tend to have much
lower energy levels than vowels. Because of the difference in energy levels
between consonants and vowels, it is reasonable to let u be large enough for
the discretization to assign separate values to: pure silence, i.e. when the
frame energy is zero, and to a frame of a low-level energy speech sound. One
must be careful to not let the parameter u be too large as it would break
the principle of parsimony by producing too many parameters to estimate
for the word-detection HMM.

Figure 29: Word: “six”. Male subject: AE. File: 6A_endpt.wav
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5.5 Word detection results

Figure 30: Word: “six”. Male subject: EL. File: 6B_endpt.wav

Figure 31: Word: “eight”. Male subject: GT. File: 8A_endpt.wav
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Figure 32: Word: “eight”. Male subject: GT. File: 8B_endpt.wav

6 Discussion and conclusion
In this study we used the theory of HMM’s to solve two types of problems:
word recognition and word detection. The models were trained and tested
on the recordings of the male subjects set from the TIDIGITS data. We
have examined the performance of different word recognizers with respect
to the total error and error by word. We conclude that letting the word
models have a size 5 of the hidden state space produced word recognizers
with lower total and maximal word error.

Ideally, the final model has minimal classification error and as few pa-
rameters as possible to avoid overfitting. In our case, we note that the model
with lowest numbers of parameters among the models in table 4 is the 5-
state system with codebook size 32. Although the total error was estimated
to be 19.3 % in the cross-validation, this system had the high word error
rate of 46.7 % for the word “six”.

Compared to word recognition, it is not as straightforward to evaluate
the performance of the word detector since the data is only heuristically
pre-labelled at the tails. It is very time-consuming to manually inspect
several files, and part of the problem is to find an optimal way of separating
the word segments from silent segments automatically. A possible way of
evaluating the word detector is to combine it with a word recognizer and
investigate if there is any improved performance. After all, the idea of the
word detector is to detect the segments with valuable information for word

49



recognition. The performance of the word detector could be investigated by
changing the discretization range of the energy levels. Another alternative
is to study the effect of not pre-labelling the training data, i.e. to train a
HMM unsupervised.

We conclude that our word detector sometimes fails to detect phonemes
with low energies. Another suggestion for improvement is to study the
frequency content in low-energy noise compared to low-energy phonemes,
for example by using another feature for word detection such as the zero
crossing rate. This variable measures the rate by which the signal crosses
zero, and has been proposed as a variable which facilitates separating voiced
speech from unvoiced speech. In a previous study, unvoiced speech has been
observed to be associated to having low energy and high zero crossing rates
and voiced speech to having high energy and low zero crossing rate [4].

Finally, there are many questions regarding the MFCC feature vectors
that require more exploration. The results indicate that these features are
useful for classifying the word recordings from our subset of the TIDIGITS
data.
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7 Appendix
7.1 Details of the Forward algorithm
In this section we explain the Forward algorithm, which is a method for
computing the probability of a sequence of emissions. We will use the fol-
lowing notation for sequences: O1:ℓ = (O1, . . . , Oℓ). Let O = (O1, . . . , OL)
and αℓ(i) = P(O1:ℓ = o1:ℓ, Qℓ = i | λ). The probability under the HMM
with the parameter collection λ is denoted by Pλ. By using the law of total
probability, we have that

Pλ(O = o) =
∑
i

Pλ(O = o, QL = i) =
∑
i

αL(i).

For ℓ > 1, the iterative step of the forward algorithm uses the following
expression.

αℓ(j) =
∑
i

αℓ−1(i)ai,jbj(oℓ).

We will now prove that the above formula holds for all states j and ℓ > 1.
By the law of total probability,

αℓ(j) =
∑
i

Pλ(O1:ℓ = o1:ℓ, Qℓ−1 = i, Qℓ = j). (37)

To check if the terms of the last two sums equal eachother, the terms of the
latter sum (37) will be factorized by conditioning.

Pλ(O1:ℓ = o1:ℓ, Qℓ−1 = i, Qℓ = j) =

Pλ(O1:ℓ = o1:ℓ | Qℓ−1 = i, Qℓ = j)Pλ(Qℓ−1 = i, Qℓ = j) (38)

We now check the two factors of the right-hand side separately. For the first
factor of (38), we use conditional independence (8) to obtain

Pλ(Oℓ = oℓ | Qℓ = j)Pλ(O1:(ℓ−1) = o1:(ℓ−1) | Qℓ−1 = i) =

bj(oℓ)Pλ(O1:(ℓ−1) = o1:(ℓ−1) | Qℓ−1 = i).

For the second factor of (38), we use the Markov property.

