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Abstract

Survival analysis denotes a collection of statistical methods, where
time to one or several events of interest is considered, for example death,
or the onset of a disease. In this thesis, essential concepts and quantities
within the field of survival analysis, such as censoring, hazard and survival
functions, are introduced. A number of selected methods are presented
in detail; the non-parametric Nelson-Aalen and Kaplan-Meier estimators,
the semi-parametric Cox proportional hazards model, the fully paramet-
ric accelerated failure time, proportional hazards and proportional odds
models, the flexible parametric Royston and Parmar proportional hazards
and proportional odds models, and the distribution-free quantile regres-
sion model. In order to estimate the power of detecting deviations from the
proportional hazards assumption, Monte Carlo simulations are used, as-
suming underlying Weibull distributions. Large deviations are detectable
at a high power even for moderate sample sizes, while small deviations
are hard to detect even for large sample sizes. The Type I error rates
are accurate when the proportional hazards assumption is fulfilled, for all
investigated sample sizes and censoring proportions. Furthermore, Cox,
Weibull, and Royston and Parmar proportional hazards models are com-
pared, given an underlying Weibull distribution, and given that the pro-
portional hazards assumption is fulfilled, using Monte-Carlo simulations.
The three methods show comparable estimates and standard errors. Aver-
age coefficient estimates, standard errors, and confidence interval coverage
of quantile regression models are evaluated using Monte-Carlo simulations,
showing accurate coefficients estimates, but too low confidence interval
coverage for small and moderate sample sizes. The proposed methods
are used to investigate the association between the so called event-free
survival time of children with acute lymphoblastic leukemia (ALL) and
a variety of risk factors in a heavily right-censored dataset. Fully para-
metric distributions do not fit the data well, but coefficient estimates are
comparable to semi-parametric and flexible parametric models. Some co-
variates do not fulfill the proportional hazards assumption, and are better
modeled dependent on time in Royston and Parmar models. Quantile re-
gression only works for small probabilities, since the proportion censored
observations is high. Even so, this method provides a different perspective
that could be useful in a clinical setting.
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Abstract

Survival analysis denotes a collection of statistical methods, where time to one or

several events of interest is considered, for example death, or the onset of a dis-

ease. In this thesis, essential concepts and quantities within the field of survival

analysis, such as censoring, hazard and survival functions, are introduced. A num-

ber of selected methods are presented in detail; the non-parametric Nelson-Aalen

and Kaplan-Meier estimators, the semi-parametric Cox proportional hazards model,

the fully parametric accelerated failure time, proportional hazards and proportional

odds models, the flexible parametric Royston and Parmar proportional hazards and

proportional odds models, and the distribution-free quantile regression model. In

order to estimate the power of detecting deviations from the proportional hazards

assumption, Monte Carlo simulations are used, assuming underlying Weibull distri-

butions. Large deviations are detectable at a high power even for moderate sample

sizes, while small deviations are hard to detect even for large sample sizes. The Type

I error rates are accurate when the proportional hazards assumption is fulfilled, for

all investigated sample sizes and censoring proportions. Furthermore, Cox, Weibull,

and Royston and Parmar proportional hazards models are compared, given an un-

derlying Weibull distribution, and given that the proportional hazards assumption

is fulfilled, using Monte-Carlo simulations. The three methods show comparable

estimates and standard errors. Average coefficient estimates, standard errors, and

confidence interval coverage of quantile regression models are evaluated using Monte-

Carlo simulations, showing accurate coefficients estimates, but too low confidence

interval coverage for small and moderate sample sizes. The proposed methods are

used to investigate the association between the so called event-free survival time of

children with acute lymphoblastic leukemia (ALL) and a variety of risk factors in

a heavily right-censored dataset. Fully parametric distributions do not fit the data

well, but coefficient estimates are comparable to semi-parametric and flexible para-

metric models. Some covariates do not fulfill the proportional hazards assumption,

and are better modeled dependent on time in Royston and Parmar models. Quantile

regression only works for small probabilities, since the proportion censored observa-

tions is high. Even so, this method provides a different perspective that could be

useful in a clinical setting.
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1 Introduction

The theme of this thesis is the thriving field of survival analysis, used widely in medical statistics.

Survival analysis has been an important part of the medical science throughout the 20th century

up until today, and the two go hand in hand – medical researchers use the methods developed

by statisticians, and statisticians get ideas and data from medical researchers for developing

new methods. With an application to childhood cancer data, this master thesis in mathematical

statistics is in itself a manifestation of this relationship.

It is very common that medical researchers prefer non-parametric methods such as Kaplan-

Meier curves and the log-rank test, introduced in Sections 3.2.2 and 3.2.3, or semi-parametric

methods such as the Cox proportional hazards model, introduced in Section 3.4. This can

partly be explained by small sample sizes, interpretability, and habit. However, each method

has its own assumptions, and deviations from these can be modeled more accurately using other

methods.

In this thesis, the reader is given an overview of classical methods, such as the ones mentioned

above, along with more recent developments in survival analysis. Monte Carlo simulations are

performed to evaluate some of the methods, and all methods are applied to a dataset containing

patient data from children diagnosed with acute lymphoblastic leukemia (ALL).

1.1 Objectives

The main objectives of this thesis are to

1. Review the non-parametric survival analysis methods Nelson-Aalen and Kaplan-Meier

estimators, the semi-parametric Cox proportional hazards models, the fully parametric

Weibull and log-logistic models, the flexible parametric Royston and Parmar models, and

the distribution-free quantile regression model, in terms of model assumptions, estimation,

inference, and interpretation.

2. Evaluate various properties of the methods using Monte-Carlo simulations.

3. Apply the methods to investigate the association between survival time in children with

ALL, and a number of risk factors.

1.2 Outline

First, time-to-event data and important concepts in survival analysis are introduced to the reader

in Sections 2.1 and 2.2. A brief introduction to childhood cancer and ALL is given in Section 2.3.

The methods used in the thesis are thoroughly presented in Section 3. In Section 4, results from

Monte-Carlo simulations used to evaluate some of the methods are presented. Results of the

application of the selected methods to the childhood ALL data are presented in Section 5,

starting with a description of the data in Section 5.1. A summary and a discussion is given

in Section 6, followed by conclusions in Section 7. Some supplementary theory and simulation

results are given in Appendices A, B and C.
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2 Background

In this section, the reader is given an introduction to key concepts in survival analysis in Sec-

tions 2.1 and 2.2, along with a brief overview of childhood cancer in Section 2.3 and acute

lymphoblastic leukemia in Section 2.3.1.

2.1 Time-to-event data

Time-to-event data, also known as survival data or failure time data, measures time from some

clearly defined start time point, to the occurrence of an event of interest. Common objectives

within the field of medicine are for example time from birth until the onset of a certain disease,

and time from onset of a certain disease until death. However, time-to-event data can represent

a wide range of endpoints, such as time until the birth of a person’s first child, the lifetime

of a light-bulb, or time from unemployment to employment. By definition, time variables are

strictly positive, a property that could complicate common analysis approaches such as linear

regression. However, the analysis of time-to-event data is special mainly due to the presence of

censoring, a type of partial information, introduced in Section 2.1.1 below.

2.1.1 Censoring and truncation

Censoring of survival data occurs when the event of interest is unobserved for some individuals

during the studied time frame. There are three types of censoring; right-censoring, left-censoring,

and interval censoring. Right-censoring occurs when the event of interest has not yet happened

during the time in which the subject is observed. This can be due to several reasons, for

example the end of study, the subject could have moved abroad, or the subject could have

had a competing event that prevents the event of interest from happening. If the start time is

defined individually for each subject, rather than by a fixed calendar time, for example the time

of diagnosis of a certain disease, then each subject will have a different follow-up time even if

everyone is followed until the end of study, provided that they are not diagnosed the exact same

date. Right-censoring is the most common type of censoring, and is present in most survival

data. In Figure 1, examples of survival times are given. The left panel shows calendar time, and

the right shows study time. On the calendar time scale, each observation has a different entry

time, while on the study time scale, the entry time is defined as the start time, and hence each

observation starts at time zero.

Left-censoring occurs when the event of interest has already occurred when a subject is

entered into the study, but the exact event time is unknown. In interval censoring, it is only

known that the event occurred in some time interval, but here too, the exact time-point is

unknown.

Left truncation occurs when only subjects who have not yet experienced the event are

entered into the study. For example, if studying persons suffering from heart attacks, and only

including persons admitted to a hospital, persons who die before hospital admission are not

included in the study. Hence, persons need to have survived long enough to be admitted to the

hospital. For this reason, truncation is also called length-biased sampling (Hosmer, Lemeshow,

& May, 2008).

In this thesis, only right-censoring without truncation is considered. To read more about

censoring and truncation, the interested reader is referred to Klein and Moeschberger (2003, Ch.

2
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Figure 1: Example of survival times. An open circle indicates a censoring, and a filled circle indicates
an event.

3).

For right-censored data, the random variable C is introduced, denoting the time of censoring,

and δ, an indicator or status variable for whether or not the event was observed before the time

of censoring, i.e. δ = 1, if the event was observed before the time of censoring, and δ = 0,

otherwise. In many standard survival analysis methods, the time to censoring, C, and the time

to event, T , are assumed (conditionally) independent.

2.1.2 Typical data structure

In right-censored survival data, apart from the survival time, a status variable is needed, indi-

cating whether or not the event was observed before censoring. The survival time should be

given in an appropriate unit of choice, e.g. seconds, days, weeks, months, or years. In Table 1,

an example of survival data structure is given. The first and second observations experienced

the event of interest at time points 5.3 and 3.2, respectively. The third and fourth observations

were censored at time points 4.0 and 1.8, respectively. Along with the time and status vari-

ables, an arbitrary number of covariates, x1, ..., xp, may be provided. The data structure can

be extended to incorporate different types of events, time-varying covariates, recurrent events,

interval censoring, and truncation.

Table 1: Example of survival data structure

Observation Time Status
1 5.3 1
2 3.2 1
3 4.0 0
4 1.8 0

The time to event is most often assumed to be continuous, but in practice there will be

rounding errors due to inexact measurement. For example, in clinical applications, survival

time is often measured in number of days. Inexact measuring of survival time can lead to so

called ties, where two or more subjects experience the event of interest at the same time point.

On a continuous time scale this is not a problem, but with rounded units of measurement, this

occurs more or less frequently. In different applications, there are different ways of handling ties.

In ties between one event time and one or more censoring times, the convention is to consider

3



the event time occurring prior to the censoring time. Ties between censoring times do not cause

problems in calculations of estimates (Aalen, Borgan, & Gjessing, 2008, Ch. 3.1.2, p. 84).

2.2 Important quantities in survival analysis

Some important quantities in survival analysis are listed below. For now, the quantities are

introduced unconditional on covariates x = (x1, ..., xp)
′.

T = Time to event (random variable)

t = Time to event (observed)

C = Time to censoring (random variable)

c = Time to censoring (observed)

Y = min(T,C)

y = min(t, c)

δ = I(t < c)

f(t) = Probability density function

F (t) = Cumulative distribution function

S(t) = Survival function

h(t) = Hazard function

H(t) = Cumulative hazard function

x = (x1, ..., xp)
′ = Column vector of covariates

β = (β0, ..., βp)
′ = Column vector of coefficients

R(t) = Risk set at time t−

Y (t) = |R(t)| = Number at risk at time t−

The time to event, denoted by T , is a random variable that measures time from start (t0,

constant) until an event of interest occurs. Assume from here on that T is a non-negative

continuous random variable. Let T ∼ F , with F (·) being the cumulative distribution function,

i.e.

F (t) = P (T ≤ t) =

∫ t

0
f(s)ds,

where f(·) denotes the probability density function, f(t) ≥ 0. The survival function S(·) is

defined as

S(t) = P (T > t) = 1− F (t),

and thus denotes the probability of being event-free (”surviving”) at least until time t. Since

S(t) is a probability, it takes values between 0 and 1. The hazard function h(t) at time t is the

instantaneous hazard of having the event at time t, and is defined as

h(t) = lim
∆t→0

1

∆t
P (t ≤ T < t+ ∆t|T > t), h(t) ≥ 0.

4



The cumulative hazard H(·) is defined as

H(t) =

∫ t

0
h(s)ds, H(t) ≥ 0,

It is common to denote the hazard and cumulative hazard with λ(t) and Λ(t), respectively, but

to avoid confusing them with the intensity processes described in Section 3.1, and with certain

parameters in some of the parametric distributions presented in Section 3.5.1, h(t) and H(t) are

used throughout this thesis. Any of the quantities f(t), F (t), h(t), H(t), S(t) uniquely defines

the distribution of T , and are connected through the following relations,

h(t) = lim
∆t→0

1

∆t
P (t ≤ T < t+ ∆t|T > t)

= lim
∆t→0

P (t ≤ T < t+ ∆t ∩ T > t)

∆tP (T > t)

= lim
∆t→0

P (t ≤ T < t+ ∆t)

∆tP (T > t)

=
f(t)

S(t)

=
− d
dt [1− F (t)]

S(t)

= −S
′(t)

S(t)
.

Due to the above relation, it also holds that

h(t) = −S
′(t)

S(t)
= − d

dt
log[S(t)]

⇐⇒

log[S(t)] = −
∫ t

0
h(s)ds

⇐⇒

S(t) = exp

{
−
∫ t

0
h(s)ds

}
= exp {−H(t)}

⇐⇒
H(t) = − logS(t),

and

f(t) = h(t)S(t).

5



The above results are summarized below,

f(t) = h(t)S(t) (1)

F (t) =

∫ t

0
f(s)ds

H(t) =

∫ t

0
h(s)ds (2)

H(t) = − logS(t) (3)

h(t) =
f(t)

S(t)
= −S

′(t)

S(t)

S(t) = 1− F (t)

S(t) =
f(t)

h(t)

S(t) = exp {−H(t)} = exp

{
−
∫ t

0
h(s)ds

}
. (4)

The above quantities f(t), F (t), S(t), h(t), H(t) are properties of T, unless stated otherwise. For

example, the time-to-event random variable C has the corresponding quantities fC(t), FC(t),

SC(t), hC(t), HC(t). For any given individual, the following triplet of variables is observed

(yi, δi,xi). All of the above quantities can be expressed as functions of t|x, which will be used

when introducing regression models in Sections 3.4, 3.5, 3.6, and 3.7.

2.3 Childhood cancer

In cancer research, information on survival is collected by following up each patient from time of

diagnosis until death or censoring, often also registering other events such as relapse of cancer,

stem cell transplantation, secondary malignancy, toxicities such as thrombosis and seizures,

surgeries, and other events specific for different cancer types, along with relevant background

variables known at diagnosis, and treatment-specific factors. Death is an important outcome,

and survival until death is called overall survival (OS), defined as time from onset, diagnosis,

or start of treatment, to death or censoring. However, other endpoints can be of importance,

and it is very common to use event-free survival (EFS) as an outcome, defined as time to death

or another or several other events, such as relapse of cancer, getting another type of cancer,

whichever comes first.

In Sweden, there are several cancer registries for a variety of cancer types. The different

registries provide valuable data for cancer research. Different registries can be connected, and,

hence, a researcher with an approved ethical application can combine different types of infor-

mation from several registries for the same study cohort, enabling important research on, for

example, survival in childhood cancer. The NOPHO registry is one such registry, started by the

Nordic Society of Paediatric Haematology and Oncology (NOPHO), and includes survival data

and important clinical data on Nordic and Baltic children with various cancer diagnoses.

Yearly, around 300 children in Sweden are diagnosed with cancer, and it is the primary

cause of death in children aged 1-14 years (Bergling et al., 2019). The cause of childhood

cancer is mostly unknown, as children have not been exposed for an extended period to known

risk factors of cancer. The most common childhood cancers are brain tumors and leukemias

(Kaatsch, 2010). Survival in childhood cancer is nowadays around 80% in developed countries,

6



although some cancer types are still not curable (Bergling et al., 2019).

2.3.1 Acute lymphoblastic leukemia

Acute lymphoblastic leukemia (ALL) is a cancer constituting 27% of all childhood cancer cases

(Kaatsch, 2010), most common in children, with a peak incidence at 2-5 years of age (Inaba,

Greaves, & Mullighan, 2013). It is not a tumor cancer, as it consists of immature white blood cells

proliferating uncontrollably in the bone marrow. During the time preceding an ALL diagnosis,

children with ALL can bleed or bruise easily, and be pale and tired (Hunger & Mullighan,

2015). ALL is fatal if left untreated. Survival after ALL has improved enormously during the

20th century, from being practically incurable in the 1950s and 1960s, to around 90% survival in

the 21st century. This is due to combining several chemotherapeutic drugs, and stratifying the

treatment intensity depending on characteristics of the patient and the patient’s cancer cells, and

on early treatment response (Hunger & Mullighan, 2015). ALL was one of the first malignant

cancer diseases to be successfully cured (W. E. Nelson & Behrman, 1996, Ch. 449.1).

Since ALL is a rare disease, with an incidence of around 3 cases per 100 000 persons under 20

years of age (Hunger & Mullighan, 2015), hospitals, regions and countries often need to collabo-

rate in clinical studies of ALL. The NOPHO ALL2008 protocol, which started enrolling patients

in July 2008 (Toft et al., 2018), is a collaboration between the member countries of NOPHO

- the Nordic countries, Estonia, and Lithuania. The treatment consists of several chemother-

apeutic and steroid drugs, given with a varying intensity, depending on the risk stratification

of the child. For all risk groups, the treatment length is 2.5 years. In this thesis, data from

the NOPHO registry will be used. Details of the data and included patients are presented in

Section 5.1.
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3 Methods

This section contains a description of a number of methods from the field of survival analysis.

First, a brief introduction to the counting process view of survival analysis is given in Section 3.1.

Then the non-parametric Nelson-Aalen estimator, Kaplan-Meier estimator and the log-rank test

are introduced in Sections 3.2.1, 3.2.2, and 3.2.3. This is followed by the general likelihood

function for survival data in Section 3.3. The regression methods Cox proportional hazards

model, parametric modeling, Royston and Parmar models, and quantile regression are presented

in Sections 3.4, 3.5, 3.6, and 3.7. The methods are compared in Section 3.8.

3.1 Counting process approach to survival analysis

Survival analysis deals with events occurring over the course of time, making it natural to include

stochastic process theory and methods. A brief introduction is given here, following Aalen et al.

(2008, Ch. 1-3). Although stochastic process theory is fundamental for many results in survival

analysis, this section is not crucial for the understanding of the rest of the thesis.

Let Ft denote the event history up until time t. A stochastic process M = {M(t); t ∈ [0, γ]},
where γ is finite, is called a martingale with respect to the history Ft if

E(M(t)|Fs) = M(s) for all s < t,

known as the martingale property. A sub-martingale X = {X(t); t ∈ [0, γ]} satisfies

E(X(t)|Fs) ≥ X(s) for all s < t.

An important result in martingale theory is the Doob-Meyer decomposition, stating that a

sub-martingale X can be expressed as

X∗ +M,

whereX∗ is a non-decreasing predictable process andM is a zero-mean martingale. A continuous-

time counting process N(t), counting the number of events until and including time t, fulfills

• N(t) ≥ 0

• N(t) is right-continuous.

• Jumps are of size 1.

• N(t) is constant in between jumps.

Since N(t) is non-decreasing, it is a sub-martingale. Let λ(t) be the intensity process of N(t),

defined by

λ(t)dt = P (dN(t) = 1|Ft−) = E(dN(t)|Ft−).

The Doob-Meyer decomposition states that N(t) can be written N(t) = Λ(t) + M(t), where

Λ(t) is the cumulative intensity process defined by Λ(t) =
∫ t

0 λ(s)ds. In survival analysis, the

multiplicative intensity model is given by λ(t) = Y (t)h(t), where h(t) is the hazard rate, and

8



Y (t) is the number at risk just before time t. The increment dN(t) can be written

dN(t) = λ(t)dt+ dM(t) = Y (t)h(t)dt+ dM(t).

Dividing with Y (t) and multiplying by I(t) = I(Y (t) > 0) yields

I(t)

Y (t)
dN(t) = I(t)h(t)dt+

I(t)

Y (t)
dM(t).

Integrating both sides yields∫ t

0

I(s)

Y (s)
dN(s) =

∫ t

0
I(s)h(s)ds+

∫ t

0

I(s)

Y (s)
dM(s).

In an application with a finite number of event times, the left-hand side simply becomes a sum

over the event times, according to∫ t

0

I(s)

Y (s)
dN(s) =

∑
tj≤t

I(tj)

Y (tj)
,

which is recognized as the Nelson-Aalen estimator, presented in detail in Section 3.2.1. It can

be shown that a stochastic integral with respect to a mean-zero martingale is itself a mean-zero

martingale, hence

E

(∫ t

0

I(s)

Y (s)
dN(s)−

∫ t

0
I(s)h(s)ds

)
= 0.

The Nelson-Aalen estimator is thus an unbiased estimator of
∫ t

0 I(s)h(s)ds, which is very similar

to the cumulative hazard, except for the factor I(s) that restricts the non-parametric estimator

of the cumulative hazard to be within the observed time frame. For a derivation of the Nelson-

Aalen variance estimator, the interested reader is referred to Aalen et al. (2008, Ch. 3).

Note that, since the jumps in a counting process, N(t), are of size 1, tied event times are

not accounted for in the counting process theory presented here. Various ways of handling tied

event times are presented in the following method sections.

3.2 Non-parametric estimators

Non-parametric estimators of cumulative hazard and survival are widely used in the field of

medicine for visualization and hypothesis testing, and the most popular estimator is the Kaplan-

Meier estimator of Section 3.2.2. These estimators are attractive due their straight-forward

approach, their suitability for small sample sizes, their easy-to-interpret visualization, and their

lack of a parametric assumptions. All formulas of estimators, variance estimators and confidence

intervals of Sections 3.2.1 and 3.2.2 are taken from Aalen et al. (2008, Ch. 3), and Hosmer et al.

(2008, Ch. 2.4) for Section 3.2.3, unless otherwise stated.

3.2.1 Nelson-Aalen estimator

The Nelson-Aalen estimator of the cumulative hazard, H(t), was first introduced by W. Nelson

(1969, 1972), and later extended by Aalen (1975, 1978) using a counting process approach. The

9



estimator is given by a sum over the event times tj , j = 1, ...,m, with m being the number of

events, as follows

ĤNA(t) =
∑
tj≤t

1

Y (tj)
,

where Y (tj) is the number at risk just before time tj . The censoring is taken into account by the

denominators, where censored cases are excluded from the risk set at the time of censoring. At

any given time t, the Nelson-Aalen estimator is asymptotically normal as the number of events

goes to infinity, i.e. the estimator is approximately normal for large enough samples. Using a

counting process approach, the Nelson-Aalen estimator is derived in Section 3.1.

An estimate of the variance of ĤNA(t) is given by

V̂ar[ĤNA(t)] = σ̂2
NA(t) =

∑
tj≤t

1

Y (tj)2
.

As discussed in Section 2.1.2, tied events are present in many real-life survival datasets.

There are two approaches to tied events for non-parametric estimators. The first one considers

time as inherently continuous, and that ties occur due to rounding. The second one considers

time as truly discrete. We now write the Nelson-Aalen estimate as

ĤNA(t) =
∑
tj≤t

∆ĤNA(tj), (5)

where ∆ĤNA(tj) are the Nelson-Aalen increments. When no ties are present, ∆ĤNA(tj) =

1/Y (tj). When ties are present, a choice has to be made between the first and the second

approach to tied event times. Let dj denote the number of events at time tj . With the first

approach, where time is considered continuous, the Nelson-Aalen increments are given by

∆ĤNA(tj) =

dj−l∑
l=0

1

Y (tj)− l
,

assuming that the true survival times are not exactly the same, i.e. ties are due to rounding.

With the second approach, where time is considered discrete, the Nelson-Aalen increments are

given by

∆ĤNA(tj) =
dj

Y (tj)
,

assuming that the dj tied events actually occurred at the same discrete time-point tj .

Similar to Eq. (5), the variance estimate of ĤNA can be written as

σ̂2
NA(t) =

∑
tj≤t

∆σ̂NA,

where ∆σ̂NA = 1/Y (tj)
2 when no ties are present, and

∆σ̂NA =

dj−1∑
l=0

1/(Y (tj)− l)2,

10



when continuous time scale is assumed, and

∆σ̂NA = (Y (tj)− dj)dj/Y (tj)
3,

when a discrete time scale is assumed.

An approximate (1− α)% confidence interval is given by

ĤNA(t)± z1−α/2σ̂NA(t),

of which the asymptotic properties are improved by using a log-transformation according to

ĤNA(t) exp

{
±
z1−α/2σ̂NA(t)

ĤNA(t)

}
.

Using Eq. (4), stating that S(t) = exp{−H(t)}, the Nelson-Aalen estimator of the cumula-

tive hazard can be used to estimate the survival function by ŜNA(t) = exp{−ĤNA(t)}.
The estimated cumulative hazard is visualized by a step-function, with time since origin on

the x-axis and the estimated cumulative hazard function on the y-axis. Examples of these plots

are given in Figure 2, for varying sample sizes. The event times are simulated from a Weibull

distribution, introduced in Table 2 of Section 3.5.1, with parameters λ = 1, α = 0.9, and the

censoring distribution is uniform on the interval (0.2,2), independent of the event times. From

the figure it can be seen that for small sample sizes, the steps are large, and for large sample

sizes, the curve is more smooth.

3.2.2 Kaplan-Meier estimator

In the 1950s, Edward L. Kaplan and Paul Meier each submitted a paper on an estimator for the

survival function, S(t), to the Journal of the American Statistical Association. Since the papers

were so similar, the editor convinced the two to write a joint paper (Tobacman, 2011). This

resulted in the now historic and frequently cited paper from 1958, in which Kaplan and Meier

introduced what they called the product-limit estimator, but what was later to be better known

as the Kaplan-Meier estimator (Kaplan & Meier, 1958). The estimator is given by a product

over the event times, as follows

ŜKM (t) =
∏
tj≤t

(
1− 1

Y (tj)

)
,

where Y (tj) is the number at risk just before time t. The variance can be estimated by

V̂ar[ŜKM (t)] = σ̂2
KM (t) = ŜKM (t)2

∑
tj≤t

1

Y (tj)2
.

Note that the variance estimator σ̂2
KM (t) is simply the Kaplan-Meier estimator ŜKM (t)2 times

the Nelson-Aalen variance estimator σ̂2
NA(t).

In the case of tied event times, the continuous and discrete time approaches described in
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Section 3.2.1 lead to the same Kaplan-Meier estimator

ŜKM (t) =
∏
tj≤t

(
1− dj

Y (tj)

)
.

This is due to the fact that, if tj is an event time with several tied events, the discrete time

approach leads to the factor (1−dj/Y (tj)), and the continuous time approach leads to the factor(
1− 1

Y (tj)

)
·
(

1− 1

Y (tj)− 1

)
· · ·
(

1− 1

Y (tj)− (dj − 1)

)
.

It can be shown with some simple algebra that these two quantities are the same. The continuous

and discrete time approaches to tied events do not, however, lead to the same variance estimator.

The continuous time approach leads to

σ̂2
KM (t) = ŜKM (t)2σ̂2

NA(t),

using the continuous time approach version of σ̂2
NA(t) from Section 3.2.1. The discrete time

approach leads to the variance estimator

ˆ̃σ2
KM (t) = ŜKM (t)2

∑
tj≤t

dj
Y (tj)(Y (tj)− dj)

,

referred to as Greenwood’s formula, which is commonly used in most applications.

An approximate (1− α)% confidence interval for ŜKM (t) is given by

ŜKM (t)± z1−α/2 ˆ̃σKM (t).

However, the above confidence interval risks exceeding the value 1 or being less than the value

0, which is problematic, considering S(t) is a probability. An alternative confidence interval,

avoiding this problem, and also giving a better normal approximation, using the transformation

log(− log[ŜKM (t)]), is given by

ŜKM (t)
exp

{
±

z1−α/2 ˆ̃σKM (t)

ŜKM (t) log[ŜKM (t)]

}
. (6)

In studies involving survival data, it is common to plot the estimated survival function

against time, possibly separating the curves by groups, see Figure 2 for examples of Kaplan-

Meier curves for varying sample sizes. Each event decreases the survival function, and each

censoring is marked by a +-symbol. It is also common to include a risk table below the x-axis,

showing how many subjects are still at risk of an event at selected time points.

3.2.3 The log-rank test

A common objective in survival analysis is the comparison of two or more hazard rates. The

log-rank test is a non-parametric test for testing the null hypothesis of no difference in hazard

rates, and thus no difference in the corresponding survival curves. In this subsection, formulas

for the comparison of two hazard rates are provided. An extension for more than two groups

can be found in Hosmer et al. (2008, Ch. 2, p.51ff). Denote the two groups under comparison
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Figure 2: Example of Nelson-Aalen and Kaplan-Meier estimates for varying sample sizes. The left and
middle column show Nelson-Aalen estimates of H(t) and S(t), respectively. The right column shows
Kaplan-Meier estimates of S(t). Times to event are sampled from a Weibull distribution with λ = 1 and
α = 0.9, and times to censoring from a uniform distribution U(0.2, 2). Censoring times are marked with
a +-symbol. The true Weibull H(t) and S(t) are shown in blue.
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by 0 and 1. The null and alternative hypotheses are formally written

H0 : h0(t) = h1(t), for all t > 0

H1 : h0(t) 6= h1(t), for some t > 0,

where hi(t) denotes the hazard function of group i, i = 0, 1. A general test statistic is given by

Q =
(
∑m

i=1wi[d1,i − Y1(ti)di/Y (ti)])
2∑m

i=1w
2
i v̂1,i

,

where m denotes the number of observed events, di the observed number of events at event time

ti, d1,i the observed number of events in group 1 at time ti, Y (ti) the number at risk at t−i , and

Y1(ti) the corresponding number at risk in group 1, wi denotes weights, and v̂1,i the variance

estimate of D1,i (random version of d1,i) at time ti under the null. Note that Y1(ti)di/Y (ti)

is the expected number of events in group 1 at time ti under the null. The variance estimate,

based on the hypergeometric distribution, is given by

v̂1,i =
Y1(ti)Y0(ti)di[Y (ti)− di]

Y (ti)2[Y (ti)− 1]
.

Under the null and under the assumption of similar censoring patterns in the different groups,

Q is asymptotically chi-square distributed with one degree of freedom. There are a number of

options for the weights, see Hosmer et al. (2008, Ch. 2.4) for some examples, and Aalen et

al. (2008, Ch. 3.3.1) for some examples of weights using a counting process approach. Worth

mentioning are the generalized Wilcoxon test and the Tarone-Ware test, with weights wi = Y (ti)

and wi =
√
Y (ti), respectively, that hence put more emphasis on differences in hazard rates in

the beginning of the time scale, where there are still more individuals in the risk set. Note that

possible ties are already taken care of in the expressions of Q and v̂1,i, using the discrete-time

approach. A continuous-time approach is not as simple when it comes to comparisons between

groups, since the order of the tied events is not possible to separate between groups (Aalen et

al., 2008, Ch. 3, p. 112).

The most common non-parametric test for differences in hazard rates is the log-rank test,

where the test statistic is given by letting wi = 1, i = 1, ...,m, yielding

Ql−r =
(
∑m

i=1[d1,i − Y1(ti)di/Y (ti)])
2∑m

i=1 v̂1,i
. (7)

In the case of crossing survival curves, the terms of the sum in Eq. (7) will first be negative

(positive), and then positive (negative), resulting in a small test statistic, not detecting any

difference between the survival curves at standard significance levels. It is therefore of value to

inspect the survival curves visually as a complement to the hypothesis testing. For a discussion

on non-parametric methods for crossing survival curves, see Li, Han, Hou, Chen, and Chen

(2015). An example of two Kaplan-Meier plots comparing survival curves is given in Figure 3.

The Log-rank test is able to detect a difference between the curves in the left plot, but not in

the right where the curves are crossing.
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Figure 3: Example of Kaplan-Meier estimates for two groups, n = 100 in each group. Times to event
are sampled from a Weibull distribution with λ = 1, α = 0.9 (black line, both plots), and λ = 2, α =
0.9 (blue line, left plot), and λ = 1, α = 1.8 (blue line, right plot). Times to censoring are sampled
from a uniform distribution U(0.2, 2). Censorings are marked with a +-symbol. Shaded areas show 95%
confidence intervals. Dashed lines show true Weibull survival curves.

3.3 Likelihood function for right-censored data

Although the non-parametric estimators presented above have desirable qualities for some ap-

plications, they are not regression methods. Covariates can only be taken into account by

stratification, which is inconvenient even with a small number of covariates, and continuous

covariates can only be incorporated by categorization. The remainder of this thesis will focus

on regression methods, which, with the exception of quantile regression presented in Section 3.7,

are likelihood-based. The general likelihood function for right-censored data is presented in this

section, and later applied to the regression models presented in Sections 3.4, 3.5, and 3.6.

Assuming no left-censoring or truncation, each observation has a triplet of observed values

(yi, δi,xi), where yi is the time until event or censoring, δi = I(t < c) is an indicator for whether

the event of interest occurred before censoring, and xi is the covariate vector, i = 1, ..., n.

The likelihood for right-censored survival data is special due to the fact that the exact event

times are not known for all observations. Censored observations contribute to the likelihood

with their observed survival time, while uncensored observations contribute with their time to

event. Each observation will hence contribute to the likelihood with f(yi)
δiS(yi)

1−δi . Under the

assumption of independent observations, and that the censoring distribution is independent of

the time-to-event distribution, the likelihood function is given by

L(β|x) =

n∏
i=1

f(yi|β,xi)δiS(yi|β,xi)1−δi , (8)

and the log-likelihood is given by (Hosmer et al., 2008, Ch. 3.3)

l(β|x) =

n∑
i=1

{δi log[f(yi|β,xi)] + (1− δi) log[S(yi|β,xi)]} .

From Eq. (1), f(yi|β,xi) = h(yi|β,xi)S(yi|β,xi). Plugging this into Eq. (8) gives

L(β|x) =

n∏
i=1

h(yi|β,xi)δiS(yi|β,xi)δiS(yi|β,xi)1−δi =

n∏
i=1

h(yi|β,xi)δiS(yi|β,xi), (9)
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and

l(β|x) =
n∑
i=1

{δi log[h(yi|β,xi)] + log[S(yi|β,xi)]} . (10)

3.4 Cox proportional hazards model

The Cox proportional hazards model is a semi-parametric model that was first introduced in

an article published in 1972 by the British statistician Sir David Cox (Cox, 1972). It is widely

used due to the simplicity of the interpretation of the regression coefficients, and because no

distribution assumption is needed. The model can be extended to incorporate time-dependent

coefficients and covariates, but the focus of this thesis will be on fixed coefficients and covariates.

Formulas in this section are taken from Chapters 3 and 6 in Hosmer et al. (2008), unless stated

otherwise.

3.4.1 Model formulation

Let β = (β1, ..., βp)
′ be a column vector of coefficients, and x = (x1, ..., xp)

′ be a column vector

of covariates. The model is given by

h(t|x) = h0(t) exp(β′x) = h0(t) exp

(
p∑

k=1

βkxk

)
, (11)

where h0(t) is a baseline hazard function that is seldom of primary interest when fitting the

model. Note that the baseline hazard does not depend on the covariates, only on time t. No

parametric assumption is made about the baseline hazard. Also note that the second factor

does not depend on time t, and that there is no intercept in the second factor. Instead, the

”intercept” that corresponds to the value of the hazard function when all covariates are zero, is

given by h0(t). Taking the logarithm of both sides yields linearity in the coefficients,

log[h(t|x)] = log[h0(t)] + β′x = log[h0(t)] +

p∑
k=1

βkxk. (12)

Let ek be a column vector of length p, with a 1 in the kth position, and zeros in all other

positions, i.e. e1 = (1, 0, ..., 0)′. A one-unit change in xk yields

log[h(t|x+ ek)]− log[h(t|x)]

=
[
log[h0(t)] + β′(x+ ek)

]
−
[
log[h0(t)] + β′x

]
= βk.

Exponentiating both sides gives

h(t|x+ ek)

h(t|x)
= exp(βk).

This is called the hazard ratio (HR), and is the relative change in hazard corresponding to a

one-unit increase in xk, given that the other covariates are held constant. This ratio does not

depend on t, implicating that the hazards are proportional everywhere on the time scale. This

is an attractive property, simplifying the interpretation of the regression coefficients enormously.
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This property is called the Proportional Hazards Assumption (PHA), and is not always valid.

Deviations from it can be tested using the Schoenfeld residuals, introduced in Section 3.4.3.

3.4.2 Estimation and inference

Before deriving the likelihood function, the survival function is derived from the hazard function.

From Eq. (4) it holds that,

S(t|x) = exp {−H(t|x)} = exp

{
−
∫ t

0
h(s|x)ds

}
.

Plugging in the expression for h(t|x) from Eq. (11), and noting that exp(β′x) is independent of

t, yields

S(t|x) = exp

{
−
∫ t

0
h0(s) exp(β′x)ds

}
=

[
exp

{
−
∫ t

0
h0(s)ds

}]exp(β′x)

= S0(t)exp(β′x), (13)

where S0(t) = exp(−
∫ t

0 h0(s)ds) denotes the baseline survival function, which is independent of

β and x.

Recall from Eq. (10) that the general log-likelihood can be written

l(β|x) =
n∑
i=1

(δi log[h(yi|β,xi)] + log[S(yi|β,xi)]) .