Pλ(Qℓ = j | Qℓ−1 = i)Pλ(Qℓ−1 = i) = ai,jPλ(Qℓ−1 = i)

We combine the new expressions for the factors of (38) and obtain

bj(oℓ)Pλ(O1:(ℓ−1) = o1:(ℓ−1), Qℓ−1 = i)ai,j = αℓ−1(i)ai,jbj(oℓ).
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7.2 The Viterbi algorithm

7.2 The Viterbi algorithm
The algorithm begins by initializing the values for ϕℓ(i) in (39a), and then
uses the recursive relation (39c) between ϕℓ(i) and ϕℓ−1(i) to progressively
compute the maximal probabilities for hidden state sequences of various
steps ℓ. The recursive relation is useful because it gives that the optimal
sequence q∗1:ℓ begins with a shorter optimal sequence q∗1:(ℓ−1), and this is the
used in the backtracking step. The log-probabilities of the optimal sequences
are stored in an array of values {ψℓ(i)}. The procedure ends in the final
state of the most probable sequence, and backtracks to the first state of that
sequence.

Step 1: Initialization
ϕℓ(i) = log(πi) + log(bi(o1)) for 1 ≤ i ≤ n. (39a)
ψ1(i) = 0 for 1 ≤ i ≤ n. (39b)

Step 2: Recursion
ϕℓ(j) = max

i
(ϕℓ−1(i) + log(ai,j)) + log (bj(oℓ)) for 2 ≤ ℓ ≤ L, 1 ≤ j ≤ n.

(39c)
ψℓ(j) = argmax

i
(ϕℓ−1(i) + log(ai,j)) for 2 ≤ ℓ ≤ L, 1 ≤ j ≤ n. (39d)

Step 3: Termination
logP ∗ = max

i
(ϕL(i)) (39e)

q∗L = argmax
i

(ϕL(i)) (39f)

Step 4: Backtracking
q∗ℓ = ψℓ+1

(
q∗ℓ+1

)
for ℓ = L− 1, L− 2, . . . , 1 (39g)

7.3 EM-estimation
The estimation formulas presented in this section are those found in Ra-
biner’s tutorial.

Q
(
λ | λ(t)

)
=
∑
q

p
(
q | o, λ(t)

)
log p (o, q | λ) (40a)

λ(t+1) = argmax
λ

Q(λ | λ(t)) (40b)

As stated in the main section, it holds that log p
(
o | λ(t+1)

)
≥ log p

(
o | λ(t)

)
,

i.e. the new estimate has a higher likelihood. As the number of iterations
grow, the estimates converge to an estimate with the highest likelihood.
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7.3.1 Improved estimates
We begin by defining following quantity. In this section, we will explain why
the the estimate at the next iteration λ(t+1) has a higher likelihood than λ(t).
First, we define the function H.

H
(
λ | λ(t)

)
= E

(
log p(Q | O, λ) | O = o, λ(t)

)
(41a)

By can factorize p(o, q | λ) by conditioning, and obtain that
log p(o, q | λ) = log p(o | λ) + log p(q | o, λ). By combining this with the
definition of the auxiliary function Q, we obtain the next result.

Q
(
λ(t+1) | λ(t)

)
= log p

(
o | λ(t+1)

)
+H

(
λ(t+1) | λ(t)

)
(42)

We can now proceed by proving a lemma which will be used later. The
claim of the lemma is the following. For all λ(t), λ(t+1) in the parameter
space it holds that:

H
(
λ(t) | λ(t)

)
≥ H

(
λ(t+1) | λ(t)

)
(43)

We now prove this lemma. First, assume that the sequence Q takes values
in the sample space Q which does not depend on the parameterization λ.
Assume that the p(q | o, λ) > 0 for all sequences q in the sample space and
all parameters λ. The steps of the proof are given in the equations (44).

H
(
λ(t) | λ(t)

)
−H

(
λ(t+1) | λ(t)

)
=

(44a)

E
(
log p(Q | O, λ(t)) | O = o, λ(t)

)
− E

(
log p(Q | O, λ(t+1)) | O = o, λ(t)

) linearity of expectations
=

(44b)

E

(
− log p

(
Q | O, λ(t+1)

)
p
(
Q | O, λ(t)

) | O = o, λ(t)

)
Jensen’s ineq.