Plugging in the expression for log[h(t|x)] and S(t|x) from Eq.s (12) and (13) yields

l(β|x) =
n∑
i=1

(
δi(log[h0(yi)] + β′xi) + exp(β′xi) log[S0(yi)]

)
. (14)

However, the log-likelihood in Eq. (14) cannot be used directly to estimate β. Instead, maxi-

mization of a partial likelihood, presented by Cox (1972), is used for estimation of the coefficient

vector β, where h0(t) and S0(t) are considered to be nuisance parameters. The partial likeli-

hood, not to be confused with the partial likelihood usually referred to in statistical inference

theory, is derived by conditioning on the risk set R(yi), and is given by

Lp(β|x) =
n∏
i=1

[
exp(β′xi)∑

j∈R(yi)
exp(β′xj)

]δi
,

When δi = 0, the only contribution to the above product is 1, and, hence, the expression can be

simplified by only considering the m ≤ n observed events, writing

Lp(β|x) =
m∏
i=1

exp(β′xi)∑
j∈R(ti)

exp(β′xj)
.

The partial log-likelihood is given by

lp(β|x) =
m∑
i=1

β′xi − log

 ∑
j∈R(ti)

exp(β′xj)

 .
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The score function Uk for a specific βk, k = 1, ..., p, is given by

Uk(β) =
∂lp(β)

∂βk
=

m∑
i=1

[
xi,k −

∑
j∈R(ti)

xj,k exp(β′xj)∑
j∈R(ti)

exp(β′xj)

]
. (15)

The partial log-likelihood can be maximized using Fisher scoring. Andersen and Gill (1982)

showed the asymptotic normality and consistency of β̂, using a counting process approach. In

a model containing only one binary covariate, the score test statistic is equal to the log-rank

test statistic presented in Section 3.2.3. The covariance matrix Cov(β̂) is estimated using the

observed information matrix.

When tied event times are present, the likelihood can be rewritten according to the Breslow

or Efron methods, described in (Klein & Moeschberger, 2003, Ch. 8.4), not stated explicitly

here. When few ties are present, these two methods lead to quite similar results.

However rarely of primary interest when using a Cox model, the baseline cumulative hazard

can be estimated by using the Breslow estimator, described in (Klein & Moeschberger, 2003,

Ch. 8), defined as

Ĥ0(t) =
∑
ti≤t

di∑
j∈R(ti)

exp(β̂′xj)
, (16)

and the corresponding estimation of the baseline survival function is given by

Ŝ0(t) = exp{−Ĥ0(t)}.

For an individual with covariate vector xi, the estimated cumulative hazard function and survival

function are given by

Ĥ(t|xi) = Ĥ0(t) exp(β̂′xi),

and

Ŝ(t|xi) = Ŝ0(t)exp(β̂′xi).

The Breslow estimator of the cumulative hazard function is used in some of the residuals pre-

sented in Section 3.4.3 below. Survival estimates from two Cox models are shown in Figure 4,

using the simulated survival data from Figure 3. The left plot describes the survival data well,

since the hazards are proportional, while the right plot cannot capture the crossing of the survival

curves in the original data.

3.4.3 Model diagnostics

In Cox regression, unlike other regression methods, the definition of residuals is not obvious.

This is partly because the outcome variable is often incomplete, and partly because the out-

come variable is not modeled directly for example through a function of the mean. In 1982,

Schoenfeld (1982) proposed a definition of residuals corresponding to an observation’s addition

to the derivative of the partial log-likelihood. Plugging in β̂ to the expression of the score func-

tion in Eq. (15) yields the Schoenfeld residual for observation i, i = 1, ..., n and covariate k,

18
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Figure 4: Example of Cox proportional hazrads (PHM) survival estimates for a model including a
binary predictor indicating group, using data from Figure 3. Times to event in the left plot are sampled
from Weib(λ = 1, α = 0.9) and Weib(λ = 2, α = 0.9). Times to event in the right plot are sampled
from Weib(λ = 1, α = 0.9) and Weib(λ = 1, α = 1.8). Times to censoring are sampled from a uniform
distribution U(0.2, 2). Shaded areas show 95% confidence intervals. Dashed lines show true Weibull
survival curves.

k = 1, ..., p,

r̂i,k =

xi,k −
∑
j∈R(ti)

xj,k exp(β̂′xj)∑
j∈R(ti)

exp(β̂′xj)
, uncensored observation

0, censored observation.

(17)

Thus, each uncensored observation generates p Schoenfeld residuals r̂′i = (r̂i,1, r̂i,2, ..., r̂i,p)
′, one

for each covariate. Grambsch and Therneau (1994) proposed scaling the Schoenfeld residuals

using their variance according to

r̂∗i =
[
V̂ar(r̂i)

]−1
r̂i,

where [V̂ar(r̂i)]
−1 is approximated by mV̂ar(β̂), with m being the number of events, where the

inverse of the Fisher information matrix is used for estimation of Var(β̂). The PHA can be

evaluated by testing the null hypothesis of zero Pearson correlation between (a transformation

of) event times and the scaled Schoenfeld residuals. This test corresponds to testing

H0: Proportional hazards

H1: Non-proportional hazards.

Since the Pearson correlation is linear, it is important to visually inspect the plot of the scaled

Schoenfeld residuals against the (possibly transformed) event times.

In Figure 5, the scaled Schoenfeld residuals of Cox PH models fitted to the data from Figure 3

are shown. The model is given by h(t|x) = h0(t) exp(βx), where x = 1 for the blue group, and

x = 0 for the black group. In the left plot, there is no statistically significant deviation from

the PHA, while in the right plot, with data forming crossing Kaplan-Meier curves, the PHA is

rejected at all standard significance levels.

If the PHA does not hold, time-varying coefficients can be incorporated, but the functional

form of the relationship between the coefficient βk(t) and time t must be assumed, for example

βk(t) = a + b log(t) or βk(t) = a + bt + ct2, yielding βkxk = axk + b log(t)xk and βk(t) =

axk + btxk + ct2xk. The Cox model can also be extended to incorporate time-varying covariates,
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Figure 5: Scaled Schoenfeld residuals from a Cox PH model with two groups, using data from Figure 3,
plotted against rank-ordered event times. The blue group is coded as 1 and the black group is coded as
0. A smooth curve for the association between (rank-ordered) time and the Scaled Schoenfeld residuals
was added for illustrative purposes.

though this is not the scope of this thesis, and the interested reader is referred to Klein and

Moeschberger (2003, Ch. 9).

Other types of residuals are the Cox-Snell, Martingale, and Deviance residuals, all described

in (Klein & Moeschberger, 2003, Ch. 11). The Cox-Snell residuals are defined as

rCS,i = Ĥ(ti|x), (18)

with Ĥ(ti|x) estimated from the model as

rCS,i = Ĥ0(ti) exp(β′x),

where Ĥ0(ti) is the Breslow estimator defined in Eq. (16). Note that the Cox-Snell residuals

are defined for uncensored as well as censored observations, unlike the Schoenfeld residuals in

Eq. (17). Plotted against ĤNA of Eq. (5) of the residuals (using the residuals as the time

variable), these should form a straight line through the origin with slope 1.

The Martingale residuals are defined as

r̂M,i = δi − Ĥ0(ti)Ĥ(ti|x) = δi − rCS,i. (19)

If the trueH0(·) and β were to be used, the Martingale residuals would be mean-zero martingales,

which explains the name. To assess the functional form of a continuous covariate, the Martingale

residuals of a Cox PHM containing all other covariates can be plotted against the covariate

values. The highest possible value of the Martingale residuals is 1, while the lowest is −∞.

Therefore, these residuals are highly skewed.

To check overall model fit, and check for outliers, the Deviance residuals can be used, defined

as

rD,i = sign(r̂M,i)
√
−2[r̂M,i + δi log(δi − r̂M,i)]. (20)

These residuals should have an approximate normal distribution if the model fits. The deviance

residuals can be plotted against the individual exp(β̂′xi)s to detect outliers. They can also,
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similarly to the Martingale residuals, be used to assess the functional shape of a continuous

covariate. With a high proportion censored observations, a high proportion of the Martingale

and deviance residuals will be close to zero.

3.5 Parametric survival models

Even though the non-parametric and semi-parametric methods of Sections 3.2 and 3.4 are popu-

lar, much can be gained from a parametric model, given that the model assumptions are fulfilled.

In fact, Sir David Cox himself, when asked by Nancy Reid (1994) about the popularity of his

model, have said that he would prefer a parametric approach rather than a semi-parametric one.

There are several types of parametric survival models. The survival time can be modeled

directly, but also the hazard function. In Section 3.5.1, some common parametric distributions

used in survival analysis are introduced to the reader, followed by the model formulations of a

few parametric survival models in Sections 3.5.2, 3.5.3, and 3.5.4, with a focus on the Weibull

and log-logistic distributions.

3.5.1 Common parametric distributions

An informative table including a number of more or less common parametric distributions used

in survival analysis is given by Klein and Moeschberger (2003, Ch. 2.5). A few of them are

introduced in Table 2, and two additional ones are introduced in Table A1 and Figures A1

and A2 of Appendix A. The density function, survival function, and hazard function of the

parametric distributions in Table 2 are shown in Figures 6, 7, 8, 9, 10, for varying parameter

values.

Table 2: Common parametric distributions in survival analysis

Distribution Parameters f(t) S(t) h(t)

Exponential T ∼ Exp(λ) λ > 0 λe−λt e−λt λ

Weibull T ∼Weib(α, λ) α, λ > 0 αλtα−1e−λt
α

e−λt
α

αλtα−1

Log-normal T ∼ LN(µ, σ2) µ ∈ R, σ > 0 1

t
√

2πσ2
exp

(
−(log t−µ)2

σ2

)
1− Φ

(
log t−µ
σ

)
(*) f(t)

S(t)

Log-logistic T ∼ LL(α, λ) α, λ > 0 αλtα−1

(1+λtα)2
1

1+λtα
αλtα−1

1+λtα

Generalized Gamma
T ∼ GΓ(α, β, λ)

α, β, λ > 0 αλβtαβ−1 exp(−λtα)
Γ(β)

(**) 1−
∫ t

0
f(s)ds f(t)

S(t)

*) Φ(·) CDF for N(0, 1)

**) Γ(z) =
∫ ∫

0
xz−1 exp(−x)dx. If n ∈ N,Γ(n) = (n− 1)!

The exponential distribution is memoryless, seen by the property (let s, t > 0)

P (T > s+ t|T > s) =
P (T > s+ t, T > s)

P (T > s)
=
P (T > s+ t)

P (T > s)
=
e−λ(s+t)

e−λs
= e−λt = P (T > t),

so T has the same distribution regardless of how long the observed survival time is. This means

that the expected residual survival time is the same, even if the subject has survived for a

long time. This can also be seen by the fact that the hazard function, which at time t is the

instantaneous probability of having an event at time t+ dt, given that the subject has survived

at least until time t, is constant. Although an attractive mathematical property, this can be
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Figure 6: The Exponential distribution; density function, survival function and hazard function, for
varying rate parameters λ.

more or less plausible depending on the context. It is unlikely that an 80 year old person and a

2 year old person have the same expected residual survival time.

The common way of parameterizing the Weibull distribution is by f(t) = a
b

(
t
b

)a−1
e−(t/b)a .

Table 2 presents an alternative parametrization, with α = a, λ = b−a, which is more suitable

for proportional hazards modeling. As seen in Figure 7, for shape parameter α < 1, the hazard

function is strictly decreasing, and approaches zero as t tends to infinity, while for α > 1 it

is strictly increasing, and tends to infinity as t goes to infinity. This flexibility makes the

Weibull distribution an attractive distribution in survival analysis. Note that α = 1 produces

an exponential distribution with mean 1/λ. This is also visible in Figure 7, where a constant

hazard function of 1 is seen for α = 1.

The log-normal distribution is an appealing candidate due to the close connection to the well-

known normal distribution. If the random variableX ∼ LN(µ, σ2), then Y = log(X) ∼ N(µ, σ2).

In Figure 8 it can be seen that hazard function h(t) is first increasing and then decreasing, a

property that has been deemed unlikely for many survival data applications. Recall that the

hazard is the instantaneous risk of having the event at time t, given that the survival time is at

least t−. If a subject has survived a long time, it is likely that the event will occur. Though the

distribution can be appropriate when the beginning of the time frame is of greater interest than

later times (Klein & Moeschberger, 2003, Ch. 2.5, p. 40). For example, in childhood cancer,

children not dying from the disease or treatment tend to die from other causes much later in life,

and, hence, their hazard function could very well be decreasing after the first years following

diagnosis.

If a random variable Y follows the logistic distribution, which resembles the normal distri-

bution, then X = exp(Y ) follows the log-logistic distribution. Similar to the log-normal hazard,

the hazard function of the log-logistic distribution approaches zero as t goes to infinity (Klein

& Moeschberger, 2003, Ch. 2.5, p. 41). The distribution is visualized in Figure 9.

The Generalized Gamma distribution is practical when it comes to choosing a paramet-

ric distribution and for model checking, since the exponential, Weibull, and Gamma (see Ap-

pendix A) distributions are all special cases of this distribution. An exponential distribution

with mean 1/λ is produced when α = β = 1, a Weibull distribution with parameters α and

λ is produced when β = 1, and a Gamma distribution with parameters β and λ is produced

when α = 1. Also, when β approaches infinity, the generalized gamma distribution approaches

the log-normal distribution (Klein & Moeschberger, 2003, Ch. 2.5, p. 44). The distribution is

visualized in Figure 10.

22



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0
α = 0.5
α = 1
α = 1.5
α = 3

D
en

si
ty

 fu
nc

tio
n 

f(
t)

t
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

S
ur

vi
va

l f
un

ct
io

n 
S

(t
)

t
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

4

5

H
az

ar
d 

fu
nc

tio
n 

h(
t)

t

Figure 7: The Weibull distribution; density function, survival function and hazard function, for varying
shape parameters α. The scale parameter λ = 1 for all α.
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Figure 8: The Log-Normal distribution; density function, survival function and hazard function, for
varying parameters, σ. µ = 0 for all σ
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Figure 9: The Log-Logistic distribution; density function, survival function and hazard function, for
varying parameters, α. λ = 1 for all α.
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Figure 10: The Generalized Gamma distribution; density function, survival function and hazard func-
tion, for varying parameters, α, β. λ = 1 for all α, β.
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3.5.2 Accelerated failure time model

This section follows Klein and Moeschberger (2003, Ch. 2 & 12). One approach to parametric

regression modeling for survival data is to model the natural logarithm of the time-to-event

variable T , with V = log(T ), conditional on a number of covariates x in analogy with linear

regression, as follows

V = µ+ ω′x+ σW, (21)

where ω = (ω1, ..., ωp)
′ is a coefficient vector, and W follows some error distribution. Let S0(t)

be the baseline survival function of T when x = 0. The survival function of T given covariates

x is derived as follows,

S(t|x) = P (T > t|x) = P (V > log(t)|x) = P (µ+ σW > log(t)− ω′x|x)

= P (exp{µ+ σW} > t exp{−ω′x}|x) = S0(t exp{−ω′x}).

Due to x accelerating or degrading the baseline survival function, these types of parametric

survival models are called accelerated failure time (AFT) models.

If W has a standard extreme value distribution with density

fW (w) = exp{w − ew},−∞ < w <∞,

then T follows a Weibull distribution with the shape and scale parameters α and λ expressed in

terms of µ and σ from Eq. (23) as α = 1/σ and λ = exp(−µ/σ). To see this, let T ∼Weib(α =

1/σ, λ = e−µ/σ), with

FT (t) = 1− exp{− exp(−µ/σ)t1/σ},

and V = log(T ) = µ+ σW , so W = [log(T )− µ]/σ. Now,

FW (w) = P (W ≤ w) = P ([log(T )− µ]/σ ≤ w) = P (T ≤ exp{µ+ σw})

= FT (exp{µ+ σw}) = 1− exp
(
− exp{−µ/σ} exp{µ+ σw}1/σ

)
= 1− exp(−ew),

which is the CDF of a standard extreme value distribution. Using a Weibull distribution for T ,

the baseline survival function is given by

S0(t) = exp(−λtα),

which yields the AFT model

S(t|x) = exp(−λ[t exp(−ω′x)]α). (22)

If W has a standard logistic distribution with density

fW (w) = ew/(1 + ew)2,−∞ < w <∞,
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then T follows a log-logistic distribution with α = 1/σ and λ = exp(−µ/σ), similar to the

Weibull distribution. To see this, let T ∼ LL(α = 1/σ, λ = exp{−µ/σ}, with

FT (t) = 1− 1

1 + exp(−µ/σ)t
1
σ

.

Similarly to the Weibull distribution, FW (w) is given by

FW (w) = FT (exp{µ+ σw}) = 1− 1

1 + exp(−µ/σ) exp(µ+ σw)
1
σ

= 1− 1

1 + exp(w)
,

which is the CDF of a standard logistic distribution. For T ∼ LL(α, λ), the baseline survival

function is given by

S0(t) =
1

1 + λtα
,

yielding the AFT model

S(t|x) =
1

1 + λ[t exp(−ω′x)]α
. (23)

Other possible distributions for AFT models include the log-normal and generalized gamma

distributions. The interested reader is referred to Klein and Moeschberger (2003, Ch. 12), where

an overview of AFT models is provided.

3.5.3 Parametric proportional hazards model

Another way to parametrically model survival data is to use a proportional hazards model,

also called relative risk model or multiplicative hazards model, modeling the hazard function as

follows,

h(t|x) = h0(t)c(β′x),

where c(·) is any non-decreasing function. Comparing two hazards with covariate vectors x1

and x2, respectively, yields

h(t|x1)

h(t|x2)
=
h0(t)c(β′x1)

h0(t)c(β′x2)
=
c(β′x1)

c(β′x2)
,

which is constant over time t. Hence, this is a proportional hazards model (PHM). An intuitive

choice for c(·) is, in analogy with the Cox PHM, exp(·), yielding

h(t|x) = h0(t) exp(β′x).

Similar to the Cox PHM, a one-unit increase in xk yields a hazard ratio of exp(βk). Note that

h0(t) is not the same h0(t) as in the Cox PHM, presented in Section 3.4. Instead, h0(t) is

modeled parametrically. If T ∼Weib(α, λ), then h0(t) = αλtα−1, which gives the Weibull PHM

h(t|x) = αλtα−1 exp(β′x). (24)
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Recall from Eq. (2) that H(t) =
∫ t

0 h(s)ds, and from Eq. (4) that S(t) = exp{−H(t)}. For a

Weibull PHM, the cumulative hazard function is given by

H(t) =

∫ t

0
αλsα−1 exp(β′x)ds = λtα exp(β′x),

and the survival function is given by

S(t) = exp{−λtα exp(β′x)} = exp

{
−λ
[
t exp

(
1

α
β′x

)]α}
,

which is on the form of the AFT model in Eq. (22), with −ω′ = 1
αβ
′. The Weibull distribution is

the only one that can be written both on the proportional hazards form and on the accelerated

failure time form.

3.5.4 Parametric proportional odds model

Yet another parametric model for survival data is the proportional odds model (POM), given

by

O(t|x) =
1− S(t|x)

S(t|x)
=

1− S0(t)

S0(t)
exp(β′x) = O0(t) exp(β′x), (25)

where O0(t) is the baseline odds of an event occurring before time t. A one-unit increase in xk

results in an odds ratio (OR) of exp(βk). A natural choice of distribution for this model is the

log-logistic distribution, yielding

O0(t) =
1− S0(t)

S0(t)
=

1− 1
1+λtα

1
1+λtα

= λtα, (26)

and therefore

O(t|x) = λtα exp(β′x).

Using the AFT representation in Eq. (23), the POM can be written

O(t|x) =
1− 1

1+λ[t exp(−ω′x)]α

1
1+λ[t exp(−ω′x)]α

= λtα exp(−αω′x).

Hence, the coefficients of the POM can be calculated from the AFT model with β = −αω. The

log-logistic distribution is the only one that can be written on both the POM and AFT forms.

Another approach to parametric survival data modeling is to use additive hazard models.

These will not be presented here, but the interested reader is referred to (Klein & Moeschberger,

2003, Ch. 10).
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3.5.5 Estimation and inference

In a Weibull AFT model, where V = log(T ) = µ+ ω′x+ σW , the CDF of V is derived as

FV (v) = P (V ≤ v) = P (log(T ) ≤ v) = P (T ≤ exp{v}) = FT (exp{v})

= 1− exp

(
−e−

µ
σ

[
eve−ω

′x
] 1
σ

)
= 1− exp

(
−e

v−µ−ω′x
σ

)
,

which yields

SV (v) = 1− FV (v) = exp

(
−e

v−µ−ω′x
σ

)
,

and

fV (v) =
dFV (v)

dv
=

1

σ
exp

(
v − µ− ω′x

σ
− e

v−µ−ω′x
σ

)
.

From Eq. (8), the likelihood function is given by, letting vi = log(yi) = log[min(ti, ci)],

L(µ, σ|x) =
n∏
i=1

fV (vi)
δiSV (vi)

1−δi

=

n∏
i=1

[
1

σ
exp

(
vi − µ− ω′xi

σ
− e

vi−µ−ω′xi
σ

)]δi
exp

(
−e

vi−µ−ω′xi
σ

)1−δi
.

The maximum likelihood estimates of µ, σ and ω are found numerically, and the covariance ma-

trix is estimated by the observed Fisher information matrix. Estimates of β from the Weibull

PHM in Eq. (24), as well as α and λ are derived as β̂ = −ω̂/σ̂, α̂ = 1/σ̂ and λ̂ = exp(−µ̂/σ̂), re-

spectively, and their variances are estimated using the Delta method, see Klein and Moeschberger

(2003, Ch. 12) for a derivation.

In a log-logistic AFT model, the CDF of V is derived as

FV (v) = FT (exp{v}) = 1− 1

1 + exp
(v−µ

σ

) ,
which yields

SV (v) = 1− FV (v) =
1

1 + exp
(v−µ

σ

) ,
and

fV (v) =
dFV (v)

dv
=

1

σ

exp
(v−µ

σ

)[
1 + exp

(v−µ
σ

)]2 .
The likelihood function is given by

L(µ, σ|x) =

n∏
i=1

[
1

σ

exp
(vi−µ

σ

)[
1 + exp

(vi−µ
σ

)]2
]δi [

1

1 + exp
(vi−µ

σ

)]1−δi

.

Similarly to the Weibull AFT model, the likelihood is maximized numerically, and estimates of
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β from the POM in Eq. (25), α and λ are estimated by β̂ = −ω̂/σ̂, α̂ = 1/σ̂ and λ̂ = exp(−µ̂/σ̂),

and their variances can be estimated with the Delta method.

3.5.6 Model diagnostics

The Generalized Gamma distribution, introduced in Section 3.5.1, can be used to check which

of the log-normal, Weibull or exponential distributions fit the data best, as described in Klein

and Moeschberger (2003, Ch. 12). Having fitted a Weibull AFT, a hypothesis test of H0 : σ = 1

tests whether an exponential distribution would suffice for the data.

How well a Weibull distribution fits the data can be assessed by visually inspecting a plot of

the logarithm of Nelson-Aalen estimates ofH(t) against log(t), sinceH(t) = λtα, and log[H(t)] =

log(λ) + α log(t), which is linear in log(t).

The fit of a log-logistic distribution to the data can be assessed by visually inspecting a plot

of log[exp{ĤNA(t)} − 1] against log(t), since

H(t) = − log[S(t)] = − log

(
1

1 + λtα

)
⇔ log[exp{H(t)} − 1] = log(λ) + α log(t),

which is linear in log(t). Figure 11 shows transformed Nelson-Aalen estimates for event times

simulated from a Weibull distribution and a log-logistic distribution, respectively, against log(t).

The Weibull log[Ĥ(t)] is linear in log(t), while the log-logistic distribution is not. Conversely,

the log-logistic log[exp{Ĥ(t)} − 1] is linear in log(t) while the Weibull distribution is not. For

small sample sizes, it may be hard to evaluate the parametric fit due to the high variability in

the Nelson-Aalen estimates.

To evaluate the fit of a parametric regression model, the Cox-Snell residuals, defined in

Eq. (18) as

rCS,i = Ĥ(tj |x),

where Ĥ(tj |x) is estimated from the fitted model, can be plotted against ĤNA of the residuals.

If the model fits, the plot should show a straight line with slope 1. For the Weibull PHM, the

Cox-Snell residuals are defined as

rCS,i = λ̂ exp(β̂′xi)t
α̂
i ,

while for the log-logistic POM they are defined as

rCS,i = log

(
1

1 + λ̂ exp(β̂′xi)tα̂i

)
.

Using the log-linear representation from Eq. (21), the so called standardized residuals, in analogy

with linear regression, are given by

rS,i =
log(tj)− µ̂− ω̂′xi

σ̂
.

If the parametric model fits, these residuals should be a censored sample from error distribution

of W . As in the model diagnostics of the Cox PHM in Section 3.4.3, the Martingale residuals of

Eq. (19) can be used to assess the functional form of a continuous covariate, and the Deviance
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Ĥ
(t)

N
A
)−

1)

Weibull

−4 −3 −2 −1 0 1 2 3

−4

−2

0

2

4

log(t)

lo
g(

ex
p(

Ĥ
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Figure 11: Transformed Nelson-Aalen estimates of H(t) plotted against log(t) for n = 100 uncensored
event times simulated from T ∼ Weib(α = 2, λ = 0.5) (left plots), and T ∼ LL(α = 2, λ = 0.5) (right
plots). Blue line in the upper left plot shows true log[H(t)] = log(λ)+α log(t) for the Weibull distribution.
Blue line in the lower right plot shows true log[exp{H(t)} − 1] = log(λ) + α log(t) for the log-logistic
distribution.
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Figure 12: Example of Weibull and Log-logistic survival estimates from models including a binary
predictor indicating group, using data from Figure 3. Times to event in the left column are sampled
from Weib(λ = 1, α = 0.9) and Weib(λ = 2, α = 0.9). Times to event in the right column are sampled
from Weib(λ = 1, α = 0.9) and Weib(λ = 1, α = 1.8). Times to censoring are sampled from a uniform
distribution U(0.2, 2). Shaded areas show 95% confidence intervals. Dashed lines show true Weibull
survival curves.

residuals in Eq. (20) can be used to assess the overall model fit and to check for outliers.

In Figure 12, survival curves estimated from a Weibull and a Log-logistic model containing

a single binary covariate denoting group, are shown, using data from Figure 3. None of the

models can capture the crossing survival curves that are present in the right part of Figure 3.

3.6 Royston and Parmar models

In 2002, Patrick Royston and Mahesh K. B. Parmar introduced extensions of the Weibull pro-

portional hazards and log-logistic proportional odds parametric models, arguing that their pro-

posed method enables an easier visualization of the hazard function and a better handling of

non-proportional hazards compared to the Cox model, while relaxing the parametric assumption

that is inherent in fully parametric models (Royston & Parmar, 2002). The idea of Royston and

Parmar models is to incorporate so called restricted cubic splines for the baseline log cumulative

hazard and log cumulative odds. In this section, restricted cubic splines are first introduced to

the reader (Section 3.6.1), after which the Royston and Parmar proportional hazards model and

proportional odds model are presented (Section 3.6.2).
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3.6.1 Restricted cubic splines

In various statistical regression models, the linearity assumption between (a function of) an

outcome, U , and a predictor, x, may not hold, and therefore needs to be relaxed. Transforming

x, for example using the natural logarithm or adding a quadratic term may be appropriate

in some cases, but in other cases a more flexible transformation is needed. Using splines, i.e.

piecewise polynomials with some restrictions, is a common way of dealing with this issue. Splines

enable a function between U and x by dividing x into a number of intervals, joined together by so

called knots, and fitting a polynomial in each interval, letting the polynomials join at the knots.

If the polynomials are of degree m, then the function as a whole should have continuous m− 1

derivatives. The simplest splines are piecewise linear (Harrell, 2015, Ch. 2.4, p. 22). These can,

however, be too crude, and fitting a polynomial of higher degree may be more suitable. Cubic

splines are third degree polynomials fitted between the knots, enabling high flexibility. Since

higher degree polynomials can behave inappropriately at the tails, the function can be restricted

to be linear before the first knot and after the last knot. Formally, restricted cubic splines (also

called natural cubic splines) are calculated by selecting the number and locations of the knots,

and then creating a set of extra x-variables. Let nk denote the number of knots, including the

boundary knots, and let ai, i = 1, ..., nk be the knot locations on the x-axis. Then nk − 2 extra

variables are created according to (Royston & Parmar, 2002)

vj(x) = (x− aj)3
+ −

ank − aj
ank − a1

(x− a1)3
+ −

aj − ank
ank − a1

(x− ank)3
+, j = 1, ..., nk − 2,

where (z)+ = z if z > 0 and (z)+ = 0 otherwise. In a regression model, the number of fitted

parameters are nk− 1, excluding the intercept (Durrleman & Simon, 1989). A regression model

with some link function g(U), using a spline basis for x, is then written

g(U) = β0 + β1x+ β2v1(x) + ...+ βnk−1vnk−2(x).

The choice of the number and placement of knots is not obvious. With more observations,

more knots can be placed, but over-fitting should be avoided. Where the x-data are sparse, less

can be said about the relationship between x and U , and therefore less knots should be placed

in those intervals. In the R package splines (R Core Team, 2019), the function ns by default

places the boundary knots at the minimum and maximum x-values, respectively, and internal

knots using equally spaced quantiles. The function rcs in R package rms also uses quantiles

for knot placement, but places the boundary knots inside the data endpoints, for example at

the 10%- and 90%-quantiles for 3 knots (Harrell Jr, 2019). Examples of spline fits using linear

regression are shown in Figure 13. More knots are placed where the data are dense.

3.6.2 Model formulation

Royston and Parmar (2002) initially propose a proportional hazards model according to

H(t|x) = H0(t) exp(β′x), (27)

where H0(t) is the cumulative hazard function when β = 0. Recall from Table 2 that the survival

function of a Weibull distribution is S(t) = exp(−λtα), and from Eq. (3) that H(t) = − logS(t).
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Figure 13: Example of linear regression using piecewise linear splines (left), and restricted cubic splines
(RCS) (middle, right). Arrows indicate knot locations. Data simulated from N(f(x), 0.162), where
f(x) = 2 + x/40 · cos(x) + 0.2 · sin(x), and x ranges from -1 to 5.

Thus, H(t) for a Weibull distribution is given by

H(t) = − logS(t) = − log
(
e−λt

α
)

= λtα.

Taking the logarithm of H(t) gives

log[H(t)] = log(λ) + α log(t) = γ0 + γ1 log(t),

which is linear in log(t). In practice, T may not follow a Weibull distribution. Therefore, the

non-linear function s∗(log(t),γ) is introduced, representing the true relationship between log(t)

and log[H0(t)]. The logarithm of Eq. (27) can now be written as

log[H(t|x)] = log[H0(t)] + β′x = s∗(log(t),γ) + β′x. (28)

Restricted cubic splines are used to approximate s∗(log(t),γ), which is notably independent of

β′x, according to

s(log(t),γ) = γ0 + γ1 log(t) + γ2v1[log(t)] + ...+ γnk−1vnk−2[log(t)]. (29)

The hazard ratio for a one-unit increase in xk is given by

h(t|x+ ek)

h(t|x)
=

d
dtH(t|x+ ek)

d
dtH(t|x)

=
exp(β′[x+ ek])

d
dtH0(t)

exp(β′x) ddtH0(t)
= exp(βk),

where ek is the unit vector defined in Section 3.4.1. By definition, H(t) should be monotone in

t, but there is no restriction on splines to be monotone. However, Royston and Parmar argue

that the spline estimation of s(log(t),γ) will be monotone for reasonable sample sizes.

Royston and Parmar also introduce a proportional odds model, generally defined in Eq. (25),

given by

O(t|x) = O0(t) exp(β′x).

Using a log-logistic distribution, T ∼ LL(α, λ), the baseline odds of having an event before time
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t is shown in Eq. (26) to be given by O0(t) = λtα, yielding

log[O0(t)] = log(λ) + α log(t) = γ0 + γ1 log(t).

Similar to the baseline log cumulative hazard in Eq. (28), the baseline log odds is replaced by

s∗(log(t),γ), which gives

log[O(t|x)] = s∗(log(t),γ) + β′x,

where s∗(log(t),γ) is approximated using restricted cubic splines as in Eq. (29). The odds ratio

(OR) for a one-unit increase in xk is given by exp(βk).

Royston and Parmar argue that their models are robust to suboptimal knot placement, and

suggest placing the boundary knots at the first and last uncensored event time, and inner knots

at chosen percentiles (median for 1 inner knot, 33% and 67% percentiles for 2 inner knots, and

25%, 50% and 75% percentiles for 3 inner knots). They further suggest avoiding using more

than 3 inner knots, since it may cause unstable functions.

3.6.3 Estimation and inference

The models are estimated by maximizing the likelihood functions, replacing s∗(log(t),γ) with

s(log(t),γ). Let η = s(log(t),γ)+β′x. For the PHM, S(t|x) = exp{−H(t|x)} = exp{− exp(η)}.
From Eq. (9), any observation, censored or uncensored, contributes to the likelihood with

h(yi|xi)δiS(yi|xi). Now,

h(t|x) =
d

dt
[H(t|x)] =

d

dt

[
exp

{
s(log(t),γ) + β′x

}]
=

1

t

d

d log(t)
[s(log t,γ)] exp(η).

Plugging in the expressions for h(t|x) and S(t|x) gives the PHM likelihood function

L(β|x) =

n∏
i=1

h(yi|xi)δiS(yi|xi)

=
n∏
i=1

[
1

yi

d

d log(t)
[s(log(t),γ)]

∣∣∣
t=yi

exp(ηi)

]δi
exp{− exp(ηi)}.

For the POM, S(t|x) = [1 + exp(η)]−1, and

H(t|x) = − log[S(t|x)] = log[1 + exp(η)],

which gives

h(t|x) =
d

dt
[H(t|x)] =

d

dt
[log(1 + exp{η})] =

1

t

d

d log(t)
[s(log(t),γ)]

exp(η)

1 + exp(η)
,

yielding the POM likelihood function

L(β|x) =

n∏
i=1

[
1

yi

d

d log(t)
[s(log(t),γ)]

∣∣∣
t=yi

exp(ηi)

1 + exp(ηi)

]δi 1

1 + exp(ηi)
.
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In order to maximize the likelihood functions, appropriate starting values for γ and β must

first be found. This can be done by fitting a Cox model to the data, estimating H(ti|xi) with

− log[Ŝ(ti|xi)] and O(ti|xi) with [1− Ŝ(ti|xi)]/Ŝ(ti|xi), selecting starting values for γ and β by

fitting a linear regression model of log[Ĥ(ti|xi)] and log[Ô(ti|xi)], respectively, to the log(ti), xi,

and spline basis of log(ti). After maximizing the likelihood function, standard error estimates

are found from the information matrix.

3.6.4 Model extensions and diagnostics

If the proportional hazards assumption (PHA) or the proportional odds assumption (POA) is

not fulfilled for a covariate xk, then the corresponding βk needs to be made time-dependent.

Using 3 knots (2 boundary and 1 internal), the proportional hazards (PH) and proportional

odds (PO) models can then be extended to

log[H(t|x)] = γ0 + (γ1,0 + γ1,1xk) log(t) + (γ2,0 + γ2,1xk)v1[log(t)] + β′x,

and

log[O(t|x)] = γ0 + (γ1,0 + γ1,1xk) log(t) + (γ2,0 + γ2,1xk)v1[log(t)] + β′x,

respectively. More generally, for nk knots, the PH and PO models can be written

log[H(t|x)] = γ0 + (γ1,0 + γ1,1xk) log(t) +

nk−2∑
j=1

(γj+1,0 + γj+1,1xk)vj [log(t)] + β′x, (30)

and

log[O(t|x)] = γ0 + (γ1,0 + γ1,1xk) log(t) +

nk−2∑
j=1

(γj+1,0 + γj+1,1xk)vj [log(t)] + β′x, (31)

respectively.

The PHA can be checked in a Cox model, as described in Section 3.4.3. Otherwise a

likelihood ratio test can be applied, comparing a model containing the extra γi,ks to a model

assuming proportional hazards. The AIC and BIC should also reflect whether it is necessary to

include non-proportionality in the models.

In Figure 14, survival curves estimated from Royston and Parmar models containing a single

binary covariate denoting group, are shown, using data from Figure 3. The proportional hazards

and odds models in the first row of the figure cannot capture the crossing survival curves that

are present in the right part of Figure 3, while the non-proportional hazards and odds models

can. For the data of the left part of Figure 3 where hazards are truly proportional, modeling

the coefficient as a function of time does not make much difference.

3.7 Quantile regression

Quantile regression, where the quantiles (defined in Section 3.7.2) of an outcome variable are

modeled conditional on a number of covariates, was first introduced by Koenker and Bassett

(1978), and can be used for a variety of outcome variables. For survival analysis, it is natural to
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Figure 14: Example of Royston and Parmar (RP) survival estimates from models including a binary
predictor indicating group, using data from Figure 3. Times to event in the first and third columns are
sampled from Weib(λ = 1, α = 0.9) and Weib(λ = 2, α = 0.9). Times to event in the second and fourth
columns are sampled from Weib(λ = 1, α = 0.9) and Weib(λ = 1, α = 1.8). Times to censoring are
sampled from a uniform distribution U(0.2, 2). Shaded areas show 95% confidence intervals. Dashed
lines show true Weibull survival curves. PHM=Proportional hazards model, NPHM=Non-roportional
hazards model, POM=Proportional oddds model, NPOM=Non-roportional odds model. In all models,
3 knots were used, including the two boundary knots.

model quantiles of T or some transformation of T . Here, the method of Frumento and Bottai

(2017) (following the work of Portnoy (2003), Peng and Huang (2008), and Wang and Wang

(2009)) will be introduced. First, in Section 3.7.1, piecewise constant hazards are explained,

later used in the fitting of the model, after which the model formulation and estimation are

presented in Sections 3.7.2 and 3.7.3.