≥

(44c)

− logE
(
p
(
Q | O, λ(t+1)

)
p
(
Q | O, λ(t)

) | O = o, λ(t)

)
=

(44d)

− log
∑
q

p
(
q | o, λ(t)

)
·

(
p
(
q | o, λ(t+1)

)
p
(
q | o, λ(t)

) ) =

(44e)

− log
∑
q

p
(
q | o, λ(t+1)

)
= − log(1) = 0

(44f)
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7.3 EM-estimation

We conclude this section by proving that the next estimate λ(t+1) has a
higher likelihood than the previous one, λ(t).

log p(o | λ(t+1))− log p(o | λ(t)) =

(45a)(
Q
(
λ(t+1) | λ(t)

)
−H

(
λ(t+1) | λ(t)

))
−
(
Q
(
λ(t) | λ(t)

)
−H

(
λ(t) | λ(t)

))
=

(45b)(
Q
(
λ(t+1) | λ(t)

)
−Q

(
λ(t) | λ(t)

))
︸ ︷︷ ︸

≥0 by assumption

+
(
H
(
λ(t) | λ(t)

)
−H

(
λ(t+1) | λ(t)

))
︸ ︷︷ ︸

≥0 by lemma (43)
(45c)

7.3.2 Single sequence estimation
We begin by stating the maximization problem that is the M-step of the EM-
algorithm, together with the constraints imposed on the parameter collection
λ.

max
λ

Q
(
λ | λ(t)

)
(46a)

s.t. g(λ) = 1−
n∑

i=1

πi = 0 (46b)

hi(λ) = 1−
n∑

j=1

ai,j = 0 for 1 ≤ i ≤ n (46c)

ki(λ) = 1−
m∑
j=1

bi (j) = 0 for 1 ≤ i ≤ n (46d)

This problem is solved with the Lagrange multiplier method. This is achieved
by by finding the coefficients u, vi, wi such that (47) is satisfied.

∇Q
(
λ | λ(t)

)
+ u∇g(λ) +

n∑
i=0

vi∇hi(λ) +
n∑

i=0

wi∇ki(λ) = 0 (47)

We now proceed by describing the solution to this optimization problem
described by the equations (46). Assume that the emission sequence o =
(o1, . . . , oL) has been observed and we want to estimate the parameters of
the HMM. We will denote the current estimate by λ. We begin by defining
the following quantities.

βℓ(i) = Pλ(O(ℓ+1):L = o(ℓ+1):L | Qℓ = i) (48a)
ξℓ(i, j) = Pλ(Qℓ = i, Qℓ+1 = j | O = o) (48b)
γℓ(i) = Pλ(Qℓ = i | O = o) (48c)
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The first quantity, βℓ(i), is known as the backward probability. We proceed
by expressing these quantities in terms of our parameters and the forward-
and backward probabilities.

ξℓ(i, j) =
αℓ(i)ai,jbj(oℓ+1)βℓ+1(j)

Pλ(O = o)
(49a)

γℓ(i) =
αℓ(i)βℓ(i)

Pλ(O = o)
(49b)

We are now ready to fully describe the computation of the parameter es-
timates for an emission sequence. We denote the current estimate by λ.
For a left-right HMM, the parameter Π is not estimated since the process is
assumed to start at the first state. For this reason, it will be omitted.

âi,j =

L−1∑
ℓ=1

ξℓ(i, j)

L−1∑
ℓ=1

γℓ(i)

(50a)

b̂j(r) =

L∑
ℓ=1

s.t. Oℓ=r

γℓ(j)

L∑
ℓ=1

γℓ(j)

(50b)

We note that the probability b̂j(r) equals the element b̂j,r of the estimated
emission probability matrix B̂. The parameter collection at the next itera-
tion step is then λ̂ =

(
Â, B̂

)
, whose elements are given by the expressions

above.

7.3.3 Multiple sequence estimation
Assume we have multiple emission sequences: O(1),O(2), . . . ,O(K). We de-
note the number of elements in sequence O(k) by Lk. The variables γℓ, ξℓ
which previously corresponded to a single sequence, o, will now be denoted
by γ(k)ℓ and ξ(k)ℓ when they are evaluated at an emission sequence o(k). The
forward- and backward-variables will be denoted similarly. We get the fol-
lowing equalities.

ξ
(k)
ℓ (i, j) =

α
(k)
ℓ (i)ai,jbj(oℓ+1)β

(k)
ℓ+1(j)

Pλ(O(k) = o(k))
(51a)

γ
(k)
ℓ (i) =

α
(k)
ℓ (i)β

(k)
ℓ (i)

Pλ(O(k) = o(k))
(51b)
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These expressions are used to compute the parameter estimation formulas
below.