3.7.1 Piecewise constant hazards model

A piecewise constant hazards (PCH) model is used by Frumento and Bottai (2017) when estimat-

ing the survival function, needed in the estimation of the coefficients of the quantile regression

model, presented in Section 3.7.2. The time variable t is divided into A intervals, with breaks

a1, ..., aA+1, where a1 is the lower limit of the first interval, and aA+1 is the upper limit of the

last interval. The hazard function is given by

h(t|x) =


λ1(x), a1 < t ≤ a2

λ2(x), a2 < t ≤ a3

...

λA(x), aA < t ≤ aA+1,

where λk(x), k = 1, ..., A, are constants given x. Note that piecewise constant hazards means

that the survival function is piecewise exponential with Sk(t|x) = exp{−λk(x)t}. Poisson regres-

sion is used for modeling the logarithm of each λk(x) conditional on the covariates x according

to

log[λk(x)] = θ0,k + θ1,kx1 + ...+ θp,kxp.
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The number of fitted parameters is thus A(p + 1). With an increasing number of events, the

number of intervals can naturally increase. A recommended number of intervals is given by

max(dm/(5p)e, 5), where m denotes the number of events, and p the number of covariates

(Frumento, 2016b). For further details on the fitting of the PCH, see Frumento (2016b).

3.7.2 Model formulation

For a random time-to-event variable T , the τ -quantile, denoted Q(τ), fulfills

F (Q(τ)) = P (T ≤ Q(τ)) = τ,

where τ is a probability between 0 and 1. Equivalently, the τ -quantile can be written as

(Martinussen & Peng, 2014, p. 62)

Q(τ) = inf{t : P (T ≤ t) ≥ τ}.

Since S(t) = P (T > t) = 1− F (t), it holds that S(Q(τ)) = 1− τ .

An example of 0.6-quantiles, i.e. τ = 60%, in two groups, using the simulated data from the

Weibull distributions given in Figure 3, is shown in Figure 15. For a Weibull distribution with

survival function S(t) = exp{−λtα}, the τ -quantile is found by solving 1− τ = exp{−λQ(τ)α}
for Q(τ), which yields Q(τ) = [−λ−1 log(1 − τ)]1/α. However, the true distributions are rarely

known, and a regression model may be of more use than a simple comparison between two

groups.

In quantile regression, the τ -quantile of the outcome variable T is modeled conditional on

a number of covariates. Martinussen and Peng (2014) define a linear model for the quantiles

of log(T ), enabling negative predictions that can be accurately interpreted, since, theoretically,

log(T ) ∈ (−∞,∞), while T ∈ (0,∞). However, any monotone transformation of a time-to-

event random variable T can be used. An advantage of using the non-transformed T is that

the regression coefficients become directly interpretable as effects on the quantiles of T . The

quantile regression model for the τ -quantile of T is given by

Q(τ |x) = β′τ x̃i = β0,τ + β1,τx1 + ...+ βp,τxp, (32)

where x̃i = (1, x1, ..., xp)
′, and βτ = (β0,τ , β1,τ , ..., βp,τ )′. If xk is a continuous covariate, βk,τ

represents the change in the τ -quantile for a one-unit change in xk, when all other covariates

are held constant. If xk is a dichotomous covariate, βk,τ represents the difference in the τ -

quantile between the two groups defined by xk. The intercept β0,τ represents the τ -quantile

when all continuous covariates are zero and all categorical covariates are at their reference level.

In Figure 15, fitting the quantile regression model Q(0.6|x1) = β0,0.6 + β1,0.6x1 using function

ctqr in R package ctqr (Frumento, 2016a), where x1 = 0 denotes the blue group and x1 = 1

denotes the black group, results in the estimates β̂0,0.6 = 0.366 and β̂1,0.6 = 0.470. The estimated

0.6-quantile of the blue group is thus 0.366, while the corresponding number for the black group

is 0.366 + 0.470 = 0.836, and the estimated difference between the groups is 0.470, i.e. the time

until 60% have experienced an event is almost half a time-unit longer for the black group.
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Figure 15: Kaplan-Meier survival estimates for two groups, with dashed lines marking 0.6-quantiles.
Times to event are sampled from a Weibull distribution with λ = 1, α = 0.9 (black line), and λ = 2,
α =0.9 (blue line). The data are the same as in the left part of Figure 3.

3.7.3 Estimation and inference

Several estimating equations and fitting procedures have been proposed for quantile regression.

Martinussen and Peng (2014) list methods for three different scenarios involving right-censoring:

when C is always known, when C is independent of covariates, or when C is allowed to depend

on covariates, where the last scenario is the most general and useful in practice. Frumento

and Bottai (2017) present estimating equations and a fitting procedure for right-censored and

left-truncated data. While truncation is not the focus of this thesis, the method of Frumento

and Bottai (2017) have some advantages over other proposed fitting procedures. The estimating

equations for when right-censoring but no truncation is present is given by

B(βτ , F ) =
1

n

n∑
i=1

x̃i

[
τ − ωi + (1− δi)ωi

1− τ
S(yi|x̃i)

]
, (33)

where ωi = I(yi ≤ β′τ x̃i). The coefficient vector βτ is estimated by solving B(βτ , F ) = 0. This

has to be done in two steps, since Eq. (33) depends on the unknown F (yi|xi) = 1−S(yi|x̃i), which

first has to be estimated and then plugged in, after which the equation B(βτ , F̂ ) = 0 is solved

numerically. F (ti|x̃i) is estimated using piecewise constant hazards, see Section 3.7.1. Frumento

and Bottai (2017) show that β̂τ is an unbiased estimator of βτ , and that it is asymptotically

normal.

There is no closed form expression of the estimator of the covariance matrix Cov(β̂). The

estimation is done by incorporating the effect of the PCH estimate of F (ti|xi), using the formula

of robust variance estimator for two-stage models of Hardin (2002). See Frumento and Bottai

(2017) for details on the estimation of Cov(β̂).

3.7.4 Model diagnostics

AIC and BIC can be used for model selection in the usual sense.

Fitting quantile regression models for several values of τ , say τ1, τ2, ..., τl, the estimates

of βk,τ , k = 1, ..., p, can be plotted against the τ -values to check whether the βk,τ -estimates

are the same across the probabilities τ . In Figure 16, β1,τ -estimates from univariable quan-
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Figure 16: Plots of β1,τ -estimates against τ = (0.1, 0.125, 0.15, ..., 0.7) from quantile regression models
applied to the data from Figure 3. True β1,τ s as a function of τ are plotted in blue.

Table 3: Comparison between methods. KM=Kaplan-Meier estimator, NA=Nelson-Aalen estimator,
CPHM=Cox proportional hazards model, AFT=Accelerated failure time model, W PHM=Weibull pro-
portional hazards model, LL POM=Log-logistic proportional odds model, RP PHM=Royston and Par-
mar proportional hazards model, RP POM=Royston and Parmar proportional odds model, QR=Quantile
regression.
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Q
R

Non-parametric 3 3

Semi-parametric 3

Fully parametric 3 3 3

Flexible parametric 3 3

Categorical covariates 3 3 3 3 3 3 3 3 3

Continuous covariates 3 3 3 3 3 3 3

Regression model 3 3 3 3 3 3 3

Hazard ratios 3 3 3

Odds ratios 3 3

Extrapolation 3 3 3 3 3

Time-varying coefficients 3 3 3 3

Ŝ(t) 3 3 3 3 3 3 3 3

Ĥ(t) 3 3 3 3 3 3 3 3

ĥ(t) 3 3 3 3 3 3

tile regression models applied to the simulated data from Figure 3 are plotted against τ =

(0.1, 0.125, 0.15, ..., 0.7). In the left plot, using data from the non-crossing survival curves, one

group always has less survival time than the other, and the difference is increasing in τ . In the

right plot, using data from the crossing survival curves, the β1,τ -estimates are first increasing

in τ and then decreasing, capturing the horizontal differences between the survival curves in

Figure 3.

3.8 Method comparison

The qualities of, and what can be estimated from, the methods covered in Sections 3.2-3.7 are

summarized in Table 3. The table shows that what can be estimated from fully parametric

models can also be estimated by flexible parametric models, while the semi- and non-parametric

models are more limited and cannot be extrapolated.
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4 Simulations

In this section the results from three simulation studies are presented. The first, in Section 4.1,

is an estimation of power for detecting deviations from the proportional hazards assumption

(PHA). The second, in Section 4.2 compares methods assuming proportional hazards. The

third, in Section 4.3, evaluates coefficient estimates, standard errors, and confidence interval

coverage of quantile regression models.

4.1 Power to detect deviations from the proportional hazards assumption in

a Cox proportional hazards model

In order for the coefficient estimates in a Cox PHM to be meaningful, the proportional hazards

assumption (PHA) has to be fulfilled, and therefore needs careful evaluation. In this section,

simulations to estimate the power in detecting deviations from the PHA are presented, with

varying sample sizes, proportions of censored observations, and deviations from the PHA.

Four different Weibull time-to-event distributions were compared to a Weibull distribution

with α = 0.9, λ = 1 (the reference distribution). Figure 17 shows the Weibull survival and hazard

functions, and the corresponding hazard ratios in comparison with the reference distribution.

Cox PH models, defined in Eq. (11), were fitted, including a single binary covariate x, denoting

group, taking values 0 or 1. When x = 0, the time-to-event distribution was the reference

distribution. When x = 1, the time-to-event distribution was one of the four other Weibull

distributions. When α = 0.9, λ = 2, the PHA was fulfilled, as clearly seen in the right part of

Figure 17, where the hazard ratios are shown. In all other cases, the PHA was not fulfilled.

When α = 1, the time-to-event distribution was exponential with λ = 2, generating a small

deviation from the PHA. The cases when α = 1.2 and α = 1.4 corresponded to moderate and

large deviations, respectively. The PHA in each fitted Cox PH model was assessed by testing

the correlation between the rank-ordered event times and the scaled Schoenfeld residuals, as

described in Section 3.4.3, using the function cox.zph in R package survival (Therneau, 2015).

The probabilities of an observation being censored before the occurrence of an event were set

to pc = P (δ = 0) = 0, 0.3, 0.6, 0.9, respectively. The censoring times were uniformly distributed

U(0, θ), and independent of the time-to-event distributions. For each of the simulation scenarios,

θ was determined as the number generating the desired censoring probability pc, as follows.

Denote the time-to-censoring density function g(c) = 1/θ. Let f(t) = 1/2[f1(t) + f2(t)], where

f1(t) are f2(t) are time-to-event distributions of the reference Weibull distribution and one of

the four other Weibull distributions. Given a specific probability of censoring pc, the upper limit
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Figure 17: Survival functions, hazard functions and hazard ratios (in relation to the black line) of
Weibull distributions used in simulations for estimating power in testing the PHA.

θ of the censoring distribution can be determined by solving the following equation for θ,

pc = P (δ = 0) = P (0 ≤ C ≤ θ, C ≤ T ≤ ∞) (34)

=

∫ θ

0
g(c)

∫ ∞
c

f(t)dtdc

=

∫ θ

0

1

θ

∫ ∞
c

1

2
[f1(t) + f2(t)] dtdc

=

∫ θ

0

1

2θ

∫ ∞
c

(
α1λ1t

α1−1e−λ1tα1
+ α2λ2t

α2−1e−λ2tα2
)
dtdc

=

∫ θ

0

1

2θ

[
−e−λ1tα1 − e−λ2tα2

]∞
t=c

dc

=

∫ θ

0

1

2θ

(
e−λ1cα1

+ e−λ2cα2
)
dc.

There is no closed-form expression for θ, and the above equation was therefore solved numerically

using uniroot in R, for the different censoring probabilities and Weibull distributions. Note

that, since the same censoring distribution is applied to both groups, the censoring proportion

in the two groups combined will be on average pc, but if f1(t) 6= f2(t) (which is the case

in these simulations), the censoring proportion in each group generally differs. This is very

common in real life datasets, since one group often have events occurring faster, resulting in

fewer observations being censored, while another group having events occurring slower has more

censored observations. Most survival methods are applicable even if the censoring distribution

is only conditionally independent of the time-to-event distribution.

The different sample sizes in each group were n = 25, 50, 100, 250, 500, 1000. The simulation

scenarios are presented in Table 4, along with corresponding upper limits of the censoring dis-

tributions. Each scenario was simulated with 10000 Monte Carlo replications. In the scenario

with no deviation from the PHA, the Type I error rate, defined as P (Reject H0|H0 is true), was

estimated as the proportion of tests with p-values less than 5%. Similarly, in the scenarios with

small to large deviations from the PHA, the statistical power of detecting deviations from the

PHA, defined as P (Reject H0|H1 is true), was estimated as the proportion of tests with p-values

less than 5%.

In Table 5, the estimated Type I error rates in the scenario of no deviation from the PHA

are presented. In this scenario the null should be rejected in 5% of the cases. The table shows

that without censoring, the proportion rejected null hypotheses is actually less than 5%, and
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Table 4: Setup for simulation of power for testing the PHA

Scenario
Deviation from the PHA

in comparison to reference α λ θ for pc = 0.3 θ for pc = 0.6 θ for pc = 0.9

Reference - 0.9 1 - - -
1 None 0.9 2 2.30 0.71 0.11
2 Small 1.0 2 2.33 0.75 0.13
3 Moderate 1.2 2 2.40 0.83 0.17
4 Large 1.4 2 2.46 0.89 0.20

Table 5: Type I error rate, i.e. P (Reject H0|H0 is true), when testing deviations from the PHA with a
significance level of 5%, using the test procedure described in Section 3.4.3, estimated using m = 10000
simulations for different sample sizes and proportion censored observations. The sample size in each
group is denoted by n, so the total sample size is given by 2n.

Probability of censoring, pc
n 0 0.3 0.6 0.9

25 0.030 0.046 0.050 0.026
50 0.033 0.043 0.048 0.055
100 0.033 0.041 0.050 0.053
250 0.035 0.047 0.043 0.050
500 0.037 0.048 0.048 0.049
1000 0.036 0.047 0.052 0.052

around 5% in the presence of censoring. The power of detecting deviations from the PHA for

small to large deviations from the PHA is presented in Table 6. The table shows that even with

the relatively small sample size of n = 100 in each group, large deviations from the PHA can be

detected with an acceptable power (> 80%). Small deviations from the PHA are hard to detect

even with large sample sizes. With a higher censoring probability, the power decreases, since

fewer events are observed. Here, only equal group sizes are used. With unequal group sizes, the

power is generally decreased, unless group sizes are inversely proportional to the proportion of

censored observations in each group.

4.2 Comparing proportional hazards methods

Three of the chosen methods in this thesis work under the assumption of proportional hazards

(PH) – the Cox PHM, the Weibull parametric model, and the Royston and Parmar (RP) PHM.

In this section a comparison between the three methods is presented, given that the PHA holds,

and that the true survival distributions are Weibull. The comparison was done by simulating

Weibull event time points and Uniform censoring time points for two groups with proportional

Table 6: Power, i.e. P (Reject H0|H1 is true), in detecting deviations from the PHA with a significance
level of 5%, using the test procedure described in Section 3.4.3, estimated using m = 10000 simulations
for different sample sizes, proportion censored observations, and magnitudes of deviations from the PHA.
The sample size in each group is denoted by n, so the total sample size is given by 2n.

Small deviation from the PHA Moderate deviation from the PHA Large deviation from the PHA

Probability of censoring, pc Probability of censoring, pc Probability of censoring, pc
n 0 0.3 0.6 0.9 0 0.3 0.6 0.9 0 0.3 0.6 0.9

25 0.046 0.063 0.058 0.032 0.136 0.147 0.104 0.040 0.289 0.273 0.167 0.039
50 0.064 0.073 0.064 0.056 0.271 0.253 0.160 0.075 0.581 0.523 0.312 0.096
100 0.098 0.102 0.081 0.062 0.534 0.469 0.274 0.094 0.891 0.819 0.559 0.148
250 0.213 0.193 0.125 0.068 0.921 0.851 0.578 0.182 1.000 0.996 0.923 0.341
500 0.406 0.340 0.203 0.081 0.998 0.990 0.871 0.314 1.000 1.000 0.998 0.610
1000 0.697 0.596 0.355 0.115 1.000 1.000 0.993 0.547 1.000 1.000 1.000 0.890
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hazards 10000 times, each time fitting a Cox PHM, a parametric Weibull PHM, and an RP

PHM, and calculating β̂ with corresponding 95% confidence intervals and standard errors. Let

x be an indicator for group, with x = 0 for group 1, and x = 1 for group 2. The Cox PHM was

given by

h(t|x) = h0(t) exp(βx).

The Weibull PHM was given by

h(t|x) = αλtα−1 exp(βx).

The Royson and Parmar PHM was given by

H(t|x) = H0(t) exp(βx) = exp{s∗(log t,γ)} exp(βx),

with s∗(log t,γ) approximated using restricted cubic splines, as described in Section 3.6.2. In

the RP models, three knots, i.e. one internal knot and two boundary knots, were used in the

restricted cubic splines. In each model, the internal knot was placed at the median uncensored

failure time, and boundary knots were placed at the first and last uncensored failure time,

respectively, as described in Section 3.6.2. In all three models, the hazard ratio was given by

exp(β).

The time-to-event distributions were Weibull with parameters α1 = α2 = 0.7, λ1 = 2, and

λ2 = 1. Survival and hazard functions are shown in Figure 18. The true hazard ratio was given

by

HR =
α2λ2t

α2−1

α1λ1tα1−1
= {α1 = α2 = 0.7, λ1 = 1, λ2 = 2} =

0.7 · 2 · t0.7−1

0.7 · 1 · t0.7−1
= 2,

which gives β = log(HR) = log(2) ≈ 0.6931. The censoring distribution was U(0, θ), θ =

2.21, 0.52, 0.05, with θ determined by numerically solving Eq. (34) in Section 4.1 for censoring

probabilities pc = 0.3, 0.6, 0.9, respectively. A scenario with no censoring was also evaluated.

The different sample sizes in each group were n = 25, 50, 100, 250, 500.