âi,j =

K∑
k=1

Lk−1∑
ℓ=1

ξ
(k)
ℓ (i, j)

K∑
k=1

Lk−1∑
ℓ=1

γ
(k)
ℓ (i)

(52a)

b̂j(r) =

K∑
k=1

Lk−1∑
ℓ=1

s.t. O
(k)
ℓ =r

γ
(k)
ℓ (j)

K∑
k=1

Lk−1∑
ℓ=1

γ
(k)
ℓ (j)

(52b)
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7.4 MFCC computation
In this section we will describe the feature extraction procedure with more
details. The formulas come from Ganchev’s description of the MFCC-
computation from Auditory Toolbox by Slaney (1998), referred to as the
MFCC-FB40 implementation [7]. The name stems from the filter bank hav-
ing 40 filters, and has been adapted to signals with sample frequency 16000
Hz. If the sampling frequency of the signal is 8000 Hz, only the filters below
4000 Hz are kept.

Before the computation of the MFCC-coefficients begins, the amplitude
sequence X of a recording is pre-processed by two techniques: pre-emphasis
and windowing. The amplitude sequence is assumed to have been grouped
in frames.

Ganchev notes that the pre-emphasis is applied in order to reduce the
magnitude at lower-frequencies and increase the magnitude at higher fre-
quencies in the recording. We denote the pre-emphasized signal by X̃t.

X̃t = Xt − aXt−1 (53)
In the mfcc-function in Xin and Qi’s MATLAB implementation, the pre-
emphasis (53) is performed with a = 0.97.

The second step of the pre-processing is the windowing. In this step, the
frames of the pre-emphasized amplitude sequence X̃ will be weighted by a
windowing function in order to reduce distortion of the frequency content of
the frame. The windowing function is known as the Hamming window, and
is defined in equation (54). Let N be the number of points in a given frame
of the pre-emphasized signal.

W (i) =

{
0.54− 0.46 cos

(
2πi
N

)
, for i = 0, 1, . . . , N − 1

0 for other i
(54)

We can now proceed to describe the Discrete Fourier Transform (DFT) of
a pre-processed frame. Let s(n) denote the n:th point of the pre-processed
frame, which contains N points. Let j denote the imaginary unit.

S(k) =

N−1∑
n=0

s(n) · exp
(
−j2πnk
N

)
for k = 0, 1, . . . , N − 1 (55)

The value S(k) from equation (55) represent the Fourier coefficient of index
k. By computing |S(k)|, we obtain the magnitude of the signal at the corre-
sponding frequency fk. The next step is to send the magnitudes to the filter
bank. In order to give the complete formula for this, we will first define the
filter bank.

The filter bank is composed of 40 filters. The first 13 of the filters are
linearly spaced and the rest are uniformly spaced in the Mel-scale. Each of
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these filters is triangularly-shaped. The points at the base are located in the
frequency-axis as shown in figure 5. The points at the base of the triangle
for filter i are: the center frequency fci in the middle, the left boundary fbi−1

and the right boundary fbi . The boundary points are such that fbi = fci−1 ,
in other words: the left boundary frequency equals the center frequency of
the filter to the left.

The center frequency of the final filter is pre-defined to be fc40 = 6400 Hz.
In order to properly define the base of the triangles, we define the following
factor.

Flog = exp
( ln (fc40/100)

27

)
(56)

We can now proceed by defining the center frequencies. Note that the in-
dexes i = 1, . . . , 13 correspond to the linearly-spaced filters.

fci =

{
133.33333 + 66.66667 · i, for i = 1, 2, . . . , 13

fc13 · F i−13
log , for i ≥ 14

(57)

The weight function corresponding to filter i is defined by the functionHi(k).

Hi(k) =



0 for k < fbi−1

2(k − fbi−1
)

(fbi − fbi−1
)(fbi+1

− fbi−1
)

for fbi−1
≤ k ≤ fbi

2(fbi+1
− k)

(fbi+1
− fbi)(fbi+1

− fbi−1
)

for fbi ≤ k ≤ fbi+1

0 for k > fbi+1

(58)

The functionsHi(k) are those shown in figure 5, for every filter i = 1, 2, . . . , 40.
We proceed by computing the weighted sum of the magnitudes with respect
to each filter’s weights. As stated before, the quantity fk denotes the fre-
quency which corresponds to the k:th coefficient of the DFT of a collection
of N points.