Average estimates, standard errors, CI widths, and CI coverage proportions are presented

in Table 7. Average standard errors and average values of β̂ − β are shown in Figure 19. The

coverage proportions were around 95% for most censoring proportions and sample sizes. For

small sample sizes with 90% censoring, the coverage proportions were around 98-99%, which is

most likely due to the confidence intervals being very wide. Standard errors were quite similar

between the three methods, but often slightly lower for the Weibull PHM, which was expected

since the true distributions were Weibull. The RP PHM is based on the Weibull distribution,

even though it incorporates restricted cubic splines in the baseline log cumulative hazard, which

is probably why the standard errors were comparable to the Weibull PHM. Standard errors and

CI widths decreased as n increased, as expected. For reasonable sample sizes and censoring

proportions, β̂s were close to the true β of approximately 0.69. Histograms of the β-estimates

from the 10000 simulations are shown in Figures B1-B4 in Appendix B.

The function coxph in R package survival (Therneau, 2015) was used for fitting Cox PHMs.

The function survreg in R package survival was used for fitting Weibull accelerated failure time

models. The function ConvertWeibull in R package SurvRegCensCov (Hubeaux & Rufibach,
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Figure 18: Survival functions and hazard functions of Weibull distributions used in simulations for
comparison between PH methods.

Table 7: Results of 10000 simulations for comparison between PH methods for different censoring
probabilities and sample sizes n in each group (total sample size given by 2n). Average coefficient

estimates β̂, average standard error estimates ŜE(β̂), average 95% CI width (CIW), and 95% CI coverage
proportions (CP) are shown. The true β = log(2) ≈ 0.6931.

No censoring

Cox PHM Weibull PHM RP PHM

n β̂ ŜE(β̂) CIW CP β̂ ŜE(β̂) CIW CP β̂ ŜE(β̂) CIW CP

25 0.7162 0.3081 1.2075 0.95 0.7254 0.2965 1.1621 0.94 0.7281 0.3023 1.1848 0.95
50 0.7053 0.2144 0.8403 0.95 0.7078 0.2083 0.8164 0.95 0.7104 0.2120 0.8311 0.95
100 0.6977 0.1503 0.5891 0.95 0.7000 0.1469 0.5758 0.95 0.7004 0.1494 0.5856 0.95
250 0.6952 0.0946 0.3707 0.95 0.6957 0.0928 0.3636 0.95 0.6961 0.0946 0.3709 0.95
500 0.6944 0.0668 0.2617 0.95 0.6947 0.0656 0.2570 0.95 0.6948 0.0673 0.2640 0.95

30% censoring

Cox PHM Weibull PHM RP PHM

n β̂ ŜE(β̂) CIW CP β̂ ŜE(β̂) CIW CP β̂ ŜE(β̂) CIW CP

25 0.7091 0.3571 1.3997 0.95 0.7225 0.3497 1.3710 0.94 0.7214 0.3521 1.3802 0.95
50 0.7035 0.2487 0.9750 0.95 0.7092 0.2455 0.9625 0.95 0.7093 0.2468 0.9673 0.95
100 0.6982 0.1745 0.6839 0.95 0.7013 0.1729 0.6778 0.95 0.7010 0.1736 0.6806 0.95
250 0.6940 0.1099 0.4307 0.95 0.6953 0.1092 0.4280 0.95 0.6953 0.1096 0.4297 0.95
500 0.6938 0.0776 0.3041 0.95 0.6945 0.0771 0.3024 0.95 0.6944 0.0775 0.3036 0.95

60% censoring

Cox PHM Weibull PHM RP PHM

n β̂ ŜE(β̂) CIW CP β̂ ŜE(β̂) CIW CP β̂ ŜE(β̂) CIW CP

25 0.7270 0.4846 1.8997 0.96 0.7399 0.4804 1.8833 0.95 0.7334 0.4800 1.8817 0.95
50 0.7098 0.3344 1.3109 0.95 0.7161 0.3329 1.3050 0.95 0.7150 0.3333 1.3064 0.95
100 0.6983 0.2337 0.9159 0.95 0.7016 0.2331 0.9135 0.95 0.7008 0.2332 0.9143 0.95
250 0.6932 0.1468 0.5753 0.95 0.6945 0.1465 0.5745 0.95 0.6943 0.1466 0.5748 0.95
500 0.6942 0.1036 0.4060 0.95 0.6948 0.1035 0.4056 0.95 0.6946 0.1035 0.4058 0.95

90% censoring

Cox PHM Weibull PHM RP PHM

n β̂ ŜE(β̂) CIW CP β̂ ŜE(β̂) CIW CP β̂ ŜE(β̂) CIW CP

25 0.5307 0.9987 3.9147 0.99 0.5441 0.9947 3.8990 0.98 0.4550 1.0019 3.9274 0.99
50 0.7363 0.7369 2.8885 0.98 0.7435 0.7352 2.8819 0.98 0.6737 0.7142 2.7998 0.98
100 0.7376 0.5001 1.9602 0.96 0.7397 0.4994 1.9574 0.96 0.7245 0.4962 1.9451 0.96
250 0.7049 0.3037 1.1905 0.95 0.7061 0.3036 1.1899 0.95 0.7059 0.3036 1.1901 0.95
500 0.6950 0.2125 0.8331 0.95 0.6956 0.2125 0.8329 0.95 0.6954 0.2125 0.8330 0.95
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Figure 19: Average standard errors of β̂, and average β̂ − β in 10000 simulations for comparison
between PH methods for different censoring probabilities and sample sizes. Points are slightly separated
horizontally for visualization purposes.

2015) was used for conversion of Weibull estimates and standard errors to the PH parametriza-

tion, using the delta method to estimate standard errors. The function flexsurvspline in R

package flexsurv (Jackson, 2016) was used for fitting Royston and Parmar PHMs. This func-

tion almost always succeeds at finding a maximum likelihood estimate of β, but sometimes fails

when estimating the standard error, due to the Hessian matrix not being positive definite. This

problem seems more common with an increasing number of knots. Also, flexsurvspline fails

at fitting a model relatively often for small sample sizes and large censoring proportions, due to

one or more of the initial values in the optim function being infinite. This can sometimes be

solved by manually trying other initial values. This was however not applied in this simulation,

due to time restrictions. With a high proportion censored observations and a small sample size,

all observations in one or both groups can sometimes be censored, resulting in non-convergence

of all three methods. Non-convergence can also occur for other reasons than this. A summary

of all failures and non-convergences is presented in Table B1 in Appendix B.

4.3 Estimates, standard errors and confidence interval coverage of quantile

regression

In order to evaluate the quantile regression estimates, standard errors and confidence interval

coverage for comparison between two groups, for different probabilities τ , sample sizes, censoring

proportions, and Weibull distributions, 5000 Monte Carlo replications were performed, each time

fitting a quantile regression model, given by

Q(τ |x) = β0,τ + β1,τx,

where x = 0 for group 1 and x = 1 for group 2.

The Weibull distribution has a closed form expression for the τ -quantile, derived in Sec-

tion 3.7.2, given by

Q(τ) = [−λ−1 log(1− τ)]1/α.

Hence, the difference in the τ -quantiles between two groups with T2 ∼ Weib(α2, λ2) and T1 ∼
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Figure 20: Survival functions, quantile functions and β1,τ s (in relation to the black line) of Weibull
distributions used in simulations of quantile regression models.

Weib(α1, λ1) is given by

Q2(τ)−Q1(τ) = [−λ−1
2 log(1− τ)]1/α2 − [−λ−1

1 log(1− τ)]1/α1 .

The survival function, quantile function, and true β1,τ s are shown in Figure 20. The dis-

tribution represented by the black line served as a reference, and hence the other distributions

were compared to it. The chosen censoring proportions were pc = 0, 0.3. Higher censoring

proportions were excluded, since quantiles of high probabilities cannot be estimated with too

much censoring. Censoring times were simulated from a uniform distribution, U(0, θ), with θ

determined in each scenario by solving Eq (34) for pc = 0.3, resulting in θ = 2.26, 2.52 for the

two different scenarios. The sample size in each group was given by n = 25, 50, 100, 250, 500.

The τ -values used were 0.05, 0.1, 0.15, 0.2, ..., 0.6.

Simulation results are presented in Figure 21. Even for small sample sizes, the average

β̂1,τ s are close the true β1,τ s, and are equivalent for 0% and 30% censoring. The standard error

estimates of the β̂1,τ s increase in τ , which is due to the fact that fewer individuals are still in the

risk set at higher τ -values. Comparing 0% and 30% censoring, the standard errors are higher

in the latter case, especially for higher τ -values, but the difference decreases as n increases. In

Appendix C, Table C1 shows all the numbers of Figure 21.

The coverage of 95% confidence intervals of β1,τ are shown in Figure 22, calculated for each

τ as the proportion of confidence intervals containing the true β1,τ . The coverage only reaches

95% for the largest sample size, and is around or slightly above 90% for n = 100.

The function ctqr in R package ctqr (Frumento, 2016a) was used in the simulations. In

some cases, a quantile regression model was claimed to have converged, while the standard error

estimates were huge. Standard errors above the value of 10, and corresponding β1,τ -estimates,

were treated as non-convergences and were excluded. This was more common for small sample

sizes and high τ -values. The distribution of the standard error estimates for the smallest sample

size was highly right skewed, and the median was less than half of the mean, even after excluding

standard error estimates above 10.
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Figure 21: Average β̂1,τ and ŜE(β̂1,τ ) from 5000 simulations of quantile regression models, for different
values of τ , sample sizes n in each group, and censoring proportions pc. The first and third columns
correspond to a Weibull distribution with α = 0.8, λ = 2, compared to the reference distribution given
by Weib(α = 0.8, λ = 1). The second and forth columns correspond to a Weibull distribution with
α = 1.6, λ = 2, compared to the reference distribution.
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Figure 22: CI coverage of true β1,τ from 5000 simulations of quantile regression models, for different
values of τ , sample sizes n in each group, and censoring proportions pc. The left plot corresponds to
a Weibull distribution with α = 0.8, λ = 2, compared to the reference distribution given by Weib(α =
0.8, λ = 1). The right plot corresponds to a Weibull distribution with α = 1.6, λ = 2, compared to the
reference distribution.

5 Application to acute lymphoblastic leukemia data

In this section, the methods described in Section 3 are applied to the acute lymphoblastic

leukemia (ALL) data. The disease and treatment are briefly described in Section 2.3.1.

5.1 Data description and patient characteristics

The ALL patient dataset comes from the NOPHO ALL registry, and includes n = 2024 children

diagnosed with ALL between July 2008, and December 2018, treated with the NOPHO ALL2008

protocol described in Section 2.3.1.

In Figure 23, a flowchart of patient exclusions is shown. A covariate of interest is the risk

group, defined around the 29th day of treatment. The risk group is based on a number of factors,

for example the amount of remaining cancer cells after the intensive first few weeks of treatment,

and is the basis for decisions on the rest of the treatment for each patient. To be able to include

risk group as a covariate known from start, the start time was defined as day 29 of treatment.

Children with an event or censoring before or on day 29, or with an undefined risk group, were

excluded. Children with unknown central nervous system (CNS) status at ALL diagnosis were

also excluded. The CNS status is an indicator of cancer cells being present in the cerebrospinal

fluid (CSF). Children with cancer cells in the CSF get partly different treatment. Another

covariate of interest is the ALL type, denoting what kind of immune cells have developed into

cancer cells – B-cell precursor cells (BCP) or T-cells. Children with T-cell ALL often have

worse outcomes compared to children with BCP ALL, and therefore often end up in more severe

risk groups and get partially differing treatment. Characteristics of the included children are

presented in Table 8. A histogram of age at diagnosis is presented in Figure 24, showing a

right-skewed distribution with a peak between ages 2-4 years.

As mentioned in Section 2.3, so called event-free survival (EFS) is an important outcome in

many cancer studies, and it was used here as the main outcome in analyses of the childhood ALL

data. EFS was defined as time (years) from start (day 29 of treatment) to an event or censoring.

An event was defined as death, relapse of cancer, or a second malignancy. Right-censoring is

heavily present in the data, while truncation or left-censoring is not.
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Figure 23: Flowchart of included patients in the
NOPHO ALL data
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Figure 24: Distribution of age (years) at diag-
nosis in children with ALL

5.2 Non-parametric event-free survival and median follow-up time

The Kaplan-Meier estimate of the five-year EFS was 87.0% (95% CI 85.2% - 88.6%). The median

follow-up time was 4.80 years, estimated using the reverse Kaplan-Meier method, which means

letting censoring be the event and the patients with events be censored at their respective event

times.

Kaplan-Meier survival curves of EFS for the full cohort, and for different subgroups are

shown in Figure 25. None of the survival curves cross, but non-proportional hazards can still be

suspected for the different ALL types, and for the high risk group compared to standard and

intermediate risk groups. The survival curves for males and females are very similar and almost

impossible to distinguish. The confidence interval of Eq. (6) was used, calculated by specifying

the option conf.type="log-log" in the survfit function in R package survival (Therneau,

2015).

5.3 Cox proportional hazards models

In this section, results from Cox proportional hazards models (PHM) applied to the ALL data are

presented. First, univariable models are presented in Section 5.3.1, after which the proportional

hazards assumption is tested in Section 5.3.2. The functional form of the continuous covariate

age at diagnosis is assessed in Section 5.3.3. In Section 5.3.4 the fit of a multivariable Cox model

is evaluated.

5.3.1 Univariable Cox proportional hazards models

Table 9 shows estimates, standard errors, 95% confidence intervals, and p-values from univariable

Cox models containing the covariates gender, ALL type, CNS involvement, risk group and age

at diagnosis. As could be suspected from the Kaplan-Meier curves in Figure 25, the coefficient

of gender was not statistically significantly different from zero at any standard significance
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Table 8: Patient characteristics of children with ALL

n (%)

Total n 2024 (100.0)

Gender:
Male 1134 (56.0)
Female 890 (44.0)

Country:
Nordic states 1811 (89.5)
Baltic states 212 (10.5)

ALL type:
BCP 1749 (86.4)
T-cell 275 (13.6)

CNS Leukemia:
No 1747 (86.3)
Yes 277 (13.7)

Risk group:
Standard risk 1005 (49.7)
Intermediate risk 712 (35.2)
High risk 307 (15.2)

Outcome:
Censored 1813 (89.6)
Death w/o relapse 54 (2.7)
Death after relapse 59 (2.9)
Death after second malignancy 4 (0.2)
Relapse w/o death 85 (4.2)
Second malignancy w/o death 9 (0.4)

EFS status:
Event 211 (10.4)
No event 1813 (89.6)

Median (IQR, min - max)

Age (years) 4.7 (2.9 - 8.8; 1.0 - 18.0)

level. The other covariates, however, were, with T-cell ALL, CNS involvement, high risk and

intermediate risk groups, and older age at diagnosis, associated with a higher hazard compared

to the reference levels.

5.3.2 Testing the proportional hazards assumption

For the β-estimates in Table 9, and, equivalently, the hazard ratios, to be valid, the propor-

tional hazards assumption should be fulfilled. Univariable Cox PH models were fitted, with

gender, ALL type, CNS involvement at diagnosis, age (years) at diagnosis, and risk group, as

covariates. The proportional hazards assumption (PHA) was evaluated by plotting the scaled

Schoenfeld residuals against the rank-ordered event times, using the function cox.zph in R

package survival (Therneau, 2015). A smooth curve was automatically added by the function

Table 9: Coefficient estimates β̂, standard errors ŜE(β̂), 95% confidence intervals (CIs), and p-values
from univariable Cox proportional hazards models applied to the ALL data

Covariate β̂ ŜE(β̂) 95% CI for β p-value

Gender: Female vs Male 0.023 0.138 -0.248 - 0.294 0.87

ALL Type: T-cell vs BCP 0.768 0.164 0.446 - 1.09 2.9e-06

CNS involvement: Yes vs No 0.522 0.174 0.181 - 0.863 0.0027

Risk group: IR vs SR 0.533 0.175 0.19 - 0.875 0.0023
Risk group: HR vs SR 1.645 0.171 1.309 - 1.981 8e-22

Age at diagnosis (years) 0.072 0.014 0.045 - 0.098 1.4e-07
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Figure 25: Kaplan-Meier curves with 95% confidence intervals of different groups of ALL data.
SR=Standard risk, IR=Intermediate risk, HR=High risk.

plot.cox.zph to illustrate the relationship between time and the residuals. At a 5% significance

level, ALL type and risk group deviated from the PHA. This means that a time invariant hazard

ratio is not suitable as a description of the corresponding covariate effects.

5.3.3 The functional form of the age covariate

In many studies of childhood ALL patients, see e.g. Toft et al. (2018), the age covariate is

dichotomized around the age of ten, serving as a proxy for puberty. Dichotomizing a continuous

covariate adds the assumption that there are no differences in the hazard rate between two

values that are below (above) the cutoff value. This assumption is very simplified, and seldom

correct. A lot could be gained in power and model fit by using the continuous covariate rather

than its dichotomized version. However, it is important to check that the linearity assumption of

a continuous covariate holds. As described in Section 3.4.3, the functional form of a continuous

covariate can be assessed by plotting the Martingale and Deviance residuals, defined in Eq. (19)

and Eq. (20), of a Cox PHM not containing the continuous covariate, against the covariate.

In Figure 27, the Martingale and Deviance residuals of a Cox PHM containing the covariates

gender, ALL type, CNS status and risk group, are plotted against age at diagnosis. Since there is

a high proportion censored observations in the ALL data, there is a large proportion of residuals

close to zero. Looking at only the uncensored residuals, there is no clear relationship with age

at diagnosis, even though adding the age covariate to the Cox PHM yields a p-value of 0.00089

and a hazard ratio of 1.05 (95% CI 1.02 - 1.08).

Another way to assess the functional form of a covariate is to fit a Cox PHM using a spline

basis for the covariate, and compare it to a model containing a linear term for the covariate,

using a likelihood ratio test. For the ALL data, this was done by comparing a model containing

age at diagnosis, gender, ALL type, CNS status, and risk group to models also incorporating

restricted cubic spline covariates for age, using 3, 4, and 5 knots, respectively, with likelihood
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Figure 26: Scaled Schoenfeld residuals from three univariable Cox PH models containing gender, ALL
type, CNS, age at diagnosis, and risk group, respectively, plotted against rank-ordered event times. A
smooth curve for the association between (rank-ordered) time and the Scaled Schoenfeld residuals was
added for illustrative purposes. SR=Standard risk, IR=Intermediate risk, HR=High risk.
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Figure 27: Martingale and deviance residuals from a Cox PHM including gender, ALL type, CNS
status, and risk group, plotted against age at ALL diagnosis.
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Figure 28: Nelson-Aalen estimates of Cox-Snell residuals plotted against Cox-Snell residuals of a Cox
PHM including the covariates Gender, ALL type, CNS status, risk group and age at diagnosis. A line
with slope 1 through the origin is shown in blue.