Ai =
N−1∑
k=0

|S(k)| ·Hi(fk) (59)

Next, we perform the version II of the Discrete Cosine Transform (DCT-
II). Let K denote the number of filters.

cn =

√
2

K

K−1∑
i=0

(log10Ai+1) · cos
(
n(i+ 0.5)π

K

)
for n = 1, 2, . . . , R−1 (60)

In the expression (60), the number R ≤ K denotes the number of unique
coefficients which can be computed. According to Ganchev, the coefficients
cn for n ≥ K mirror the first K coefficients. For this reason, the number
of unique coefficients is lower than K, and Ganchev explains that the exact
number depends on the application. In our case, the mfcc-function returns
the coefficients in (60) for R = 13.
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7.5 Parameter estimation for complete data
Assume we have the sequences q = (q1, . . . , qL) and o = (o1, . . . , oL) and
want to estimate the HMM parameter collection λ. Let the functions f, hi, ki
and coefficients u, vi, wi be those that were defined in equation (29) of the
main section. By the method of Lagrange multipliers, we need to solve

∇f(λ) + u∇g(λ) +
n∑

i=1

vi∇hi(λ) +
n∑

i=1

wi∇ki(λ) = 0 (61)

We will use the following notation for the Kronecker delta indicator function.

δ(x | θ) =

{
1 if x = θ

0 else
(62)

The solution to the problem is given by the expressions in (63), which
have been described in lecture slides [2].

π̂i = δ(q1 | i) (63a)

âi,j =

∑L
ℓ=2 δ(qℓ−1 | i)δ(qℓ | j)∑n

j=1

(∑L
ℓ=2 δ(qℓ−1 | i)δ(qℓ | j)

) (63b)

b̂i(j) =

∑L
ℓ=1 δ(qℓ | i)δ(oℓ | j)∑m

j=1

(∑L
ℓ=1 δ(qℓ | i)δ(oℓ | j)

) (63c)

We begin by expressing the parameters in a form which is more suitable
for differentiation.

πq1 =
n∏

i=1

π
δ(q1|i)
i (64a)

aqℓ−1,qℓ =
n∏

i=1

n∏
j=1

a
δ(qℓ−1|i)δ(qℓ|j)
i,j (64b)

bqℓ(oℓ) =

n∏
i=1

m∏
j=1

bi(j)
δ(qℓ|i)δ(oℓ|j) (64c)

The next step is to express the log-likelihood in terms of the expressions
(64).

log p(o, q | λ) = logπq1 + log
L∏

ℓ=2

aqℓ−1,qℓ + log
L∏

ℓ=1

bqℓ(oℓ) = (65a)

logπq1 +
L∑

ℓ=2

log aqℓ−1,qℓ +
L∑

ℓ=1

log bqℓ(oℓ) = (65b)
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7.5 Parameter estimation for complete data

n∑
i=1

δ(q1 | i) logπi +
L∑

ℓ=2

 n∑
i=1

n∑
j=1

δ(qℓ−1 | i)δ(qℓ | j) log ai,j

+

L∑
ℓ=1

 n∑
i=1

m∑
j=1

δ(qℓ | i)δ(oℓ | j) log bi(j)

 =

(65c)

n∑
i=1

δ(q1 | i) logπi +
n∑

i=1

n∑
j=1

(
L∑

ℓ=2

δ(qℓ−1 | i)δ(qℓ | j)

)
log ai,j +

n∑
i=1

m∑
j=1

(
L∑

ℓ=1

δ(qℓ | i)δ(oℓ | j)

)
log bi(j)

(65d)

Find the maximum likelihood estimator λ̂ by solving the optimization prob-
lem (29). By the method of Lagrange multipliers, we need to find the coef-
ficients u, vi, wi that solve equation (66)

∇f(λ) + u∇g(λ) +
n∑

i=1

vi∇hi(λ) +
n∑

i=1

wi∇ki(λ) = 0 (66)

The more explicit form of the equation (66) is found in equation (67)

∂

∂πi
f(λ) =

1

πi
δ(q1 | i) (67a)

∂

∂ai,j
f(λ) =

1

ai,j

(
L∑

ℓ=2

δ(qℓ−1 | i)δ(qℓ | j)

)
(67b)

∂

∂bi(j)
f(λ) =

1

bi(j)

(
L∑

ℓ=1

δ(qℓ | i)δ(oℓ | j)

)
(67c)

We conclude that the following relations hold.

∂

∂πi
f(λ) = u (68a)

∂

∂ai,j
f(λ) = vi (68b)

∂

∂bi(j)
f(λ) = wi (68c)

The parameters can be eliminated from the system of equations (68) in the
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following manner.
n∑

i=1

δ(q1 | i) = u

n∑
i=1

πi (69a)

n∑
j=1

(
L∑

ℓ=2

δ(qℓ−1 | i)δ(qℓ | j)

)
= vi

n∑
j=1

ai,j (69b)

m∑
j=1

(
L∑

ℓ=1

δ(qℓ | i)δ(oℓ | j)

)
= wi

m∑
j=1

bi(j) (69c)

The solution (63) is then found by combining (67) and (69).
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