Table 10: Coefficient estimates β̂, standard errors ŜE(β̂), 95% confidence intervals (CIs), and p-values
from a multivariable Cox proportional hazards model applied to the ALL data

Covariate β̂ ŜE(β̂) 95% CI for β p-value

Gender: Female vs Male 0.098 0.14 -0.177 - 0.373 0.49
ALL Type: T-cell vs BCP -0.022 0.184 -0.383 - 0.338 0.9
CNS involvement: Yes vs No 0.457 0.179 0.107 - 0.807 0.01
Risk group: IR vs SR 0.411 0.181 0.056 - 0.766 0.023
Risk group: HR vs SR 1.489 0.19 1.117 - 1.861 4.2e-15
Age at diagnosis (years) 0.047 0.014 0.019 - 0.075 0.00089

ratio tests. Knot placement was done according to the recommendation of Royston and Parmar

(2002), described in Section 3.6.2. The p-values of the likelihood ratio tests were 0.99, 0.24,

0.49, for 3, 4, and 5 knots, respectively. This means that there was no statistically significant

deviation from the linearity assumption of the age covariate at any standard significance level.

5.3.4 Fit of a multivariable Cox proportional hazards model

As stated in Section 3.4.3, the fit of a Cox PHM can be assessed by plotting the Cox-Snell

residuals, defined in Eq. (18) against the Nelson-Aalen estimates using the residuals as the time

variable. Such a plot can be found in Figure 28, with Cox-Snell residuals from a Cox PHM

including gender, ALL type, CNS status, risk group and age at diagnosis. The plot shows

that the Cox model has a decent but not perfect fit. The estimates of the Cox model are

presented in Table 10. Comparing the estimates and p-values from the multivariable model

to the univariable models, presented in Table 9, it can be seen that ALL type loses statistical

significance and that the corresponding coefficient is close to zero. This can be explained by the

fact that the covariates ALL type and risk group are highly correlated – children with T-cell

ALL are divided fairly equally between the intermediate and high risk groups, while no T-cell

ALL children are present in the standard risk group.

5.4 Parametric and flexible parametric fit

As stated in Section 3.5, a lot could be gained by fitting parametric models rather than semi-

parametric models, provided that the distribution assumptions are fulfilled. Figure 29 shows
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Figure 29: Cumulative hazard estimated with Royston and Parmar proportional hazards (PH) (left
plot) and proportional odds (PO) (middle plot) models with 3 knots (blue), 5 knots (green), and 7
knots (orange), respectively, and parametric Weibull (blue) and log-logistic (green) cumulative hazards
(right plot). Knot locations are indicated with arrows in the respective color of the lines. Nelson-Aalen
estimates of the cumulative hazard shown in black.
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Figure 30: Transformed Nelson-Aalen estimates of H(t) plotted against log(t) for NOPHO ALL survival

data. Blue lines show log(λ̂) + α̂ log(t) with λ̂ and α̂ from a Weibull model (left plot) and log-logistic
model (right plot), respectively.

the cumulative hazard estimated using Royston and Parmar PHMs and POMs with a varying

number of knots, and parametric Weibull and log-logistic fits, along with the non-parametric

Nelson-Aalen estimates. Knots were placed at the quantiles described in Section 3.6.2. It can

be seen that the more knots placed, the more flexible the curve. However, using a large number

of knots, there is a risk of over-fitting the model to the data. As seen from the right plot, the

fully parametric models fit the data poorly.

Another way to assess the fit of parametric models is to plot transformations of ĤNA(t)

against log(t), as described in Section 3.5.6. The fit of a Weibull and log-logistic distribution,

respectively, to the ALL data was checked by fitting Weibull and log-logistic AFT models to

the data, only containing an intercept term, estimating λ and α as described in Section 3.5.2 by

λ̂ = exp(−µ̂/σ̂) and α̂ = 1/σ̂. The NA estimates of the cumulative hazard function H(t) were

calculated, and log[ĤNA(t)] and log[exp{ĤNA(t)} − 1] were plotted against log(t) in Figure 30,

with straight lines added showing the log[Ĥ(t)] = log(λ̂) + α̂ log(t) and log[exp{Ĥ(t)} − 1] =

log(λ̂) + α̂ log(t) estimated form the Weibull and log-logistic AFT models, respectively. As seen

from the figure, neither the Weibull nor the log-logistic distribution seemed to fit the data well.
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5.5 Royston and Parmar models

As seen from Figure 26, there were deviations from the PHA for the covariates ALL type and

risk group. Model fit could be improved by relaxing the proportionality assumptions. Deviations

from the proportional hazards or odds assumption can be modeled by adding terms in the spline

modeling of s∗(log(t),γ), see Eq.s (30) and (31). To assess the proportionality assumptions of the

hazards and odds, univariable proportional and non-proportional models were fitted, comparing

their respective AIC and BIC. In these models, 3 knots were used. For any covariate x, the

proportional hazards and odds models were defined as

log[H(t|x)] = γ0 + γ1 log(t) + γ2v1[log(t)] + βx,

and

log[O(t|x)] = γ0 + γ1 log(t) + γ2v1[log(t)] + βx,

respectively. The non-proportional hazards and odds models were defined as

log[H(t|x)] = γ0 + (γ1,0 + γ1,1x) log(t) + (γ2,0 + γ2,1x)v1[log(t)] + βx,

and

log[O(t|x)] = γ0 + (γ1,0 + γ1,1x) log(t) + (γ2,0 + γ2,1x)v1[log(t)] + βx,

respectively. When modeling the age covariate in the non-proportional models, however, fitting

was not possible due to the Hessian matrix not being positive definite, and thus the following

non-proportional models were fitted

log[H(t|x)] = γ0 + (γ1,0 + γ1,1x) log(t) + γ2v1[log(t)] + βx,

and

log[O(t|x)] = γ0 + (γ1,0 + γ1,1x) log(t) + γ2v1[log(t)] + βx,

respectively.

In Table 11, the AIC and BIC of univariable Royston and Parmar models are presented, for

proportional and non-proportional models. For gender, CNS involvement, and age, the AIC and

BIC of the proportional models were lower than of the non-proportional models. This seems

logical, considering the tests of the PHA in Figure 26 of these covariates were all non-significant

at the 5% level. For ALL type, the AIC and BIC of the non-proportional models were lowest.

The Kaplan-Meier curve of ALL type in Figure 25 showed clearly non-proportional hazards.

The AIC showed an advantage of modeling a non-proportional effect of the risk group covariate,

while the BIC did not, perhaps because only one of the groups had non-proportional hazards

compared to the standard risk group. Survival estimates from proportional and non-proportional

hazards Royston and Parmar univariable models are shown in Figure 31. The non-proportional

hazards are captured well for ALL type and risk group.

54



Table 11: AIC and BIC of univariable Royston and Parmar models. PHM=Proportional hazards model,
NPHM=Non-proportional hazards model, POM=Proportional odds model, NPOM=Non-proportional
odds model.

Royston and Parmar HM Royston and Parmar OM

AIC BIC AIC BIC
Covariate PHM NPHM PHM NPHM POM NPOM POM NPOM

Gender 1936.6 1938.0 1959.0 1971.6 1936.1 1937.6 1958.6 1971.2
ALL type 1918.0 1902.7 1940.5 1936.4 1915.7 1902.9 1938.1 1936.6
CNS involvement 1928.6 1928.8 1951.0 1962.5 1927.6 1928.5 1950.1 1962.1
Risk group 1849.4 1827.1 1877.4 1877.6 1844.4 1827.4 1872.4 1877.9
Age 1910.7 1912.6 1933.2 1940.6 1909.9 1911.9 1932.4 1940.0
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Figure 31: Survival curves estimated from univariable Royston and Parmar proportional hazards models
(first and third column) and non-proportional hazards models (second and fourth column). Dashed lines
show Kaplan-Meier estimates. SR=Standard risk, IR=Intermediate risk, HR=High risk.
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Figure 32: Plots of estimates of β1,τ from univariable quantile regression models, for different probabil-
ities τ . Shaded areas mark 95% confidence intervals.

5.6 Quantile regression

Univariable quantile regression models, defined in Eq. (32), were fitted for the covariates gender,

ALL type, CNS involvement, risk group and age, for probabilities τ = 0.02, 0.04, 0.06, 0.08, 0.1.

Higher τ -values than 0.1 were not included, since the estimates became unstable and the standard

errors very large for higher probabilities for the heavily right-censored ALL dataset. Estimates

and 95% confidence intervals of β1,τ from univariable quantile regression models for different τ -

values are shown in Figure 32. In the univariable quantile regression for risk group, the confidence

intervals of the coefficient estimate for τ = 0.08 was much wider than for other τ -values, going

from approximately -20 to 20. The y-axis was cut to visualize confidence intervals of estimates

for other τ -values more clearly. Each quantile is modeled separately, and standard errors may

vary a lot for some τ -values due to numeric instability, especially for τ -values approaching

the highest observed ones. A multivariable model including the covariates listed above was

also fitted. Figure 33 shows the multivariable estimates and 95% confidence intervals of β1,τ .

Similarly to the univariable and multivariable Cox regression models, the ALL type covariate

lost statistical significance in the presence of the other covariates.

5.7 Estimating event-free survival by ALL type with different methods

The proportional hazards assumption (PHA) of the covariate ALL type was shown in Figure 26

to be invalid. The EFS for children with BCP ALL and T-cell ALL estimated using nine

different methods is shown in Figure 34. The confidence intervals for the piecewise constant

hazards (PCH) model, described in Section 3.7.1, were calculated using the 2.5% and 97.5%

quantiles of PCH estimated survival from 10000 bootstrap samples with random exponentially

distributed weights with mean 1, using the 22 breaks from the PCH model of the unweighted

childhood ALL data. Methods assuming proportional hazards or proportional odds, i.e. the

parametric Weibull and log-logistic models, the Cox PHM, the Royston and Parmar (RP) PHM
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Figure 33: Plots of estimates of β1,τ from a multivariable quantile regression model containing gender,
ALL type, CNS involvement, Risk group and age, for different probabilities τ . Shaded areas mark 95%
confidence intervals.

Table 12: Coefficient estimates β̂, standard errors ŜE(β̂), and p-values from univariable proportional
hazards models (PHMs) (Cox, Weibull, Royston and Parmar) applied to the ALL data

Cox PHM Weibull PHM RP PHM

Covariate β̂ ŜE(β̂) p-value β̂ ŜE(β̂) p-value β̂ ŜE(β̂) p-value

Gender: F/M 0.023 0.138 0.87 0.020 0.138 0.88 0.026 0.138 0.85

ALL Type: T-cell/BCP 0.768 0.164 2.9e-06 0.762 0.164 3.5e-06 0.767 0.164 3e-06

CNS: Yes/No 0.522 0.174 0.0027 0.521 0.174 0.0028 0.522 0.174 0.0027

Risk group: IR/SR 0.533 0.175 0.0023 0.545 0.175 0.0018 0.541 0.175 0.002
Risk group: HR/SR 1.645 0.171 8e-22 1.646 0.171 7.7e-22 1.647 0.171 7.1e-22

Age (years) 0.072 0.014 1.4e-07 0.072 0.014 1.1e-07 0.072 0.014 1.2e-07

and POM, could not capture the difference in the shape of the survival curve between the two

ALL subtypes seen in the Kaplan-Meier, PCH, and time-dependent RP model estimates. The

RP proportional hazards and odds models are, however, better than the fully parametric models

in capturing the shape of the survival function.

5.8 Comparing proportional hazards methods

In Table 12 results from univariable Cox, Weibull, and Royston and Parmar proportional haz-

ards models are presented. Even though Figures 29 and 30 showed that a Weibull parametric

distribution fitted the data poorly, the β-estimates of the Weibull PHM were not that different

from the Cox and Royston and Parmar models. The standard errors were also similar between

the three methods.

5.9 Comparing proportional odds methods

Results from univariable log-logistic and Royston and Parmar proportional odds models (POMs)

are shown in Table 13. Also here, the estimates of the parametric log-logistic model were quite
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Figure 34: Event-free survival (EFS) and 95% confidence intervals for children with BCP ALL (black)
and T-cell ALL (blue), estimated with nine methods. In the Royston and Parmar proportional hazards
and odds models, 4 knots were used. In the Royston and Parmar non-proportional hazards and odds
models (NPHM and NPOM), 3 knots were used. In the PCH model, 22 breaks were used.
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Table 13: Coefficient estimates β̂, standard errors ŜE(β̂), and p-values from univariable proportional
odds models (POM) (log-logistic, Royston and Parmar) applied to the ALL data

Log-logistic POM RP POM

Covariate β̂ ŜE(β̂) p-value β̂ ŜE(β̂) p-value

Gender: F/M 0.028 0.148 0.85 0.034 0.147 0.82

ALL Type: T-cell/BCP 0.879 0.183 1.5e-06 0.881 0.182 1.3e-06

CNS: Yes/No 0.585 0.191 0.0021 0.582 0.190 0.0022

Risk group: IR/SR 0.579 0.184 0.0016 0.572 0.183 0.0018
Risk group: HR/SR 1.862 0.190 1.1e-22 1.849 0.189 1.6e-22

Age (years) 0.079 0.015 1.1e-07 0.078 0.015 1.5e-07

similar to the estimates and standard errors of the flexible parametric Royston and Parmar

model.
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6 Discussion

In this thesis the reader was given an overview of a number of methods from the field of survival

analysis; the non-parametric methods of Nelson-Aalen and Kaplan-Meier, the semi-parametric

Cox proportional hazards model, the fully parametric accelerated failure time model, Weibull

proportional hazards model, and log-logistic proportional odds model, the flexible parametric

Royston and Parmar proportional hazards and odds models, and the distribution-free quantile

regression. Power to detect deviations from the proportional hazards assumption, given that it

was not fulfilled, and type I error rates, given that it was fulfilled, was evaluated using Monte-

Carlo simulations. Given that the proportional hazards assumption was fulfilled, the three

methods assuming proportional hazards were compared in terms of estimates, standard errors

and confidence interval coverage, also using Monte-Carlo simulations. Coefficient estimates,

standard errors and confidence interval coverage for quantile regression for a range of different

probabilities was evaluated using Monte-Carlo simulations. Finally, the methods were applied

to childhood acute lymphoblastic leukemia data (ALL).

The non-parametric Nelson-Aalen and Kaplan-Meier estimators are great tools for visual-

ization and for evaluating the fit of regression models. Presenting Nelson-Aalen or Kaplan-Meier

curves is an honest way of showing survival data, since no distribution or proportional hazards

assumptions are made, and since the curves give an indication of the sample size – curves with

large steps originate from smaller samples. The log-rank test is a good option for comparing

two groups, although not suitable for crossing survival curves, and not giving the possibility

to adjust for other covariates or to handle continuous covariates. Unless the sample size is too

small, regression methods can preferably be applied to the data.

A very popular choice of regression model for survival data is the Cox proportional hazards

model, which has the attractive property of not demanding any distribution assumptions while

still being able to handle several covariates, both categorical and continuous, and giving estimates

of the easily interpretable hazard ratios. Everything comes at a prize, however – in order for the

hazard ratios to be a valid description of covariate effects, the proportional hazards assumption

should be fulfilled. From the Monte Carlo simulations in Section 4.1 it could be seen that

small deviations from this assumption are very hard to detect, especially for small sample sizes

and large censoring proportions, but even with quite large sample sizes. However, for small

deviations, the hazard ratio may be a ”good enough” description of covariate effects. Note that,

even though the proportional hazards assumption is fulfilled, the hazard ratio should not be

extrapolated to describe covariate effects beyond the observed time frame. The proportional

hazards assumption could very well be violated at later time points. The cumulative hazard

and survival functions can be estimated and, thus, visualized from a Cox regression model, but

extrapolations cannot be made, and the shape of the curves are similar to Nelson-Aalen and

Kaplan-Meier curves with the difference that proportional hazards are imposed on the curves.

Therefore the curves are heavily data dependent, and not smooth.

Some parametric modeling options are presented in Section 3.5. Smooth hazard, cumulative

hazard, and survival curves can easily be estimated from these models. Different interpretations

of the models were shown to be possible. These include the accelerated failure time interpreta-

tion, and the proportional hazards, using a Weibull distribution, and proportional odds, using a

log-logistic distribution. These models are very useful when the distribution assumption holds,

but extrapolations should always be made with caution. It could be that a parametric dis-
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tribution is a very good description of the data in the observed time frame, but the shape of

the underlying hazard function could change with time. For example in childhood cancer, the

hazard function has a certain shape the first years after diagnosis, but much later on, when the

cancer survivors die from other causes, the shape of the hazard is probably different.

Without making any distribution assumptions, smooth curves of the hazard, cumulative

hazard, and survival functions can be made by fitting flexible parametric models to the data.

In Section 3.6, the Royston and Parmar proportional hazards and proportional odds models

are presented. They use the Weibull and log-logistic distributions for modeling the underlying

cumulative hazard and odds, respectively, but use restricted cubic splines to come around the

strictness of a fully parametric distribution assumption. Deviations from the proportional haz-

ards and odds assumptions can easily be incorporated in these models to better represent the

shapes of the hazard, cumulative hazard, and survival curves, and the coefficient estimates. How-

ever, the simple hazard ratio will no longer be time-independent, and is furthermore modeled as

a function of time using splines, and is thus very hard to interpret. Time-varying coefficients in

a Cox model are easier to interpret, but assumptions about the functional form of the coefficient

depending on time has to be made.

Monte Carlo simulations were made in order to compare models assuming proportional

hazards, given that the assumption was fulfilled and given underlying Weibull distributions.

The three methods – Cox, Weibull, and Royston and Parmar proportional hazards models –

proved to be quite similar in average coefficient estimates, standard errors and confidence interval

coverage. However, the Royston and Parmar model sometimes failed when fitting the models,

especially for high censoring proportions. Given that the proportional hazards assumption holds,

and in addition that a Weibull distribution seems to fit, there is no reason not to use a Weibull

proportional hazards model. An interesting extension of the simulations would be to use another

distribution than Weibull and see how well the Weibull model performed in comparison to the

other models. The number and placement of knots in Royston and Parmar models could also

have been evaluated. In the simulations presented in this thesis, only 3 knots were used, since

fitting more knots often failed, probably due to the underlying distribution being Weibull, hence,

no further knots were needed.

Quantile regression for survival analysis, with the method of Frumento and Bottai (2017)

presented in Section 3.7, provides another perspective to survival data modeling. Instead of

effects on the hazard function, the association between covariates and the distribution quantiles

are of interest. The interpretation of the coefficients are in terms of longer or shorter survival

time, and is therefore direct and could very well be used in a clinical practice. The Monte

Carlo simulations in Section 4.3 showed that average coefficient estimates were accurate even

for small sample sizes, while confidence interval coverage was lacking for most of the investi-

gated sample sizes. This is in line with the coverage probabilities in the simulations made by

Frumento and Bottai (2017). Extrapolation cannot be made using quantile regression, since

only observed quantiles can be modeled. This is not necessarily a disadvantage, since, as noted

above, extrapolations should be made with much caution.

The Monte Carlo simulations presented in this thesis should not be interpreted as universally

true for all situations. Only Weibull distributions were used for simulating event times, and

only uniform censoring times were used. Uniform censoring times, using U(0, θ), makes sure

no events are observed after t = θ. This is reasonable, since most medical studies have a time

frame and follow-up time limited to a certain number of years. However, with another censoring
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distribution enabling later events, the simulation results would probably have been different.

In Section 5, results from applications of the above methods to the childhood ALL data

are presented. Testing the proportional hazards assumption of univariable Cox models showed

deviations from the assumption for the covariates ALL type and risk group. Modeling these

covariates with Royston and Parmar models gave better fits and survival curves that captured

the non-proportionality.

Comparing results from univariable Cox, Weibull, and Royston and Parmar proportional

hazards models showed quite similar estimates and standard errors, even though a Weibull

distribution did not seem to fit the data well. Univariable log-logistic and Royston and Parmar

proportional odds models were also compared, and results were fairly similar, despite the log-

logistic distribution not providing an accurate fit to the data. The coefficients being similar

between semi-parametric, parametric and flexible parametric models is in line with a statement

from Royston and Parmar (2002). This gives an indication that the coefficient estimates of

fully parametric models are robust to violations of distribution assumptions. When regression

coefficients are of primary interest, robustness to violations of distribution assumptions suggests

that any of the models could be used. This could be further evaluated using for example Monte

Carlo simulations, and probably depends on the magnitude of the violation. However, using

a parametric model with poor fit of the underlying hazard distribution may be an inaccurate

choice when estimating survival curves for specific combinations of covariates values. In those

cases, a semi-parametric or flexible parametric model is preferred.

The age covariate is, as mentioned, often dichotomized when analyzing childhood ALL data.

This implies a highly simplified and often inaccurate assumption about the association between

age and survival time. Applications of the Cox and Royston and Parmar proportional hazards

and odds models showed that age can very well be included as a continuous covariate with a

linear assumption. This probably increases power and is a more accurate description of the

association.

Event-free survival, defined as time to relapse of cancer, a second malignancy, death or

censoring, whichever came first, was used as the time-to-event outcome variable in the modeling

of the ALL data. A seen from the patient characteristics in Table 8, some children have a relapse

of cancer and recover, while some have a relapse and then die. Event-free survival does not

distinguish between the different types of events, and cannot incorporate several different types

of events occurring consecutively for a single individual. One option when modeling these data

could be to use multi-state models, letting individuals move between the states Alive, Relapsed,

Second malignancy, and Death (being the absorbing state), see e.g. Aalen et al. (2008, Ch. 3)

for an example.

The cause of death of a child suffering from ALL can be the disease itself or treatment-related

mortality, since the treatment is intensive and can lead to a number of different toxicities. In this

thesis no emphasis was put on the cause of death, but an option could have been to use competing

risk methods, seeing death from treatment as a competing risk, preventing the observation of

death from disease, and vice versa. See Aalen et al. (2008, Ch. 3) for an introduction to

competing risk analysis.

In some survival datasets, there are covariates that vary with time, for example a biomarker

that is measured throughout the treatment of a disease, or treatment given some time after

baseline to a subgroup of patients. Such covariates can be incorporated in many of the methods

covered in this thesis. This was, however, not in the scope of this thesis.
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7 Conclusions

In medical research, a lot can be gained from using other methods than the standard non-

parametric and semi-parametric Kaplan-Meier curves and Cox regression, even though these

methods are easy to apply and interpret. In all survival regression models, model assumptions,

such as the proportional hazards assumption and parametric distribution assumptions, should

always be assessed and methods should be selected accordingly. The Royston and Parmar

flexible parametric models provide a useful way of smoothly modeling survival data, while not

relying on distribution assumptions, although coefficients modeled as functions of time are hard

to interpret. Given an underlying Weibull distribution and a fulfilled proportional hazards

assumption, the Cox, Weibull, and Royston and Parmar proportional hazards models all have

accurate confidence interval coverage and coefficient estimates. Quantile regression offers an

alternative perspective to survival data that could be practical in the communication with

patients in a clinic. Coefficient estimates are accurate even for small sample sizes, but the 95%

confidence interval coverage probability is too low for small and moderate sample sizes. The

models presented in this thesis can be successfully used in heavily right-censored data, as shown

by the application to childhood acute lymphoblastic leukemia data.
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Appendices

A Additional parametric distributions

The density, survival and hazard functions of the Gamma distribution are presented in Table A1

and shown in Figure A1. The survival and hazard functions are not possible to derive without

using the lower incomplete Gamma function, not stated explicitly here. As seen in the figure,

the hazard function h(t) approaches λ as t tends to infinity (Klein & Moeschberger, 2003, Ch.

2.5, p. 42). Like the Weibull distribution, h(t) is strictly decreasing for β < 1, strictly increasing

for β > 1, and constant for β = 1. If n is a positive integer, then Γ(n, λ) is the sum of n random

variables from an exponential distribution with parameter λ (Gut, 2009, Ch. 3, p. 67-68).

The density, survival and hazard functions of the Gompertz distribution are presented in

Table A1 and shown in Figure A2. The hazard function of the Gompertz distribution is expo-

nential, and thus tends to infinity as t tends to infinity. The parameter θ determines the hazard

at time t = 0. In biology, an exponential hazard function has been deemed appropriate for some

applications (Klein & Moeschberger, 2003, Ch. 2.8, p. 58).

Table A1: Additional parametric distributions used in survival analysis

Distribution Parameters f(t) S(t) h(t)

Gamma T ∼ Γ(β, λ) β, λ > 0 λβ

Γ(β)
tβ−1e−λt(*) 1−

∫ t
0
f(s)ds f(t)

S(t)

Gompertz T ∼ Go(α, θ) α, θ > 0 θeαt exp
{
θ
α

(1− eαt)
}

exp
{
θ
α

(1− eαt)
}

θeαt

*) Γ(z) =
∫ ∫

0
xz−1 exp(−x)dx. If n ∈ N,Γ(n) = (n− 1)!
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Figure A1: The Gamma distribution; density function, survival function and hazard function, for
varying shape parameters β. The scale parameter λ = 1 for all β.
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Figure A2: The Gompertz distribution; density function, survival function and hazard function, for
varying shape and scale parameters, α and θ.
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B Supplementary simulation results for comparison of propor-

tional hazards methods

Table B1: Number of failures in fitting, and number of non-convergences, out of 10000 simulations,
presented in Section 4.2, for comparison between PH methods for different censoring probabilities and
sample sizes n in each group (total sample size given by 2n). NEOG=no events in at least one of
the groups, resulting in non-convergence with all three methods. NC denotes the occurrence of non-
convergence even though there are observed events in both groups. Failures refer to failure in fitting for
other reasons than convergence.

No censoring

Cox PHM Weibull PHM RP PHM
n NEOG No. of NCs No. of fail. No. of NCs No. of fail. No. of NCs No. of fail.

25 0 0 0 0 0 0 3
50 0 0 0 2 0 0 3
100 0 0 0 18 0 0 10
250 0 0 0 106 0 0 22
500 0 0 0 252 0 0 54

30% censoring

Cox PHM Weibull PHM RP PHM
n NEOG No. of NCs No. of fail. No. of NCs No. of fail. No. of NCs No. of fail.

25 0 0 0 0 0 0 9
50 0 0 0 0 0 0 3
100 0 0 0 0 0 0 10
250 0 0 0 0 0 0 22
500 0 0 0 0 0 0 54

60% censoring

Cox PHM Weibull PHM RP PHM
n NEOG No. of NCs No. of fail. No. of NCs No. of fail. No. of NCs No. of fail.

25 3 0 0 0 0 0 159
50 0 0 0 0 0 0 5
100 0 0 0 0 0 0 10
250 0 0 0 0 0 0 22
500 0 0 0 0 0 0 54

90% censoring

Cox PHM Weibull PHM RP PHM
n NEOG No. of NCs No. of fail. No. of NCs No. of fail. No. of NCs No. of fail.

25 1940 8 30 0 0 12 1515
50 290 1 37 0 0 1 1357
100 7 0 20 0 0 0 285
250 0 0 6 0 0 0 28
500 0 0 0 0 0 0 55
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Figure B1: Histograms of β̂s in 10000 simulations with no censoring, presented in Section 4.2, for
comparison between PH methods for different sample sizes n in each group (total sample size given by
2n). The left column shows estimates from Cox PHMs, the middle from Weibull PHMs, and the right
from Royston and Parmar PHMs. Vertical line indicates true β ≈ 0.69.
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Figure B2: Histograms of β̂s in 10000 simulations with 30% censoring, presented in Section 4.2, for
comparison between PH methods for different sample sizes n in each group (total sample size given by
2n). The left column shows estimates from Cox PHMs, the middle from Weibull PHMs, and the right
from Royston and Parmar PHMs. Vertical line indicates true β ≈ 0.69.
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Figure B3: Histograms of β̂s in 10000 simulations with 60% censoring, presented in Section 4.2, for
comparison between PH methods for different sample sizes n in each group (total sample size given by
2n). The left column shows estimates from Cox PHMs, the middle from Weibull PHMs, and the right
from Royston and Parmar PHMs. Vertical line indicates true β ≈ 0.69.
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Figure B4: Histograms of β̂s in 10000 simulations with 90% censoring, presented in Section 4.2, for
comparison between PH methods for different sample sizes n in each group (total sample size given by
2n). The left column shows estimates from Cox PHMs, the middle from Weibull PHMs, and the right
from Royston and Parmar PHMs. Vertical line indicates true β ≈ 0.69.
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C Supplementary simulation results for quantile regression

Table C1: Average β̂1,τ and ŜE(β̂1,τ ) from 5000 simulations of quantile regression models, presented
in Section 4.3, for different values of τ , sample sizes n in each group, and censoring proportions pc.
The left part of the table corresponds to a Weibull distribution with α = 0.8, λ = 2, compared to the
reference distribution (Weib(α = 0.8, λ = 1)). The right part corresponds to a Weibull distribution with
α = 1.6, λ = 2, compared to the reference distribution. True coefficients denoted by β1,τ for the different
scenarios and probabilities τ .

Weib(α = 0.8, λ = 2) Weib(α = 1.6, λ = 2)
pc = 0 pc = 0.3 pc = 0 pc = 0.3

τ β1,τ β̂1,τ ŜE(β̂1,τ ) β̂1,τ ŜE(β̂1,τ ) β1,τ β̂1,τ ŜE(β̂1,τ ) β̂1,τ ŜE(β̂1,τ )
n=25 0.05 -0.0141 -0.0399 0.1713 -0.0279 0.1194 0.0769 0.0863 0.1314 0.0732 0.1433

0.10 -0.0348 -0.0478 0.1290 -0.0435 0.1570 0.0988 0.0811 0.1182 0.0816 0.1616
0.15 -0.0598 -0.0684 0.1685 -0.0674 0.2263 0.1051 0.0848 0.1484 0.0860 0.1718
0.20 -0.0889 -0.0976 0.2022 -0.0982 0.2411 0.1006 0.0780 0.1709 0.0826 0.2195
0.25 -0.1221 -0.1322 0.2540 -0.1313 0.2785 0.0869 0.0685 0.1744 0.0715 0.2428
0.30 -0.1597 -0.1698 0.2370 -0.1677 0.3194 0.0648 0.0457 0.1990 0.0479 0.2834
0.35 -0.2023 -0.2118 0.2756 -0.2094 0.3716 0.0341 0.0144 0.2486 0.0170 0.2906
0.40 -0.2503 -0.2602 0.2916 -0.2539 0.3889 -0.0057 -0.0257 0.2770 -0.0208 0.3343
0.45 -0.3047 -0.3117 0.3434 -0.3070 0.4497 -0.0556 -0.0734 0.2931 -0.0679 0.3925
0.50 -0.3665 -0.3655 0.3794 -0.3571 0.5346 -0.1168 -0.1279 0.3579 -0.1203 0.4509
0.55 -0.4375 -0.4354 0.4274 -0.4183 0.5552 -0.1915 -0.1983 0.3861 -0.1838 0.5165
0.60 -0.5196 -0.5213 0.4572 -0.4784 0.6569 -0.2825 -0.2917 0.4471 -0.2598 0.5925

n=50 0.05 -0.0141 -0.0217 0.0306 -0.0203 0.0322 0.0769 0.0766 0.0552 0.0755 0.0536
0.10 -0.0348 -0.0399 0.0437 -0.0399 0.0537 0.0988 0.0926 0.0555 0.0939 0.0609
0.15 -0.0598 -0.0668 0.0606 -0.0666 0.0789 0.1051 0.0976 0.0633 0.0996 0.0702
0.20 -0.0889 -0.0966 0.0831 -0.0972 0.0991 0.1006 0.0915 0.0745 0.0911 0.0828
0.25 -0.1221 -0.1303 0.0881 -0.1316 0.1162 0.0869 0.0763 0.0869 0.0766 0.0981
0.30 -0.1597 -0.1692 0.1052 -0.1698 0.1406 0.0648 0.0534 0.1001 0.0539 0.1180
0.35 -0.2023 -0.2109 0.1260 -0.2126 0.1732 0.0341 0.0236 0.1131 0.0219 0.1300
0.40 -0.2503 -0.2597 0.1372 -0.2613 0.1894 -0.0057 -0.0172 0.1348 -0.0187 0.1641
0.45 -0.3047 -0.3126 0.1661 -0.3162 0.2350 -0.0556 -0.0648 0.1466 -0.0690 0.1863
0.50 -0.3665 -0.3751 0.1912 -0.3768 0.2716 -0.1168 -0.1262 0.1744 -0.1285 0.2304
0.55 -0.4375 -0.4448 0.2140 -0.4441 0.3112 -0.1915 -0.2005 0.2056 -0.2015 0.2898
0.60 -0.5196 -0.5243 0.2412 -0.5230 0.3965 -0.2825 -0.2904 0.2429 -0.2891 0.3558

n=100 0.05 -0.0141 -0.0162 0.0160 -0.0158 0.0156 0.0769 0.0765 0.0325 0.0766 0.0318
0.10 -0.0348 -0.0375 0.0251 -0.0376 0.0254 0.0988 0.0968 0.0383 0.0975 0.0385
0.15 -0.0598 -0.0630 0.0345 -0.0632 0.0363 0.1051 0.1017 0.0452 0.1018 0.0462
0.20 -0.0889 -0.0923 0.0444 -0.0922 0.0460 0.1006 0.0956 0.0530 0.0959 0.0548
0.25 -0.1221 -0.1256 0.0543 -0.1258 0.0597 0.0869 0.0816 0.0614 0.0821 0.0639
0.30 -0.1597 -0.1643 0.0658 -0.1649 0.0726 0.0648 0.0585 0.0706 0.0588 0.0742
0.35 -0.2023 -0.2069 0.0772 -0.2076 0.0853 0.0341 0.0278 0.0798 0.0277 0.0837
0.40 -0.2503 -0.2542 0.0882 -0.2560 0.1008 -0.0057 -0.0118 0.0903 -0.0121 0.0965
0.45 -0.3047 -0.3081 0.1020 -0.3109 0.1191 -0.0556 -0.0612 0.1030 -0.0625 0.1108
0.50 -0.3665 -0.3700 0.1175 -0.3744 0.1400 -0.1168 -0.1223 0.1156 -0.1236 0.1294
0.55 -0.4375 -0.4413 0.1348 -0.4458 0.1661 -0.1915 -0.1970 0.1314 -0.1986 0.1623
0.60 -0.5196 -0.5204 0.1532 -0.5262 0.2065 -0.2825 -0.2859 0.1507 -0.2929 0.1990

n=250 0.05 -0.0141 -0.0151 0.0101 -0.0150 0.0098 0.0769 0.0770 0.0211 0.0771 0.0207
0.10 -0.0348 -0.0360 0.0160 -0.0359 0.0160 0.0988 0.0981 0.0249 0.0981 0.0250
0.15 -0.0598 -0.0612 0.0222 -0.0613 0.0224 0.1051 0.1040 0.0293 0.1043 0.0300
0.20 -0.0889 -0.0906 0.0284 -0.0906 0.0287 0.1006 0.0988 0.0343 0.0991 0.0355
0.25 -0.1221 -0.1238 0.0353 -0.1241 0.0359 0.0869 0.0850 0.0397 0.0852 0.0412
0.30 -0.1597 -0.1614 0.0423 -0.1617 0.0434 0.0648 0.0627 0.0455 0.0627 0.0474
0.35 -0.2023 -0.2041 0.0493 -0.2047 0.0517 0.0341 0.0317 0.0518 0.0314 0.0541
0.40 -0.2503 -0.2520 0.0571 -0.2527 0.0605 -0.0057 -0.0085 0.0589 -0.0088 0.0619
0.45 -0.3047 -0.3062 0.0658 -0.3077 0.0700 -0.0556 -0.0579 0.0669 -0.0586 0.0706
0.50 -0.3665 -0.3682 0.0762 -0.3698 0.0820 -0.1168 -0.1193 0.0759 -0.1203 0.0812
0.55 -0.4375 -0.4394 0.0874 -0.4417 0.0962 -0.1915 -0.1948 0.0858 -0.1956 0.0935
0.60 -0.5196 -0.5216 0.0993 -0.5246 0.1135 -0.2825 -0.2861 0.0972 -0.2873 0.1090

n=500 0.05 -0.0141 -0.0146 0.0071 -0.0146 0.0070 0.0769 0.0772 0.0151 0.0772 0.0150
0.10 -0.0348 -0.0352 0.0113 -0.0352 0.0114 0.0988 0.0991 0.0176 0.0992 0.0178
0.15 -0.0598 -0.0601 0.0158 -0.0601 0.0160 0.1051 0.1054 0.0209 0.1055 0.0214
0.20 -0.0889 -0.0894 0.0204 -0.0894 0.0206 0.1006 0.1003 0.0245 0.1004 0.0253
0.25 -0.1221 -0.1225 0.0253 -0.1225 0.0256 0.0869 0.0864 0.0283 0.0865 0.0295
0.30 -0.1597 -0.1604 0.0304 -0.1603 0.0312 0.0648 0.0639 0.0326 0.0640 0.0340
0.35 -0.2023 -0.2033 0.0354 -0.2033 0.0369 0.0341 0.0329 0.0372 0.0328 0.0388
0.40 -0.2503 -0.2511 0.0408 -0.2513 0.0430 -0.0057 -0.0069 0.0422 -0.0072 0.0441
0.45 -0.3047 -0.3057 0.0470 -0.3057 0.0497 -0.0556 -0.0568 0.0478 -0.0574 0.0506
0.50 -0.3665 -0.3669 0.0542 -0.3672 0.0577 -0.1168 -0.1177 0.0541 -0.1183 0.0579
0.55 -0.4375 -0.4379 0.0625 -0.4376 0.0681 -0.1915 -0.1919 0.0616 -0.1931 0.0671
0.60 -0.5196 -0.5199 0.0713 -0.5206 0.0805 -0.2825 -0.2832 0.0700 -0.2844 0.0779
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